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Marangoni instability of a thin liquid film resting on a locally heated horizontal wall
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Long-wave Marangoni instabilities can be induced thermally on a thin liquid layer overlying a horizontal
solid substrate with either a uniform or a nonuniform base temperature. For a nonuniform base temperature, the
film height thickens near the region where temperature gradients are negligible and severely thins upstream;
‘‘fingering’’ patterns are observed in this region. These states are related to the patterns observed in the
isothermal case, which are reasonably well understood. The stability of these spatiotemporally evolving states
to transverse disturbances is investigated using a transient growth-type analysis. It is found that the band of
unstable wave numbers exhibiting growth is strongly dependent on the lateral extent of the heating source.
Inspection of surface reconstructions of the film thickness profiles reveals the existence of three-dimensional
patterns in the thinning region behind the thickened front.
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I. INTRODUCTION

Thermocapillary instabilities arise due to nonuniform
in interfacial temperature, resulting in the formation of inte
facial tension gradients@1–3#. In thin liquid layers where
buoyancy stabilizing mechanisms are negligible, thermoc
illary instabilities become dominant, giving rise to tangent
stresses at the interface, known as Marangoni stresses, w
can induce significant interfacial deformation and possi
rupture of the layer.

The study of thermocapillary flows is pertinent to vario
applications where interfacial flows are encountered, suc
in lubricating and coating flows where temperature contro
of vital importance in order to impose uniform thicknesses
liquid layers upon solid substrates; any slight variation in
temperature could lead to the growth of instabilities th
could disrupt the entire coating layer.

Linear stability theory has commonly been employed
investigate the effect of periodic disturbances on the stab
of the thin film. Pearson@4# considered linear stability o
pure Marangoni convection on nondeformable interfac
This analysis was later extended@5# to include deformable
interfaces and interfacial tension gradients arising from
ferences in the surfactant interfacial concentration. Wh
Pearson@4# found that increases in the surface Biot numb
results in stabilization of the base state, the results of Scr
and Sternling@5# seem to indicate that the system alwa
exhibits long-wave Marangoni instabilities@2#, where the
characteristic length scale of perturbations is much lar
than the thickness of the film layer. However, by allowing f
gravity, Smith @6# was able to show that these long-wa
instabilities, demonstrated by Scriven and Sternling@5#, were
suppressed by gravity, thereby reconciling both observati
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have since been the subject of many investigations@2,3#.
They have been observed in various experiments@7–12#,
where the formation of large scale dry rupture spots w
documented. The absence of continuous steady states
spontaneous film rupture due to fingering mechanisms g
rise to new drops, both of which are common characteris
of long-wave Marangoni instabilities; these have also be
found numerically. In particular, nonlinear studies have be
carried out on horizontal liquid layers@13–15# and falling
films @8,12,16–18#, as well as for evaporating or condensin
films @19#. In addition, the two-dimensional direct numeric
simulations of Krishnamoorthyet al. @20# on the dynamics of
the thinning of horizontal films due to gravitational, cap
lary, and thermocapillarity effects have shown the format
of structures as the film proceeds toward rupture, simila
those obtained using long-wave theory.

In this paper, we investigate a problem similar to th
studied by Boos and Thess@14# and Oron@15# where highly
nonlinear effects leading to film rupture were consider
Boos and Thess@14# used the boundary integral method
solve Stokes flow subject to the static and dynamic Bo
numbers~defined byr* g* H*

2
/g* andr* g* H* /b* a* , re-

spectively, wherer* is the density,g* the gravitational ac-
celeration,H* the film thickness,g* the interfacial tension,
b* the strength of the temperature gradient, anda* is the
coefficient of interfacial tension variation; the asterisk* de-
noting dimensional quantities!, and found cascades of larg
scale to small scale structures close to the onset of rupt
Oron @15#, on the other hand, investigated the thre
dimensional problem, the solutions of which indicated ch
acteristics borne by the two-dimensional solution.

While Boos and Thess@14# and Oron@15# allow ther-
mocapillarity to arise from surface undulations impos
upon a horizontal liquid layer over a solid substrate of u
form base temperature, we choose to study the more prac
case of a system in which the base temperature is initi
nonuniform; this case is of current interest and has rece
been the subject of experimental investigations by Kab
©2003 The American Physical Society15-1
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et al. @8,12#, and modeling work by Miladinovaet al. @17#
and Kalliadasiset al. @18# for inclined falling liquid films.
Miladinova et al. @17# used long-wave theory to conduct
linear, a weakly nonlinear, and a fully nonlinear analysis
the evolution equation governing the film thickness in t
presence of thermocapillarity arising from a linear base te
perature profile. They found that a positive base tempera
gradient is destabilizing with thermocapillarity exerting
influence on the amplitude and phase speed of the fin
amplitude waves. Kalliadasiset al. @18#, on the other hand
used long-wave theory along with an integral boundary la
~IBL !-type approximation for the energy transport equat
to determine a steady film thickness profile for a loca
heated falling film. The stability of this nonuniform stead
profile to linear transverse disturbances was then condu
and the conditions for instability were determined in terms
a suitably defined Marangoni number for a given lateral
tent of the heating source; in the situation considered here
have no steady state.

It is worthy of mention that the thermocapillary instabi
ties described here are analogous to the Marangoni insta
ties that arise out of compositionally driven flows. Howev
it is often the case that Marangoni instabilities arise from
combination of thermally and compositionally driven flow
such as the classical observation of the ‘‘tears of wine’’
Thomson@21# where thermal gradients initiate the evapo
tion of the fluid resulting in concentration gradients, givin
rise to Marangoni instabilities. Further work on this pheno
enon has been considered recently by Fournier and Caz
@22#, Vuilleumier et al. @23#, and Hosoi and Bush@24#. In
Ref. @24#, Marangoni instabilities were observed in the for
of longitudinal rolls giving rise to ridge structures near t
meniscus. An additional instability was also observed in
form of transverse wave disturbances, earlier discussed
Smith and Davis@25,26#. While Hosoi and Bush@24# con-
sidered both thermal and compositional gradients in th
stability analysis, they, however, noted that the interfac
motion is driven by compositional rather than thermal gra
ents as in the case of Vuilleumieret al. @23#; the thermal
Marangoni number being two orders of magnitude sma
than the compositional Marangoni number. Moreover,
gradients along the streamwise direction were assumed t
much smaller than that in the transverse direction and t
the gradients were only considered in the transverse di
tion. As such, while the dominant physics are the same
compositionally driven instabilities as they are in their th
mally driven counterparts, comparisons between our ob
vations with those in Refs.@23,24# become difficult because
of the differing underlying assumptions.

We shall proceed in two parts: First, we examine syste
in which the thermal Pe´clet number, Pe, is of the order o
unity. Here, we use the assumption that the temperatur
adiabatically enslaved to the film thickness@15,16,19#; we do
not use an IBL approximation such as the one employed
Kalliadasiset al. @18#. Subsequently, systems in which Pe
sufficiently small such that there is a rapid vertical therm
diffusion across the horizontal layer will be studied. In bo
cases, the nonuniform temperature distribution of the un
lying wall leads to severe thinning near the heating sou
05631
f

-
re

e-

r
n

ed
f
-
e

ili-
,
a

-

-
bat

e
by

ir
l
-

r
e
be
s
c-
in
-
r-

s

is

y

l

r-
e

and considerable thickening downstream. In the Pe;O(1)
case, fractal-like patterns, schematically illustrated in Fig
are observed in the thinning region, similar to those obser
previously in the literature@14,15#. The stability of this one-
dimensional spatiotemporally evolving base state to app
transverse disturbances is then analyzed using a tran
growth-type analysis for a wide range of parameters. Res
of this analysis reveal that, for the Pe;O(1) case, this base
state could be unstable to disturbances of intermediate w
numbers, which undergo rapid growth prior to the onset
the fractal-like patterns; the stability depends on the late
extent of the heating source.

The rest of this paper is organized as follows. Section
describes the formulation and treatment of the govern
equations together with the relevant initial and bound
conditions; a brief description of the numerical methods u
to solve the derived equations is also included. A discuss
of the results obtained is then detailed in Sec. III followed
concluding remarks in Sec. IV.

II. FORMULATION OF THE MATHEMATICAL MODEL

A mathematical description of the physical system, co
sidered, is given in this section. An evolution equation
the height of a thin liquid film resting on a nonuniforml
heated solid substrate is derived using lubrication theory
Pe;O(1) in Sec. II A. The film height equation is then lin
earized using a linear stability analysis. Subsequently, in S
II B, we turn our consideration to the formulation and th
linearization of the film and temperature evolution equatio
governing systems in which rapid vertical thermal diffusi
is present, that is, where Pe;O(e), e being the lubrication
parameter which will be defined in Table II. Finally, the re
evant initial and boundary conditions are described in S
II C and a brief description of the numerical procedures e
ployed to perform simulations of the governing equations
given in Sec. II D.

A. PeÈO„1…

1. Derivation of the film evolution equation

A thin film of an incompressible Newtonian liquid with
viscositym* lying on a planar horizontal solid substrate wi

FIG. 1. Schematic illustration of regular fractal-like fingerin
structures forming in the thinned region behind the thickened o
spreading wave front. These patterns are fractal-like in the se
that certain self-similarity in the structures appears to be prese
at increasingly shorter length scales.
5-2
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MARANGONI INSTABILITY OF A THIN LIQUID FILM . . . PHYSICAL REVIEW E 67, 056315 ~2003!
a nonuniform temperature distribution, as shown in Fig. 2
considered. The initial thickness of the liquid film, of ma
nitudeH* , is small in comparison with the lateral extent
the plane,L* , such thatH* 5eL* , where e!1. In such
cases, it is possible to assume that standard lubrica
theory holds, provided that inertial effects are also small

We define a spreading pressureS* 5go* 2gm* , wherego*
andgm* represent the interfacial tension at the free interfa
of the liquid layer,z* 5h* (x* ,y* ,t* ), corresponding to the
region of the minimum and maximum temperatures, resp
tively; here,x* , y* , andz* represent the streamwise, tran
verse, and vertical coordinates, respectively, andt* denotes
time. These variations in the interfacial tension give rise
Marangoni stresses driving flow in the direction of high
tension@27#. The velocities in the streamwise and transve
planes, u* and v* , respectively, therefore scale asU*
5eS* /m* , while that in the vertical direction,w* , scales as
eU* . We can then scalex* andy* by L* , z* by H* , andt*
by L* /U* . The dimensionless interfacial tensiong is given
by

g[S g* 2gm*

go* 2gm*
D 5S g* 2gm*

S*
D , ~1!

while the dimensionless temperatureT is expressed by

T[S T* 2T*̀

Tm* 2T*̀ D . ~2!

In Eq. ~2!, Tm* is the maximum base temperature at the fl
origin corresponding to the region of minimum interfac
tensiongm* , andT*̀ is the downstream base temperature.

It is convenient at this point to define a linear equation
state relating the interfacial tension to the temperature
suming that the temperature differences are small@1#:

g* 5go* 1
]g*

]T*
~T* 2T*̀ !. ~3!

SinceT* 5Tm* wheng* 5gm* , the dimensionless equation o
state then reads

g512T. ~4!

Using the above scalings, the dimensionless equation g
erning the transport of energy can be written as follows:

FIG. 2. Schematic representation of the instantaneous heig
a thin liquid film, h(x,y,t) ~dashed line!, lying upon a nonuni-
formly heated solid substrate, having a temperature distribu
us(x) ~dotted line!; the initial film thickness isH* ~solid line!.
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ePe~Tt1uTx1vTy1wTz!5Tzz1e2~Txx1Tyy!1O~Br!,
~5!

where the subscriptsx, y, z, and t are employed to denote
partial derivatives. In Eq.~5!, the thermal Pe´clet number Pe
is defined by Pe[er* cp* U* H* /l* , wherecp* is the heat
capacity andl* the thermal conductivity of the liquid. Simi
larly, Br is the Brinkman number, defined by B
[m* U*

2
/l* Tm* , representing the relative effects of she

heating and thermal conduction.
For typical values of the physical parameters involv

~see Tables I and II!, Br;O(1025) and Pe;O(1), andthus
the dimensionless equation governing the transport of ene
in Eq. ~5!, to leading order, reduces to

Tzz50. ~6!

At the solid/liquid interface,z50, the following boundary
condition is imposed:

T5us , ~7!

of

n

TABLE I. Typical values for the relevant physical constants f
alchohol/water systems.

Physical constant Symbol Typical values

Heat capacity cp* 103 J kg21 K21

Film thickness H* 102521023 m
Base temperature

downstream
T*̀ 300 K

Spreading pressure S* 40 dyn cm21

Characteristic velocity
scale

U* 1022 m s21

Air/liquid heat
transfer coefficient

ah* 104 W m22 K21

Liquid/solid heat
transfer coefficient

as* 102 W m22 K21

Minimum interfacial
tension

gm* 40 dyn cm21

Liquid thermal
conductivity

l* 0.1 W m21 K21

Viscosity m* 1 cP
Density r* 103 kg m23

TABLE II. Typical values for the relevant dimensionless grou
for alcohol/water systems.

Dimensionless group Symbol Definition Typical value

Lubrication parameter e H* /L* 1022

Capillary parameter C e2g* /S* 0.001–1
Biot number at
liquid/solid interface

Bs as* H* /l* 0–1

Biot number at
air/liquid interface

Bh ah* H* /l* 0–100

Thermal Pe´clet
number

Pe er* cp* U* H* /l* 1022–1
5-3
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whereus is expressed by

us[
Tw* 2T*̀

Tm* 2T*̀
, ~8!

whereTm* denotes the temperature atz50. Here, we have
chosenus5us(x) only. At the free interface,z5h, whereh
is the film thickness, a second boundary condition is i
posed:

2l*
]T*

]z*
5ah* ~T* 2Ta* !, ~9!

whereah* denotes the local heat transfer coefficient at
air/liquid interface, andTa* is the temperature at that inte
face. Defining

uh[
Ta* 2T*̀

Tm* 2T*̀
~10!

and

Bh5
ah* H*

l*
, ~11!

where Bh is the surface Biot number, which represents
ratio of the heat transfer rate by convection to that by c
duction, the dimensionless form of Eq.~9! can be written as

Tz52Bh~T2uh!. ~12!

Integration of Eq.~6! together with the boundary condition
given by Eqs.~7! and~12! leads to the following temperatur
profile:

T~z!5
Bhuhz1us1Bhus~h2z!

11Bhh
. ~13!

Scaling the pressurep* by S* /H* , we can also write the
dimensionless equations of mass and momentum conse
tion, in the lubrication approximation, as

ux1vy1wz50, ~14!

px5uzz, ~15!

py5vzz. ~16!

The normal stress balance atz5h is given by

p52C~hxx1hyy!, ~17!

whereC is a capillary parameter defined byC5e2gm* /S* ,
while a balance of tangential stresses atz5h reads

uz5gx1hxgz , ~18!

vz5gy1hygz . ~19!
05631
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Upon integration of Eqs.~15! and ~16!, and applying the
no-slip and continuity of shear stress boundary condition
the planesz50 andz5h, respectively, we obtain

u5S z2

2
2zhD px1zuzuz5h , ~20!

v5S z2

2
2zhD py1zvzuz5h . ~21!

Cross-sectional averaging of Eqs.~20! and ~21! over the
height of the film, utilizing Eqs.~17!–~19!, and making use
of Eqs.~4! and ~13! yields

ū5
1

hE0

h

udz52
h2

2 FBhhx~uh2us!1~11Bhh!usx

~11Bhh!2 G
1

Ch3

3
~hxxx1hxyy! ~22!

and

v̄5
1

hE0

h

vdz52
h2

2 FBhhy~uh2us!

~11Bhh!2 G1
Ch3

3
~hxxy1hyyy!.

~23!

From the kinematic boundary condition,

ht1~hū!x1~hv̄ !y50, ~24!

the following evolution equation for the film height can b
derived:

ht5H h2

2 FBhhx~uh2us!1~11Bhh!usx

~11Bhh!2 G
2

Ch3

3
~hxxx1hxyy!J

x

1H h2

2 FBhhy~uh2us!

~11Bhh!2 G
2

Ch3

3
~hxxy1hyyy!J

y

. ~25!

The linearization of Eq.~25! is undertaken next.

2. Linearized equations

A small periodic disturbance in the transverse plane
imposed on the film such that the film height can be deco
posed into a ‘‘base state’’ component,h(0), and a small con-
tribution due to the perturbation with amplitudeh(1):

h~x,y,t !5h(0)~x,t !1h(1)~x,t !eikyy, ~26!

whereky is the wave number; it is assumed here that the b
flow only varies in thex direction. It is also assumed in wha
follows that the temperature of the air,Ta* , approaches the
base temperature downstream of the flow,T*̀ , such that the
simplificationuh50 may be applied.
5-4
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By expanding Eq.~25! using Eq.~26!, we can decompose
the flow in the film into its base state and the correspond
contribution due to the perturbation. Keeping only line
terms inh(1), we arrive, for the base state, at

ht
(0)5H h(0)2

2~11Bhh(0)!2
@~11Bhh(0)!usx

2usBhhx
(0)#

2
Ch(0)3

3
hxxx

(0) J
x

. ~27!

Similarly, we can write for the perturbation,

ht
(1)5H h(0)2

2~11Bhh(0)!2
~Bhh(1)usx

2usBhhx
(1)!

1
h(0)h(1)

~11Bhh(0)!2
@~11Bhh(0)!usx

2usBhhx
(0)#

2
h(0)2Bhh(1)

~11Bhh(0)!3
@~11Bhh(0)!usx

2usBhhx
(0)#

2
C

3
~h(0)3hxxx

(1) 2h(0)3ky
2hx

(1)13h(0)2h(1)hxxx
(0) !J

x

1
Bhusky

2h(0)2h(1)

2~11Bhh(0)!2
2

Ch(0)3

3
~ky

4h(1)2ky
2hxx

(1)!. ~28!

We note that Eq.~28! is strongly coupled to Eq.~27! and that
the dependence of the solution on the derivatives in thy
direction is incorporated into the problem parametrically
the wave numberky . Hence, the two-dimensional problem
reduced to a one-dimensional problem.

B. PeÈO„e…

1. Derivation of the evolution equations

We now devote our attention to systems in which ra
vertical thermal diffusion is present: Pe;O(e), and hence
e2Pe!1. Thus, aftert@O(e2Pe), the temperature in thez
direction equilibrates. Setting Pe5eP, where P;O(1), the
dimensionless energy equation given in Eq.~5! becomes

e2P~Tt1uTx1vTy1wTz!5Tzz1e2~Txx1Tyy!. ~29!

We now proceed to decompose the temperature field
a streamwise and transverse componentT0(x,y,t) and a
small fluctuationT1(x,y,z,t) which is allowed to depend on
z @28#:

T~x,y,z,t !5T0~x,y,t !1~e2P!T1~x,y,z,t !. ~30!

Substituting Eq.~30! into Eq. ~29!, we obtain

T0t
1uT0x

1vT0y
5

1

P
~T0xx

1T0yy
!1T1zz

1O~e2!. ~31!
05631
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Here,T1 denotes a fluctuation having a zero cross-sectio
average,

T̄15
1

hE0

h(x,y,t)

T1~x,y,t !dz50. ~32!

Cross-sectional averaging of Eq.~31! then yields

T0t
1ūT0x

1 v̄T0y
5

1

P
~T0xx

1T0yy
!1

~T1z
uz5h2T1z

uz50!

h
,

~33!

where ū and v̄ represent the cross-sectionally averag
streamwise and transverse velocities, respectively.

The following dimensionless boundary condition is im
posed atz50:

Tz52Bs~us2T!, ~34!

where Bs is the surface Biot number at the solid/liquid inte
face, defined by

Bs5
as* H*

l*
, ~35!

whereas* is the local heat transfer coefficient at the sol
liquid interface. Atz5h, we have

Tz52Bh~T2uh!. ~36!

Assuming that Bs5e2Bs and Bh5e2Bh , in which (Bs ,Bh)
;O(1), weobtain for the flux conditions, upon substitutio
of Eq. ~30! into Eqs.~34! and ~36!:

T1z
52

Bs

P
~us2T0!1O~e2! ~37!

and

T1z
52

Bh

P
~T02uh!1O~e2!. ~38!

Substitution of Eqs.~37! and ~38! into Eq. ~33! then yields

T0t
1ūT0x

1 v̄T0y
5

1

PH ~T0xx
1T0yy

!1
1

h
@Bhuh1Bsus

2~Bh1Bs!T0#J 1O~e2!. ~39!

From the usual dimensionless equations of motion in
lubrication approximation, together with the normal and ta
gential stress balances, given by Eqs.~14!–~19!, and from
Eqs. ~4!, ~20!, and ~21!, decomposition using Eq.~30! and
cross-sectional averaging over the film gives

ū5
1

hE0

h

udz5
C

3
h2~hxxx1hxyy!2

h

2
T0x

, ~40!
5-5
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v̄5
1

hE0

h

vdz5
C

3
h2~hxxy1hyyy!2

h

2
T0y

. ~41!

The kinematic boundary condition given by Eq.~24! then
yields the film evolution equation:

ht5Fh2

2
T0x

2
C

3
h3~hxxx1hxyy!G

x

1Fh2

2
T0y

2
C

3
h3~hxxy1hyyy!G

y

. ~42!

Comparison of Eqs.~25! and ~42! in the limit of small Bh
highlights the appearance of a thermocapillary term in
transverse direction, which is absent in Eq.~25!. This is due
to our choice ofus5us(x) only.

2. Linearized equations

In the same manner as described in Sec. II A 2, we
pose a small periodic disturbance on the film, as describe
Eq. ~26!. In addition, we also impose a similar periodic di
turbance on the streamwise and transverse componen
temperature as follows:

T0~x,y,t !5T(0)~x,t !1T(1)~x,t !eikyy. ~43!

Expansion of Eqs.~42! and ~39! using Eqs.~26! and ~43!,
keeping only linear terms inh(1) andT(1), results in evolu-
tion equations for the film and temperature base state
well as their corresponding perturbations.

For the film base state, we arrive at

ht
(0)5

1

2
~h(0)2Tx

(0)!x2
C

3
~h(0)3hxxx

(0) !x , ~44!

whereas the evolution of the film perturbation reads

ht
(1)5

1

2
~h(0)2Tx

(1)12h(0)Tx
(0)h(1)!x2

1

2
ky

2T(1)

2
C

3
$@h(0)3~hxxx

(1) 2ky
2hx

(1)!13h(0)2hxxx
(0) h(1)#x

1h(0)3~ky
4h(1)2ky

2hxx
(1)!%. ~45!

Similarly, for the temperature profile, the base state is gi
as

Tt
(0)5

h(0)

2
Tx

(0)22
C

3
h(0)2hxxx

(0) Tx
(0)

1
1

PH Txx
(0)1

1

h(0)
@~Bhuh1Bsus!2~Bh1Bs!T

(0)#J
~46!

and the perturbation as
05631
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Tt
(1)5h(0)Tx

(0)Tx
(1)1

h(1)

2
Tx

(0)22
C

3
$h(0)2hxxx

(0) Tx
(1)

1Tx
(0)@h(0)2~hxxx

(1) 2ky
2hx

(1)!12h(0)h(1)hxxx
(0) #%

1
1

PH Txx
(1)2ky

2T(1)2
1

h(0) F ~Bh1Bs!S T(1)2T(0)
h(1)

h(0)D
1~Bhuh1Bsus!

h(1)

h(0)G J . ~47!

C. Initial and boundary conditions

The unperturbed thin liquid film is assumed to have
uniform initial thickness,

h(0)~x,0!51, ~48!

and the initial amplitude of the perturbation is assumed to
small and uniform,

h(1)~x,0!50.01. ~49!

For the Pe;O(1) case, we take

T(0)~x,0!50, ~50!

and a small uniform initial condition for the perturbation,

T(1)~x,0!50.01. ~51!

The relevant boundary conditions are the no-flux con
tions atx50 andx5x` , wherex` denotes a point down
stream, sufficiently far, such that the flow conditions are
influenced by the disturbances caused by the tempera
gradients:

hx
(0)5hxxx

(0) 50, ~52!

hx
(1)5hxxx

(1) 50. ~53!

Similarly, for the Pe;O(e) case, we assume no-flux cond
tions atx50 andx5x` for the temperature field

Tx
(0)50, ~54!

Tx
(1)50. ~55!

We also adopt a Gaussian base temperature profile a
solid/liquid interface,

us5e2a(x2xo)2
, ~56!

and at the free interface, we assume

uh50; ~57!

xo50, unless otherwise stated. In Eq.~56!, a is a parameter
that determines the gradient of the profile.
5-6
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D. Solution methodology

The Method of Lines@29# was adopted for numerical so
lutions of the full nonlinear one-dimensional film and tem
perature evolution equations. In the Pe;O(1) case, detailed
in Sec. II A, only the film evolution equations for the ba
flow and perturbation, described by Eqs.~27! and ~28!, are
solved. For the Pe;O(e) case, detailed in Sec. II B, both th
film and the temperature evolution equations are solved,
each for the base state and the perturbation. These equa
are described by Eqs.~44! and ~45! for the film evolution,
and Eqs.~46! and~47! for the temperature evolution, respe
tively. The solutions are subject to the relevant initial a
boundary conditions listed in Sec. II C, i.e., Eqs.~48!–~57!.
When a uniform base temperature is considered, as wil
discussed later, we adopt a cosine disturbance of prescr
wave number as the initial condition.

The spatial derivatives were discretized in the Lagrang
formulation based on a lumped Galerkin–Petrov-Galer
method, and Gear’s method was used to advance the sol
in time @30#. Typically, 2000 grid points were overlaid upo
an adaptive grid with a computational spatial domain of
to a maximum length of 50 dimensionless units for times
the order 2000 dimensionless units; convergence
achieved upon mesh refinement. The solutions were
checked for agreement with a separate set of results obta
by integrating the same equations using a partial differen
equation solver, PDECOL@31#, which is based on the finite
element collocation for the discretization of the spatial va
able, and the Method of Lines for time integration; 2000 g
points were typically used in the computations for spatial a
temporal domains of the same size. In the case of film r
ture, the computations were halted when the film thickn
became so small such that difficulties arose in resolving
curately the increasingly singular spatial derivatives in
rupture region. The rupture times quoted therefore co
spond to the time at which the computations were halt
Additional computations were performed using a spec
code, which utilized 1024 Fourier modes in space and Ge
method in time over periodic domains, using periodic bou
ary conditions. Agreement between the results obtained f
all numerical procedures was found in all cases.

We have performed simulations using values of the
rameters in the following ranges: 0.001<C<0.1, 1025

<B s<1023, 0<Bh<100, 0<ky<5, and 1022<P<1. For
the nonuniform base temperature profile, typically, we u
a50.02; different values fora will be discussed briefly in
the following section.

III. RESULTS

The presentation of results is organized in the followi
manner. The results for the Pe;O(1) case are first presente
in Sec. III A followed by the results for the Pe;O(e) case in
Sec. III B. In Sec. III A, we present briefly the results for th
case of a uniform base temperature in Sec. III A 1. Th
include linear stability results as well as numerical simu
tions of film evolution. In Sec. III A 2, we detail results of
transient growth analysis of the time-dependent base stat
the case of a nonuniform base temperature, which is aime
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identifying the band of unstable wave numbers for a giv
set of parameter values; typical evolution profiles for t
base state film height and the height of the superimpo
disturbance are also shown. We then proceed to discuss
effect of a variation of the system parameters, namely,
capillary parameterC, the surface Biot number Bh , and the
wave numberky on the growth rate of the disturbances.

A. PeÈO„1…

1. Uniform base temperature

Here, we examine briefly the case of a uniform base te
perature,us51. For an initially uniform film,h(0)51, and a
linear perturbation of the formh(1);evte(ikxx1 ikyy), in which
v represents the growth rate of a disturbance having w
numberskx andky in thex andy directions, respectively, Eq
~28! reduces to@2#

v5k2F Bh

2~11Bh!2
2

C

3
k2G . ~58!

Here,k25kx
21ky

2 , wherekx andky are the wave numbers in
the streamwise and transverse directions, respectively. P
tive values ofv indicate amplification of the disturbanc
towards instability whereas negative values indicate deca
the perturbation rendering the system stable in the linear
gime. The dispersion relation given by Eq.~58! for various
values of the surface Biot number Bh is illustrated in Fig. 3.
It can be seen that there is a critical cutoff wave numb
kc5@3Bh/2C(11Bh)2#1/2, above which the system is a
ways stable@2#. It can also be seen that there is a wa
numberkm , at which the growth rate is maximum, whe
km5kc /A2; this is often referred to as the ‘‘most dangero
mode.’’

The destabilizing mechanism is fairly well understoo
Since the film temperature increases with decreasing th
ness, the ‘valleys’ of any surface undulations will be warm
than neighboring ‘hills’ with lower surface tension value
Thermocapillary driven flow will therefore take place fro
the valleys to the hills, amplifying the amplitude of the u
dulation and causing instability. This instability is oppos
by mean surface tension~capillary! forces, which act to sta-
bilize large wave number disturbances, giving rise to
cutoff wave number modekc . The competition between cap
illary and thermocapillary forces leads to the existence o
band of unstable wave numbers, 0,k,kc , with a well-
defined maximum atkm .

Figure 3~b! shows the critical cutoff wave numberkc plot-
ted as a function of Bh , obtained from Eq.~58! by setting
v50. Inspection of this figure reveals thatkc achieves a
maximal value at Bh51 for all values of C considered.
Moreover,kc;Bh

1/2 andkc;Bh
21/2 for Bh!1 and Bh@1, re-

spectively. This symmetric behavior about Bh51, which can
be predicted by differentiatingkc once with respect to Bh and
setting the result equal to zero, suggests that, in the lin
regime, thermocapillarity is particularly destabilizing over
intermediate range of Bh values. This is due to the fact tha
for small values of Bh , thermocapillarity is too weak to am
5-7
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FIG. 3. Linear stability characteristics for th
Pe;O(1) case.~a! Growth ratev as a function
of the wave numberk for various surface Biot
numbers Bh . The value of the capillary numberC
used is 0.05.~b! Neutral stability curves showing
the variation of the critical cutoff wave numbe
kc , as a function of the surface Biot number Bh

for various capillary numbersC.
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plify disturbances, while for large Bh the thermal gradients
which are responsible for instability, are wiped out rapid
~more on this below!. Sincekc5A2km , the most dangerou
modekm will exhibit almost identical dependence on Bh to
kc , except for a constant scaling factor of 1/A2. Finally,
(kc ,km);C21/2 indicating that capillary forces are stabiliz
ing for all C.

It is useful to analyze the effect of local properties, su
as the local film thickness, on the linear stability charac
istics even though the initial film thickness has been sca
out. To this end, we linearize abouth(0), a local dimension-
less film thickness. Inserting these expressions into those
v, given by Eq.~58!, andkm yields

v l5kl
2h(0)F Bhh(0)

2~11Bhh(0)!2
2

C

3
h(0)2kl

2G , ~59a!

and

kl m
5

kl c

A2
5

1

2
A 3Bh

Ch(0)~11Bhh(0)!2
, ~59b!

where kl denotes a local wave number and the subscril
signifies local quantities. These results will be used to
plain the behavior of the film undergoing thinning, induc
by the underlying nonuniform substrate heating. This will
done by assuming that the quasisteady approximation ho
which will permit linearization about the value of the thic
nessh(0), to which the film will have thinned in a given time
Analysis of the stability of this new base state can then p
vide information regarding the growth rate and domina
wavelength of perturbations applied toh(0). Inspection of
Fig. 4, which shows the variation ofv l , kl m

, and v l m
5vl(klm

), given by Eqs.~59a! and ~59b!, with h(0) reveals

that kl m
andv l m

shift to higher values, respectively, ash(0)
05631
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decreases. In particular,v l m
and kl m

tend to the following

limiting expressions ash(0)→0:

v l m
→ 3

16

Bh
2h(0)

C
~60a!

and

kl m
→ 1

2
A 3Bh

Ch(0)
, ~60b!

as can be confirmed upon close inspection of Fig. 4. Ba
on these results, one may tentatively expect that as the
thins in the nonlinear regime to a heighth(0), the dominant
wavelength of the patterns observed shifts to smaller valu
since it is proportional toh(0)1/2, while their growth rate

FIG. 4. Linearization about a uniform base stateh(0) for the
Pe;O(1) case withBh51 andC50.05. ~a! Variation ofv, given
by Eq. ~59a!, with k for h(0)51.0, 0.5, and 0.25.~b! Variation of
km , given by Eq.~59b!, andvm5v(km) with h(0).
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MARANGONI INSTABILITY OF A THIN LIQUID FILM . . . PHYSICAL REVIEW E 67, 056315 ~2003!
decreases. These results will be revisited in the follow
section, in which the pattern formation accompanying n
uniform film heating is discussed.

Having established the linear stability characteristics
the system, we proceed to solve the one-dimensional non
ear film height evolution given in Eq.~25!, for a uniform
base temperature system (us51), neglecting the transversey
direction, with the same initial condition used in Ref.@17# to
describe a monochromatic wave with a small-amplitude p
turbation imposed upon it:

h(0)~x,0!5120.01 cos~kxx!. ~61!

The same boundary conditions used for the nonuniform b
temperature case, described by Eqs.~52! and ~53!, are em-
ployed here.

Figure 5 shows the profile ofh(0) at t550 for the param-
etersC50.05 andkx51 as a function of the surface Bio
number, Bh . As Bh is increased, thermocapillary effects b

FIG. 5. Profiles ofh(0) at t550 for various surface Biot num
bers, Bh , for the Pe;O(1) case. The other parameters used in
simulation areC50.05, a50.02, andkx51.

FIG. 6. Evolution of the base state film height with~a! a
50.02, ~b! a50.5, and~c! a51 for the Pe;O(1) case. The res
of the parameters used areC50.05, Bh51 for ten equal time steps
up to t567. The insets in~b! and ~c! show enlarged views of the
thinning region.
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come increasingly dominant, introducing instability into th
system. There is, however, a certain critical value for Bh at
which the growth rate of the disturbance is maximized a
hence the instability causes the film to proceed towards r
ture; increasing Bh further beyond this critical value only
causes the film to be restabilized. The profiles show an
most symmetric behavior, with the film height for Bh50.1
almost identical to that for Bh510, and Bh50.01 to that for
Bh5100; the film appears to be most unstable for Bh51.
This behavior, exhibited by the film in the nonlinear regim
is in agreement with the predictions of linear theory sho
in Fig. 3, in which the neutral stability curve is shown.

For uh50 andus51, the vertical temperature profile de
rived in Eq.~13! is reduced to

T~z!512
Bhz

11Bhh(0)
. ~62!

It can thus be seen that for small or large Bh , the variation in
the liquid film temperature across the film height becom

e

FIG. 7. Streamlines within the film during the formation of th
fractal-like structures fora50.02, C50.05, and Bh51 case att
560. The dotted line shows the base state film profile at that ti

FIG. 8. Growth energy of the disturbance wave,E, for the Pe
;O(1) case. Panel~a! shows the effect ofC with Bh50.25 and
ky52. Panel~b! shows the effect of Bh with C50.05 andky51.
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FIG. 9. Temporal variation ofE andV for various values of the wave numberky for the Pe;O(1) case. The rest of the parameter valu
used areC50.05 and Bh51.
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increasingly independent of the height itself due to ra
convection of heat across the height of the film layer. The
fore, for systems in which the thermal conduction is eith
highly significant or negligibly small compared to the the
mal Marangoni convection, surface undulations of small a
plitude across the lateral plane are unable to create s
ciently large lateral temperature gradients in order to dr
thermocapillary instability. This, therefore, explains the b
havior shown in Fig. 5.

The formation of fractal-like fingering structures leadin
to the creation of dry spots in the local thinning region ne
the rupture point can also be seen for Bh51 in Fig. 5; these
are similar to the cascade of structures involving the form
tion of local fingers in the dry-spot region~see Fig. 1! ob-
served by Boos and Thess@14#, who solved the Stokes flow
problem, and Oron@15#, who used standard lubricatio
theory. In accordance with these studies, we have found
steady-state solution and no simple scaling laws for the m
mum rupture thickness during film rupture. The width of t
thinning region, however, is governed by the system par
eters, in agreement with Boos and Thess@14#. The mecha-
nism for the formation of these cascade structures du
film thinning and rupture proposed by Boos and Thess@14# is
also evident in our results.

2. Nonuniform base temperature

Here, we consider the evolution of the film in the pre
ence of a nonuniform base temperature distribution given
us5e2a(x2xo)2

for the Pe;O(1) case. In what follows, nu
merical solutions of the nonlinear film evolution equatio
Eq. ~27!, in the absence of atransversedisturbance will be
termed as ‘‘base state’’ solutions~even though these solu
tions exhibit an instability in the streamwise direction,
will be shown below!. These solutions, denoted byh(0), are
functions ofx and t; no uniform steady base states exist
this case~note, however, thath(0)51 is a possible base sta
for linearus). The disturbanceh(1), on the other hand, which
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is alsox and t dependent, corresponds to a small-amplitu
transverse perturbation of prescribed wave numberky , im-
posed upon the base state.

The film profiles for the base state described by Eq.~27!
with Bh51 andC50.05 can be seen in Fig. 6; the values
a are taken to be equal to (0.02,0.5,1). This figure dem
strates phenomena that are typical of long-wave Marang
instabilities. The temperature gradient at the base of the
uid film gives rise to significant thinning near the impos
gradient and thickening downstream, as shown in Fig.
Finger-like structures, similar to those observed in Fig. 5 a
previous work@14,15#, are also evident and appear to b
confined to the thinning region, behind the front, which a
pears to propagate slowly in the streamwise direction. Th
structures subsequently continue to thin, giving rise to
spots in the rupture region. The choice of values fora al-
tered the numerical results qualitatively as well as quant
tively: Steeper temperature gradients corresponding to la
values ofa led to similar formation of the fractal-like struc
tures to those of Fig. 5, but with lower amplitudes. Furth
increases ina, however, lead to transient formation of fract
peaks in the thinned region; these peaks subsequently fla
out again and disappear, as shown in Figs. 6~b! and 6~c! for
a50.5 anda51, respectively. The streamlines att560 cor-
responding to the case ofa50.02 in Fig. 6~a! are shown in
Fig. 7. Recirculation regions within the fractal-like peaks c
be seen, similar to those found in Ref.@14#.

We now proceed to establish connections between
structures observed in Fig. 6 and the long-wavelength th
mocapillary instability of a thin film resting on a uniforml
heated solid substrate. This is done by considering the lo
thinning region of the nonuniformly heated substrate ca
and comparing its width with the band of unstable wav
lengths, as predicted by the linear theory for the isotherm
case. Observing that for small values ofa up to '0.02, the
base temperature gradient is small within the local thinn
region where the fractal-like structures form behind the fro
5-10
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FIG. 10. Two-dimensional evolution profiles of a transverse perturbation ofky51 ~a! and a three-dimensional reconstruction~b! of the
film height obtained via the superposition of a fraction of the fastest growing mode of the disturbance waveky52, with amplitude 0.01, onto
the base state film height. Here,a50.02,C50.05, and Bh51.
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of the outspreading wave, thereby permitting such a co
parison. It is interesting to note that while the magnitude
a sets the width of the thinning region in this case, the s
of the thinning region in the work of Boos and Thess@14# is
governed by all parameters in their system, namely, the s
and dynamic Bond numbers, which determine the magnit
of surface tension and thermocapillarity, respectively. In
dition, the thinning width is also dependent on the fi
height and the wave number due to the action of capillar
An inspection of Figs. 3 and 6~a! indicates that the length o
the thinning region, which is approximately ten dimensio
less units corresponding to a wave number ofp/550.63,
lies within the band of unstable wave numbers predicted
linear theory for the isothermal case. Increasing the temp
ture gradient~i.e., increasinga) makes a similar compariso
with linear theory difficult since the quasiisothermal assum
tion in the thinning region is less valid in this case. The la
temperature gradients involved decrease the width of

FIG. 11. Three-dimensional infrared image of the liquid fil
surface in the experiments of Ref.@8#, indicating pattern formation
in the region of the thickened outspreading wave. The dotted
represents the location of the heater in relation to the obse
patterns.
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thinning region and cause rapid thinning of the film to sm
values. This thinning, however, is no longer accompanied
fractal, relatively long-wavelength patterns, but rather
wiggles on shorter length scales, as shown in Figs. 6~b! and
6~c!, in qualitative agreement with the results given by E
~59! and ~60!.

We investigate the evolution of applied transverse dist
bances next. IncreasingC, such that capillary effects becom
dominant and counterbalances thermocapillarity, has a st
lizing effect, as shown in Fig. 8 which depicts the energy
the disturbance wave,E @30#:

E5E
0

`

h(1)2dx. ~63!

AlthoughE decreases initially, for low to moderate values
C the energy quickly recovers indicating that thermocapill
ity becomes the dominant mechanism, driving the onse
instability in the base state and, as a result, causing amp
cation of transverse disturbances; increasingC delays the
onset of the ‘‘recovery’’ time.

The effect of varying the surface Biot number Bh is in-
vestigated next. Figure 8~b!, generated withC50.05 and
ky51, shows the dependence of the time-dependent en
curves on Bh ; rapid growth occurs over intermediate rang
of Bh values. The applied disturbance decays for Bh&0.1
~not shown!. For Bh.(0.521), explosive growth occurs an
beyond this range, the onset of growth is delayed with
creasing Bh . Finally, for Bh@1, the disturbance energy un
dergoes decay in a manner similar to Bh&0.1. This behavior
is reminiscent of that observed in Fig. 3.

Figure 9 illustrates the role of the wave numberky on the
growth of the disturbance wave. Fora50.02, it can be seen
from Fig. 9~a! that for very long wavelengths, i.e.,ky→0,
the disturbance growth is almost constant for a period
time before amplification takes place. Note that even a d
turbance havingky50 can be amplified: No translationa
invariance exists in this system, sinceus(x)Þus(x8), where
x85x1a in which a corresponds to a small translation inx,

x
ed
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FIG. 12. Temporal variation ofE and V,
shown in ~a! and ~b!, respectively, for various
wave numbersky , surface and substrate Bio
numbersBh andBs , and thermal Pe´clet numbers
P for the Pe;O(e) case with xo530 and C
50.001. The legend is as follows:ky50, Bh

51, Bs51, P51 ~—!; ky50.05, Bh51, Bs

51, P51 ~—!; ky50.1, Bh51, Bs51, P51
~—!; ky50.1, Bh50.1, Bs51, P51 ~—!; ky

50.1, Bh51, Bs50.1, P51 ~—!; ky50.1, Bh

51,, Bs50.1, P53 ~—!.
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for our choice ofus ; the equationsare, however, translation-
ally invariant forus51. For shorter wavelengths~largerky),
there is a time period during which the disturbance is s
pressed and its energy decays to small values before
mocapillarity becomes dominant resulting in a recovery
the growth rate; this period of time increases with increas
ky due to capillary forces, which act to stabilize short wav
length disturbances. Forky values intermediate betweenky
50 and ky52.5, there is rapid growth in the disturban
leading to instability.

In order to measure the rate of amplification of distu
bances, we define the growth rateV as

V5
1

2E

dE

dt
; ~64!

a discussion of the meaning of stability for time-depend
flow may be found in Ref.@30#. V is plotted parametrically
as a function ofky with Bh51 andC50.05 in Figs. 9~d! and
9~e!. An inspection of Fig. 9 reveals that the mode whi
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initially maximizes the growth rate fora50.02 lies in the
rangekyP(1,4). As a increases the maximal growth ra
moves to increasing values ofky , as shown in Figs. 9~b! and
9~e!. Eventually, for large enougha, no modes grow sub-
stantially, as shown in Fig. 9~c!. Thus, we conclude tha
transverse instabilities are dependent upon the length sca
the thermal forcing; the instabilities also correlate with t
severe height variations that occur in the thinning reg
whena is small.

Figure 10 depicts the spatiotemporal development o
disturbance ofky51, which corresponds to the same para
eter values as those used to generate Fig. 6~a!. Depletion of
the liquid film leading to valleys in the base state results
the amplification of the perturbation, up to 300 times its in
tial amplitude, and the formation of hills, andvice versa; this
is attributed to the same destabilizing mechanism highligh
earlier. By superimposing a small fraction of the faste
growing mode, here taken to beky52, onto the base state o
the film, the three-dimensional patterns in the thinned reg
behind the thickened front can be clearly observed, as sh
5-12
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in Fig. 10. These three-dimensional structures become ap
ent well before the onset of the long-wavelength Marang
instability, which would have given rise to the fractal-lik
patterns seen in Fig. 6~a!. This transverse instability is there
fore expected to dominate the flow in the nonlinear regime
is worthy of note here that the disturbance is amplified in
thinned region in contrast to the observations of Kabovet al.
@8,12# and the modeling work of Kalliadasiset al. @18# in
inclined falling films where the thickened wave front is th
target of the disturbance, as shown in Fig. 11. This may
due to the larger convective effects in operation in tho
cases. In addition, we also note the absence of any transv
wave disturbances in our results, in contrast to the obse
tions of Smith and Davis@25,26#, and Hosoi and Bush@24#,
in spite of carrying out a transient growth analysis that
not preclude the formation of such waves.

B. PeÈO„e…

In the case of rapid vertical thermal diffusion, the lon
wave Marangoni instabilities observed previously are
longer apparent over the range of parameters examined.
can be ascertained upon inspection of Fig. 12, which sh
the temporal variation ofE andV as a function ofBh , Bs , P
andky . Over extremely long periods, the transient growth
the disturbance is seen to stabilize, as observed in Fig. 1~a!,
followed by decay, as observed in the plot for the growth r
in Fig. 12~b!. It should be noted that the capillary numbe
used in the simulations are very small such that the stab
ing contribution of capillarity effects over thermocapilla
effects are minimized and the chances of instability ma
mized.

The film thickness and temperature base state and pe
bation profiles up tot51000 are illustrated in Figs. 13~a! and
13~b!. The presence of a convecting mechanism drives

FIG. 13. Evolution of the base state film height~a! and tempera-
ture ~c!, as well as the disturbance wave height~b! and temperature
~d! for five equal time steps up tot51000 for the Pe;O(e) case.
The parameters used arexo530, C50.001, Bs51, Bh51, ky

50.1, and P51.
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distribution of the temperature perturbation across the en
length of the lateral region so that thermocapillary effects
weakened, as shown in Fig. 13~d!. Although it may appear
that the amplitude of these perturbations is growing, the
ergy of all applied perturbations eventually exhibit decay.
addition, the rapid vertical diffusion further results in th
dilution of thermocapillary effects. As a result, there is insu
ficient thermocapillarity to induce long-wave Marangoni i
stabilities in the system.

IV. CONCLUSIONS

Long-wave thermocapillary instabilities have been co
sidered for the case of a horizontal thin liquid layer lyin
upon a solid substrate with both nonuniform and unifo
base temperatures. The temperature gradient of the subs
is allowed to drive the thermocapillary action causing t
base state to deform into a thickened region downstream
the applied thermal gradient and a thinned region upstre
The latter region becomes unstable to a streamwise ruptu
instability. Near the rupture point, fractal-like structure
similar to those observed in Refs.@14,15#, for the case of a
uniformly heated base are obtained in the thinning reg
located behind the front of the outspreading wave.

We have carried out a transient growth analysis of th
one-dimensional~1D! patterns. A parametric study of th
capillary and surface Biot number along with the wave nu
ber of the perturbation allows the identification of th
‘‘modes’’ in which the disturbance is amplified and becom
unstable. Capillarity is seen to oppose the destabilizing ef
of thermocapillarity by delaying the onset of growth. Anal
sis of the effects of the surface Biot number, representing
relative magnitudes of thermal Marangoni convection a
the heat conducted away from the air/liquid interface of
liquid layer, and the capillary parameter indicated th
growth occurs for a range of intermediate Biot numbers.

The formation of the 1D fractal-like structures occurs in
small region, behind the thickened front, in which the ba
temperature gradient is small; a uniform base tempera
within this region can be assumed. By solving for the line
ized film evolution equation assuming a constant base t
perature and an initially uniform film, the width of the thin
ning region in the nonuniformly heated substrate case
found to lie within the band of unstable wavelengths, p
dicted by linear theory for the uniformly heated substra
case. Decreasing the lateral extent of the heating source
creases the width of the thinning region and causes ra
thinning accompanied by the formation of short sca
wiggles instead of relatively longer scale fractal-like pa
terns; this is in qualitative agreement with a local linear s
bility analysis performed for the isothermal case, which p
dicts that as the film thins the wavelength of th
perturbations is proportional to the square root of the lo
thickness. As the lateral extent of the heating source
creases the variations in the local temperature field also
crease and the transverse instabilities no longer occur.

In addition, three-dimensional structures were obtained
superimposing a small fraction of the disturbance wave w
the fastest growing mode onto the base state film. Th
5-13
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structures in the thinning region are different from those
served experimentally by Kabovet al. @8,12# for inclined
falling liquid films. In that case, the instability targets th
thickened front rather than the thinning region due to
presence of considerable convective effects@18#.

By performing a similar transient growth analysis in sy
tems in the limit of rapid vertical thermal diffusion, our re
sults show that the long-wave Marangoni instabilities o
served above are diminished. This is due to the ther
gradients being convected along the film interface bef
s

d

nd

nd

nd

.
-

Ex
,
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e

thermocapillary effects become sufficiently dominant to d
stabilize the film.
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