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Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk
plasma parameters as seen by the WIND spacecraft
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The solar wind provides a natural laboratory for observations of magnetohydrody@dhiiz) turbulence
over extended temporal scales. Here, we apply a model independent method of differencing and rescaling to
identify self-similarity in the probability density function®DF) of fluctuations in solar wind bulk plasma
parameters as seen by the WIND spacecraft. Whereas the fluctuations ob speednterplanetary magnetic
field (IMF) magnitudeB are multifractal, we find that the fluctuations in the ion denpitgnergy densitieB?
andpuv? as well as MHD-approximated Poynting flu8? are monoscaling on the time scales up to 26 hr. The
single curve, which we find to describe the fluctuations PDF of all these quantities up to this time scale, is
non-Gaussian. We model this PDF with two approaches—Fokker-Planck, for which we derive the transport
coefficients and associated Langevin equation, and the Castaing distribution that arises from a model for the
intermittent turbulent cascade.
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[. INTRODUCTION be invoked as the self-similarity of the cascade is broken
with the introduction of the intermittency.

Statistical properties of velocity field fluctuations re-  Recently, however, a new approach has emerged where
corded in wind tunnels and those obtained from solar windhe presence of intermittency in the system coincides with
observations exhibit striking similaritiegl,2]. A unifying  statistical self-similarity, rather than multifractality, in the
feature found in these fluctuations is fractal or multifractalfluctuations of selected quantities; these also exhibit lep-
scaling. The probability density functiofPDF), unlike  tokurtic PDFs. An example of thistatistical intermittency
power spectra that do not reveal intermittency, shows a cleavas discussed in Ref13], where a Ley distribution was
departure from the normal distribution when we consider thesuccessfully fitted to the fluctuation PDFs of the price index
difference in velocity on small spatial scal&s4] while large  over the entire range of data. Such a distribution arises from
scale features appear to be uncorrelated and converge towatw statistically self-similar [ vy process, also characterized
a Gaussian distribution. These similarities suggest a commany enhancedwhen compared with a Gaussjaprobability
origin of the fluctuations in a turbulent fluid and the solar of large events. Recently Refl4] reported similar self-
wind. The approach is then to treat the solar wind as armsimilarity derived from the scaling of the solar wind inter-
active highly nonlinear system with fluctuations arisimy  planetary magnetic field energy density fluctuations calcu-
situ in a manner similar to that of hydrodynamic turbulencelated from the WIND spacecraft dataset. Here, we apply a
[5-8]. model-independent and generic PDF rescaling technique to

Kolmogorov’s K41 turbulence theory was based on theextract the scaling properties of the solar wind fluctuations
hypothesis that energy is transferred in the spectral domain directly from the data. The aim is to determine a set of
a constant rate through local interaction within the inertialplasma parameters that exhibit statistical self-similarity and
range. This energy cascade is self-similar due to the lack ab verify the nature of the PDF for their fluctuations. We
any characteristic spatial scale within the inertial range itselfconsider the following bulk plasma parameters: magnetic
These assumptions led Kolmogorov to his scaling law for theield magnitudeB, velocity magnitudey, ion densityp, ki-
moments of velocity structure functiofig]: S;=(|v(r+¢) netic and magnetic energy densitiesvf and B?), and
—v(r)|™ec(e€)™3, wheren is thenth moment is a spatial ~ Poynting flux approximated byB?. Such an approximation
scale, ande represents energy transfer rate. Experimentabf the Poynting flux assumes ideal magnetohydrodynamics
results do not confirm this scaling, however, and modifica{MHD) whereE=vXxB. We find that the PDFs of fluctua-
tions to the theory include intermitten¢®] by means of a tions inp, B2, pv?, andvB? exhibit monoscaling for up to
randomly varying energy transfer ra¢eIn this context, em- ten standard deviations, whigandv are clearly multifrac-
pirical models have been widely used to approximate theal as found previously15,12. The monoscaling allows us
shapes of fluctuation PDFs of data from wind tunrji@é@ as  to derive a Fokker-Planck equation that governs the dynam-
well as the solar wind; see, for example, Réfkl,12. The ics of the fluctuations’ PDFs. The Fokker-Planck approach
picture of turbulence emerging from these models is muclprovides a point of contact between the statistical approach
more complex then has been suggested by the original Kolnd the dynamical features of the system. This allows us to
mogorov theory. It requires a multifractal phenomenology toidentify the functional form of the space dependent diffusion

coefficient that describes the fluctuations of these quantities,
as well as to develop a diffusion model for the shape of their
*Electronic address: hnat@astro.warwick.ac.uk PDFs. We also consider a Castaing model where fluctuations
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FIG. 1. Unscaled PDFs of the ion density fluctuations. Time lag  FIG. 2. Scaling of the peak(0,7) of the PDFs for all quanti-
7=2%X46 s, wher&k=0,1,2 . . .,14. The standard deviation of the ties under investigatior® corresponds t@B2, [ to the ion den-
PDF increases withr. The error bars on each bin within the PDF sjty sp, ¢ to the kinetic energy density(pv?), and A to the
are estimated assuming Gaussian statistics for the data within eagfbynting flux componens(vB?). The plots have been offset ver-
bin. tically for clarity. The errors are estimated as in Fig. 1.

are assumed to arise from a varying energy transfereritte B. Differencing and rescaling technique

the nonlinear energy cascade, with Gaussian distribution for | et x(t) represent the time series of the studied signal, in
In(e). The paper is structured as follows: in Sec. Il we will our case magnetic field magnitue velocity magnitude,
describe the dataset used for this study as well as the rescabn density p, kinetic energy densityv?, magnetic field
ing procedure. In Sec. lll the results of the rescaling will beenergy densityB? or the Poynting flux component approxi-
presented. Two possible models of the fluctuations will bemated byvB?. A set of time serie®x(t,7) =x(t+ 7) —X(t)
discussed in Sec. IV. Finally, in Sec. V we will summarize allis obtained for each value of the nonoverlapping timeag
results discussed throughout this paper. The PDF P(6x,7) is then generated for each time series
ox(t,7). Figure 1 shows the set of such raw PDFs of the
density fluctuations for time lags between 46 s ar@ days.

Il. DATA AND METHODS A generic one-parameter rescaling metiod] is applied to
these PDFs. We extract the scaling indexwith respect to
A. the Dataset 7, directly from the time series of the quantix. Practi-

The solar wind is a supersonic, super-Alfie flow of  cally, obtaining the scaling exponent relies on the detection
compressible and inhomogeneous plasma. The WIND spac&f a power law,P(0,7)o7"¢, for values of the raw PDF
craft orbits the Earth-Sun L1 point providing a setiofsitu ~ Peaks and time lag. Figure 2 shows the peak{0,7) of the
plasma parameters including magnetic field measurementgiscaled PDFs plotted versason log-log axes for the four
from the MFI experimen{16] and the plasma parameters bulk plasma parameters. We see that the peaks of these PDFs
from the SWE instrumeritL7]. The WIND solar wind mag- are well described by a power laav * for a range ofr up to
netic field and key parameter database used here comprise26 hr. We now taker to be the scaling index and attempt
over 1.5<1(f, 46-s averaged samples from January 1995 td0 collapse all unscaled PDR(dx,7) onto a single curve
December 1998. The selection criteria for solar wind data ar€s(dxs) using the following change of variables:
given by the component of the spacecraft position vector w w
along the Earth-Sun line{>0, and the vector magnitude, P(oX,7)=7"“Pg(oX7"). @
R>30 RE. The dataset includes intervals of both slow and
fast speed streams. Similar to other satellite measurementd, self-similar Brownian walk with Gaussian PDFs on all
short gaps in the WIND data file were present. To minimizetemporal scales and index=1/2 is a good example of the
the errors caused by such incomplete measurements, vpgocess where such a collapse can be obse(sed, e.g.,
omitted any intervals where the gap was larger than 2% oRef.[18]). For experimental data, an approximate collapse of
the considered time lag. The original data were not averageBDFs is an indicator of a dominant self-similar trend in the
nor detrended. The data are not sampled evenly but there atiene series, i.e., this method may not be sensitive enough to
two dominant sampling frequencies: 1/46 Hz and 1/92 Hzdetect multifractality that could be present only during short
We use sampling frequendy, of 1/46 as our base and treat time intervals. One can treat the identification of the scaling
other temporal resolutions as gaps when the accuracy rexponenta and, as we will see, the non-Gaussian nature of
quires it (r<92 s). the rescaled PDFsP() as a method for quantifying the in-
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TABLE |. Scaling indices derived fror®?(0,7) andP(o,7) power laws.

Quantity a from P(0,7) a from P(o,7) ApProx. Tmay PDF scales
B —0.47+0.02 —0.23£0.05 26 hr No
v —0.52+0.05 —0.21+0.06 26 hr No
5(B?) —0.43+0.03 —0.39+0.08 26 hr Yes
8(p) —0.39+0.03 —0.37£0.05 26 hr Yes
8(pv?) —0.41+0.03 —0.35+0.05 26 hr Yes
5(vB?) —0.42£0.02 —0.39+£0.06 26 hr Yes

termittent character of the time series. Another possible inFigure 1 shows the unscalddaw) PDF curves of the ion
terpretation of the rescaling is to treB{dx,7) as the self- density data. These PDFs, like all others presented in this
similar solution of the equation describing the PDF section, were generated with the bin size decreasing linearly
dynamics. The monoscaling of the fluctuations PDF, togethefoward the center of the distribution to improve the accuracy
with the finite value of the samples’ variance, indicates that a&f the PDF for small fluctuations. Although the entire range
Fokker-Planck approach can be used to express the dynamigg data was used to create these PDFs, we truncated the
of the unscaled PDF in time_ and with respect to the Coordi'plotted curves fol 8x|=100(7), whereo(7) is a standard
natesx [19]. In Sec. IV we will use the Fokker-Planck equa- gevyiation of the differenced time series for the specific time

tion to develop a dynamical model for the fluctuations ob-|, Figure 2 then show®(0 lotted ve on loa-
served in the solar wind. Ideally, we use the peaks of thq: g7 FIgur n show&(0.7) p Versus J

. : og axes for &x=6(p), &(pv?), 6(B?), and &(vB?).

PD'.:S.IO obtain the scaling exponeat as thg pgak; are Straight lines on such a plot suggest that rescalindolds
statls'tlcally the most accurate parts of the dIStI’IbutIOI’]S.' Nyt least for the peaks of the distributions. In Fig. 2, lines were
certain cases, however, thE.’ peaks may _not_be the OPUMGied with R2 goodness of fit for the range of between 2
statistical measure for obtaining the spalmg mde?(. l_:or ©Xmin and 26 hr, omitting points corresponding to the first two
ample, thdeBZ'chomponbentl of the solar wmfd mggr:letlcgleld 'OS temporal scales as in these cases the sharp peaks of the PDFs
measure \.N't an abso ute accuracy o _typlca y about 0.150n6t be well resolved. The lines suggest self-similarity per-
nT. Such discreteness in the time series introduces large

. L €ists up to intervals of~26 hr. The slopes of these lines
rorsin the estimation of the peak valuegn,r) and may not ield the exponents and these are summarized in Table |
give a correct scaling. However, if the PDFs rescale, we ca long with the values obtained from analogous plots of
1{2 principle,vsbtai_r:l t_k|1|e stcatlingt;hexporlﬁnt :ﬂﬁm any pOiT.t or‘P(zr(r)n-) versus7 which show the same scale break and

e curve. We will illustrate this in the following section -
where we obtain the rescaling indexfrom two pc?ints on the S?me sc.ah.ng exponent fap), -5(-’)02)’ 5(82)-’ {-de :
6(vB“), to within the estimated statistical error. Within this
curvesP(0,7) andP(a, 7). scaling range we now attempt to collapse each corresponding
Ill. PDE RESCALING RESULTS unscaled PDF onto a single master curve using scaling _
Figures 3—6 show the result of the one-parameter rescaling
We are now ready to present results of the rescaling proapplied to this unscaled PDF of fluctuationsgn pv?, B?,
cedure as applied to the solar wind bulk plasma parameterandvB? respectively, for temporal scales up+@6 hr. We
see that the rescaling procedu® using the value of the

1850 ' ' ' ' exponenta of peaksP(0,7) shown in Fig. 2 gives good
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FIG. 7. Positive tails of all self-similar PDFs far~30 min.
8(pv?) The solid lines show linear fits obtained in the intefM&dr,60° ] and
' extended td 20,100] fluctuations interval.

FIG. 5. As in Fig. 3 for the kinetic energy density fluctuations

?gl?ﬁsee?]iifscrgrfugvif ?rtfé a:j;r;glﬁ_ﬁggmrzgg:{g'oggg)rgkimilar increments do not have appreciable asymmetry.
9 ' ese show differences between negative and positive mo-

leptokurtic rather than Gaussian and are thus strongly SUG- ants of about 2—3 % . which is. however. well above the

gestive of an underlying nonlinear process. The ﬂucwat'onstatistical error of this procedure.

PDFs for all monoscaling quantities investigated here are It has been reported previous0] that the PDFs ob-
ggartrIané)t/:Tmc])?ttrrI]% ;glli |§f I\?elsc:]cei‘tr P ffuocntggtsigr\:\gt?n tEe d?ggn_gtained from hydrodynamic turbulence have exponential tails.
y Y y y Y~ These would look linear on the linear-log plots that are used

hamic turbulence repqrtgd previously n Reff$0,2(]. This . in this paper. In the case of solar wind bulk plasma param-
asymmetry of the statistics for the velocity increments coin-

cides with the highly intermittent character of the flow and eters, we do not find such a clear exponeqtlal cutoff region
but rather see stretched exponential tails of the form

multifractal scaling of these fluctuations. We applied zeroth- N . i oo -
order correlation functions, defined separately for the posiP(|5x|) exp(-Al&“). This is illustrated in Fig. 7 where

tive and the negative branch of the P[], to quantify the we plot In(In[P(&X)]) against In@_<) for all positive fluctua-
: : ._tions of the monoscaling quantities. It can be seen that, as we
asymmetry of fluctuation PDFs for the solar wind. This

. . move away from the peak, these curves converge to lines and
analysis was performed using PDFs generated for : . . .
. . o - ; good fits can be obtained in the intery&lo,100], whereo
~12 min (that is, within the scaling regionin the case of g
Lo ' . . stands for standard deviation.
velocity increments we find that the negative moment is, on directl he f ional f fth
average, 11% lower compared to the positive one. On th We can now directly compare the functional form of these
’ " ; Fescaled PDFs by normalizing the curves and overlying them
other hand, the quantities that we have found with self- . . o .
on the single plot for a particular within the scaling range.
Figure 8 shows these normalized PDIFg 6xs,7) for X
=8p)s, 8(B?)s, 8(pv?)s, 8(vB?)sandr~1 hr overlaid on
a single plot. Thedxg variable has been normalized to the
rescaled standard deviationy( 7=1 hr) of P¢ and the values
of the PDF has been modified to keep probability constant in
each case to facilitate this comparison. These normalized
PDFs have remarkably similar functional form suggesting a
shared process responsible for fluctuations in these four
plasma parameters on temporal scales up,ig~26 hr.

It has been found previous5] that the magnetic field
magnitude fluctuations are not self-similar but rather multi-
fractal. For such processes, the scaling derived fR{fd,7)
would not be expected to rescale the entire PDF. To verify
this we applied the rescaling procedure for magnetic field
magnitude difference®B(t,7)=B(t+ 7)—B(t). Figure 9
shows the result of one parameter rescaling applied to the

-5 0 5 oL . .
3 (vB?), [mT2s™) 1072 PDFs of the magnetic field magnitude fluctuations. We see
that the scaling procedure is satisfactory only up-t® stan-
FIG. 6. As in Fig. 3 for the Poynting flus(vB?). dard deviations of the original sample, despite the satisfac-
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FIG. 10. As in Fig. 3 for the solar wind velocity fluctuations.
FIG. 8. Direct comparison of the PDFs of fluctuations for all

four quantitiesO corresponds té(B?), [ to the ion density(p), IV. MODELING THE DATA
< to the kinetic energy densi 2), andA to the Poynting flux . . L. . i
components(vB?). » Bpv7) yning The rescaling technique applied in the preceding section

indicates that, for certain temporal scales, the PDFs of some

tory scaling obtained for peak¥(0,7) of the PDFgsee inset bulk plasma parameters can be _colla}psed onto a single mas-
of Fig. 9. This confirms the results of Refll] where a ter curve. The challen'ge now |IES'II’1 developing .phyS|caI
two-parameter Castaing fit to values within three standar odels that can describe the functional form of this curve.
deviations of the original sample yields scaling in one pa- ere weh corr]15|der two appro?ﬁhtetsh TfTe I'rsi. IS a statlsncgl
rameter and weak variation in the other. Attempts to improve"’“o'C.’roac where we assume that the fiuctuations can be de-
the collapse by using information in the taitgalues|SB| scribed _by a stochastic Langew.n equation. The second
>30) would introduce a significant error in the estimation method is to assume the quctuat!ons are the result. of the
of the scaling exponent. We found a similar lack of scaling nonlinear energy cascade and d.erlve'thg co.rrespondlng PDF
in the fluctuations of the solar wind velocity magnitude andform for the rescaled PDR&Castaing distribution[10].

we show the rescaled PDF in Fig. 10. We stress that the -

log-log plots of PDF peak®(0,7) show a linear region for A. Diffusion model

both velocity and magnetic field magnitude fluctuati¢sse The Fokker-PlanckFP) equation provides an important
inset in each figure Their PDFs, however, do not collapse |ink between statistical studies and the dynamical approach
onto a single curve when rescalifd) is applied. This lack expressed by the Langevin equat[@g]. In the most general

of monoscaling is evident when indices derived fr&0,7) form the FP equation can be written as

and these found foP(o,7) are comparedsee Table)l

. £=V5X(A(5X)P+ B(6x)VscP), (2
° or

10.51

10f 0 whereP=P(6X,7) is a PDF for the differenced quantitjx
that varies with timer, A(6x) is the friction coefficient, and
069 B(6x) is related to a diffusion coefficient that we allow to
; 0 15 vary with 6x. For certain choices oA(6x) and B(6x), a

logzzt [seCf) class of self-similar solutions of E(R) satisfies the rescaling

1 relation given by(1). This scaling is a direct consequence of

the fact that the F-P equation is invariant under the transfor-
mationséx— oxr~ “ andP— P 7. It can be showrisee Ap-

©

log, ,(P(8 B_1)) [sT]
[3,) [s2) $ «© (3,

7.5 pendix A) that Egs.(1) and (2) combined with power law
scaling of the transport coefficiendg 6x) andB(x) lead to
m the following equation for the PDF:
6.5
5 5 ®_ x)t Vel agP + by dx i 3
10 a7~ aon)| (P07 | @PthedGres ] )

FIG. 9. As in Fig. 3 for the solar wind magnetic filed magnitude whereay andb, are constantsy is the scaling index derived
fluctuations. from the data andP(5x) and éx are unscaled PDF and fluc-
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0.5 around the smallest fluctuations could be improved. Equation
ot (5) cannot, however, properly model the smallest fluctuations
as it diverges forvxs—0.
Q'O'S Let us now assume that a Langevin equation in the form
|
S d(8x)
o1 —gr B+ ¥(E(D) v

can describe the dynamics of fluctuations. In Ef.the ran-
dom variable&(t) is assumed to bé correlated, i.e.,

log, (c P (&
o
DN W W

(EOEt+7))=05(7). ®

2

This condition is fulfilled in the data analysis by forming
each time serie®x(t, ) with nonoverlapping time intervals
2 7 and was also verified by computing the autocorrelation
dpv) /o . . . . :
st function of the differenced time series. Introducing a new

H __ X ’ ’ H
FIG. 11. Example of the fit of the PDF functional form predicted Variablez=f[g"1/y(ox")d(éx"), Eqg.(7) can be written as
by a Fokker-Planck descriptiofb) (solid line) and a Castaing

model (dashed ling to the fluctuations PDF of thé(pv?) bulk dZ_ B(2)

parameter. a2 +&(1). 9

|
:h
W
T

tuations, respectively. Written in this form, E@) immedi-  One can immediately obtain a FP equation that corresponds

ately allows us to identity the functional form of the diffu- to the Langevin equatio(®) [19]. We can then compare this

sion coefficient, namelyD (8x) = (8x)2~ . In Appendix A FP equation with that given by E(B) to express coefficients

we show how Eq(3) can also be expressed as B(6x) and y(5x) in terms ofay andb, (see Appendix B
Defining Dy=(&%(t))/2, we obtain

D0 ok ps X (oxtep=C. (4 I
o s) N7 ov ) sT 4 (0Xg s— L. b
o d(ﬁXS) Qo '}’( 5)(): D_O( &()lflIZa (10)
0
Partial differential equationi4) can be solved analytically
and one arrives at the general solution in the form and
a C o’ 1 B(ox)= bo<1_i —ag|(8x)1 Y, (13)
PS(aXS)_b_oWex%_b_o(&S) 2a
o? Equation(7) together with definitions of its coefficient{40)
S« exp( b—( 6xg)1’“> and(11) constitutes a dynamical model for the fluctuations in
Xf s 0 d(6x.) + koH (8o the solar wind quantities. From Eq&L0) and (11), we see
0 (6x})12lbo s * that the diffusion of the PDF of fluctuations in the solar wind

is of comparable strength to the advectiay{by~2). We
stress that the advection and diffusion processes that we dis-

. . cuss here are of the probability in parameter space for fluc-
}N?erEKO is a constant an#ti(5x,) is the homogeneous So- yations and do not refer to the integrated quantities.
ution:

©)

B. Castaing model

2

H(6xs) - g—(axs)l/“). (6) We now, for comparison, consider a model motivated di-

0 rectly by a cascade in energy, due to Castaing. This empirical

model was developed for the spatial velocity fluctuations re-

We then attempt to fit the predicted soluti@) to the nor-  corded from controlled experiments in wind tunngl$,21]
malized rescaled PDFs. The results of such a fit for the flucand has been applied to the solar wind dgta,12. The
tuations of the kinetic energy density PDF are shown in Figunderlying idea of this approach is that, for constant energy
11 (solid line). This fit is obtained with the following param- transfer rate between spatial scales, all quantities should ex-
eters:ay/by=2.0, by=10, C=0.00152,k,=0.0625, and hibit a Gaussian distribution of fluctuations. The intermit-
a=0.41 as derived from the rescaling procedure. We notéency is then introduced to the PDF through the fluctuations
that the figure is a semilog plot and thus emphasizes the tailsf the variancer of that Gaussian distribution. A log-normal

of the distribution—for a different value of ratey /by the fit  distribution is assumed for variance

__ 1 p(
REERN
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PDFs, we conclude that their moments should exhibit same
d(In[c]), (120  variation with time lagr.

Q(o)=

1 In?(o/ o)
exp ——
NEXO 2\2

where o is the most probable variance of the fluctuations
and\ is the variance of Inf). Combining these two hypoth- S.C.C. and B.H. acknowledge support from the PPARC
esis Castaing proposed the following functional form for theand G.R. acknowledges support from the Leverhulme Trust.
observed PDF: We thank N. W. Watkins and M. P. Freeman for advice con-
cerning the post processing of the WIND data. We also thank
1 (= p( (5x)2> p( |n2(0'/00)>d0' R. P. Lepping and K. Ogilvie for providing data from the
_ exg — —— |7~

PA(8X)= 5~ . & 5 e oz NASA WIND spacecraft.
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APPENDIX A

The dashed line in Fig. 11 shows the Castaing curvcza fitted | ot P(6x,7) be a homogeneous function that satisfies
with parametersh=1.275 ando=0.225 to the(pv°)  scaling(1). Our aim is to find the functional form of coeffi-
PDF. cientsA(6x) andB(6x) for which P(6x,7) is a solution of

We can now compare the rescaled PDFs with both FP angd p equatiorf2). Using Eq.(1) we can now rewrite Eq2)
Castaing predicted curves which are shown in Fig. 11. Weg (ead

can see from the figure that both models provide an adequate

fit to the 5(pv?)s PDF, and hence will also describe the PDF a P
of other scaling bulk plasma parameters. Both curves, how- - pa+l Pst 5Xsd(5x )
. e S
ever, fall significantly below observed PDF values for
|8(pv?) =<2, although the Castaing distribution fits the P.dA(SX) A(Sx) dPg

peak of the PDF reasonably wé#lee inset in Fig. 11 This
departure from the experimental PDF, in the case of the
Castaing distribution, may reflect the difference between hy-
drodynamics and MHD turbulence.

T d(ox) | oo d(oxy)

1 dB(&x) dP. B(&x) dP,
T2 d(6x) d(oxe) | e d(oxg)”

V. SUMMARY (A1)

In this paper we have applied a generic PDF rescalingf all terms on the right-hand sidéhs) of Eq. (A1) are to

methOd to f|UCtuatiOI’lS in the SO|ar W|nd bulk plasma param'contribute and fop(ﬁxs) to remain a function Oﬁxs On|y,

eters. We find that, consistent with previous work, magnetiGye must have

field and velocity magnitude fluctuations are multifractal,

whereas the PDFs of fluctuationsBs, p, pv?, andvB? can A(6X) B(6x)

be rescaled with just one parameter for temporal scales up to 1 —aldx) and —r—
t t

~26 hr. The presence of intermittency in the plasma flow is

manifested in these quantities simply by the leptokurtic naBoth A(x) andB(5&x) must then be of form

ture of their fluctuation PDFs, which show increased prob- Y

ability of large fluctuations compared to that of the Normal A(9X)=a0(ox)” and B(dX)=Dbo(x)",  (A3)

distribution.  Fluctuations on large temporal scales, \ herea, andb, are constants. Changing variables to the
>26 hr, are uncorrelated, in that their PDFs converge to'rescaled&x and substituting Eq(A3) into Eq. (A2), we
ward a Gaussian distribution. The fact that all quantitiesexpress ex?)onen'r@ and v in terms of the rescaling ir;dezx
share the same PDF, to within errors, is also strongly sug9egferived from the data. We then obtain

tive of a single underlying process. This is also supported by
the similar values of the scaling exponents.

The simple scaling properties that we have found allow us
to develop a Fokker-Planck approach that provides a func-
tional form of the rescaled PDFs as well as a Langevin equawhich allows us to write the final power law form &f 6x)
tion for the dynamics of the observed fluctuations. TheandB(6x):
model shows that both advective and diffusive terms need to _ 1-1a _ 2 Va
be invoked to describe the dynamics of the fluctuations. The A(X)=20(5X) and B(x)=bo( %) '
calculated diffusion coefficient is of the fornD(xg)
x(8xs)* 1" We obtained a good fit of the model to our Substituting these expressions into FP equat®mwe obtain
rescaled PDFs over at least ten standard deviations. We algw;. (3) from Sec. IV. Using these results, term

examined a Castaing model for turbulence and found a set @fA( 5x)/d(8x) on the rhs of Eq(A1), for example, becomes
fit parameters for which both the Castaing distribution and

our diffusion model have nearly identical form. Since both dA(Sx) :(1_ l)a (5%)~ Ve (AB)
the FP model and the Castaing distribution fit our rescaled d( %) al 0 ’

—b(dxs). (A2

1 1
n=1-— and v=2——, (A4)
o o

(A5)
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Performing similar algebra on all terms in E\1), we ar-
rive to equation

d(oxsPs)  d
“Y7d(ex)  d(%)
P
X[ (8xg) 112 agPs+ by s)d( )”
(A7)
Integrating once, we obtain from E),

(5 ) dPs (6x)1’°‘dP C, (A8)

Sd(SXs )

whereC is the constant of integration.

APPENDIX B

Consider the following Langevin type of equation;
d(6x)
dt

=B(ox)+ y(SX)&(1), (B1)

where random variablé(t) is assumed to bé correlated,
ie.,

(EVE(t+7))=028(7).

Introducing a new variable= [ 3*1/y(8x')d(éx’), Eq.(B1)
can be written as

(B2)

dz_
Gi=T@+&w,

where

B(2)

Y2 B3

I'(z)=

PHYSICAL REVIEW E67, 056404 (2003

One can immediately obtain a FP equation that corresponds
to the Langevin equatiofB3) and reads

dP(z,7)
T

9 B 9*P(z,7)
+5[T(Z)P(Z,7)]—D0T,

(B4)

whereD = o%/2. The probability is an invariant of the vari-
able change so th&(6x)d(6x)=P(z)dz and we can then
rewrite Eq.(B4) for P(6x,7).

dy(6x)
d(Sx)

aP a

—Z—[(Dov(ﬁx)

9P
97 9(o%) _B(&))P’LD”Z&(&()}'

(B5)

Comparing Eq(B5) with the FP equatiort3), we can iden-
tify

Doy?= (%) ¥y dx (B6)
and then we must demand that
Do dy*(8x) B 1 1a
> W—ﬁ(&)—ao(&) - (B7)

In summary, we have shown that the FP equation given by
Eq. (3) is equivalent to the stochastic Langevin equation
where coefficient$d and y are given by

= \/g—‘;< ox) 12 (89)
and

—a,|(ox)t Ve, (B9)

_ ( 1
B=|bo| 1- 5
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