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Lens optics as an optical computer for group contractions
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It is shown that the one-lens system in para-axial optics can serve as an optical computer for contraction of
Wigner's little groups and an analog computer that transforms analytically computations on a spherical surface
to those on a hyperbolic surface. It is shown possible to construct a set of Lorentz transformations which leads
to a 2X 2 matrix whose expression is the same as those in the para-axial lens optics. It is shown that the lens
focal condition corresponds to the contraction of the)dike little group for a massive particle to the
E(2)-like little group for a massless particle, and also to the contraction of tReldike little group for a
spacelike particle to the saméZk-like little group. The lens-focusing transformations presented in this paper
allow us to continue analytically the spherical3world to the hyperbolic @,1) world, and vice versa. Since
the traditional role of Wigner’s little groups has been to dictate the internal space-time symmetries of massive,
massless, and imaginary-mass particles, the one-lens system provides a unification of those symmetries.
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[. INTRODUCTION transformations on a flat surface. It consists of two transla-
tional degrees of freedom as well as the rotation around the
The six-parameter Lorentz group was initially introducedorigin.
to physics as a group of Lorentz transformations applicable The transitions from (8) to E(2), and from @2,1) to
to the four-dimensional Minkowskian space. However, theE(2) are called the group contractions in the literature
Lorentz group can serve as the basic mathematical langua@#2,13, and they are known to be singular transformations
for many branches of physics. It serves as the backbone farhich forbid analytic continuation from @) to E(2). After
the theory of coherent and squeezed states of ligt®]. the Q3) or O(2,]) is contracted to B), it is not possible to
Recently we are realizing that the Lorentz group can serve agcover either of the two groups from(&. In addition, the
the standard language for classical ray optics, including polittle groups are not exactly the (@, E(2), and 42,1
larization optics[3], interferometerg4], layer optics[5,6],  groups whose geometry is quite transparent to us. They are
lens opticq 7], and cavity opticg8]. only “like” Ref. [11]. The question is then whether the con-
Since the Lorentz group provides the underlying scientifictraction of Q3) to E(2) necessarily mean the contraction of
language to classical optics, it is not unreasonable to exanthe Q3)-like little group to E2)-like little group. This con-
ine whether we can construct optical devices that will perceptual question also has been discussed extensively in the
form computations in the Lorentz group. This group hasliterature[10,13,14. In this paper, we only use the results
many subgroups, and we are particularly interested in Wignthat can be represented in th&2 matrix representation of
er’s little groups which dictate the internal space-time sym-the Lorentz group.
metries of relativistic particleg9]. While these groups play The one-lens system consists of one-lens matrix and two
the fundamental role in particle physics, they had a stormyranslation matricefl5]. The combined matrix can be writ-
history in connection with their role in explaining the space-ten in terms of the X2 matrices corresponding to>44
time symmetry of massless particlgl]. Lorentz-transformation matrices which constitute the trans-
Wigner’s little group is defined to be the maximal sub- formations of the little groupf7]. However, unlike the case
group of the Lorentz group whose transformations leave thef the little groups, the parameters of th& 2 matrices are
four-momentum of a given particle invariant. The little analytic, especially in the neighborhood of the focal condi-
groups for massive, massless, and spacelike momentum agien in which the upper-right element vanishes. On the other
like O(3), E(2), and (2,1), respectively[11]. The Q3) hand, from the little group point of view, this is precisely
group is the three-dimensional rotation group and can prowhere the group contraction occurs, and this transformation
vide computations on the numbers distributed on a sphericas singular as was mentioned above. Then how can we estab-
surface. The @,1) group provides transformations in the lish the correspondence between singular and nonsingular
Minkowskian space of two spacelike and one timelike di-representations?
mensions. Thus, this group deals with the numbers on a hy- Indeed, if we can represent those three little groups using
perbolic surface. The () group stands for the Euclidean one convex lens, the result would be quite interesting, espe-
cially in view of the fact that computations in a hyperbolic
world can be performed in a spherical world, and vice versa.
*Electronic address: baskal@newton.physics.metu.edu.tr In order to achieve this goal, we have to develop a math-
TElectronic address: yskim@physics.umd.edu ematical device that establishes a bridge between lens optics

1063-651X/2003/6(6)/0566018)/$20.00 67 056601-1 ©2003 The American Physical Society



S. BAXALAND Y. S. KIM PHYSICAL REVIEW E 67, 056601 (2003

and the little groups, starting from Wigner’s original idea of If the object and image am@, andd, from the lens, respec-
finding the maximal subgroups of the Lorentz group whichtively, the optical system is described by
will leave the four-momentum of a given particle invariant. 1 d 1 o\/1 d
With this point in mind, we present a different set of 2)( )( 1)_ &)
Lorentz transformations achieving the same purpdsg. 0 1/\-1f 1/10 1
We then show that the representation of the little groups ir]]_ N .
he multiplication of these matrices leads to
1-d,/f dy+dy,—dqidy/f
—1f 1-d,/f

this set coincides with the matrix representation of the one-
lens system. It is then seen that the focal condition corre-
sponds to the transition from one little group to another. The
transition is analytic. In this way, we achieve an analytic

transformation of computations on a hyperbolic surface to ahe image becomes focused when the upper-right element of
spherical surface. this matrix vanishes with

In this paper, we are employing many sophisticated math-
ematical items such as the Lie algebra, compact groups, non- i+ i: E
compact groups, solvable groups, as well as group contrac- d; dy f°
tions. However, we are very fortunate to be able to avoid . . L .
these words and get directly into the computational world The problem W'th this expression 1S that the off-diagonal
using only familiar 2< 2 matrices without complex numbers. _elements are not dimensionless, but it can be decomposed
Our mathematics starts from the well-known<2 matrix M
formulation of the one-lens system. (d,d,)*4 0 1-x, 2coshp—x

In Sec. I, we start with one-lens matrix and two transla- ( 0 (dd )_1/4)( )
tion matrices, and derive a core matrix to be studied in detail. 12
In Sec. Ill, we introduce Wigner’s little groups and their (d,d,) 14 0
traditional 2< 2 representations, and point out that they are ( 0 (dyd )1/4>
not suitable for describing the core matrix in the one-lens =2
system, because the transition from one little group to anwith
other is a singular transformation. In Sec. 1V, for the little
groups, we introduce a different set of Lorentz transforma- X :ﬁ X :% X= vdid,
tions which can serve as a bridge between the symmetries of S
relativistic particles and the one-lens system. It is noted that

L . 1
the transition from one little group to another can be cosho= —(/d+/d»+ \/d,/d). 7
achieved analytically. It is noted that the group contraction is g 2( v 2/dy) )

not always a singular transformation. - . . .

Then in Sec. V, we formulate the one-lens system in term%’ek;]eargatrlx in the middle, the core matrix, can now be writ-
of the little groups and the analytic group contraction. In Sec.

VI, it is pointed out that the cavity optics is a special case of 1-x, 2coshp—x
the one-lens system, but that this simplified system contains
all the essential features of group contractions.

In discussing the Lorentz group and its subgroups, thén the camera configuration, both the image and object dis-
standard mathematical language is the Lie algebra. In thigances are larger than the focal length, and both X]) and
paper, we did not follow the procedure based on the Lig1-x,) are negative. Thus we start with the negative of the
algebra. For this reason, some of our results are quite differabove matrix
ent than what is expected from the Lie algebra framework. (

4

®)

—X 1-xq

(6)

®

—X 1-xq

Therefore, we have added an appendix to address those
group theoretical issues.

Xo—1 Xx—2 COShp) ©

X X;1—1

We can further renormalize this matrix to make the two

Il. FORMULATION OF THE PROBLEM . . o
diagonal elements equal. For this purpose, we can write it as

The simplest lens system is of course the one-lens system b 0\/z—1 x—2costp\(b 0
with the lens matrix (10
0 1b X z—1 0 1b
1 0 _
1 1) (D) with
X2_1 1/4
wheref is the focal length. We assume that the focal length is b:(x — 1) .
positive throughout the paper. The translation matrix takes !
the form Then the core matrix becomes
1 d . z—1 Xx—2coshp
0 1) @ X 71 1D
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with corresponds to the four-momentum of a massive particle at
B —_——— rest. To this four-vector, we can apply three-dimensional ro-
z=1+V(x1~ 1(X;~ D). (12) tation matrix, like the rotation matrix around tlyeaxis,
In terms of thep andx variables,z can be written as 1 0 0 0
z=1+x?—2xcoshp+1. (13 0 cos¢ —sing O (
. , 18)
We shall use the core matrix of E¢L1) as the starting 0 sing cos¢ O
point in this paper. Ifx is smaller than 2(cosp), the core 0 0 0 1

matrix can be written as
cog¢l2) —e "sin(¢l2)
e’sin( ¢/2) cog ¢/2) '

where the range of the angle varialtds between 0 and, cog ¢/2) —sin(¢/2)

and » is positive. sin(¢/2)  cogpl2) |
This form of the core matrix serves a very useful purpose

in laser optics which consists of chains of the one-lens sys- In order to study the little group for a particle moving

tem [15-17. Its connection with the Lorentz group and along thez direction, we can start with a particle with four-

Wigner rotations has been studied recently by the presemtomentum19]

authors[8]. Indeed, this is the starting point of this paper,

where we intend to establish a connection between the one-

lens system and a set of Lorentz transformations.
If x=2 coshp, the above expression becomes

without changing the four-momentum of Ed.7). In optics,
(14) it is more convenient to use thex2 representation of this
matrix [4]. The rotation matrix then becomes

(19

m(coshz, —sinh#,0,0). (20

This particle moves in the negativelirection with the speed
of c(tanhy). To this four-vector, if we apply the boost matrix

1 .
0 (15) coshy sinhp 0 O
2coshp 1)’ .
sinhyp coshnp 0 O
and the focal condition of E(5) is satisfied. Ifx is greater 0 0 1 ol (22)
than 2(coslp), all the elements in the core matrix of H41) 0 0 0 1
become positive. Thus, it is appropriate to write it as
cosl{x/2) e 7sinh(x/2) the four-vector returns to the form given in Ed.7). Here
. 1 i ) .
e7sint(x/2)  coshix/2) (16)  again, it is more convenient to use th& 2 representation of

this boost matrix that takes the forfh9]

As we shall see in Sec. lll, the expressions given in Egs. e”?
(14), (15), and (16) take the same mathematical forms as ( )
those of the representations of th€3P, E(2)-, and Q2,1)-

like little groups. The transition from one form to another , ) )
form is a singular transformation. On the other hand, the core ' NUS, in order to construct a representation of the little
matrix of Eq.(11) is analytic in thex and p variables when 9roup for the four-momentum of E¢R0), we boost it to that
bothx,; andx, are greater than 1. We are thus led to look forOf Eq. (17) using the boost matrix of .EC(Zl) or (22), per-
another set of Lorentz transformations with analytic param Cm the rotation of Eq(18) or (19) which does not change

eters. This will enable us to write those transformation pa—the momentum, and then boost the momentum back to the

rameters in terms of the lens parameters of @d). In so original form of Eq.(20). In the 2X2 representation, this

doing, we can establish a correspondence between lens ofain of matrices takes the form
tics and the transformations of the little groups, and we can (e w2 )(cos{ #12)  —sin( ¢/2)> ( e”2 o )

0 e 7? (22

achieve transformations from one little group to another by

2 ; —nl2
adjusting focal conditions. 0 e”™/\sin(¢/2) cod¢/2) /| O e " 23
l. LITTLE GROUPS After the multiplication, the result becomes
In his 1939 paper on the Lorentz gro{§], Wigner con- cog pl2)  —e Tsin(pl2)
sidered the maximum subgroup of the Lorentz group whose e ) (24)
transformations leave the four-momentum of a given free e’sin(¢/2) cog ¢/2)

particle invariant. This subgroup is called Wigner’s little
group. Wigner observed that there are three classes of t

little group. In the Minkowskian space of the space-time co-=9: (1_4): . .
ordinate €,2,x,y), the four-vector This is the reason why the little groups can play a role in

lens optics and vice versa. The group represented in this way
m(1,0,0,0 (17)  is called the @3)-like little group for a massive particld 9.

e mathematical form of this matrix is identical to that of
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As was mentioned in Sec. Il, this expression is also one of cosh x/2) e "sinh x/2)
the starting formulas in laser opti¢8,15—17. e

What happens if the four-momentum is lightlike? The ersin(x/2)  cosl(x/2)
four-momentum in this case is

(31)

This form is identical to Eq(16).
»(1,1,0,0. (25 We discuss further group theoretical issues of the little

groups in the Appendix. In this section, we have shown that
The lightlike particles cannot be brought to its rest frame,the transformation matrices of the little groups and the one-
and thus cannot be brought to the form of ELj7). Itis clear  |ens system take the same form. However, there is one cru-
that this four-vector is invariant under rotations aroundzhe cial problem. In the case of the core matrix of K§), the
axis. In addition, Wigner observed in his original paper thatsign change of the upper-right element can be done analyti-
there are two additional transformations which leave thiscally, but this is not true for the little-group representation.
lightlike four-momentum invariant. These matrices are ex-The transition to Eq(26) either from Eq.(24) or from Eq.
tensively discussed in the literature, and the result is that they31) is possible and is known as the group contraction in the

correspond to the form literature. However, in both cases, the two independent pa-
1 0 rameters collapse into one independent parameter. Thus, the
), (26)  inverse transformation is not possible. This keeps us from
u 1 continuing analytically from Eq{(24) to Eq. (30). What

. _ ) should we do?
whereu is a complex parameter with two real independent

parameters. Since, we will be dealing with real matrices in

this paperu represents only one real number. It is interesting IV. CONTRACTIONS OF THE LITTLE GROUPS

to note that this form is identical to that of E(L5). This | order to circumvent the singularity problem mentioned
aspect of the little group also has been discussed in the litn the preceding section, we are interested in finding a set of
erature[19]. . ) Lorentz transformations which will remain analytic as we go
The theory of the little group includes also the form  through the transition point where the upper-right element
1 u vanishes. Let us restate the problem.
(27 If xis smaller than 2 costy the upper-right element of the
0 1)’ i i i : ini
core matrix of Eq(11) is negative while the remaining three

are positive, and it can be written in the form of E4). If

but it G!oes not p_Iay a role in this paper. This form may be't is greater than 2 cosh all the elements are positive, and
useful if we consider the case when the lower-left element Othe core matrix should be written as E@.6). There is a

the core matrix of Eq(11) vanishes. The group represented value zero between these two values. which corres
. . . , ponds to
either in the form of Eq(26) or Eq. (27) is called the B2)- o tocal condition. This is precisely the point where the

like little group for massless particles. expressions, Eqg14) and (16), become singular. The pur-

th Ttme I|tt|te-%rouri rr;atrlx t?;gg(z? is form mvzgrlant unt;ler pose of this section is to establish the connection between the
€ Lorentz boost along Irection, as can be seen rom i q groups and the one-lens system without this singularity.

(e 2 )(1 0)(e”’2 0 ) ( 1 0) In the computer language, this singularity means a memory
= . loss.
nl2 —nl2 n
0 € u 1 0 e eu 1 We are thus interested in a different set of Lorentz trans-

formations for the little groups. We note here again that the
A similar form invariance is also true for the matrix in llttle group consists of transformations that leave the four-
Eq. (27). momentum of a given particle _invari_a[ﬂ]._ In order to find
There are no particles in nature with spacelike four-the set of transformations which will bring back the four-

momentum, whose four-vector may be written[26] momentum of Eq(20) to itself [18], let us first rotate the
four-momentum byg, using the rotation matrix
m(0,1,0,0, (29

coq0/2) —sin(6/2)
but it occupies an important position in group the@®y. It sin(0/2)  cod 6/2) (32
will become more important as it finds its place in optical
sciences. This four-vector is also invariant under rotationg Eq. (20).
around thez axis. In addition, it remains invariant under
boosts along thet andy directions. The boost matrix along m(coshz,(sinhn)cosd, — (sinhy)cosh,0). (33
the x direction takes the form

coshiix/2) sinh x/2)
sinh(x/2) coshx/2)]"

Then the four-momentum becomes

This four-momentum can be boosted along ¥hdirection,
(30) which then becomes

m(coshz,(sinh#)cosé,(sinh7)cos,0), (34
If we apply the same Lorentz boosts as we did in two previ-
ous little groups, the little-group matrix should become with the boost matrix
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sinh\
cosh\

Ccoshh

sinh\ ' (35

We can return to the four-momentum of EGO), by apply-
ing again the rotation matrix of Eq32). The net effect is

PHYSICAL REVIEW &7, 056601 (2003

( cosh x/2) @3

e ”sinr(X/Z))
e’sinh x/2)

cosh x/2)

This form is identical to Eq(16), and should also be equal to
Eq. (37). We write this as

cog 6/2) —sin(6/2)\(coshx  sinh\ ( costix/2) e~ ”sinh(x/Z))
sin(6/2)  cog6/2) || sinhx  cosha e’sinh(x/2)  coshx/2)
cog 6/2) —sin(6/2) coshh cosé —cosh\ sin 6+ sinh)\)
( sin(6/2)  cog 6/2) ) ' (36) | cosh\ sin @+ sinha cosh\ cosé '
which becomes (44)
coshh cosd — coshh sin 8-+ sinh\ which leads to the identities
( cosh\sin 6+ sinhx cosh\ cosé ) - @8 costix/2) = coshi cosé,
Indeed, these two different ways of returning to the same e 21=_ coshi an H_anh)\)_ (45)
four-momentum should give the same effect. Thus, the effect coshh sin 6+ sinhx
of Eq. (24) and that of Eq(37) are the same, and Conversely,
—a g
cog ¢/2) e "sin($/2) cosh\ = (coshz) VcosH(x/2) —tantt 7,
e’sin( ¢/2) coq ¢/2)
i i cosh{ x/2)
cosh\ cosé —Ccosh\ sin#+sinh\ cosf= ] 46
- (46)
| coshi sin @+ sinha cosh\ cos# ’ (coshy)\cosR(x/2) —tani
(39) In this case, the boost parametetakes the form
ith sinh
W coshh= 7 . (47)
cog ¢/2) =cosh cosé, yeosttycos 6 -1
) cosh\ sin 8—sinh\ Here, the boost parameteris determined by the little-group
& = s sinaTsinhn (39  parametem for a given value ofy.

Conversely\ and @ can be written in terms of and » as

cosh\ = (coshz) V1—coS($/2)tanit 7,

cog ¢/2)
cosf= : (40)
(coshy)V1—co(4/2)tant?y
This leads to
Cosha = coshy (41
~ J1+(sinff7)cogd’

which means that the boost parameteis determined from

While the quantity

cosh\ sin#—sinh\
cosh\ sin 6+ sinh\

(48)

changes the sign frorgplus) to (minug, it has to go through
zero. With the parameters and 6, this process is quite
analytic. On the other hand, the exponential factor exp
(—27) is always positive. Thus, changing exi#{n) to
—exp(—27) cannot be achieved analytically. This is neces-
sarily a singular transformation. However, this exponential
factor becomes vanishingly small whem becomes very
large. Perhaps we are allowed to change the sign when it is
vanishingly small, but this is still a nonanalytic continuation.
Furthermore, let us look at the expressions given in Exf.

the rotation angle for a given value of the boost parameter and (43). This sign change is accompanied by the transition

The above relations are valid only when (casdin6) is
greater than sink. Otherwise, instead of Eq23), we have
to start from

( e 7 0 ) ( cosh x/2)

sinh(x/2)\[e”? 0
0 e”?)\ sinhx/2) '

coshix/2)/\ 0 e 72
(42)

which leads to

of a rotation matrix of the form of Eq19) to a boost matrix
of the form given in Eq(30).

Indeed, by changing the parameters frgimand » to 6
and A\, we can analytically navigate through the vanishing
value of the upper-right element of matrices of E28). The
process of approaching this zero value either from the posi-
tive or negative side is called the group contraction in the
literature. In this paper, however, we are eventually inter-
ested in how these parameters operate in lens optics. We
shall come back to this issue in Sec. V.
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V. LENS OPTICS AND GROUP CONTRACTIONS VI. CAVITY OPTICS
In Sec. Il, we started with a cameralike one-lens system, In our previous pap€i8], we studied light beams in laser
and derived cavities. One cavity cycle there consists of two lenses with
s the same image and object distances. We are thus led to
— — — 7
z=1 x=2coshp — cod $/2) e "sin(¢/2) consider the one-lens system widh=d,=d, and thus
X z—1 e’sin( ¢/2) cog ¢/2) '
(49) X1=Xp=X. (53
for x smaller than 2(cosp), andx is positive. Here all the The core matrix of Eq(11) becomes

parameters are determined frodg,d,, andf of the lens

optics. If we gradually increase the value xfthe upper- X—2=sinh\ —coshh sin g,

right element becomes zero and then positive. The right-hand x=sinh\ + cosh\ sin 6. (54)
side of the above expression cannot accommodate this tran-
sition. o o . . . Therefore, coshsing=1, or
The right-hand side is a familiar expression both in optics
and the Lorentz group. In Sec. Ill, we started with Wigner’s sing= 1 (55

little groups, and noted that the expressions given in Egs. cosh\’
(14) and (24) are identical to each other. The parameters

in Eq. (24) are the Lorentz-transformation parameters forwhich is satisfied by the physical values@éfnd\. Further-

Wigner’s Q(3)-like little group for massive particles. more, this relation reduces EO) to

In order to circumvent the above-mentioned singularity . )
problem, we have chosen a different set of Lorentz- X=1 x=2} [ sinhA  —1+sinhh (56
transformation parameters, and the result was the expression X x—1 1+sinh\ sinhA

given in Eq.(38). In terms of these parameters, the core
matrix can be written as From this expression, we can compute betand ¢ in terms
of the x variable, as they can be written as
(z— 1 x—2coshp

X =1 inhA=x—1, sing ! (57)
sinhA\=x—1, sinf=———.
cosh\ cosé —cosh\ sin @+ sinh\ V1+(1+x)?
| cosh\ sin @+ sinha cosh\ cosé

Indeed, this is an oversimplified example, but it is inter-
(50 esting to note that it contains all the ingredients of the group
contractions discussed in this paper.
Here, both sides have their upper-right elements which are
analytic as they go through zero. VII. CONCLUDING REMARKS
The parameters are now related by
In building computers, it is not enough to develop com-
puter mathematics. In the final stage, we have to adjust those
Xx=sinh\ + coshx siné, (51) mathematical tools to the language spoken by devices. As we
noted in Sec. |, the Lorentz group is the standard language
and therefore to for classical and quantum optics. The Lorentz group is also
the natural language for light beams and for the materials
through which the beams propagate. Thus, if we intend to
build optical computers, we have to translate all mathemati-
_ (52) cal algorithms into the language of the Lorentz group. In
\/1+(X—COShp)2 fact, it has been shown that some optical systems have a
slide-rule-like property3].
We are thus able to write the Lorentz-transformation param- In this paper, we noted first that a cameralike single-lens
etersh and 6 in terms of the parameters of the one-lenssystem can perform the algebra of Wigner’s little groups and

X— 2 coshp=sinh\ —cosha siné,

sinh\ =x— coshp,

coshp

sinf=

system. their contractions. While discussing group contractions, we
Thus, by adjusting the lens parameters, we can now peprbserved the difference between the rotation matrix

form transformations in Wigner’s little groups. It is interest- .

ing to note that we perform group contractions whenever we (COS{ $l2)  —sin( 9{’/2)) (58

try to focus the object before taking a camera photo. Unlike sin(¢/2)  coq ¢/2)

the traditional procedures, the contraction presented this pa-

per is an analytic transformation, which provides a reversiblef Eq. (19), and the boost matrix

process from Eq(14) to Eq.(16) through Eq.(15). We dis- .

cussed group theoretical implications of this result in the (cosr()\/Z) smr()\IZ)) (59)

Appendix. sin(A/2) coshA/2)
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of Eg. (30). These matrices operate in two different spacestwo directions. Repeated applications of rotations around
namely, the rotation matrix on a circle and the boost matrixhose two directions will lead to the most general form of the
on a hyperbola. Since we now have a procedure that makgstation matrix. In the language of the Lie algebra, we start
an analytic continuation from one to the other, we can perwith the three rotation generatods,J,, andJ,. On the
form computations in the hyperbolic world and carry it to the other hand, we can start only wifh andJ, , because we can
circular world. getJ, by taking the commutator of, andJy.

The Lorentz group is generated by three rotation genera-
tors and three boost generators. It is a six-parameter group.
However, we do not need all these six generators. In order to

We would like to thank Nikolaj Gromov for helpful com- complete the rotation subgroup, we need only rotations
ments and for pointing out an error in EY) in the original  around two orthogonal directions to construct all rotation

ACKNOWLEDGMENT

version of the manuscript. matrices. Let us introduce a boost along #tdirection. Then
the rotations can change the direction of the boost to an
APPENDIX: GROUP THEORETICAL PROBLEMS arbitrary direction.

Thus, we need repeated applications of two rotations and

The correspondence between the Lorentz grodB, XD  one boost to construct the most general form of transforma-
and Sl(2,0), the group of 22 unimodular matrices, is well tion matrices of the Lorentz group. The transformation ma-
known. Thus, we can study the Lorentz group witk2  trices can have at most six independent parameters.
matrices that are directly applicable to lens optics. Since itis In this paper, we start with one rotation and one boost.
much easier to understand explicit algebra of2 matrices  But, there is another rotational degree of freedom implicitly
than the theorems on Lie groups, we did not take the starcontained in lens optics. This is the rotation around the op-
dard Lie group approach in this paper. In so doing, some ofical axis[19]. Thus, by making repeated applications of the
the group theoretical issues were left unexplained in the maipne-lens systerf22], we can construct the most general form
text. The purpose of this appendix is to clarify those issuesfor Lorentz-transformation matrices.

First, the Lorentz group is a six-parameter group, with Speaking of group contractions, a transition of one group
three rotation and boost generators. In this paper, ti€ 2 to another group means transition from one Lie algebra to a
matrices have only two independent parameters. We stadifferent algebra. Therefore, the group contraction is neces-
with one lens matrix, two translation matrices, and thus withsarily a singular transformation in terms of the Lie algebra
three independent parameters. However, there is also the rparameters. The inverse of the contraction is known as the
striction that the determinant of the matrices be 1. Thus, wegroup expansion in the literature. Indeed, Gilmore gives a
are working with two free parameters. Then, how much in-detailed explanation of the transitions among th&8)QOE(2),
formation does our work give to the full Lorentz group with and Q2,1) in his book[23]. However, the group expansion is
the six parameters? also a singular transformation in terms of the Lie algebra.

Second, the technique of group contraction is known as &hese singular transformations need specific additional con-
singular transformation. How does this process becomes anditions. For instance, ) can be expanded to (@) or
lytic in this paper? 0(2,2). In this case, we have to give specific additional in-

In order to answer these questions, we would like to emstructions.
phasize that group theory papers do not have to start with the In this paper, we used two different sets of parameters.
Lie algebra. Wigner does not use any of the generators in hi®ne set consists of the Lie algebra parameters, which leads
classic paper on the inhomogeneous Lorentz grf@p to a singular transformation. The parameters of the other set
Goldstein uses the Euler angles to study three-dimensionalre not Lie algebra parameters. The transformation is not
rotations[21]. Let us look at the Euler angles carefully. necessarily singular during the contraction and expansion

While the Lie algebra of the rotation group consists ofprocesse$19]. We have given in this paper a set of param-
three generators operating on the three orthogonal directionsters which can be interpreted in terms of the Lorentz trans-
the Euler angles are defined only in terms of rotations arounébrmations within the framework of Wigner’s little groups.
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