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Electron distribution function in short-pulse photoionization
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Two well-known limiting regimes of photoionization, when a laser beam interacts with a gas, correspond to
the tunneling and the multiphoton processes. The latter dominates in the low-intensity regime, while the former
is appropriate at higher intensities. Electrons are born with negligible velocity in tunneling ionization, while in
I-photon ionization they are born with a fixed energy determined, ltlye photon energy and the ionization
potential of the molecule. The transport equation for the distribution function of electrons can be integrated
along the characteristics defined by the classical equations of motion in the laser field. Expressions for the
distribution function have been obtained in the two regimes using the appropriate analytical form for the
ionization rate. Results from two-dimensional particle-in-cell simulations and illustrative plots of the distribu-
tion function are presented and discussed.
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I. INTRODUCTION II. PHOTOIONIZATION

In this section the formalism for evaluating the electron
lonization of a gas that is subjected to electromagnetigistribution function in the two regimes of photoionization is
radiation is often analyzed in two well-known limiting cases Set up. To do so, it is first necessary to have a quantitative
[1,2]. In the first, free electrons in the gas gain energy frommeasure for distinguishing the two regimes. Next, formulas
the electric field and ionize the molecules on impact, leadindor the ionization rate in the two regimes are given, the trans-

to the release of secondary electrons and avalanche bredRort equation for the distribution function is written down
down. The analysis in this paper is limited to ionization byand formglly mtggrated along _thg characteristics. Fl_nally the
relatively short, intense laser pulses where avalanche breagharactgrls_tlcs, ie., the_relatlwstlcally correct, classical elec-
down is generally negligible. In the second route, the field idron rbits in the laser field are obtained.

directly responsible for detaching electrons from the atoms
or moleculeg[3-5]. This route, referred to as photoioniza-
tion, is further subdivided into two regimes, namely, tunnel-
ing ionization and multiphoton ionizatiofMPI). In tunnel-

ing ionization the Coulomb barrier is deformed by the The ionization energy of a molecule is denotedUby. In
electric field of the radiation, allowing a bound-electron iSolation, a molecule has a set of discrete, bound energy lev-
wave function to tunnel through and become a propagatingls-,In the presence of an electric figidthe Coulomb po-
wave function. In MPI, on the other hand, an electron jump ential is deform_ed and a_potent_lal _barner of_ finite width
from a bound state into the continuum by absorbing a suffid€Velops. The width of this barrier is proportional tdJ;

cient number of photons. There have been a number of e%%d rlnviesr?ﬁlycﬁrc;pgrtl?]n:ri t(iEEtLEL; Be'r’] A“; U{r{g:LEg{r i
periments aimed at characterizing the two regirf@s8]. eree € cnarge o electron. Uenoting ectronic

e . . . _mass bym, the typical atomic electron velocity i®
The differing physical circumstances of these two reglmesw(zui/m)l,z, and therefore the transit time of an electron

are expected t_o lead to _different _distributior_1 of electrons. Th%hrough the barrier iy e~ Alv ~(2mU) Y2(|e[E). If w
purpose O.f tf_us paper Is to Qenve analytlcfal forms for theis the frequency of the radiation field, the Keldysh parameter
electron distribution function in the two regimes. There arey — T is expressible akl1]
many circumstances where the detailed distribution of pho- < tunnel
toelectrons is of interest, an example being attosecond spec- (2mu;)?
troscopy[9,10] YKEOTE (N
The plan of the paper is as follows. In Sec. Il the two
regimes of photoionization are distinguished, the transport

equation is solved, and analytical forms for the electron disyp, the quasistatic or high-field limity,<1, ionization pro-
tribution function are obtained. In Sec. lll the distribution ceeds by tunneling of electrons through the barrier. In the
functions are numerically evaluated and momentum-spacgpposite limit,y,=1, ionization takes place via multiphoton
plots are shown to illustrate the different characteristics asdetachment of electrons. The two regimes are sketched in
sociated with the two regimes. Two-dimensional particle-in-Fig. 1.

cell simulation results are also presented to demonstrate an Equation (1) may be rewritten to reveal an alternative
interesting momentum-space pattern that is characteristic gfhysical meaning ofyx . In a linearly polarized oscillatory
tunneling ionization. electric field the average electron oscillati@uiver or pon-

A. Tunnel vs multiphoton photoelectric effect
and the Keldysh parameter
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(a) Multiphoton wherel (t) = (c/4m)E?(t) is the intensity of the laser beam
(assumed to be linearly polarized),=4.1x 10'® s is the
X fundamental atomic frequency,,=3.6x 10 W/cn? and

Uc/

U,=13.6 eV is the ionization energy of hydrogen. The ion-
ization rate in the tunneling regime is a highly sensitive func-
tion of the electric field through the exponential factor in Eq.
(2). This is a reflection of the exponentially small probability
for an electron to tunnel through the Coulomb barrier. Equa-
tion (2) is valid provided(i) # w<<U; (to avoid single-photon
ionization and (ii) Up>ﬁw/(4yﬁ) [for validity of the qua-
(b) Tunneling siclassicalWKB) solution of Schrdinger’s equatioh Here,
R\ Uy f is Planck’s constant divided by72 For extremely intense
hi < /£ x laser beams, the barrier is completely suppressed and the
‘\/ electronic wave function extends beyond the molecule. This
/ Sso “over the barrier” regime is outside the scope of present
analysis[14].
In multiphoton ionization the kinetic energy of an electron
is given by an expression that is reminiscent of Einstein’s for
the photoelectric effect, i.e.,

U; < thw
hw {

——>—>—>—>|

U+ U,

Ttunnel K 1/(4)

FIG. 1. One-dimensional schematic contrasting two regimes of E=lhw—U;, (3)

photoionization. The Coulomb potential is denotedUhy, the ion-

ization potential of an energy level iy;, and the potential due to

the laser field byJ, . In (a) | or more photons of frequenay are ~ Wherel is an integer. In the limity,=1, Keldysh’s analysis

sufficient to raise a bound electron into the continuum. The “static’leads to an expression for the multiphoton ionization rate

sketch shown inb) is valid provided the tunneling time is short Wy,p, that has an algebraic dependence on the laser electric

compared to the optical peridde., 7,nne< /o). field; i.e., Wyp;><E?. In numerical terms, Keldysh'’s rate is
found to disagree significantly with experimental observa-

deromotive energy isU,=;m(|e|Eq/mw)® In terms of tions. While more sophisticated models exigtg., Ref.

U, 7= (Ui/2U,) "% whereE, is the amplitude of the elec- [15]), for this analysis it is expedient to make use of an

tric field. In practical units, empirical relationship that closely resembles observations. In
particular,
1/2
2.31 Ui[EV]
TKENwml |1, [TW/en?] 270 [ 1\
| Wer =1 (I_) | @
whereX is the wavelength anth=(cno/87)E3~(c/8w)E3 * \IMPI
is the average intensity of the electromagnetic field in a rar-
efied gas with refractive indemg~1. where lyp=fiw?/oyp and oyp is an empirically-
determined cross section. In reference to @g,.it should be
B. lonization rate remarked that the number of photons absorbed by the mol-

Neglecting attachment and recombination the rate equachle can exceed the minimum number required to reach the

. L o fonization limit. In this case the electron emerges with addi-
tion for electron densityn is given by gn/ot=Wn,, where tional kinetic energy, determined by the excess photon en-
W is the ionization rate and, is the neutral gas density. The 9y, y P

instantaneous ionization rate in the tunneling regvig,, eray.
may be obtained by employing thg<1 limit of the gen-
eral analysis of Keldysh11-13, C. Transport equation
The transport equation for the distribution functibrof
W —a0.| 9t Iy llzex 2 U\ electrons is given by f/dt=S, where the form of the source
tun oluy [(t) 3\ Uy I(t) ' term S depends on the process by which electrons are born.
(2)  Specifically,
|
df W un(E)S(u), tunneling .
gt M Wypi(E)8(I7w—U;—(y—1)mc®), multiphoton. ©)
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Here, c is the speed of lighin vacuq y=(1+u?)'?is the It is assumed that the laser pulse propagates along the
relativistic factor,u=p/mc, andp is the momentum vari- direction. Effecting the change of variablest—z,7=t
able. The relativistic formulation presented here permits—z/c, the transport equation takes the fof/dr=S/(1
treatment of cases where the laser is sufficiently intense te-8,), where 8,=c~1dz/dt. The transport equation can
induce quiver velocities approachimg then be integrated along the characteristics, leading to

(6)

f(u,T):nan dr’ ‘Wtun[E(T’)]é(U(r’)), tunneling

—21—B,(7") | Wnp[E(7)]18(fiw—U;—[ y(7')—1]mc?), multiphoton.

Here, orbitu(7’), y(7') [and the electric fiel&E(7')] are all ~ wherey, is the slowly varying part of the relativistic factor
parametrized in terms of the time variabté, with the re- and(---) denotes a temporal average. An estimate of the
guirement that the electron winds up at the phase space poititne taken by an electron to radially drift across a beam

u, y attimer; i.e.,u(7")|, —,=u, y(7')|, =.=7v. waistw may be obtained by inserting E(7) into Eq. (8).
Neglecting diffraction and assuming the laser pulse is rela-
D. Laser field and equations of motion tively long, it follows that if
The electric field and the vector potentialare related by w
E=—-c '9A/ot. The normalized vector potentiala Tp<— (9)

=|e|A/mc? associated with the moving laser pulse is as- cag’
sumed to be given by the fundamental Gaus§i#}
the radial displacement of an electron as the laser pulse
ao(7) propagates through is negligible comparedvtand one can
a=— exp(—iw7+if)exp —r?/w?)e+c.c., (7)  consider the laser field to be nearly planar. Henceforth it is

2i assumed that

where ao(7) =agexy] —(r— )% 7] is the amplitude of the
normalized vector potentiad) is a real-valued phase; is the
laser spot sizery is the centroid of the pulsey, is the pulse
duration ande, is a unit vector along th& axis. In the fol- E=|e|'mcway(7)coswre,. (11
lowing, it is assumed that the motion of electrons in the laser

field can be described by the relativistically correct, classical For plane waves, the equations of motion combine into
equations; i.e.,

a=—ag(7)sinwTe,, (10

d
dp |e| E_(U—a— yez)=0. (12)

—=—|e|E- ——pX

) oo . .. Equation(12) can be integrated to
whereB is the magnetic field. In the paraxial approximation

B~e,XE, whereg, is a unit vector along the axis.

The laser field given in Eq7) is peaked along theaxis. u () —a (') =u.(r)~a (r)=const, (13
Electrons that are born in the high-intensity region are sub-
ject to a relatively slow radial ponderomotive drift towards U (7") = y(7")=u,(7)— y(7)=const, (14)
the skirt of the laser beam. This slow drift can be analyzed
by combining the equations of motion to obtéitv,18 wherea,=E,=0 in the paraxial approximation and the suf-
5 ) fix L denotes the component that is transverse taztheis.
%: @ ) Making use of the properties of th& function, Eq.(6)
dt at simplifies to

Wiin[E(7)], tunneling,

f s L W n B ]y(n) 1
(Ul ) =M 20 gy | Wuml BT I(7) multiphoton. 9

mCZUX(Ti)
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In Eq. (15 7; denotes an instant at which tl#&function in
Eq. (6) triggers and the summation is over all indidesuch
that ;=< 7. These instants are determined from E48) and
(14). In particular, for tunneling ionization,(r;)=0 and
ax( 7-i) = ax( T) - ux( T) (16)

is an implicit equation forr; .

Making use of the definition oy and Eq.(16), it follows
that, for tunneling ionization,

u,(7)=y(7)—1. (17)

PHYSICAL REVIEW E 67, 056407 (2003

electric field, the dominant contribution to the sum in Eq.
(15) is from thoser; such that sim7~0; i.e., the distribution
function is peaked at

Utun,peal 7) = —ao(7)SiNw 7. (22

Expanding cos7 aboutwr;=ma, wherem s an integer, it
follows that

Uy~ Utun,peak 2] 23)

ao(7)

ftun(UX17)~eXp{ -9

where g=[|e|/3mcwag(7)](U;/Uy)¥44mly/c)Y% The

It must be stressed that this relationship is a consequence gfnneling ionization distribution function thus has the form
the “initial” condition that electrons are born at rest in the of 3 Gaussian in the momentum variable The centroid of

tunneling regime. Observe that Ed.7) implies that all elec-

the Gaussian, given by ER2), oscillates in time with fre-

trons have a forward-directed axial velocity. Making use quuencyw, with an excursion amplitude equal &(7). Su-

the definition ofy again, Eq.(17) can be rewritten as

u 2
XZi

u, y—1

(18)

This relationship[19,20 implies that the electron distribu-

tion can be expressed as a functionugfonly (as well as of

7).

circle in theu,-u, plane. Specifically,

For MPI, on the other hand, the electrons are born on W

V(1) =VLH U ) P+ [u7) P=1+ (Ihw—U;)/mc.
(19

The appropriate implicit equation faf; in this regime is

ux( 7-i)_ax( Ti):ux(T)_ax( T)- (20)

IIl. EXAMPLES

In this section examples of the distribution function are

perimposed on this, the Gaussian has a width that is propor-
tional to three-quarters power of laser inten$i¢wg’2(r)].

For the example in the tunneling ionization regime the gas
consists of hydrogen atoms with ionization energy 13.6 eV.
The peak laser intensityaveraged over the peripds |,
=1 PW/cnt with Keldysh parametery,=0.254 and nor-

malized laser vector potentiéb=0.029. Before discussing
the distribution function, it is interesting to examine the
omentum-space relationship embodied by @&). This is
done by performing a two-dimensional particle-in-cell simu-
lation of a laser pulse propagating into an initially neutral gas
of hydrogen. The intensity plots in Fig. 2 show the results,
where each point represents an electron, placed according to
its momentum variables at a particular instant in time. To
start with the simplest case, the plot in FigajZs for a plane
wave, relatively early in time while all electrons are still in
the laser pulse. Coordinates of points lying on the curve in
this plot are found to be in good agreement with ELf).
Figure Zb) shows the momentum-space plot a little later on,
when electrons have slipped behind the laser pulse. As ex-

displayed to show the qualitatively different characteristics?ected, the realistic case of a laser pulse with a fiftrens-

associated with tunneling ionization and multiphoton ioniz

a.verse spot size is more complicated. FiguréPshows the

tion. The plots are obtained numerically by performing the€*@mple of a laser beam with a spot size radius equal to 10

summation indicated in the analytical form for the distribu-

tion function. The radiation is linearly polarized, with

=1.06 um, corresponding to the wavelength of Ndglass
laser. With reasonable choices for the spot sizend the
pulse lengthr, the constraint in Eq(9) is readily satisfied.

Moreover, the Rayleigh rangéz can be made long enough

that diffraction of the laser beam is negligible.

A. Tunneling ionization

optical wavelengths. As ionization proceeds and plasma
forms, the electron density approaches 0.1% of the critical
density in the simulations shown in Figgb2and Zc). The
space charge field due to the plasma has the effect of smear-
ing the energy-angle relationship of Ed8). For simulations
in which the electron density does not build up significantly,
the energy-angle relationship in E(L8) is found to hold
extremely well.

Figure 3 is a surface plot of the electron distribution func-
tion in the tunneling regime, obtained from E@.5). The

An approximation to the form of the distribution function distribution functionf(u,,7) is plotted along the vertical
in the tunneling regime may be obtained as follows. Neglectaxis. One of the horizontal axes i, while the other cor-

ing diffraction, Eq.(16) can be rewritten as

ao(7)Sinw 7+ Uy

ao(7) 1

sinw ;=

responds tol=w7/7. The distribution function is plotted
over roughly one period of oscillation, near the peak laser
intensity. Oscillations of the centroid of the distribution func-
tion, as well as its Gaussian-like falloff with, are consistent
with the prediction of Eq(23). The ponderomotive energy

This equation is to be solved fot that are to be inserted in U, of the quivering electrons in this example is 104 eV. If
Eq. (15). SinceW,,, is a very sharply peaked function of the the distribution functionF(E) is plotted as a function of
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0.05 - : L 3
1@ _
22
=] T =200
= =
0 -
N g 1
R,
%E 0
-0.05 — T - - z
-0.0005 0 0.0005 0.001 ] =
u 0 20 40 60 80 100
% E (eV)
005 (b) I FIG. 4. Electron distribution functiofin arbitrary unit3 in the
3 tunneling regime plotted as a function of electron kinetic en&tgy
] The three curves correspond to time instafitsw7/7=50, 100,
<0+ . L and 200.
indicated in Ref[8]—for a linearly polarized laser beam the
65 . ' ' energy distribution functiofr peaks at small energies.
-0.0005 0 0.0005 0.001
U; B. Multiphoton ionization
0.05 i i . Noting that for multiphqtor_1 io_nizatior’y(_ri) a_nd U_x_(Ti)
. are constants for all the distribution function simplifies to
27Ta’/||MP| ¥(7i)
= L fupi(Uyg,Uy,,7)=n
= 0 MPI\HYx Yz, n _
(=D Jele(u—up(u—uy)
- X >, |Egcoswr|? 71, (24)
=U. T T T T T I
-0.0005 0 0.0005 0.001
Uz where y(7;) is the constant defined by EL9). In writing

FIG. 2. Momentum-space plots in tunneling ionization. The in- Ea. (2.4)’ Ux(7;) in the denomln?}z()r of Eq(15) has been
tensity plot in(a) is for a plane wave, early on while electrons are in factorized as*[(u,—u;)(ur—u;)]™, where
the pulse, whereas ifb) the electrons have slipped behind the
pulse. The intensity plot irfc) is for laser beam with a spot size ¥ Ti)Uiﬂ_“ [72( Ti)—l](u)2(+2)

2

radius equal to 10 optical wavelengths. Uy r , (25

electron kinetic energye=(y—1)mc?, the plot in Fig. 4 is

obtained. In Fig. 4F is plotted at three different instants in and the— and+ in Eq. (25) correspond to the sufficésand
time, labeled byl =50, 100, and 200. As time advances, ther, respectively.

distribution function increases over the entire energy range Examination of Eq.(24) reveals thatf has singularities

as more and more electrons are released. Observe that—al®ng curvesu,=u; andu,=u, in momentum space. How-
ever, these are square-root singularities that are integrable

and physically meaningful quantities such as the electron
density [« [ fdu,du,f(uy,u,,7)] are well behaved. These
singularities originate from tha, variable in the denomina-
tor of Eq. (15. Physically, therefore, the singularities are
simply a reflection of the time interval that an electron
spends in a given region of phase space as it executes quiver
motion along thex axis.

Equation(24) may be used to obtain an approximate form
for the distribution function. Neglecting diffraction, EO)
can be rewritten as

f (arb. units)

ag(7)sinwr+u,*[(u,—u)(u,—u,)]*?

SinwT;=
FIG. 3. Surface plot of electron distribution functibu, ,7) (in @7 ao(7)
arbitrary unit$ in the tunneling regime. (26)
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In Eq. (26) the upper(lower) sign is to be used according as
u, is positive (negative. The dominant contribution to the
sum in Eq.(24) for largel is from 7; that satisfy sim7,~0;
i.e., the distribution function is peaked at

uMPI,peal(ux !ule): _ao(T)Sina)T

= [(u—u(u—u) ¥ (27)

f (arb. units)

Expanding cowr aboutw 7;=m, wherem s an integer, it
follows that

f 1_|[UX_UMPI,peal(uxvusz)]zlacz)(T)
et e 7 (U ) (U — ) 172

(28) FIG. 5. Electron distribution function in multiphoton regime.
. . ) L The distribution(in arbitrary unitg is plotted for 10 photon ioniza-
Observe that SinCByp) peak IS @ function ofu,, the distri-  tion wherel ;=10 is the minimum number of photons required for

bution in Eq.(28) does not have a simple parabolic variation jonization of the molecule with 1.06m radiation. The plot shows
with u, . However, the centroid of the distribution, given by the distribution at an instant in time such that the circular base of
Eq. (27), oscillates in time with frequency and with an  the distribution function is centered an=u,=0. For improved
excursion amplitude equal t&y,(7). presentation and clarity, the plot range foris larger than that of
For the example in the multiphoton ionization regime,u,, hence the elliptical appearance of the base.
laser propagation in a medium with ionization energy equal
to 11.7 eV is considered and the MPI cross section is taken t
be oyp=6.4x10 8 cn? [21,29. [These parameters are
nearly those of the molecule ,Qionization energy being
12.1 eVj; the surface plot for the distribution function is far
better resolved for the lower ionization energy chok&he
peak laser intensity(averaged over the peribdis I,
=50 TW/cn?, with Keldysh parametefy,=1.05, and nor- IV. CONCLUSIONS

malized laser vector potentiéb=0.0064. The electron dis- o . . _ .
tribution function atr— 7,=2.75r, , obtained from Eq(24), The electron distribution function is obtained in two lim-

is shown in Fig. 5. This plot corresponds to the minimumiting regimes of photoionization when a laser beam interacts
number of photons required for ionization of the moleculeWith & gas. The two limits correspond to the tunneling and
with 1.06 wm radiation; i.e.) =1,=10. Following Eq.(28) the multiphoton regimes. The transport equation for the dis-
it is noted that the distribution oscillates in time at optical tribution function is integrated along the characteristics de-
frequencyw. For the plot in Fig. 5, an instant in time is fined by the classical equations of motion in the laser field.
picked such that the circular base of the distribution is cenf\nalytical expressions for the distribution function have
tered onu,=u,=0. (For improved presentation and clarity. been obtained. lllustrative plots of the distribution function
the plot rxangé foru, is larger than that ofi,: hence the " are presented and discussed. Two-dimensional particle-in-
elliptical appearancé of the bas&he ponderozrr’mtive energy cell simulation results are also presented to demonstrate an
U, of the quivering electrons in this example is 5.2 eV. Fol-Interesting momentum-space pattern that is characteristic of
tunneling ionization.

bserved width of in the u, direction. When plotted as a
unction of kinetic energy, plots similar to that in Fig. 5 lead
to a series of relatively narrow peaks of decreasing value as
| increases. The plot in Fig. 5 is consistent with the distribu-
tion in Eqg. (28) in the region surrounding the peak at

uMPI,peak-

lowing Eq. (24), it is remarked that there are two integrable

singularities due to the zeros of the square root in the de- ACKNOWLEDGMENTS
nominator. The rise irf with increasing|u,| is due to this.
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