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Marangoni instability of a thin liquid film resting on a locally heated horizontal wall
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Long-wave Marangoni instabilities can be induced thermally on a thin liquid layer overlying a horizontal
solid substrate with either a uniform or a nonuniform base temperature. For a nonuniform base temperature, the
film height thickens near the region where temperature gradients are negligible and severely thins upstream;
“fingering” patterns are observed in this region. These states are related to the patterns observed in the
isothermal case, which are reasonably well understood. The stability of these spatiotemporally evolving states
to transverse disturbances is investigated using a transient growth-type analysis. It is found that the band of
unstable wave numbers exhibiting growth is strongly dependent on the lateral extent of the heating source.
Inspection of surface reconstructions of the film thickness profiles reveals the existence of three-dimensional
patterns in the thinning region behind the thickened front.

DOI: 10.1103/PhysRevE.67.056315 PACS nunier68.15+e, 47.20.Ma, 68.60.Dv

I. INTRODUCTION have since been the subject of many investigatis].
They have been observed in various experiméiits12],
Thermocapillary instabilities arise due to nonuniformity Where the formation of large scale dry rupture spots was
in interfacial temperature, resulting in the formation of inter-documented. The absence of continuous steady states and
facial tension gradientl—3]. In thin liquid layers where spontaneous film rupture due to fingering mechanisms gives
buoyancy stabilizing mechanisms are negligible, thermocapise to new drops, both of which are common characteristics
illary instabilities become dominant, giving rise to tangential of long-wave Marangoni instabilities; these have also been
stresses at the interface, known as Marangoni stresses, whif#nd numerically. In particular, nonlinear studies have been
can induce significant interfacial deformation and possiblecarried out on horizontal liquid layefs3—15 and falling
rupture of the layer. films [8,12,16—-18 as well as for evaporating or condensing
The study of thermocapi”ary flows is pertinent to Variousf”mS [19] In addition, the two-dimensional direct numerical
applications where interfacial flows are encountered, such agmulations of Krishnamoorthgt al.[20] on the dynamics of
in lubricating and coating flows where temperature control ighe thinning of horizontal films due to gravitational, capil-
of vital importance in order to impose uniform thicknesses oflary, and thermocapillarity effects have shown the formation
liquid layers upon solid substrates; any slight variation in theof structures as the film proceeds toward rupture, similar to
temperature could lead to the growth of instabilities thatthose obtained using long-wave theory.
could disrupt the entire Coating |ayer_ In this paper, we investigate a prOblem similar to that
Linear stability theory has commonly been employed tostudied by Boos and The§$4] and Oron[15] where highly
investigate the effect of periodic disturbances on the stabilitponlinear effects leading to film rupture were considered.
of the thin film. Pearsori4] considered linear stability of Boos and Thesgl4] used the boundary integral method to
pure Marangoni convection on nondeformable interfacessolve Stokes flow subject to the static and dynamic Bond
This analysis was later extendg8l] to include deformable numbers(defined byp*g*H*"/y* andp*g*H*/8* a*, re-
interfaces and interfacial tension gradients arising from difspectively, wherg* is the densityg* the gravitational ac-
ferences in the surfactant interfacial concentration. Whileceleration,H* the film thicknessy* the interfacial tension,
Pearsori4] found that increases in the surface Biot numberg* the strength of the temperature gradient, arfdis the
results in stabilization of the base state, the results of Scrivegoefficient of interfacial tension variation; the asteriside-
and Sternling[5] seem to indicate that the system alwaysnoting dimensional quantitigsand found cascades of large
exhibits long-wave Marangoni instabilitig®], where the scale to small scale structures close to the onset of rupture.
characteristic length scale of perturbations is much largeOron [15], on the other hand, investigated the three-
than the thickness of the film layer. However, by allowing for dimensional problem, the solutions of which indicated char-
gravity, Smith[6] was able to show that these long-wave acteristics borne by the two-dimensional solution.
instabilities, demonstrated by Scriven and Stern|iig were While Boos and Thes§l4] and Oron[15] allow ther-
suppressed by gravity, thereby reconciling both observationsnocapillarity to arise from surface undulations imposed
Long-wave Marangoni instabilities in thin liquid films upon a horizontal liquid layer over a solid substrate of uni-
form base temperature, we choose to study the more practical
case of a system in which the base temperature is initially
*Corresponding author. nonuniform; this case is of current interest and has recently
Electronic address: o.matar@imperial.ac.uk been the subject of experimental investigations by Kabov
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et al. [8,12], and modeling work by Miladinovat al. [17]

and Kalliadasiset al. [18] for inclined falling liquid films.
Miladinova et al. [17] used long-wave theory to conduct a
linear, a weakly nonlinear, and a fully nonlinear analysis of
the evolution equation governing the film thickness in the
presence of thermocapillarity arising from a linear base tem-
perature profile. They found that a positive base temperature
gradient is destabilizing with thermocapillarity exerting an structures
influence on the amplitude and phase speed of the finite- |z

amplitude waves. Kalliadasist al. [18], on the other hand, T—>x

Fingering

used long-wave theory along with an integral boundary layer

(IBL)-type approximation for the energy transport equation g 1. Schematic illustration of regular fractal-like fingering
to determine a steady film thickness profile for a locally siryctures forming in the thinned region behind the thickened out-
heated falling film. The stability of this nonuniform steady spreading wave front. These patterns are fractal-like in the sense
profile to linear transverse disturbances was then conductaglat certain self-similarity in the structures appears to be preserved
and the conditions for instability were determined in terms ofat increasingly shorter length scales.
a suitably defined Marangoni number for a given lateral ex-
tent of the heating source; in the situation considered here wand considerable thickening downstream. In the-P¢1)
have no steady state. case, fractal-like patterns, schematically illustrated in Fig. 1,
It is worthy of mention that the thermocapillary instabili- @ré observed in the thinning region, similar to those observed
ties described here are analogous to the Marangoni instabilRreviously in the literaturg14,15. The stability of this one-
ties that arise out of compositionally driven flows. However,dimensional spatiotemporally evolving base state to applied
it is often the case that Marangoni instabilities arise from aransverse disturbances is then analyzed using a transient
combination of thermally and compositionally driven flows, growth-type analysis for a wide range of parameters. Results
such as the classical observation of the “tears of wine” byOf this analysis reveal that, for the P©(1) case, this base
tion of the fluid resulting in concentration gradients, giving Numbers, which undergo rapid growth prior to the onset of
rise to Marangoni instabilities. Further work on this phenom-the fractal-like patterns; the stability depends on the lateral
enon has been considered recently by Fournier and Cazal@¥tent of the heating source. _ .
[22], Vuilleumier et al. [23], and Hosoi and Bush24]. In Thg rest of this paper is organized as follows. Sectlon_ Il
Ref.[24], Marangoni instabilities were observed in the form describes the formulation and treatment of the governing
of longitudinal rolls giving rise to ridge structures near the quations together with the relevant initial and boundary
meniscus. An additional instability was also observed in theconditions; a brief description of the numerical methods used
form of transverse wave disturbances, earlier discussed B Solve the derived equations is also included. A discussion
Smith and Davig25,26. While Hosoi and Busli24] con- of the re_sults obtalne_d is then detailed in Sec. Il followed by
sidered both thermal and compositional gradients in theifoncluding remarks in Sec. IV.
stability analysis, they, however, noted that the interfacial
motion is driven by compositional rather than thermal gradi-

ents as in the case of Vuilleumiet al. [23], the thermal A mathematical description of the physica| system, con-
Marangoni number being two orders of magnitude smallekjdered, is given in this section. An evolution equation for
than the compositional Marangoni number. Moreover, thehe height of a thin liquid film resting on a nonuniformly
gradients along the streamwise direction were assumed to laated solid substrate is derived using lubrication theory for
much smaller than that in the transverse direction and thupe~ (1) in Sec. Il A. The film height equation is then lin-
the gradients were only considered in the transverse direGarized using a linear stability analysis. Subsequently, in Sec.
tion. As such, while the dominant physics are the same in| B, we turn our consideration to the formulation and the
compositionally driven instabilities as they are in their ther-jinearization of the film and temperature evolution equations
mally driven counterparts, comparisons between our obsegoverning systems in which rapid vertical thermal diffusion
vations with those in Ref$23,24] become difficult because s present, that is, where P®(e), e being the lubrication
of the differing underlying assumptions. parameter which will be defined in Table II. Finally, the rel-
We shall proceed in two parts: First, we examine systemgyant initial and boundary conditions are described in Sec.
in which the thermal Reéet number, Pe, is of the order of || C and a brief description of the numerical procedures em-

unity. Here, we use the assumption that the temperature igjoyed to perform simulations of the governing equations is
adiabatically enslaved to the film thickngd$,16,19; we do  given in Sec. Il D.

not use an IBL approximation such as the one employed by

Kalliadasiset al.[18]. Subsequently, systems in which Pe is A. Pe~0(1)
sufficiently small such that there is a rapid vertical thermal
diffusion across the horizontal layer will be studied. In both
cases, the nonuniform temperature distribution of the under- A thin film of an incompressible Newtonian liquid with
lying wall leads to severe thinning near the heating sourceiscosity* lying on a planar horizontal solid substrate with

Il. FORMULATION OF THE MATHEMATICAL MODEL

1. Derivation of the film evolution equation
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T TABLE |. Typical values for the relevant physical constants for

= Au\ e =4 7 alchohol/water systems.
L Liquid e o LHE Y |78
z — Physical constant Symbol Typical values
Heated Solid Substrate
Heat capacity ch 10° Jkg 1K™ ?
FIG. 2. Schematic representation of the instantaneous height qfjjm thickness H* 105-103m
a thin liquid film, h(x,y,t) (dashed ling lying upon a nonuni-  pgace temperature T* 300 K

formly heated solid substrate, having a temperature distribution 4ownstream

0s(x) (dotted ling; the initial film thickness iH* (solid line). Spreading pressure S 40 dyn it

. o N . Characteristic velocity u* 102ms?
a nonuniform temperature distribution, as shown in Fig. 2, is

. o - S scale
considered. The initial thickness of the liquid film, of mag- Airfliquid heat ot 100 W m-2K-1
nitudeH*, is small in comparison with the lateral extent of transfer coefficient n
the plane,L*, such thatH* =eL*, wheree<1. In such Liquid/solid heat o 1 W m-2K-1
H S

cases, it is possi_ble to assume that standard lubrication ansfer coefficient
theory holds, provided that inertial effects are also small.

: ] Minimum interfacial yE 40 dyn cm'!
We define a spreading pressi8&= y — yr,, wherey} tension
and y}, represent the interfacial tension at the free interfacq_iquid thermal A* 01W mlk-?
of the liquid layer,z* =h* (x*,y*,t*), corresponding to the conductivity
region of the minimum and maximum temperatures, respecyiscosity u* 1cP
tively; here,x*, y*, andz* represent the streamwise, trans- pensity o* 10° kgm 3

verse, and vertical coordinates, respectively, ehdienotes
time. These variations in the interfacial tension give rise to

Marangoni stresses driving flow in the direction of higher ePETH+UT, +u T, +WT)=T,+ eZ(TXX+Tyy)+O(Br),
tension[27]. The velocities in the streamwise and transverse (5)
planes, u* and v*, respectively, therefore scale as*

=€S*/u*, while that in the vertical directionw™, scales as  where the subscripts, y, z, andt are employed to denote
eU*. We can then scale® andy* by L*, z* by H*, andt*  partial derivatives. In Eq(5), the thermal Pelet number Pe
by L*/U*. The dimensionless interfacial tensignis given is defined by P=ep* c;U*H*/)\*, wherec;c is the heat

by capacity and\* the thermal conductivity of the liquid. Simi-
larly, Br is the Brinkman number, defined by Br
_ Y~ m . Y = m 1 EM*U*Z/)\*TQ, representing the relative effects of shear
r= yE—y¥ s @ heating and thermal conduction.

For typical values of the physical parameters involved
(see Tables | and ) Br~0O(10 ®) and Pe-O(1), andthus
the dimensionless equation governing the transport of energy
in EqQ. (5), to leading order, reduces to

while the dimensionless temperatures expressed by

)

T* _T*
T -T%/) T,,=0. (6)

In Eq. (2), T% is the maximum base temperature at the flowAt the solid/liquid interfacez=0, the following boundary
origin corresponding to the region of minimum interfacial condition is imposed:
tensiony},, and T is the downstream base temperature.

It is convenient at this point to define a linear equation of T=10s, @)
state relating the interfacial tension to the temperature as- ) ) )
suming that the temperature differences are sfial TABLE II. Typical values for the relevant dimensionless groups
for alcohol/water systems.
V¥ = 73 n ‘97’: (T*—T*). &) Dimensionless group  Symbol Definition Typical values
JT Lubrication parameter e H*/L* 1072
Capillary parameter C e2y* IS 0.001-1

SinceT* =T}, wheny* =y}, the dimensionless equation of

Biot number at Bs afH*/I\* 0-1
state then reads liquid/solid interface
Biot number at B af H*IN* 0-100
y=1-T. (4) air/liquid interface
Thermal Pelet Pe ep*cpU*H*\* 10 %-1

Using the above scalings, the dimensionless equation govnymber
erning the transport of energy can be written as follows:
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where 6, is expressed by Upon integration of Eqs(15) and(16), and applying the
no-slip and continuity of shear stress boundary conditions at
To—Tx ® the planez=0 andz=h, respectively, we obtain
= , 8
*OTE-TX 2
u=(5—zh Pyt ZUyl,—p, (20)

where Ty, denotes the temperature &zt 0. Here, we have
chosenf = 64(x) only. At the free interfacez=h, whereh 2
is the film thickness, a second boundary condition is im- v:(;—zh Pyt Zvg|,—p - (21
posed:

N Cross-sectional averaging of EgR0) and (21) over the
A JT =t (TH—T%) 9) height of the film, utilizing Eqs(17)—(19), and making use
7+ " an of Egs.(4) and(13) yields

where «}; denotes the local heat transfer coefficient at the __ 1 /n h2| Bhhy(0,— 6s) +(1+ th)ﬁSX
irfliquid i * inter- u=+| udz=—-—
air/liquid _m_terface, andr; is the temperature at that inter hJo 2 (1+Bh)?
face. Defining
ch?
T; —T; + T(hxxx+ hxyy) (22)
Oh= T T (10)
mo and
and
— 1fh dpe h?| Bphy(6h— 65) +Ch3 —
a:H* _h OU = 2 (1+th)2 3 ( XXy yyy)'
Bh= R (11) (23)

. . . From the kinematic boundary condition,
where B, is the surface Biot number, which represents the

ratio of the heat transfer rate by convection to that by con- h +(hU) +(hv_) =0 (24)
duction, the dimensionless form of E) can be written as ! X o

the following evolution equation for the film height can be

T;=—=Bn(T—6h). (12 derived:
Integration of Eq.(6) together with the boundary conditions 2[B.hu(6h— 6+ (1+Boh) 0
given by Eqgs(7) and(12) leads to the following temperature _|h7| o O 09+ nh) b,
profile: 2 (1+Bph)?
BpOnz+ 65+ Brbs(h—2) chd h?| Byhy(6,— 0
T(2)= St (13) O et gy |+ | By f9)
_ h _ 3 2| (1+Byh)?
Scaling the pressung® by S*/H*, we can also write the X
dimensionless equations of mass and momentum conserva- chd
tion, in the lubrication approximation, as — T(hxxﬁ hyyy) [ - (25
y
Ux+ovy+w,=0, (14
The linearization of Eq(25) is undertaken next.
=U,,, 15
Px=Uzz (19 2. Linearized equations
Py=0;. (16) A small periodic disturbance in the transverse plane is
o imposed on the film such that the film height can be decom-
The normal stress balancezath is given by posed into a “base state” componehf,o), and a small con-
tribution due to the perturbation with amplitudé®):
p=—C(hy+ hyy)v (17) )
h(x,y,t) =h@(x,t) +h®(x,t) ey, (26)
where C is a capillary parameter defined I6y= €2y} /S*,
while a balance of tangentia| stresseg ath reads Whereky is the wave number; it is assumed here that the base
flow only varies in thex direction. It is also assumed in what
u,= y,+hyy,, (18  follows that the temperature of the aif; , approaches the
base temperature downstream of the flg#, such that the
v,=7vythyy,. (19 simplification 8,,=0 may be applied.
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By expanding Eq(25) using Eq.(26), we can decompose Here, T, denotes a fluctuation having a zero cross-sectional
the flow in the film into its base state and the correspondingverage,
contribution due to the perturbation. Keeping only linear

terms inh®), we arrive, for the base state, at i: %fh(x,y,t)_rl(x,y't)dz: 0. (32
(0)2 °
o)y - (0) _ (0) . . .
h™= 2(1+th(0))2[(1+ Bhh )esx 0sBnhy”] Cross-sectional averaging of E@Q1) then yields
Ch©? o _ 1 (Tylz=n—T1 lz=0)
— 3 hXXX (27) Tot‘l‘ UT0X+ vTOy:E(TOxX_I— Toyy) + h ,
X (33

Similarly, we can write for the perturbation, where u and v represent the cross-sectionally averaged

(0)2 streamwise and transverse velocities, respectively.
h=) ——— (B,hW g, — 6.B,h(D)) The following dimensionless boundary condition is im-
' 2(1+B,h(®)2 S ST posed az=0:
h(OR(1) T,=—By(0s—T), (34)

Ty gL B 05— 0.8y
( hf) where B is the surface Biot number at the solid/liquid inter-

h(0?g, n(1) face, defined by
— 5[+ Bh @) 6 — 0By )
(1+Byh)® " L _aH 5
s: ]
€ (hOPh®) _ hO32RM) 4 3O2HMRO) o
- g(h hysx— ™ kyhy+3h ™ hthiil)
X where o} is the local heat transfer coefficient at the solid/

Bhﬁskih(o)zh(l) Ch(o)s liquid interface. Atz=h, we have

2(1+Bh@)2 3

A(1) _ L2k (1)
(kyh™D—khs)). (28) T,=—Bu(T—6y). (36)

We note that Eq(28) is strongly coupled to Eq27) and that ASSuming that B= ’Bs and B,= 62[_3!1’ in which (B, By)
the dependence of the solution on the derivatives inythe ~Q(1), weobtain for the flux conditions, upon substitution
direction is incorporated into the problem parametrically via®f Ed- (30) into Egs.(34) and(36):

the wave numbek, . Hence, the two-dimensional problem is

v Henc Bs
reduced to a one-dimensional problem. T, =- 3(0S—To)+0(62) (37)
B. Pe~0O(e) and
1. Derivation of the evolution equations
We now devote our attention to systems in which rapid T, =— @(To— 6,) +O(€?). (39)
vertical thermal diffusion is present:. P&®(e), and hence z P

€’Pe<1. Thus, aftert>0(€e’Pe), the temperature in the o _ _
direction equilibrates. Setting PesP, where P-O(1), the ~ Substitution of Eqs(37) and(38) into Eg. (33) then yields

dimensionless energy equation given in Eg). becomes

1 1
To+uTo +0To =51 (To, +To, )+ =[Bnbn+ Bso
EP(THUT, o T, +WT) =T+ €Tyt Tyy). (29 oo o, P[( Ot To,) + L Bn0n+ Bsbs

We now proceed to decompose the temperature field into — (By+ B Tol
a streamwise and transverse componéptx,y,t) and a sh0

small fluctuationT(x,y,z,t) which is allowed to depend on _ _ _ o
z[28]: From the usual dimensionless equations of motion in the

lubrication approximation, together with the normal and tan-
T(X,y,2,t)=To(X,y,t) +(€’P)T1(x,y,z,t). (30  gential stress balances, given by E(s9)—(19), and from
Egs. (4), (20), and(21), decomposition using Eq30) and
Substituting Eq(30) into Eq.(29), we obtain cross-sectional averaging over the film gives

+0(€?). (39

1 — 1 ¢(h C h
To +uTo +vTo = 5(To, +To )+ Ty + O(€?). (31 u=g f . ud2=§h2(hxxx+ hyyy) = 5 To, (40
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poiiill P n @_poror, " rer_ S oo
=0, vaz g PPyt hyy) =5 To @D TEH=ROTOTEL —-T {h hQT¢

0)r |y (0)2 (1 21, (1 0)|y (1) (0
The kinematic boundary condition given by E@4) then +T§< [h (h;x)x_ kyhi ) +2hOn( )hix)x]}

yields the film evolution equation:

1 1)_ 2 h®
+ 5] TR kT (By+Bg)| TO-TO —

2 C ., h h(®
h= ?TO - §h (Pyxxt hxyy)
X h(l)
+ ?Toy—gh (hxxy+ hyyy) . (42

y
C. Initial and boundary conditions

Comparison of Eqs(25) and (42) in the limit of small B,
highlights the appearance of a thermocapillary term in the
transverse direction, which is absent in E2p). This is due
to our choice ofs= 64(x) only. h©(x,00=1, (48

The unperturbed thin liquid film is assumed to have a
uniform initial thickness,

2. Linearized equations and the initial amplitude of the perturbation is assumed to be

In the same manner as described in Sec. Il A 2, we imsmall and uniform,
pose a small periodic disturbance on the film, as described by W
Eq. (26). In addition, we also impose a similar periodic dis- h**(x,0)=0.01. (49
turbance on the streamwise and transverse component of

temperature as follows: For the Pe-O(1) case, we take

To(x,y,1) =TO(x,t) + T (x,t) &Y. (43) TO(x,00=0, (50)

Expansion of Eqs(42) and (39) using Eqs.(26) and (43), and a small uniform initial condition for the perturbation,
keeping only linear terms ih® and T, results in evolu- 1) _

tion equations for the film and temperature base states as T (x0=001. (5
well as their corresponding perturbations.

X . The relevant boundary conditions are the no-flux condi-
For the film base state, we arrive at

tions atx=0 andx=x.,, wherex,, denotes a point down-

1 stream, sufficiently far, such that the flow conditions are not
2 3 i i

h§°)=§(h(0) T(O)) —§(h(°) hi% - (44) grglé?gr?t? by the disturbances caused by the temperature

whereas the evolution of the film perturbation reads hO=h0) =0, (52

1 1 (1)_ 1) _
(9= (N TE4 2hOTORD), - ZiZTD) = h6=0. (53

Similarly, for the Pe-O(€) case, we assume no-flux condi-

— E{[h(0)3(h(l) — kzh(l))+3h(°)2h(°)h(1)] tions atx=0 andx=Xx,, for the temperature field
XXX y' X XXX X
(0)—
+hOP(KAh®— k2hD)) (45) Tx’=0, (54)
y y xx /g
T=0. (55)

Similarly, for the temperature profile, the base state is given
as We also adopt a Gaussian base temperature profile at the
solid/liquid interface,

h(® C

0)_ 0)? 2, (0) (0
T =T~ S hO QT Rp— 9
(0) 0 and at the free interface, we assume
+5] T+ ﬁ[(Bhehﬂs 0s) — (Bn+Bs) T
0h=O; (57)
(46)
X,=0, unless otherwise stated. In E§6), « is a parameter
and the perturbation as that determines the gradient of the profile.
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D. Solution methodology identifying the band of unstable wave numbers for a given
set of parameter values; typical evolution profiles for the
base state film height and the height of the superimposed
disturbance are also shown. We then proceed to discuss the
effect of a variation of the system parameters, namely, the
capillary paramete€, the surface Biot number,B and the
wave numbek, on the growth rate of the disturbances.

The Method of Line§29] was adopted for numerical so-
lutions of the full nonlinear one-dimensional film and tem-
perature evolution equations. In the-P@(1) case, detailed
in Sec. Il A, only the film evolution equations for the base
flow and perturbation, described by E¢87) and (28), are
solved. For the PeO(¢€) case, detailed in Sec. Il B, both the
film and the temperature evolution equations are solved, one
each for the base state and the perturbation. These equations A. Pe~0(1)
are described by Eq$44) and (45) for the film evolution, 1. Uniform base temperature
and Eqgs(46) and(47) for the temperature evolution, respec- ) ) .
tively. The solutions are subject to the relevant initial and Here, we examine briefly the case of a unéform base tem-
boundary conditions listed in Sec. Il C, i.e., E¢48)—(57).  Peraturefs=1. For an initially ;‘”'fo”t“ fLImihk( )=1,anda
When a uniform base temperature is considered, as will binear perturbation of the fort(®)~ete(**1¥) in which
discussed later, we adopt a cosine disturbance of prescribé¢l Fepresents the growth rate of a disturbance having wave
wave number as the initial condition. numbersk, andk, in thex andy directions, respectively, Eq.

The spatial derivatives were discretized in the Lagrangiari28) reduces td2]
formulation based on a lumped Galerkin—Petrov-Galerkin
method, and Gear’s method was used to advance the solution 2
in time [30]. Typically, 2000 grid points were overlaid upon
an adaptive grid with a computational spatial domain of up
to a maximum length of 50 dimensionless units for times OfHere,k2=k§+k§, wherek, andk, are the wave numbers in

g‘cehie?/fgru Zgr?om:slwigzlr?grlﬁzﬁt U_Pr']t:; sgﬁ ?i\(/)?]rsgevcgree \;\’lzﬁe streamwise and transverse directions, respectively. Posi-
P : f\e values ofw indicate amplification of the disturbance

chepked fo.r agreement with a separate set of rgsult_s obtam S(Nards instability whereas negative values indicate decay of
by mtggratmg the same equatlon's using a partial d|ﬁ¢r¢nt| he perturbation rendering the system stable in the linear re-
equation solver, .PDECOBH’. Wh'c.h IS based on the_fmlte . gime. The dispersion relation given by E&8) for various
element collocation for the discretization of the spatial vari- ; ; -
able, and the Method of Lines for time integration; 2000 ridvalues of the surface Biot numbep, B illustrated in Fig. 3.

: 9 ' 9N% can be seen that there is a critical cutoff wave number,

points were typically used in the computations for spatial an =[3B,/2C(1+B,)2]*2 above which the system is al-

temporal domains of the same size. In the case of film rup- .
. . . ways stable[2]. It can also be seen that there is a wave

ture, the computations were halted when the film thickness . X .
numberk,,, at which the growth rate is maximum, where

became so small such that difficulties arose in resolving ac- —K./\2: this is oft torred t the * td
curately the increasingly singular spatial derivatives in th mmo;iec" » tis 1S often reterred 1o as the "most dangerous

rupture region. The rupture times quoted therefore corre- . . . .
b g b d The destabilizing mechanism is fairly well understood:

spond to the time at which the computations were halted,.. ) . ; ; )
Additional computations were performed using a spectraIS'nCe the film temperature increases W'.th dec_reasmg thick-
ess, the ‘valleys’ of any surface undulations will be warmer

code, which utilized 1024 Fourier modes in space and Gear’t iahboring “hills’ with | ; tensi |
method in time over periodic domains, using periodic bound- I'?n neig .lclmngd IS ¥;" O.‘ﬂ’% su:cacet (le(nsmln vafues.
ary conditions. Agreement between the results obtained fro ermocapiiiary driven tlow will thérefore take place from

e valleys to the hills, amplifying the amplitude of the un-

all numerical procedures was found in all cases. ; Lo o o T

We have performed simulations using values of the pa_dulatlon and causing _mstablllty. This mstab_lllty is opposed
rameters in the following ranges: 0.08C<0.1, 10° bY. mean surface ten5|dnap|ll_ary) forces, Wh.'c.h act to sta-
<B.<10"3, 0=B,=100, O<k,<5, and 102<P<1. For bilize large wave number d|sturbances.,.g|vmg rise to the
the nonuniform base temperature profile, typically, we useCUtOff wave number modlec. The competition betvyeen cap-
«=0.02; different values for will be discussed briefly in illary and thermocapillary forces leads to the.eX|stence of a
the following section. baljd of un;table wave numbers<@<Kk., with a well-

defined maximum ak,, .

Figure 3b) shows the critical cutoff wave numbky plot-
ted as a function of B, obtained from Eq(58) by setting

The presentation of results is organized in the followingw=0. Inspection of this figure reveals thkt achieves a
manner. The results for the P©(1) case are first presented maximal value at B=1 for all values of C considered.
in Sec. 11l A followed by the results for the PeD(¢) case in  Moreover,k.~Bp? andk.~By, *?for B,<1 and B>1, re-
Sec. Il B. In Sec. lll A, we present briefly the results for the spectively. This symmetric behavior aboyt-B1, which can
case of a uniform base temperature in Sec. Ill A 1. Thesée predicted by differentiatink,, once with respect to Band
include linear stability results as well as numerical simula-setting the result equal to zero, suggests that, in the linear
tions of film evolution. In Sec. Il A 2, we detail results of a regime, thermocapillarity is particularly destabilizing over an
transient growth analysis of the time-dependent base state fantermediate range of Bvalues. This is due to the fact that
the case of a nonuniform base temperature, which is aimed &r small values of B, thermocapillarity is too weak to am-

L__Z (58)
2(1+By)? 3 |

Ill. RESULTS
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FIG. 3. Linear stability characteristics for the
Pe~0(1) case.a) Growth ratew as a function
of the wave numbek for various surface Biot
numbers B. The value of the capillary numbé&r
used is 0.05(b) Neutral stability curves showing
the variation of the critical cutoff wave number,
k., as a function of the surface Biot numbey B
for various capillary number€.

plify disturbances, while for large Bthe thermal gradients, decreases. In particulag) andk tend to the following
which are responsible for instability, are wiped out rapidly limiting expressions ak(®—0:
(more on this below Sincek.= J2k,,, the most dangerous

211(0)

modek,, will exhibit almost identical dependence on, B W — i Bih (609
k., except for a constant scaling factor ofy2. Finally, m 16 C
(K¢, km) ~C~ Y2 indicating that capillary forces are stabiliz-
. and
ing for all C.

It is useful to analyze the effect of local properties, such 1 3By
as the local film thickness, on the linear stability character- klm_’ 2 Cho’ (60b)

istics even though the initial film thickness has been scaled

out. To this end, we linearize abohf”, a local dimension- s can be confirmed upon close inspection of Fig. 4. Based
less film thickness. Inserting these expressions into those fa§n these results, one may tentatively expect that as the film
w, given by Eq.(58), andk, yields thins in the nonlinear regime to a heighi®, the dominant
wavelength of the patterns observed shifts to smaller values,

0= kZh©) Byh(© —Eh(o)zkz (593 since it is proportional tch(®2 while their growth rate
U olaasegh@2 30 @
and |
. ki, 1 \/ 3B, coh
'm 2 2 NV chO(1+B,h®)? %0

wherek, denotes a local wave number and the subsdript
signifies local quantities. These results will be used to ex- 1
plain the behavior of the film undergoing thinning, induced
by the underlying nonuniform substrate heating. This will be
done by assuming that the quasisteady approximation holds,
which will permit linearization about the value of the thick-
nessh(®, to which the film will have thinned in a given time.
Analysis of the stability of this new base state can then pro- 00" 02 o 05 08 y
vide information regarding the growth rate and dominant h

wavelength of perturbations applied K. Inspection of o _
FIG. 4. Linearization about a uniform base st&af® for the

Fig. 4, WhICh shows the variation ob " k'm’(o)and Ol Pe~0(1) case withB,=1 andC=0.05. (a) Variation of w, given
=w(k ), given by Egs.(59a and (59b), with h'™ reveals by Eq. (598, with k for h(®=1.0, 0.5, and 0.25(b) Variation of
thatk, and; shift to higher values, respectively, B k., given by Eq.(590), andw,,= w(k,) with h®.

)k, /20

(=]
[5,]

ok
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3 . i - Bh=0.01 ~ 2
\ Bh=0.1 :
! B =1 i
2.5 — " .
\‘ o Bh=1 0 !’ 1 5
of L B,=100 |

0.5

0 10 20 30 40
X

FIG. 7. Streamlines within the film during the formation of the

) . . fractal-like structures fow=0.02,C=0.05, and B=1 case at
FIG. 5. Profiles oh(® att=50 for various surface Biot num- . ' D e ) .

bers, B, for the Pe-O(1) case. The other parameters used in the 60. The dotted line shows the base state film profile at that time.

simulation areC=0.05, «=0.02, andk,=1. come increasingly dominant, introducing instability into the

. . . . system. There is, however, a certain critical value fQraB
decreases. These results will be revisited in the followin y f

. . . i : hich the growth rate of the disturbance is maximized and

section, In Wh'Ch. the_ pattern formation accompanying NONhence the instability causes the film to proceed towards rup-

“”'f"r”_‘ film heat_lng IS d|scu_ssed. . - ure; increasing B further beyond this critical value only
Having established the linear stability characteristics of quses the film to be restabilized. The profiles show an al-

the system, we proceed to solve the one-dimensional nonlir}hOst symmetric behavior, with thé film height fof, B0.1

ear film height evolution given in Eq25), for a uniform almost identical to that for,,leo and B=0.01to t?1at for

base temperature systemyE 1), neglecting the transverge ' :

direction, with the same initial condition used in REf7] to By =100; the film appears to be most unstable fr=H.

. . . X This behavior, exhibited by the film in the nonlinear regime,
describe a monochromatic wave with a small-amplitude per:

turbation im d n it Is in agreement with the predictions of linear theory shown
urbatio posed upon it in Fig. 3, in which the neutral stability curve is shown.
h(O)(x,0) = 1— 0.01 cogk,x). 61) For 6,=0 and#s=1, the vertical temperature profile de-

rived in Eq.(13) is reduced to

The same boundary conditions used for the nonuniform base B,z
temperature case, described by E@®) and (53), are em- T(2)=1- ———. (62
ployed here. 1+B,h(@

Figure 5 shows the profile ¢f(®) att=50 for the param- o
etersC=0.05 andk,=1 as a function of the surface Biot It can thus be seen that for small or largg, Bhe variation in
number, B. As B, is increased, thermocapillary effects be- the liquid film temperature across the film height becomes

(@) 0:=0.02 2 (@) (b)

2
10 : 10 ;
C=0.025 .. B=025
4 [l - - C=0.05 : ~—.— B,=05
10§ --- C=0.075 A 0l B,=1 1
— C=0.1 i Bh=10 1
0 1
Lo 100 h ]
h i
10_1 3 1 0
4 = /
w / wi0 /
1072 EA Py
«“” : /./ > //
/ ! | e =i = 10 °F ,
(s \‘ ! 10—3 ‘\\\\_>_ ///
Ry /. _3”"’ _‘——“\\
0 @ = 107 s 10 -
-5 0 5
X = i
9 ’ .0 10 ) 0 ' 1 2
i i i i 10 10 10 10
FIG. 6. Evolution of the base state film height with) «

=0.02, (b) =0.5, and(c) =1 for the Pe-O(1) case. The rest
of the parameters used afe=0.05, B,=1 for ten equal time steps FIG. 8. Growth energy of the disturbance wate,for the Pe
up tot=67. The insets ir(b) and (c) show enlarged views of the ~O(1) case. Panela) shows the effect oC with B,=0.25 and
thinning region. ky=2. Panel(b) shows the effect of Bwith C=0.05 andk,=1.
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(c) a=0.5 (d) 0=0.02
g 0.2

— e
\
\

‘ -0.2 .

FIG. 9. Temporal variation dE and{} for various values of the wave numidgyfor the Pe-O(1) case. The rest of the parameter values
used areC=0.05 and B=1.

increasingly independent of the height itself due to rapidis alsox andt dependent, corresponds to a small-amplitude
convection of heat across the height of the film layer. Theretransverse perturbation of prescribed wave nunigerim-
fore, for systems in which the thermal conduction is eitherposed upon the base state.

highly significant or negligibly small compared to the ther-  The film profiles for the base state described by &4)

mal Marangoni convection, surface undulations of small amyyith B,=1 andC=0.05 can be seen in Fig. 6; the values of
plitude across the lateral plane are unable to create suffi; 4re taken to be equal to (0.02,0.5,1). This figure demon-

ciently large lateral temperature gradients in order to driverates phenomena that are typical of long-wave Marangoni
thermocapillary instability. This, therefore, explains the be-

havior shown in Fia. 5 instabilities. The temperature gradient at the base of the lig-
VI wn | 10. 5. . . . . T L .
The formation ogf] fractal-like fingering structures leading uid film gives rise to significant thinning near the imposed

; . S . radient and thickening downstream, as shown in Fig. 6.
:ﬁgﬁipct[lerznggir?tfccg ;psootsbénsggnlacalglh'i?]ngg rg_g;ggsgearlg;inger-like structures, similar to those observed in Fig. 5 and
are similar to the cascade of structures involving the formaPrevious work[14_,15]_, are ?'SO ewd_ent and appear to be
tion of local fingers in the dry-spot regioisee Fig. 1 ob- confined to the thinning region, behind th_e fro.nt, WhICh ap-
served by Boos and Thef$4], who solved the Stokes flow pears to propagate slowly in t_he streamwise Q|rect_|on. These
problem, and Oron[15], who used standard Iubrication structures subsequently_contlnue to _thm, giving rise to dry
theory. In accordance with these studies, we have found ngPOtS In the rupture region. The choice of values doal-
steady-state solution and no simple scaling laws for the miniifered the numerical results qua||.tat|vely as well as quantita-
mum rupture thickness during film rupture. The width of the'uvely: Steeper temperature gradients corresponding to larger
thinning region, however, is governed by the system param\_/alues ofa led to similar formation of the fractal-like struc-
eters. in agree,ment with Boos and Thés4]. The mecha- tures to those of Fig. 5, but with lower amplitudes. Further
nism’for the formation of these cascade structures durin%mreases i, however, lead to transient formation of fractal
film thinning and rupture proposed by Boos and THés is eaks in the thinned region; these peaks subsequently flatten

also evident in our results. out again and disappear, as shown in Figb) @nd &c) for
a=0.5 anda=1, respectively. The streamlinestat 60 cor-
2. Nonuniform base temperature responding to the case @f=0.02 in Fig. 6a) are shown in

] ) o Fig. 7. Recirculation regions within the fractal-like peaks can
Here, we consider the evolution of the film in the pres-pe seen, similar to those found in REE4].

ence of a nonuniform base temperature distribution given by \we now proceed to establish connections between the

05=e‘“(x‘xo)2 for the Pe~O(1) case. In what follows, nu- structures observed in Fig. 6 and the long-wavelength ther-
merical solutions of the nonlinear film evolution equation, mocapillary instability of a thin film resting on a uniformly
Eq. (27), in the absence of &ransversedisturbance will be heated solid substrate. This is done by considering the local
termed as “base state” solutior®@ven though these solu- thinning region of the nonuniformly heated substrate case,
tions exhibit an instability in the streamwise direction, asand comparing its width with the band of unstable wave-
will be shown below. These solutions, denoted b{®), are  lengths, as predicted by the linear theory for the isothermal
functions ofx andt; no uniform steady base states exist in case. Observing that for small values®iup to ~0.02, the

this case(note, however, that(®)=1 is a possible base state base temperature gradient is small within the local thinning
for linear 6). The disturbanca™, on the other hand, which region where the fractal-like structures form behind the front

056315-10



MARANGONI INSTABILITY OF A THIN LIQUID FILM . .. PHYSICAL REVIEW E 67, 056315 (2003

25 T T T T T T T T

R AN
KA O\
e
N

RS
S
3 ‘\\\\\\\\\

"
;

"

7/
R
R

I\
S

Height of Disturbance Wave

(a) X

FIG. 10. Two-dimensional evolution profiles of a transverse perturbatidg-efl (a) and a three-dimensional reconstructitm of the
film height obtained via the superposition of a fraction of the fastest growing mode of the disturbande, wayevith amplitude 0.01, onto
the base state film height. Here=0.02,C=0.05, and R=1.

of the outspreading wave, thereby permitting such a comthinning region and cause rapid thinning of the film to small

parison. It is interesting to note that while the magnitude ofvalues. This thinning, however, is no longer accompanied by

a sets the width of the thinning region in this case, the sizdractal, relatively long-wavelength patterns, but rather by

of the thinning region in the work of Boos and The¢dd] is  wiggles on shorter length scales, as shown in Figs) &nd

governed by all parameters in their system, namely, the statié(c), in qualitative agreement with the results given by Egs.

and dynamic Bond numbers, which determine the magnitudés9) and (60).

of surface tension and thermocapillarity, respectively. In ad- We investigate the evolution of applied transverse distur-

dition, the thinning width is also dependent on the film bances next. Increasir@ such that capillary effects become

height and the wave number due to the action of capillaritydominant and counterbalances thermocapillarity, has a stabi-

An inspection of Figs. 3 and(é) indicates that the length of lizing effect, as shown in Fig. 8 which depicts the energy of

the thinning region, which is approximately ten dimension-the disturbance wavé [30]:

less units corresponding to a wave numbermdb=0.63,

lies within the band of unstable wave numbers predicted by E— fmh(l)zdx 63)

linear theory for the isothermal case. Increasing the tempera- 0 '

ture gradienti.e., increasingr) makes a similar comparison

with linear theory difficult since the quasiisothermal assump-Although E decreases initially, for low to moderate values of

tion in the thinning region is less valid in this case. The largeC the energy quickly recovers indicating that thermocapillar-

temperature gradients involved decrease the width of th#y becomes the dominant mechanism, driving the onset of

instability in the base state and, as a result, causing amplifi-

T cation of transverse disturbances; increasihglelays the

onset of the “recovery” time.

The effect of varying the surface Biot numbey, B in-

o
,"“"';'0‘:" %
0'3‘3"0"\.‘:‘}‘3\\\

R R : . .
:oﬁ@;‘:Q;’;“\\\s‘s&&;&g&s{g}&;‘ ~ vestigated next. Figure(B), generated withC=0.05 and
: !il,gj;.‘s‘;\&\g‘\\g\gg_ 323 = k,=1, shows the dependence of the time-dependent energy

curves on B; rapid growth occurs over intermediate ranges
of By values. The applied disturbance decays fg<B.1
(not shown. For B,=(0.5—1), explosive growth occurs and
beyond this range, the onset of growth is delayed with in-

S creasing RB. Finally, for B,>1, the disturbance energy un-
00":"0‘\\? . v X .

/ 0Q‘»‘o‘\\“i\\“,\,;‘,“““:““:‘ dergoes decay in a manner similar tg<B0.1. This behavior
'NA’ LR L is reminiscent of that observed in Fig. 3
Mddaneinaaas minisce 9. 3

= A Figure 9 illustrates the role of the wave numbigron the

growth of the disturbance wave. Far=0.02, it can be seen
from Fig. 9@ that for very long wavelengths, i.ek,—0,

FIG. 11. Three-dimensional infrared image of the liquid film the disturbance growth is almost constant for a period of
surface in the experiments of R¢8], indicating pattern formation ~time before amplification takes place. Note that even a dis-
in the region of the thickened outspreading wave. The dotted bofurbance having,=0 can be amplified: No translational

represents the location of the heater in relation to the observetvariance exists in this system, sin@gx) # 6(x’), where
patterns. x"=x+a in which a corresponds to a small translationxn

056315-11



YEO, CRASTER, AND MATAR PHYSICAL REVIEW E67, 056315 (2003

0-03 T T T T T T T T T
0.025 - 4
0.02 [/
w
&
@
by
0.015
0.01 | . .
FIG. 12. Temporal variation oE and (),
shown in (a) and (b), respectively, for various
g wave numbersk,, surface and substrate Biot
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for our choice off,; the equationsire, however, translation- initially maximizes the growth rate foww=0.02 lies in the

ally invariant for ;= 1. For shorter wavelengttitargerk,), ~ rangekye (1,4). As « increases the maximal growth rate
there is a time penod during which the disturbance is supmoves to increasing values k§, as shown in Figs.(®) and
pressed and its energy decays to small values before the®te). Eventually, for large enougly, no modes grow sub-
mocapillarity becomes dominant resulting in a recovery ofstantially, as shown in Fig.(6). Thus, we conclude that
the growth rate; this period of time increases with increasingransverse instabilities are dependent upon the length scale of
k, due to capillary forces, which act to stabilize short wave-the thermal forcing; the instabilities also correlate with the
length disturbances. Fds, values intermediate betwedy  severe height variations that occur in the thinning region
=0 andk,=2.5, there is rapid growth in the disturbance whena is small.

leading to instability. Figure 10 depicts the spatiotemporal development of a
In order to measure the rate of ampllflcatlon of distur- disturbance Ok _1 which Corresponds to the same param-
bances, we define the growth rdteas eter values as those used to generate Hig). ®epletion of
the liquid film leading to valleys in the base state results in
_ i d_E (64) the amplification of the perturbation, up to 300 times its ini-
2E dt’ tial amplitude, and the formation of hills, awite versathis

is attributed to the same destabilizing mechanism highlighted
a discussion of the meaning of stability for time-dependenearlier. By superimposing a small fraction of the fastest
flow may be found in Ref{30]. (1 is plotted parametrically ~growing mode, here taken to lig=2, onto the base state of
as a function ok, with B,=1 andC=0.05in Figs. @) and  the film, the three-dimensional patterns in the thinned region
9(e). An inspection of Fig. 9 reveals that the mode whichbehind the thickened front can be clearly observed, as shown
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distribution of the temperature perturbation across the entire
length of the lateral region so that thermocapillary effects are
weakened, as shown in Fig. @3. Although it may appear
that the amplitude of these perturbations is growing, the en-
ergy of all applied perturbations eventually exhibit decay. In
addition, the rapid vertical diffusion further results in the
dilution of thermocapillary effects. As a result, there is insuf-
ficient thermocapillarity to induce long-wave Marangoni in-

© <167 () stabilities in the system.
05 8
0.4 6 IV. CONCLUSIONS
0.3 4 . . -
=3 =3 Long-wave thermocapillary instabilities have been con-
0.2 2 sidered for the case of a horizontal thin liquid layer lying
0.1 0 upon a solid substrate with both nonuniform and uniform
0 -2 base temperatures. The temperature gradient of the substrate
0 20 40 60 0 20 40 60 ; . . . .
X X is allowed to drive the thermocapillary action causing the

base state to deform into a thickened region downstream of
the applied thermal gradient and a thinned region upstream.
The latter region becomes unstable to a streamwise rupturing
instability. Near the rupture point, fractal-like structures,
similar to those observed in Refd4,15, for the case of a
uniformly heated base are obtained in the thinning region
located behind the front of the outspreading wave.
in Fig. 10. These three-dimensional structures become appar- \We have carried out a transient growth analysis of these
ent well before the onset of the long-wavelength Marangonpne-dimensional 1D) patterns. A parametric study of the
|nStab|l|ty, which would have given rise to the fractal-like Capi”ary and surface Biot number a|ong with the wave num-
patterns seen in Fig(&. This transverse instability is there- per of the perturbation allows the identification of the
fore expected to dominate the flow in the nonlinear regime. l#mgodes” in which the disturbance is amplified and becomes
is worthy of note here that the disturbance is amplified in thqnstable. Capillarity is seen to oppose the destabilizing effect
thinned region in contrast to the observations of Kabbal.  of thermocapillarity by delaying the onset of growth. Analy-
[8,12] and the modeling work of Kalliadasist al. [18] in g5 of the effects of the surface Biot number, representing the
inclined falllng films where the thickened wave front is the relative magnitudes of thermal Marangoni convection and
target of the disturbance, as shown in Fig. 11. This may bghe heat conducted away from the air/liquid interface of the
due to the larger convective effects in operation in thosqiquid layer, and the capillary parameter indicated that
cases. In addition, we also note the absence of any transverggowth occurs for a range of intermediate Biot numbers.
wave disturbances in our results, in contrast to the observa- The formation of the 1D fractal-like structures occurs in a
tions of Smith and Davi$25,26, and Hosoi and Busf24],  small region, behind the thickened front, in which the base
in spite of carrying out a transient growth analysis that didtemperature gradient is small; a uniform base temperature
not preclude the formation of such waves. within this region can be assumed. By solving for the linear-
ized film evolution equation assuming a constant base tem-
perature and an initially uniform film, the width of the thin-
ning region in the nonuniformly heated substrate case is

In the case of rapid vertical thermal diffusion, the long-found to lie within the band of unstable wavelengths, pre-
wave Marangoni instabilities observed previously are nadicted by linear theory for the uniformly heated substrate
longer apparent over the range of parameters examined. Thigise. Decreasing the lateral extent of the heating source de-
can be ascertained upon inspection of Fig. 12, which showsreases the width of the thinning region and causes rapid
the temporal variation dE and{} as a function of3,, Bs, P thinning accompanied by the formation of short scale
andk, . Over extremely long periods, the transient growth ofwiggles instead of relatively longer scale fractal-like pat-
the disturbance is seen to stabilize, as observed in F{@,12 terns; this is in qualitative agreement with a local linear sta-
followed by decay, as observed in the plot for the growth ratebility analysis performed for the isothermal case, which pre-
in Fig. 12b). It should be noted that the capillary numbersdicts that as the film thins the wavelength of the
used in the simulations are very small such that the stabilizperturbations is proportional to the square root of the local
ing contribution of capillarity effects over thermocapillary thickness. As the lateral extent of the heating source de-
effects are minimized and the chances of instability maxicreases the variations in the local temperature field also de-
mized. crease and the transverse instabilities no longer occur.

The film thickness and temperature base state and pertur- In addition, three-dimensional structures were obtained by
bation profiles up té= 1000 are illustrated in Figs. 1 and  superimposing a small fraction of the disturbance wave with
13(b). The presence of a convecting mechanism drives théhe fastest growing mode onto the base state film. These

FIG. 13. Evolution of the base state film height and tempera-
ture(c), as well as the disturbance wave hei¢htand temperature
(d) for five equal time steps up tio= 1000 for the Pe O(e€) case.
The parameters used arg=30, C=0.001, B;=1, B,=1, k,
=0.1, and P=1.

B. Pe~O(e)
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structures in the thinning region are different from those obthermocapillary effects become sufficiently dominant to de-
served experimentally by Kabogt al. [8,12] for inclined  stabilize the film.
falling liquid films. In that case, the instability targets the
thickened front rather than the thinning region due to the
presence of considerable convective eff¢dg). ACKNOWLEDGMENTS
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