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Lens optics as an optical computer for group contractions
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It is shown that the one-lens system in para-axial optics can serve as an optical computer for contraction of
Wigner’s little groups and an analog computer that transforms analytically computations on a spherical surface
to those on a hyperbolic surface. It is shown possible to construct a set of Lorentz transformations which leads
to a 232 matrix whose expression is the same as those in the para-axial lens optics. It is shown that the lens
focal condition corresponds to the contraction of the O~3!-like little group for a massive particle to the
E~2!-like little group for a massless particle, and also to the contraction of the O~2,1!-like little group for a
spacelike particle to the same E~2!-like little group. The lens-focusing transformations presented in this paper
allow us to continue analytically the spherical O~3! world to the hyperbolic O~2,1! world, and vice versa. Since
the traditional role of Wigner’s little groups has been to dictate the internal space-time symmetries of massive,
massless, and imaginary-mass particles, the one-lens system provides a unification of those symmetries.
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I. INTRODUCTION

The six-parameter Lorentz group was initially introduc
to physics as a group of Lorentz transformations applica
to the four-dimensional Minkowskian space. However,
Lorentz group can serve as the basic mathematical lang
for many branches of physics. It serves as the backbone
the theory of coherent and squeezed states of light@1,2#.
Recently we are realizing that the Lorentz group can serv
the standard language for classical ray optics, including
larization optics@3#, interferometers@4#, layer optics@5,6#,
lens optics@7#, and cavity optics@8#.

Since the Lorentz group provides the underlying scient
language to classical optics, it is not unreasonable to ex
ine whether we can construct optical devices that will p
form computations in the Lorentz group. This group h
many subgroups, and we are particularly interested in Wi
er’s little groups which dictate the internal space-time sy
metries of relativistic particles@9#. While these groups play
the fundamental role in particle physics, they had a stor
history in connection with their role in explaining the spac
time symmetry of massless particles@10#.

Wigner’s little group is defined to be the maximal su
group of the Lorentz group whose transformations leave
four-momentum of a given particle invariant. The litt
groups for massive, massless, and spacelike momentum
like O~3!, E~2!, and O~2,1!, respectively@11#. The O~3!
group is the three-dimensional rotation group and can p
vide computations on the numbers distributed on a sphe
surface. The O~2,1! group provides transformations in th
Minkowskian space of two spacelike and one timelike
mensions. Thus, this group deals with the numbers on a
perbolic surface. The E~2! group stands for the Euclidea
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transformations on a flat surface. It consists of two trans
tional degrees of freedom as well as the rotation around
origin.

The transitions from O~3! to E~2!, and from O~2,1! to
E~2! are called the group contractions in the literatu
@12,13#, and they are known to be singular transformatio
which forbid analytic continuation from O~3! to E~2!. After
the O~3! or O~2,1! is contracted to E~2!, it is not possible to
recover either of the two groups from E~2!. In addition, the
little groups are not exactly the O~3!, E~2!, and O~2,1!
groups whose geometry is quite transparent to us. They
only ‘‘like’’ Ref. @11#. The question is then whether the co
traction of O~3! to E~2! necessarily mean the contraction
the O~3!-like little group to E~2!-like little group. This con-
ceptual question also has been discussed extensively in
literature @10,13,14#. In this paper, we only use the resul
that can be represented in the 232 matrix representation o
the Lorentz group.

The one-lens system consists of one-lens matrix and
translation matrices@15#. The combined matrix can be writ
ten in terms of the 232 matrices corresponding to 434
Lorentz-transformation matrices which constitute the tra
formations of the little groups@7#. However, unlike the case
of the little groups, the parameters of the 232 matrices are
analytic, especially in the neighborhood of the focal con
tion in which the upper-right element vanishes. On the ot
hand, from the little group point of view, this is precise
where the group contraction occurs, and this transforma
is singular as was mentioned above. Then how can we es
lish the correspondence between singular and nonsing
representations?

Indeed, if we can represent those three little groups us
one convex lens, the result would be quite interesting, es
cially in view of the fact that computations in a hyperbol
world can be performed in a spherical world, and vice ver
In order to achieve this goal, we have to develop a ma
ematical device that establishes a bridge between lens o
©2003 The American Physical Society01-1
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and the little groups, starting from Wigner’s original idea
finding the maximal subgroups of the Lorentz group wh
will leave the four-momentum of a given particle invarian

With this point in mind, we present a different set
Lorentz transformations achieving the same purpose@18#.
We then show that the representation of the little groups
this set coincides with the matrix representation of the o
lens system. It is then seen that the focal condition co
sponds to the transition from one little group to another. T
transition is analytic. In this way, we achieve an analy
transformation of computations on a hyperbolic surface t
spherical surface.

In this paper, we are employing many sophisticated ma
ematical items such as the Lie algebra, compact groups,
compact groups, solvable groups, as well as group cont
tions. However, we are very fortunate to be able to av
these words and get directly into the computational wo
using only familiar 232 matrices without complex number
Our mathematics starts from the well-known 232 matrix
formulation of the one-lens system.

In Sec. II, we start with one-lens matrix and two trans
tion matrices, and derive a core matrix to be studied in de
In Sec. III, we introduce Wigner’s little groups and the
traditional 232 representations, and point out that they a
not suitable for describing the core matrix in the one-le
system, because the transition from one little group to
other is a singular transformation. In Sec. IV, for the litt
groups, we introduce a different set of Lorentz transform
tions which can serve as a bridge between the symmetrie
relativistic particles and the one-lens system. It is noted
the transition from one little group to another can
achieved analytically. It is noted that the group contraction
not always a singular transformation.

Then in Sec. V, we formulate the one-lens system in te
of the little groups and the analytic group contraction. In S
VI, it is pointed out that the cavity optics is a special case
the one-lens system, but that this simplified system cont
all the essential features of group contractions.

In discussing the Lorentz group and its subgroups,
standard mathematical language is the Lie algebra. In
paper, we did not follow the procedure based on the
algebra. For this reason, some of our results are quite di
ent than what is expected from the Lie algebra framewo
Therefore, we have added an appendix to address t
group theoretical issues.

II. FORMULATION OF THE PROBLEM

The simplest lens system is of course the one-lens sys
with the lens matrix

S 1 0

21/f 1D , ~1!

wheref is the focal length. We assume that the focal length
positive throughout the paper. The translation matrix ta
the form

S 1 d

0 1D . ~2!
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If the object and image ared1 andd2 from the lens, respec
tively, the optical system is described by

S 1 d2

0 1 D S 1 0

21/f 1D S 1 d1

0 1 D . ~3!

The multiplication of these matrices leads to

S 12d2 / f d11d22d1d2 / f

21/f 12d1 / f D . ~4!

The image becomes focused when the upper-right eleme
this matrix vanishes with

1

d1
1

1

d2
5

1

f
. ~5!

The problem with this expression is that the off-diagon
elements are not dimensionless, but it can be decompo
into

S ~d1d2!1/4 0

0 ~d1d2!21/4D S 12x2 2 coshr2x

2x 12x1
D

3S ~d1d2!21/4 0

0 ~d1d2!1/4D ~6!

with

x15
d1

f
, x25

d2

f
, x5

Ad1d2

f
,

coshr5
1

2
~Ad1 /d21Ad2 /d1!. ~7!

The matrix in the middle, the core matrix, can now be wr
ten as

S 12x2 2 coshr2x

2x 12x1
D . ~8!

In the camera configuration, both the image and object
tances are larger than the focal length, and both (12x1) and
(12x2) are negative. Thus we start with the negative of t
above matrix

S x221 x22 coshr

x x121 D . ~9!

We can further renormalize this matrix to make the tw
diagonal elements equal. For this purpose, we can write

S b 0

0 1/bD S z21 x22 coshr

x z21 D S b 0

0 1/bD ~10!

with

b5S x221

x121D 1/4

.

Then the core matrix becomes

S z21 x22 coshr

x z21 D ~11!
1-2
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with

z511A~x121!~x221!. ~12!

In terms of ther andx variables,z can be written as

z511Ax222x coshr11. ~13!

We shall use the core matrix of Eq.~11! as the starting
point in this paper. Ifx is smaller than 2(coshr), the core
matrix can be written as

S cos~f/2! 2e2hsin~f/2!

ehsin~f/2! cos~f/2!
D , ~14!

where the range of the angle variablef is between 0 andp,
andh is positive.

This form of the core matrix serves a very useful purpo
in laser optics which consists of chains of the one-lens s
tem @15–17#. Its connection with the Lorentz group an
Wigner rotations has been studied recently by the pre
authors@8#. Indeed, this is the starting point of this pape
where we intend to establish a connection between the
lens system and a set of Lorentz transformations.

If x52 coshr, the above expression becomes

S 1 0

2 coshr 1D , ~15!

and the focal condition of Eq.~5! is satisfied. Ifx is greater
than 2(coshr), all the elements in the core matrix of Eq.~11!
become positive. Thus, it is appropriate to write it as

S cosh~x/2! e2hsinh~x/2!

ehsinh~x/2! cosh~x/2!
D . ~16!

As we shall see in Sec. III, the expressions given in E
~14!, ~15!, and ~16! take the same mathematical forms
those of the representations of the O~3!-, E~2!-, and O~2,1!-
like little groups. The transition from one form to anoth
form is a singular transformation. On the other hand, the c
matrix of Eq.~11! is analytic in thex andr variables when
bothx1 andx2 are greater than 1. We are thus led to look
another set of Lorentz transformations with analytic para
eters. This will enable us to write those transformation
rameters in terms of the lens parameters of Eq.~11!. In so
doing, we can establish a correspondence between lens
tics and the transformations of the little groups, and we
achieve transformations from one little group to another
adjusting focal conditions.

III. LITTLE GROUPS

In his 1939 paper on the Lorentz group@9#, Wigner con-
sidered the maximum subgroup of the Lorentz group wh
transformations leave the four-momentum of a given f
particle invariant. This subgroup is called Wigner’s litt
group. Wigner observed that there are three classes o
little group. In the Minkowskian space of the space-time c
ordinate (t,z,x,y), the four-vector

m~1,0,0,0! ~17!
05660
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corresponds to the four-momentum of a massive particle
rest. To this four-vector, we can apply three-dimensional
tation matrix, like the rotation matrix around they axis,

S 1 0 0 0

0 cosf 2sinf 0

0 sinf cosf 0

0 0 0 1

D , ~18!

without changing the four-momentum of Eq.~17!. In optics,
it is more convenient to use the 232 representation of this
matrix @4#. The rotation matrix then becomes

S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D . ~19!

In order to study the little group for a particle movin
along thez direction, we can start with a particle with fou
momentum@19#

m~coshh,2sinhh,0,0!. ~20!

This particle moves in the negativez direction with the speed
of c(tanhh). To this four-vector, if we apply the boost matri

S coshh sinhh 0 0

sinhh coshh 0 0

0 0 1 0

0 0 0 1

D , ~21!

the four-vector returns to the form given in Eq.~17!. Here
again, it is more convenient to use the 232 representation of
this boost matrix that takes the form@19#

S eh/2 0

0 e2h/2D . ~22!

Thus, in order to construct a representation of the lit
group for the four-momentum of Eq.~20!, we boost it to that
of Eq. ~17! using the boost matrix of Eq.~21! or ~22!, per-
form the rotation of Eq.~18! or ~19! which does not change
the momentum, and then boost the momentum back to
original form of Eq. ~20!. In the 232 representation, this
chain of matrices takes the form

S e2h/2 0

0 eh/2D S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D S eh/2 0

0 e2h/2D .

~23!

After the multiplication, the result becomes

S cos~f/2! 2e2hsin~f/2!

ehsin~f/2! cos~f/2!
D . ~24!

The mathematical form of this matrix is identical to that
Eq. ~14!.

This is the reason why the little groups can play a role
lens optics and vice versa. The group represented in this
is called the O~3!-like little group for a massive particle@19#.
1-3
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As was mentioned in Sec. II, this expression is also one
the starting formulas in laser optics@8,15–17#.

What happens if the four-momentum is lightlike? T
four-momentum in this case is

v~1,1,0,0!. ~25!

The lightlike particles cannot be brought to its rest fram
and thus cannot be brought to the form of Eq.~17!. It is clear
that this four-vector is invariant under rotations around thz
axis. In addition, Wigner observed in his original paper th
there are two additional transformations which leave t
lightlike four-momentum invariant. These matrices are e
tensively discussed in the literature, and the result is that t
correspond to the form

S 1 0

u 1D , ~26!

whereu is a complex parameter with two real independe
parameters. Since, we will be dealing with real matrices
this paper,u represents only one real number. It is interest
to note that this form is identical to that of Eq.~15!. This
aspect of the little group also has been discussed in the
erature@19#.

The theory of the little group includes also the form

S 1 u

0 1D , ~27!

but it does not play a role in this paper. This form may
useful if we consider the case when the lower-left elemen
the core matrix of Eq.~11! vanishes. The group represent
either in the form of Eq.~26! or Eq. ~27! is called the E~2!-
like little group for massless particles.

The little-group matrix of Eq.~26! is form invariant under
the Lorentz boost along thez direction, as can be seen from

S e2h/2 0

0 eh/2D S 1 0

u 1D S eh/2 0

0 e2h/2D 5S 1 0

ehu 1D .

~28!

A similar form invariance is also true for the matrix i
Eq. ~27!.

There are no particles in nature with spacelike fo
momentum, whose four-vector may be written as@20#

m~0,1,0,0!, ~29!

but it occupies an important position in group theory@9#. It
will become more important as it finds its place in optic
sciences. This four-vector is also invariant under rotatio
around thez axis. In addition, it remains invariant unde
boosts along thex andy directions. The boost matrix alon
the x direction takes the form

S cosh~x/2! sinh~x/2!

sinh~x/2! cosh~x/2!
D . ~30!

If we apply the same Lorentz boosts as we did in two pre
ous little groups, the little-group matrix should become
05660
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S cosh~x/2! e2hsinh~x/2!

ehsinh~x/2! cosh~x/2!
D . ~31!

This form is identical to Eq.~16!.
We discuss further group theoretical issues of the li

groups in the Appendix. In this section, we have shown t
the transformation matrices of the little groups and the o
lens system take the same form. However, there is one
cial problem. In the case of the core matrix of Eq.~9!, the
sign change of the upper-right element can be done ana
cally, but this is not true for the little-group representatio
The transition to Eq.~26! either from Eq.~24! or from Eq.
~31! is possible and is known as the group contraction in
literature. However, in both cases, the two independent
rameters collapse into one independent parameter. Thus
inverse transformation is not possible. This keeps us fr
continuing analytically from Eq.~24! to Eq. ~30!. What
should we do?

IV. CONTRACTIONS OF THE LITTLE GROUPS

In order to circumvent the singularity problem mention
in the preceding section, we are interested in finding a se
Lorentz transformations which will remain analytic as we
through the transition point where the upper-right elem
vanishes. Let us restate the problem.

If x is smaller than 2 coshr, the upper-right element of the
core matrix of Eq.~11! is negative while the remaining thre
are positive, and it can be written in the form of Eq.~14!. If
it is greater than 2 coshr, all the elements are positive, an
the core matrix should be written as Eq.~16!. There is a
value zero between these two values, which correspond
the focal condition. This is precisely the point where t
expressions, Eqs.~14! and ~16!, become singular. The pur
pose of this section is to establish the connection between
little groups and the one-lens system without this singular
In the computer language, this singularity means a mem
loss.

We are thus interested in a different set of Lorentz tra
formations for the little groups. We note here again that
little group consists of transformations that leave the fo
momentum of a given particle invariant@9#. In order to find
the set of transformations which will bring back the fou
momentum of Eq.~20! to itself @18#, let us first rotate the
four-momentum byu, using the rotation matrix

S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D ~32!

to Eq. ~20!. Then the four-momentum becomes

m„coshh,~sinhh!cosu,2~sinhh!cosu,0…. ~33!

This four-momentum can be boosted along thex direction,
which then becomes

m~coshh,~sinhh!cosu,~sinhh!cosu,0!, ~34!

with the boost matrix
1-4
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S coshl sinhl

sinhl coshl
D . ~35!

We can return to the four-momentum of Eq.~20!, by apply-
ing again the rotation matrix of Eq.~32!. The net effect is

S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D S coshl sinhl

sinhl coshl
D

3S cos~u/2! 2sin~u/2!

sin~u/2! cos~u/2!
D , ~36!

which becomes

S coshlcosu 2coshl sinu1sinhl

coshlsinu1sinhl coshl cosu D . ~37!

Indeed, these two different ways of returning to the sa
four-momentum should give the same effect. Thus, the ef
of Eq. ~24! and that of Eq.~37! are the same, and

S cos~f/2! 2e2hsin~f/2!

ehsin~f/2! cos~f/2!
D

5S coshl cosu 2coshl sinu1sinhl

coshl sinu1sinhl coshl cosu D ,

~38!

with

cos~f/2!5coshl cosu,

e22h5
coshl sinu2sinhl

coshl sinu1sinhl
. ~39!

Conversely,l andu can be written in terms off andh as

coshl5~coshh!A12cos2~f/2!tanh2h,

cosu5
cos~f/2!

~coshh!A12cos2~f/2!tanh2h
. ~40!

This leads to

coshl5
coshh

A11~sinh2h!cos2u
, ~41!

which means that the boost parameterl is determined from
the rotation angleu for a given value of the boost paramet
h.

The above relations are valid only when (coshl sinu) is
greater than sinhl. Otherwise, instead of Eq.~23!, we have
to start from

S e2h/2 0

0 eh/2D S cosh~x/2! sinh~x/2!

sinh~x/2! cosh~x/2!
D S eh/2 0

0 e2h/2D ,

~42!

which leads to
05660
e
ct

S cosh~x/2! e2hsinh~x/2!

ehsinh~x/2! cosh~x/2!
D . ~43!

This form is identical to Eq.~16!, and should also be equal t
Eq. ~37!. We write this as

S cosh~x/2! e2hsinh~x/2!

ehsinh~x/2! cosh~x/2!
D

5S coshl cosu 2coshl sinu1sinhl

coshl sinu1sinhl coshl cosu D ,

~44!

which leads to the identities

cosh~x/2!5coshl cosu,

e22h52S coshl sinu2sinhl

coshl sinu1sinhl D . ~45!

Conversely,

coshl5~coshh!Acosh2~x/2!2tanh2h,

cosu5
cosh~x/2!

~coshh!Acosh2~x/2!2tanh2h
. ~46!

In this case, the boost parameterl takes the form

coshl5
sinhh

Acosh2h cos2u21
. ~47!

Here, the boost parameterl is determined by the little-group
parameteru for a given value ofh.

While the quantity

coshl sinu2sinhl

coshl sinu1sinhl
~48!

changes the sign from~plus! to ~minus!, it has to go through
zero. With the parametersl and u, this process is quite
analytic. On the other hand, the exponential factor e
(22h) is always positive. Thus, changing exp(22h) to
2exp(22h) cannot be achieved analytically. This is nece
sarily a singular transformation. However, this exponen
factor becomes vanishingly small whenh becomes very
large. Perhaps we are allowed to change the sign when
vanishingly small, but this is still a nonanalytic continuatio
Furthermore, let us look at the expressions given in Eqs.~24!
and ~43!. This sign change is accompanied by the transit
of a rotation matrix of the form of Eq.~19! to a boost matrix
of the form given in Eq.~30!.

Indeed, by changing the parameters fromf and h to u
and l, we can analytically navigate through the vanishi
value of the upper-right element of matrices of Eq.~38!. The
process of approaching this zero value either from the p
tive or negative side is called the group contraction in
literature. In this paper, however, we are eventually int
ested in how these parameters operate in lens optics.
shall come back to this issue in Sec. V.
1-5
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V. LENS OPTICS AND GROUP CONTRACTIONS

In Sec. II, we started with a cameralike one-lens syste
and derived

S z21 x22 coshr

x z21 D 5S cos~f/2! 2e2hsin~f/2!

ehsin~f/2! cos~f/2!
D ,

~49!

for x smaller than 2(coshr), andx is positive. Here all the
parameters are determined fromd1 ,d2, and f of the lens
optics. If we gradually increase the value ofx, the upper-
right element becomes zero and then positive. The right-h
side of the above expression cannot accommodate this
sition.

The right-hand side is a familiar expression both in opt
and the Lorentz group. In Sec. III, we started with Wigne
little groups, and noted that the expressions given in E
~14! and ~24! are identical to each other. The paramet
in Eq. ~24! are the Lorentz-transformation parameters
Wigner’s O~3!-like little group for massive particles.

In order to circumvent the above-mentioned singular
problem, we have chosen a different set of Loren
transformation parameters, and the result was the expres
given in Eq. ~38!. In terms of these parameters, the co
matrix can be written as

S z21 x22 coshr

x z21 D
5S coshl cosu 2coshl sinu1sinhl

coshl sinu1sinhl coshl cosu D .

~50!

Here, both sides have their upper-right elements which
analytic as they go through zero.

The parameters are now related by

x22 coshr5sinhl2coshl sinu,

x5sinhl1coshl sinu, ~51!

and therefore to

sinhl5x2coshr,

sinu5
coshr

A11~x2coshr!2
. ~52!

We are thus able to write the Lorentz-transformation para
etersl and u in terms of the parameters of the one-le
system.

Thus, by adjusting the lens parameters, we can now
form transformations in Wigner’s little groups. It is interes
ing to note that we perform group contractions whenever
try to focus the object before taking a camera photo. Unl
the traditional procedures, the contraction presented this
per is an analytic transformation, which provides a revers
process from Eq.~14! to Eq. ~16! through Eq.~15!. We dis-
cussed group theoretical implications of this result in
Appendix.
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VI. CAVITY OPTICS

In our previous paper@8#, we studied light beams in lase
cavities. One cavity cycle there consists of two lenses w
the same image and object distances. We are thus le
consider the one-lens system withd15d25d, and thus

x15x25x. ~53!

The core matrix of Eq.~11! becomes

x225sinhl2coshl sinu,

x5sinhl1coshl sinu. ~54!

Therefore, coshl sinu51, or

sinu5
1

coshl
, ~55!

which is satisfied by the physical values ofu andl. Further-
more, this relation reduces Eq.~50! to

S x21 x22

x x21D 5S sinhl 211sinhl

11sinhl sinhl
D . ~56!

From this expression, we can compute bothl andu in terms
of the x variable, as they can be written as

sinhl5x21, sinu5
1

A11~11x!2
. ~57!

Indeed, this is an oversimplified example, but it is inte
esting to note that it contains all the ingredients of the gro
contractions discussed in this paper.

VII. CONCLUDING REMARKS

In building computers, it is not enough to develop com
puter mathematics. In the final stage, we have to adjust th
mathematical tools to the language spoken by devices. As
noted in Sec. I, the Lorentz group is the standard langu
for classical and quantum optics. The Lorentz group is a
the natural language for light beams and for the mater
through which the beams propagate. Thus, if we intend
build optical computers, we have to translate all mathem
cal algorithms into the language of the Lorentz group.
fact, it has been shown that some optical systems hav
slide-rule-like property@3#.

In this paper, we noted first that a cameralike single-le
system can perform the algebra of Wigner’s little groups a
their contractions. While discussing group contractions,
observed the difference between the rotation matrix

S cos~f/2! 2sin~f/2!

sin~f/2! cos~f/2!
D ~58!

of Eq. ~19!, and the boost matrix

S cosh~l/2! sinh~l/2!

sinh~l/2! cosh~l/2!
D ~59!
1-6
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LENS OPTICS AS AN OPTICAL COMPUTER FOR . . . PHYSICAL REVIEW E67, 056601 ~2003!
of Eq. ~30!. These matrices operate in two different spac
namely, the rotation matrix on a circle and the boost ma
on a hyperbola. Since we now have a procedure that ma
an analytic continuation from one to the other, we can p
form computations in the hyperbolic world and carry it to t
circular world.
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APPENDIX: GROUP THEORETICAL PROBLEMS

The correspondence between the Lorentz group O~3,1!
and SL~2,c!, the group of 232 unimodular matrices, is wel
known. Thus, we can study the Lorentz group with 232
matrices that are directly applicable to lens optics. Since
much easier to understand explicit algebra of 232 matrices
than the theorems on Lie groups, we did not take the s
dard Lie group approach in this paper. In so doing, some
the group theoretical issues were left unexplained in the m
text. The purpose of this appendix is to clarify those issu

First, the Lorentz group is a six-parameter group, w
three rotation and boost generators. In this paper, the 232
matrices have only two independent parameters. We s
with one lens matrix, two translation matrices, and thus w
three independent parameters. However, there is also th
striction that the determinant of the matrices be 1. Thus,
are working with two free parameters. Then, how much
formation does our work give to the full Lorentz group wi
the six parameters?

Second, the technique of group contraction is known a
singular transformation. How does this process becomes
lytic in this paper?

In order to answer these questions, we would like to e
phasize that group theory papers do not have to start with
Lie algebra. Wigner does not use any of the generators in
classic paper on the inhomogeneous Lorentz group@9#.
Goldstein uses the Euler angles to study three-dimensi
rotations@21#. Let us look at the Euler angles carefully.

While the Lie algebra of the rotation group consists
three generators operating on the three orthogonal directi
the Euler angles are defined only in terms of rotations aro
m

de

.L

05660
,
x
es
r-

is

n-
f

in
s.

rt
h
re-
e
-

a
a-

-
he
is

al

f
s,
d

two directions. Repeated applications of rotations arou
those two directions will lead to the most general form of t
rotation matrix. In the language of the Lie algebra, we st
with the three rotation generatorsJz ,Jx , and Jy . On the
other hand, we can start only withJz andJx , because we can
get Jy by taking the commutator ofJz andJx .

The Lorentz group is generated by three rotation gene
tors and three boost generators. It is a six-parameter gr
However, we do not need all these six generators. In orde
complete the rotation subgroup, we need only rotatio
around two orthogonal directions to construct all rotati
matrices. Let us introduce a boost along thez direction. Then
the rotations can change the direction of the boost to
arbitrary direction.

Thus, we need repeated applications of two rotations
one boost to construct the most general form of transform
tion matrices of the Lorentz group. The transformation m
trices can have at most six independent parameters.

In this paper, we start with one rotation and one boo
But, there is another rotational degree of freedom implici
contained in lens optics. This is the rotation around the
tical axis@19#. Thus, by making repeated applications of t
one-lens system@22#, we can construct the most general for
for Lorentz-transformation matrices.

Speaking of group contractions, a transition of one gro
to another group means transition from one Lie algebra t
different algebra. Therefore, the group contraction is nec
sarily a singular transformation in terms of the Lie algeb
parameters. The inverse of the contraction is known as
group expansion in the literature. Indeed, Gilmore give
detailed explanation of the transitions among the O~3!, E~2!,
and O~2,1! in his book@23#. However, the group expansion
also a singular transformation in terms of the Lie algeb
These singular transformations need specific additional c
ditions. For instance, E~2! can be expanded to O~3! or
O~2,1!. In this case, we have to give specific additional
structions.

In this paper, we used two different sets of paramete
One set consists of the Lie algebra parameters, which le
to a singular transformation. The parameters of the other
are not Lie algebra parameters. The transformation is
necessarily singular during the contraction and expans
processes@19#. We have given in this paper a set of param
eters which can be interpreted in terms of the Lorentz tra
formations within the framework of Wigner’s little groups.
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