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Onset of turbulence in accelerated high-Reynolds-number flow

Ye Zhou, Harry F. Robey, and Alfred C. Buckingham
Lawrence Livermore National Laboratory, University of California, Livermore, California 94551
(Received 3 June 2002; revised manuscript received 11 October 2002; published 14 Mpy 2003

A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in
accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes,
supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density
pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence
development. In addition, for critical periods of the overall flow development, the driving background flow is
often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these
situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds
numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion
and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal
mixing transition criterion proposed by Dimotakj®. E. Dimotakis, J. Fluid Mech409, 69 (2000] for
stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on
variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instaBility or impul-
sive (shock acceleration Richtmyer-Meshkov instabili6RMI) or combinations of both. The significant in-
fluences of compressibility on these developing transitional flows are discussed with their implications on the
procedural model development. A fresh perspective for predictive modeling and design of experiments for the
instability growth and turbulent mixing transitional interval is provided using an analogy between the well-
established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure
models. Experimental comparisons with the procedural results are presented where use is made of three
distinctly different types of acceleration driven instability experimeiis:classical, relatively low speed,
constant acceleration RTI experimen(®} shock tube, shockwave driven RMI flow mixing experimeris;
laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last
named experiments are of special interest as they provide scaleable flow conditions simulating those of
astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.
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[. INTRODUCTION may be reliably attained during a test interval of unsteady
background flow. The attendant problem of diagnostics de-
Our principal contribution here is the development of asign and implementation capable of recording a sufficient
turbulent mixing transitional criterion and a procedure forsequence of flow realizations for experimental verification
modeling and predicting the required time interval to achievealso demands reliable estimates of mixing transition time. In
transition when the background flow is unsteady rather thathis paper we introduce the development, implementation,
stationary. We submit that such a criterion and estimatiorand test of a criterion and model procedure which provides
procedure is essential for analysis, experimental design, arttlis information for accelerating, unsteady, compressible,
diagnostic development. Emphasis is on studies of extremellgigh-Reynolds-number flows.
energetic, high pressure, supersonic, high-Reynolds-number To avoid ambiguity here we define fully developed turbu-
flow environment of current and continuing interest. Consid-lence as the concluding state of flow evolution which results
ered are applications in supersonic combustion, hypersonio a statistically random distribution of velocity and state
aerothermodynamic design, and astrophysical stellar andariable (such as density and temperafungerturbations
planetary evolution research, among others. Specific emphavithin a mean transient or stationary background flow and
sis here is given to research on the evolution of turbulenthermodynamic state. The concluding flow and state pertur-
mixing states originating with accelerated flow instabilities bations must reach sufficient intensity and persistence so as
such as RTI(Rayleigh-Tailor instability [1,2] or RMI  to excite all state-permissible, statistically distributed degrees
(Richtmyer-Meshkov instability[3,4]. The researcher needs of dynamic freedom.
to conceptually bridge the significant transitional flow inter- The physical space visualization of turbulence may be
val separating the initial accelerated unstable flow conditionsecognized as a randomly distributed, seemingly disorga-
[5—7] from their potential evolution into fully developed tur- nized but dynamically connected continuum array of fila-
bulence[8-11]. The investigator charged with design or mentary structures of all size scales with intermittently
analysis of experiments in a supersonic, high energy flonchanging boundaries and topological features. However,
facility must determine the energetic drive durati@nock Fourier transformation of physical space observations re-
tube length, diameter and drive energy density, or laser pulseeals the universal spectral characteristics of fully developed
sequencing, for exampldo ensure that mixing transition turbulence. One such spectral characteristic of onset and
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eventual attainment of fully developed turbulence is the(2) shock tube initiated RMI experimeni&8]; and (3) laser
growth and establishment of a Reynolds-number dependeniriven high energy density RTI experiment29]. Some
inertial range separation in the universal turbulent energyovel features and issues arising in the laser driven experi-
spectrum[12,13. This inertial range separation is the trans-ments demand special consideration, evaluation, and analy-
fer bridge for energy cascade from the larger scales of mosis. The bulk of this latter discussion appears in separate
tion where it is produced down to the smallest motion scale®apers(29,30. Next we describe some of the dominant in-
where it is dissipated. In reality, of course, the energy casfluences of compressibility on transitional and developed tur-
cade is not unidirectional. Complete description includes th&ulent mixing generally and their consideration in develop-
well-established(but often neglectedreverse cascade of ing the unsteady transitional crlte_rlon and _precedural model
high frequency energy that is backscattered towards thapecifically. In a subsequent section we WI|| |IIust_rate a par-
larger production scale motiofd4]. An important conse- allel to the buoyancy dr_ag-_model_wnh single p0|_nt closure
quence of this inertial range separation is the isolation, hencg@nSport models, beginning with a prototypical one-
lack of direct influence of the dynamics of the largest scale€duation, single point, turbulent transport closure model, fol-
of motion on the smallest dissipation scale dynamics whicHoWed by subsequent examination of more general single

are governed almost solely by molecular transport processe@?'”v\; transp?rt mﬁdel closure schem_eﬁ. q
Implicit in our procedure is development of a scale interac- V€ complete the present paper with a summary and con-

tion model for estimating the time interval sufficient for es- ¢lUSions.
tablishing this inertial range separation.

In our present work we generalize the mixing transition Il. PREDICTED TIME INTERVAL FOR MIXING
criteria proposed by Dimotak[4 5] to include time develop- TRANSITION TO TURBULENCE

ment of the mixing transition. One notes that establishing the
time dependence and a general interval for mixing transition A key in establishing the necessary time needed for
to turbulence from the beginning of instability growth is not achieving mixing transition to turbulence is to understand the
generally feasible, since the outer-scale Reynolds numbdthysical relationship between several important length
and the foregoing key length scales may individually evolvescales. These length scales emerge in part from analysis of
with time as well as with variation in flow conditions. How- the governing Navier-Stokes equation, conservation of en-
ever, once the time dependence of the driving inertial flowergy, conservation of mass, and the classical statistical fluid
field is establishedsuch as is the case for RTI and RMI dynamic (Kolmogoroy representation of turbulent flow
initiated flows our procedure provides reasonable estimate§8—11]. The principal length scales under consideration in-
of the time duration necessary for mixing transition to fully clude the following.
developed turbulence. Length scale 1, The outer scalé The largest dynamic
Many predictions of RTI and RMI initiation and subse- flow length scale at which the external forcirithe drive
quent history of the |nstab|||ty growth are based on the apWh|Ch prOduceS both the overall baCkgrOUnd flow kinetic en-
plication of one of the variations of the familiar buoyancy- €rgy and the kinetic energy of the turbulent fluctuatidasn
drag mode[16—-18. These model predictions often illustrate action.
general features whose details are usually traced in numerical Length scale 2, Dissipation (Kolmogorov) scalg . The
simulations. The buoyancy-drag models have been showgmallest dynamic flow length scalmicroscalg at which the
[19_23 to provide faithful representations of the ear|y time continuum fluid turbulent kinetic energy diSSipateS in excita-
instability growth and material penetration phases in direction of molecular scale motions. This is the limiting or small-
comparison with the experimental evidence in their moreest length scale at the boundary between turbulent continuum
refined and carefully applied versions. In cases where #otion and the molecular scale motions, represented on the
single length scale dominates, we illustrate here a parall@verage by the Boltzmann collision integral averaged trans-
between the buoyancy-drag models and a one-equation tuport properties.
bulence transport closure modg4,25. We consider this The classical Kolmogorov theof8—11] assumes that in
parallel in suggesting application of standard engineeringhe inertial subrange, the dynamics at an intermediate scale,
transport models for calculating the evolution of turbulentA, cannot be influenced by the outer, low frequency scales,
mixing of the RTI and RMI initiated flows after turbulence Where turbulent energy is produced, nor can it be influenced
onset. Our analysis here suggests that once the mixing regidty the inner, high frequency, viscous dissipation schies-
becomes turbulent, two-equation transport equations descriesented by the Kolmogorov microscala,=(v%/¢)™,
ing the evolution of both spatial and temporal scales aravhere v is the kinematic viscosity and is the dissipation
required to achieve even minimally accurate description ofate of the turbulent kinetic energy
turbulent transport and multifluid mixingsee, for example,
Ref. [26]). A<N<S.
The paper is arranged as follows. First we discuss the
background apd development of a 'procedure for estimating The outer-scale Reynolds number
the time required for mixing transition to turbulence when
the background flow is nonstationary. Next, for comparison,
we apply the procedure to three classes of RTI and RMI Re=U—5
experiments(1) a classical low speed RTI experimdf{]; v
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must be defined carefully. It depends on the types of the flow U
field. HereU is the characteristic velocity. I
Length scale 3. The Taylor microscalg . Another mi-

croscale having special utility is the Taylor microscale
somewhat larger than the Kolmogorov microscale previously _
introduced. This microscale is directly related to the turbu- Y Y Y ¥ LV L L VAL L LV 0\ VY LV VT
lent statistical velocity autocorrelation function. It has a spe-

cial identity and role in analysis and simulation of turbulent ~FIG. 1. Sketch of the development of a laminar viscous bound-

X

flow statistical structur¢8—11]. ary layer on a flat plate.
experimental designs. To fix a tighter bound, Dimotakis pro-
A. Mixing transition threshold proposed by Dimotakis posed that the extent of the effective inertial range influence
for stationary flows: A review barrier can be narrowed to
Recently, Dimotakig15] assessed a large number of ex- NN,

periments and concluded that mixing transition occurs in
shear layers, jets, Couette-Taylor flows, and other stationanyhere two new length scales can be deduced from the Taylor
flows when a novel Reynolds-number threshold for mixingand dissipation microscales.
transition was reached. The comparisons suggested that it Length scale 4. The inner viscous scalg. This may be
may be regarded as a nearly universal phenomenon signaistimated 15] as a multiple of the Kolmogorov microscale
ling attainment of turbulent mixing transition. Dimotakis by inspecting the high-Reynolds experimental data compiled
pointed out that the mixing transition threshold reflects thepy Saddoughi and Veeravalli3], A ,~50\ ~505 Re /4.
inability of the flow to remain stable as the damping effects | ength scale 5. The Liepmann-Taylor scalg. This is
of viscosity are reduced with increasing Reynolds numberthe upper limit of the microscale mixing ran§#5s]. With &
Furthermore, the mixing transition occurs at Reynolds numrepresenting the outer laminar vorticity growth thickness, it
bers beyond the classical Ve|0City field transition and repreis related to the Tay|or correlation microscme_ Based on
sent a subsequent, often well-identified, transition in the flowthe experimental data, Dimotakjd5] determined that,
[15]. For all these flows, visualization illustrates that the =5)., whereh;=§Re Y2 In nondimensional form,
mixing transition is rather abrupt and results in an increas-
ingly disorganized three dimensionality and sudden increase N, Caa NN 1
in atomically mixed material. - ~S0Re T<o<—~5Re "~

The transition to a well-mixed state for jets, shear layers,
boundary layers, and Couette-Taylor flows illustrates quali- - the criterion for mixing transition to turbulence can be
tatively different behavior below and above a narrow rang€yetermined only by the outer-scale Reynolds numbers, for a
of Reynolds numbers. Dimotakis found that for all of thesegiVen outer scales. The insight offered by Dimotakifl5]

flows, the resulting fully developed turbulent roE/)v4 requires provides guidance for future experimental designs directed to
that an outer-scale Reynolds number 0BRe-2x10%, ora  gepjeving mixing transition in a wide range of stationary

Taylor microscale Reynolds number of 2e100—140 must  fos.
be attained. Furthermore, mixing transition appeared in the
extensive survey of stationary flows to be almost indepen-
dent of the details of the flow geometry. DimotaKi5]
noted that the mixing transition coincides with the appear-
ance of the inertial range. The mixing problem for many applications is a transi-
The mixing transition threshold proposed by Dimotakistional problem. For high energy density physics applications,
for stationary flows marks a significant advance in refiningsuch as experiments on lasers @inches, flows start from
and narrowing the Reynolds-number criterion for predictingrest att=0. In high-Reynolds-number flows of short time
mixing transition to fully developed turbulence. Dimotakis duration, the Taylor microscale may not have sufficient time
[15] illustrated that in the case of shear laydysis taken as  to reach its asymptotic value.
the constant free-stream velocity difference aid taken as The Taylor microscaléfor stationary, homogeneous, iso-
the local depth of the shear lay@r, in the case of a chemi- tropic flow) depends on the integral scaf@nd the Reynolds
cally reacting shear layer, the local depth of the reaction zonaumber as\t~ 6 Re"*2. This is analogous to the develop-
within the shear lay@r In the case of round, turbulent jetd, ment of a laminar viscous boundary layer on a flat plate
is taken as the local centerline velocity of the jet whiléss ~ ~X Re Y2 (see Fig. 1 For time-dependent viscous flows,
taken as the local jet diameter. He pointed out that the chaelassical similarity governs the outer-scale growth rate as
acteristic flow structural difference between shear layers antbllows.
jets and their dependence on local values, is of interest in the Length scale 6. Growth rate of an outer-scale viscous
context of spatially developing flows and the evolution of theshear layer scale ;. For time-dependent flows, we need to
distribution of scales and turbulence spectra. consider an additional scale, a growth rate scale. This is pro-
The energy spectral interval of the complete Kolmogorowided by the growth rate of an outer-scale viscous shear
inertial range is usually too broad to be of practical use inlayer. We take this to represent the basic scale length growth

B. New mixing transition threshold proposed
for time-dependent flows
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rate of shear generated vorticity. In our procedure this ignent in order to advance our procedure for application to a
given by the classical viscous layer similarity growth rate onmore general class of transitional mixing flow situations. In
a solid surface accelerated initially from rest. This similarity this regard, the time dependence of fRe(,(t), A, (t), and
form for viscous shear layer growth was first identified Ap(t) have intrinsic and independent dependence on devel-
nearly 150 yr ago and independently confirmed in severabping outer flow conditions so that no universally applicable
classical 19th century theoretical studi@okes[31], Ray- criterion in terms of arbitrary time dependence of the outer
leigh [1], Lamb[32]). The temporal development of such a scale can be obtained.

laminar viscous layer is well known to vary agit}'?

[1,10,31,32, C. Application of time-dependent mixing transition to RTI

Ap=C(»t)Y2 and RMI induced flows

o - For the RTI and RMI induced flows, the outer-length

Here the coefficient of the diffusion layeE, was suggested scales is uniquely identified Cook and Dimotaki§38]) as
as /15 for isotropic, homogeneous turbuler/d®], as four  the mixing zone extenty. The velocityU is given by its
for unsteady parallel flow$33], and as five for boundary oo\t rateh. Indeed, we stress that this mixing zone length
layer (following the Liepmann-Taylor constant by Dimotakis gee js aligned with the flow vector rather than perpendicu-
[15)]). . . ) lar to it as in the case of the previously described shear

For unsteady mixing transitional flows of interest here, Welayers. We offer a few remarks on the significance of this
generalize the.proposal of Dimotakis based on the following,, aligned scale growth in RT and RMI investigations.
thrge observations. We note that the instability growth eigenvalues in the

(i) The outer scales and the outer-scale Reynolds num- o, o1 RT| and RMI acceleration driven flows are components
berg are both functions of time. L ) aligned with the acceleration vector. They are uniquely char-
_ (i) The least upper bound of the developing inertial range, sterizeq by streamwise component instability scales, in dis-
influence barrier is the minimum of the Liepmann-Taylor iyt contrast to supplemental scale growth in normal or lat-
scaleh, and laminar viscous scalp @ Amin=MiNA\LApl- gl directions. These scales characterize the later

(i) The greatest lower bound of the inertial range influ-ye\eloping, secondary, shear-driven instabilities. In the clas-
ence barrier is the developing inner viscous segle _sical RTI theory only the distribution of streamwise ampli-
_ The inequality just introduced provides a sufficient condi-y,qes appear as initial perturbation conditions. The orthogo-
tion fOI’ estimating a mixing transition criterion for unsteady nal dimensions and shape factors are parametrically imposed
transitional flows, viz., initial conditions on spatial frequency with periodic bound-
ary conditions[5]. In effect, parametric variation of initial
amplitudes and distributions in model calculations provide

For time-dependent transitional flows, mixing transition isfor systematic investigation of the influence of material in-
achieved when a range of scales exists such that the tempi§face surface roughness on the actual physical situations
rally developing least upper bound is significantly larger thartinder study. Of course, prediction of the growth of the scales
the temporally developing greatest lower bound. In the presdeveloping orthogonally to the streaming coordinate in the
ence of a sufficient Reynolds number an additional intervafecondary, later developing, shear layers, and particularly the
of time is required to generate the scales needed for a mixin@volutlon of critical mlcrosqales within _them, a}nd their rela-
transition[ Re>(1-2)X 10* andt>te(\ min \,)]- filon to the overall “cl_ock tlme” assouateq Wlt_h_the outer

Dimotakis[15] has made use of the classic viscous simi-Packground acceleration driven scafeare implicitly con-
larity transform in space; our application is in time. In either Sidéred in our procedure. .
application, the temporal similarity transform is unique for Ve now illustrate the time dependence for a specific flow
viscous flows. There are no others. Its origin is in the mid-N Which we know (from measurement or simulatiptthe
19th century as we noted already. Its application to mixingiime history of the outer flow. The heavy fluid is denoted by
transition in the temporal sense is our contribution. i =s (spikeg and the light fluid is denoted ky=b (bubbles.

Care must be taken to properly compute the transporyVe identify the length scalé with average amplitude or
properties, particularly viscosity34] and for multifiuid ~ depth of the turbulent material mixing zone
flows, the diffusivity[35] at material interfaces in multifluid h(t) = hy () + hy(t)
mixing. Additional emphasis has been given to astrophysical b SV
flow situations and laser target interaction experiments de-
signed to create flow conditions which can mimic them with 0" €xample, for the case of RTI flow, we know how the
appropriate scaling. Here the plasma influences on the fluQuter scale develops as a function of time, and therefore, hpw
tuating fluidynamic field transport properties on calculatedt® Outer-scale Reynolds number depends on time. which
scale growth are subjects of present and continuing expersatisfies the scaling laya9]
mental and theoretical research in these intensely energetic
applications([29,36,37). hi(t) = e;Agt.

We emphasize here flow situations where the explicit time
dependence of the driving flow has been determined theoretNote thate= as+ a4 is the sum of two constants.
cally and experimentally. This is a necessary first require- The Atwood number is given by

Nmin=> A, -
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— S=h~yt%,
A:P1 P2 Y

P17t P2 which is applicable for both multiple length scales case

Using the form introduced in Zhol#0], the scaling law K(szabyzebJ O

for the RMI flows is 0

. 752[ (Ceo= ) 57755
K

hj=—r
&

& 0
1+(Cep—1) K_Zt] ; or single dominant length scale case
whereC,, is a constantK, and e, are the initial values of Vol 1% "
turbulent kinetic energy and dissipation rate. Some theoreti- ¥=21(Ce2—1) s
cal analysis estimated the values &f to be between 2/3—
7/12 (Zhou [40]). Shvartet al. suggested values for the ex- Now the outer-scale Reynolds number is
ponentd, are 0.4 for 2D{41] and 0.2-0.25 for 3[)42,43.
Other studies reported the valueséyfto be 2/3(Barenblatt hh  6,y%t?% 1
[44], Youngs[45], Ramshaw[46]). For an initial condition e —

. . 14
where the multiple length scales are reduced to a single

dominant length scale, we have For the temporally limited flow development case, we have
= o . > ,
e G o

Shvartset al. [42] presented a detailed discussion on thewhile for the stationary flow limit of Liepmann-Taylor scale,
scaling of nonlinear RM(as well as RTl in two and three we find
dimensions. They argued that the RMI mixing zone is char-

/ —
acterized by two distinct scalé% andt’ for the bubble and sl HE0=D
spike front respectively, witlés/ 6,~1+ A for both two and i 0byz

three dimensions. Thé, is found to be 0.2 for 30043]. )

6,= 6= 6, but with different time origin. the Taylor microscale are also time dependetiaightfor-
For RTI driven flow, we find that, by substituting Re Ward so not shown to limit the length of the paper

=2(aAg)’t*v, the condition for the mixing transition indi- A= h(t)Re Foct 14

cates\p(t)<A (t) (i.e., temporally limited flow develop- K™

men}, and

C(wt)*>505Re 3", Ap(t)~h(t)Re Y2oct12

which gives the condition The corresponding Reynolds number based on the Taylor
1 /5043 microscale is given by, ~Re"?ct372,

to>— | —| pY3(aAqg) 2B The turbulent kinetic energy and dissipation rate are the

two most important quantities in turbulence modeling
[24,25. Here the turbulent kinetic energy can be estimated

for achieving mixing transition in RTI driven flows. For the as proportionately time dependent

case of\p(t)>\ (1) (essentially the stationary flow limit of
the Liepmann-Taylor scalehowever, we demand that ( h\ 2
K| =

2
at) “©

AL (1)=5Re 256>\ =505 Re %4,

As a result, the critical time for achieving mixing transition @1d from dimensional considerations the dissipation rate
becomes goes as

tr> 10X 51/3v1/3(aAg)_2/3. . (dhllth)goc

The conditions of the flow, such as the Atwood number, vis-
cosity, and acceleration, determine which condition shouldrhe turbulence length scale, defined from these two mea-
apply. surements a¥*%e, clearly reduces to th& scaling. The

Following the same procedure, we can estimate the timéurbulence time scale, defined /e, is abouth/(dh/dt)
required for achieving mixing transition for an RMI driven =t/2.
flow. For simplicity, we take the late time limit and assume Sadotet al.[48] have proposed an alternative growth law
0s= 0, so that encompassing the linear, early nonlin¢sge also the impor-
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tant theory by Zhang and SoH#d9]), and later, pretransi- |
tional, asymptotic instability behavior of bubble and spike
amplitude. Recently, Jacobs and Krivg¢®8] reported that
the model by Sadaet al. [48] provides excellent agreement
with the Mach 1.3 shocktube experiment. The model ampli-
tude consists of both an inverse tangent function and a natu
ral log and can be regarded as the outer séalden repeat-
ing our analysis here. For brevity, we will not carry out this _
straightforward calculation here.

Il ILLUSTRATIONS WITH EXPERIMENTAL
COMPARISONS

We first consider a classical fluid dynamics experiment
conducted at Cambridge Universit®7]. The referenced au-
thors describe an experimental investigation of Rayleigh-
Taylor instability between two miscible fluids. This experi-
ment made use of a unique low-perturbation removal
technique that minimized Kelvin-Helmholtz instability
growth. The specific object of the experiment was the inves-
tigation of the gravitationally driven instability between salt Reynolds number for I¥=1.3 are given in Figs. (& and
and fresh water layers. The experimental apparatus was ¥#b), respectively.
tank with longitudinal and lateral dimensions of Applying our procedure, we find that in the experiments
200X 400 mnf and a height ofH =500 mm. The Atwood at Ms=1.107 and N=1.207, our predictions and the experi-
number is about 0.002. Since the Atwood number is low, thénents(as evident from the PLIF images which can be seen
kinematic Viscosity of water at room temperature, OOlln Flg 2) indicate that miXing transition does not take place
cné/sec provides an appropriate viscous dissipation cutoffluring the duration of the experiments for these two Mach
level. Dalziel et al. [27] reported that the flow is contami- numbers (not shown. However, when the experimental
nated by the wake induced by the stainless steel barrier withMach number is increased to 1.3, applying our procedure, we
drawal at 10 sec. Assuming the late time similarity scalingPredict mixing transition may occur approximately &t
we found that the Reynolds number is just about here- = 2.5 ms[Fig. 3(¢)]. Supporting this, the PLIF image for the
fore, if the test section could be enlarged sufficiently, thehighest Mach number shows characteristically well devel-
mixing transition induced by RTI, in principle, can be mea- 0ped turbulent flow mixing structure in the vorticity genera-
sured without the contamination of the wake. tion region of secondary flow beneath the contact interface.

We next examine some low Mach number shock tubé?dll PLIF images are captured at the same experimental time
experiments that provide encouraging evidence of our abilitkt=6 ms) for comparison.
to predict mixing transition times. These experimental inves- As noted previously, the third class of experiments are
tigations of RMI flow development are usually carried out in described and discussed in detail in a separate publication
shock tubes using elastic-plastic membranes to separate thé9]-
two gases. However, the presence of these membranes, in
addition to introducing other experimental problems, such as
the introduction of unwanted material strength influences on
the initial conditions, obstruct use of advanced visualization For the high-Reynolds number, high Mach number flows
techniques such as planar laser induced fluoresa¢td€&).  of particular interest in many of our current research inter-
In recent years Jacobs and co-workg28] have developed ests, compressibility significantly and directly influences the
and successfully applied a new technique by which a pereuter scalesg, the associated outer-scale Reynolds numbers,
turbed gas-gas contact surface interface is created in thee, and their growth rates, while indirectly influencing the
shock tube without having to resort to a separating meminner scales through significant alteration to transport and
brane. A two-gas impingement stagnation plane of separatiostate properties at these extremely energetic and highly com-
is created using two small slots on opposing sides of th@ressed flow conditions.
shock tube walls. These act as injection inlets for the two The outer-scale direct influences are readily measured in
gases flowing from opposing ends of the tube. A gentle rockthe experiments concomitant with measured changes to flow
ing motion of the shock tube provides the initial perturbationstate properties. They are also explicitly traced in the fully
in the form of momentarily stationary waves. In their studies,compressible numerical simulations currently applied to ana-
PLIF visualization has been implemented and digital image$yze and complement the experiments. However, to provide a
captured for a sequence of low Mach numbers€M.107, fresh perspective on some of the more significant effects of
1.207, and 1.8 The visualization(Fig. 2) yields very clear compressibility on turbulent mixing layers and their potential
views of the instability growt28]. The mixing width and influences on our unsteady mixing transition procedure we

FIG. 2. PLIF images of RMI shock tube flow development at
=6 ms for incident shock Mach numbers: 1.1, 1.2, and(fr@n
ef.[28)).

IV. INFLUENCES OF COMPRESSIBILITY
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cm Schlichting(Ref. [33]).

However, compressibility induces a significant reduction
in the (spatial or temporalgrowth rateof the outer, charac-
teristic scales in comparison to their incompressible growth
rate. This observable reduction in growth rate is a manifes-
tation of the increasin@with increasing Mach numbgcom-
petition between density variation influences on momentum
and thermal energy dissipation in compressible shear layers.
This predominately affects the outer, low frequency, flow
scales, since most of the turbulent kinetic energy subject to
this competition between momentum and thermal energy
i time (ms) transport is produced and contained within the low fre-
(a) 1 2 3 4 5 guency, large scale production end of the inertial range of the
turbulent energy spectrum. This compressible flow competi-
tion between variable density and temperature changes in

N 2 N LB BB B O B B BB

5

Mix amplitude
w

NN E RN RN N WY RN

3 free shear layer mixing has stimulated considerable experi-
5 46000 b mental attention. For example, the thermal and density varia-
g ] tion competition and its influence on the dynamics of the
2 44000 ; large scale free shear layer flow structure has been system-
35 E atically examined in the well-known studies of Brown and
2 42000 ] Roshko[50].
E 3 For wall-bounded, compressible shear layers, the reduc-
40000 tion in growth rate has been found to have an inverse depen-
1.. dence on the square of the outer-flow Mach number. The
time (ms) . . . . ;
(b) approximate ratio of compressible to incompressible growth
rates, based on a large number of experiments in air at low
cm Mach number (M<2.7) is found to follow the scaling
(Schlichting[33)),
0.12
] (1+cbM?) "L,
o O ]
s ] Herecb denotes the product of two dimensionless quantities:
2 008 ] thermal recovery factor and shear stress coefficient. The
§’ 0. ] product,ch, varies from about 1/10 to nearly unity depending
3 ] on surface heat transfer, gas composition, and thermody-
0. 1 namic state.
0.02 ] A somewhat different Mach number dependence has been
] observed for the ratio of compressible to incompressible free
© i IR S c time (ms) shear layer growth rates at moderate flow Mach numbers.

More recent experimental evidence indicates that the effec-
FIG. 3. (8 Temporal evolution of the mixing zone amplitude tive Mach number dependence should be based on the “con-
from a My= 1.3 shock tube experiment based on a fit of the experi-vective Mach number” which is evaluated at the sound speed
mental dataRef. [31]) h=2[0.234+1.66 Sinh 1(0.5%)]. (b) RM associated with the recovery temperature for the two inter-
outer-scale Reynolds number based on outer s@@l€omparison  acting free shear streams and their relative velociffRepa-
of the length scales for the RMI flow at $# 1.3 (Solid line, tem-  moschou and RoshK®1]). At higher Mach numbers, indi-
porally developing least upper bound; dash line, temporally develcations are that the ratio of compressible to incompressible
oping greatest lower bouhd growth rates for both bounded and free shear layers become
asymptotic to a constant small valu@,(1/5).
will briefly review some of the salient visible and experimen-  The direct, outer scale, compressibility influences are ef-
tally verifiable features. fectively isolated from the high frequency dissipatiomi-
When transition to turbulence is attained in either com-croscale range by the substantial inertial range associated
pressible or incompressible flow, the visible mixing lengthwith the usual high-Reynolds numbers of the experiments.
scales undergo immediate and pronounced size increasggcalized, high frequency, dissipation range influences of
over pretransitionallaminan scales. For example, in station- compressibility on the statistical velocity correlations are
ary, wall-bounded shear mixing layers, the ratio of turbulentcommonly approximated as near-infinitesimal corrections to
to laminar normal scale dimensions increases as a weakbe density-velocity product distributions. In recognition of
exponential function of the characteristic outer-scale Reythe lack of an adequate experimental or direct numerical

nolds number, simulation data baséat the Reynolds numbers and Mach
numbers of practical interestthis approximation is com-
S(turbulent/ 8(laminan ~ (1/14Re*1°, monly applied, based partially on the assumption of very low
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values(with respect to 1.0pof the characteristic Mach num- whereg(t) may represent either a constdRTl) or an im-
ber of the ensemble averaged velocity fluctuations in conpulsive acceleratiofiRMI). The heavy fluid is denoted by
junction with the negligibly low ratio of the averaged density =s (spikes and the light fluid is denoted hiy=b (bubbles.
fluctuations to the mean background density. This behavior i¥; is the bubble or spike penetration velocity.denotes the
also predicted on the relatively large population of micros-density.s is the model constant for the buoyancy production
cale dynamic encounters in the high frequency range whicland Cy is the drag coefficient. Note that

suggests a dynamic environment sufficiently dense in inter-

actions to promote and maintain a reasonable approximation dh;

of a spatially homogeneous, near stationary statistical state. Vi= dt
However, much more experimental evidence is sought, par-
ticularly, in decaying high Mach number turbulent flow to whereh; denotes the instantaneous width of the mixing re-
evaluate and improve our insight on microscale range insergion.
sitivity to direct effects of compressibility. The choice of specific surface and volume ratios leads to
Our particular emphasis and attention here is given to theéne apparent variation in the form of the basic buoyancy-drag
Indirect effects of high Mach number compressible flow andmodels applied by many investigators. For example, the
its influences on the microscale dissipation range cutoff of/ariation in forms applied by Youngd9], by Dimonte and
the energy spectrum and corresponding contraction of thgchneider{22], and by Shvarts and co-workef%,23]. We
inertial range. The critical quantities here are the high dentake particular note, however, of two recent refinements. The
sity, very high temperature transport properties, particularlywvork by Cheng, Glimm, and Shaf@3] illustrates existence
viscosity and diffusivity, and the thermodynamic and par-of a compelling universality in the theory. Their buoyancy-
tially ionized plasma composition states that develop in theirag model fits all available data, including the limit Af
high energy laser driven RTI and RMI experiments, and the=1. This model also requires only a single numerical param-
supernova astrophysical events of primary interest to useter (independent of Atwood number, for al<0.8). The
These influences and other issues affecting our procedure afigodel also predicts, for most valuesAfRMI data in terms
evaluated and discussed in detail in the separately publishest RT| bubble data for most values @& Shvarts and co-
experimental pap€r29]. workers [42,43 have shown that a buoyancy-drag model,
similar to that proposed by Young49], but using the coef-
ficients from theA=1 Layzer model16], can be used to
study the difference in the dynamics of development for 2D
and 3D instability surface evolution.

V. SCALING. PARALLELS BETWEEN BUOYANCY-DRAG
AND SINGLE POINT CLOSURE MODELS

The buoyancy-drag modgl6—1§ is in common use for Now in the case of a single, dominant length scale, the
a description of the evolution of the mixed region materialturbulent kinetic energy equations for bubbles and spikes be-
penetration boundaries in RTI and RMI driven flopg9—-  come
23]. The model equation represents the force balance consist-
ing of three components: inertia, buoyancy, and Newtonian K:EV? 2
drag. The physical assumption inherent in the buoyancy-drag a2

model is the existence of a single growing length scale, on

the order of the thickness of the mixing zone itself, govern-and the buoyancy production is

ing the dynamics of the mixing zone boundaries. Thus the

model assumes that the large and growing length scale de- Gi«Vig. ()
fined by the mixing layer thickness dominates the dynamics

and that the effects of the small length scales can be ignordgrom the buoyancy-drag model, we have

for the purpose of studying the bulk motion of the mixing 2
layer [23]. The buoyancy-drag model has been developed V. DV = BV,Ag(t)—C pi V_il | @)
with regard to acceleration driven hydrodynamic instabili- ' Dt ! dp1+p2 hy '

ties. It is instructive to view this in parallel with a length

scale dominant single point closure transport model with atwith the empirical introduction of coefficient8A to the
tention to potential applications in transitional computationsbuoyancy production an€gp;/(p1+ p,) to the dissipation
and analysis. To this end we make use of observations on tHéte term. The turbulent length scale introduced by the sur-
single point closure modeling hierarchy review by Spezialgface and volume ratid,, must, from dimensional similarity,

[24], by Wilcox [25], and more recently by Pogé1]. be proportional to the only outer length scale apparent in the
processh;, the mixing zone amplitude for either bubbles for
o . , , . spikes.
A. Before mixing transition with a single dominant scale Assuming that the effects represented by these terms can
The typical buoyancy-drag model equation can be writterPe neglected in the developing stage before mixing transition
in the following form: to turbulence, Eq(4) reduces to
dv; na—C Py (area L DK_G DK3’2 5
at =PRI~ Co ViVl Goiime (1) T -~ (5)
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Using the assumptiofin the context of a buoyancy-drag K312
mode) that there is a single, dominant length scale, we shall e=D T 9
show a useful parallel between the buoyancy-drag model and
the one-equation transport model.
whereD is a dimensionless constant that can be determined
by experimental measuremenf82] or direct numerical
) _ _ ) simulations[53,54.

Mode coupling (nonlinear interactionseffects broaden The buoyancy-drag model and calculated results from its
the spectrum of length scales. Velocity shear between th@se may thereby be seen as a preliminary stage. It possesses
spikes and bubbles then leads to Kelvin-Helmholtz instabili-5 girect link (including definition of initial and boundary
ties, which further broaden the spectrum of scales creatingonditions to familiar models for computation in the post-
higher spatial frequencies. At large Reynolds numbers a fullransitional turbulent mixing stages. The specific link and
range of scales develops from sizes comparable to the size gksqciation is here made to the familiar hierarchy of succes-
the system all the way down to those of the Kolmogorovsjye |evels of first order, single point closure, Reynolds-
viscous dissipation scale. averaged turbulent transport modg¢ld,24,29. This corre-

_ One-equation turbulence models were developed to praspondence with the one-equation transport model and well-
vide for the computation of the specific turbulent kinetic en-estaplished route to succeeding levels of hierarchical model
ergyK and to account for some limited nonlocal and historicyefinement suggests a systematic procedure for including
effects in the determination of the turbulent transport coeffiyytiple length scale effects after mixing transitifor ex-

cient (eddy viscosity,vr). The transport equation is written gmple, by the two-equation transport mof2s]).
[11,24,25 as

B. After mixing transition with broad band spectrum

oK —oK au; d (VT dK VI. SUMMARY AND DISCUSSION

at Uik TO T TGk TP ok —ﬂ”VZK-
: ) i\ Tk R A key finding from the present work is the suggestion that
a new approach should be adopted in considering transitional
flows induced by acceleration driven hydrodynamic instabili-
ties. Of particular importance is the observation that the con-
viscosity. The production of kinetic energy resulting from thedltlon for ach|eV|_ng mixing transition to turbulgnce In th_e
. . unsteady flows, including those associated with most high
Reynolds stress;;=u;u; is the second term on the right : . . X ; >
; ] g . . energy density compressible flow experiments, is quite dif-
hand side(RHS). In single point, one equation transport : ; X
i ferent from the fixed Reynolds number almost universal cri-
model closure, the Reynolds stress is related to the eddtyé. : . )
. . rion found for stationary flows. In fact this stationary flow
viscosity by R oo e
eynolds-number criterion is a necessary but not a sufficient
) mixing transition condition for unsteady flows. Essentially,

(6)

Hereu_i is the mean velocityG is a sourcgother than mean
sheay, o is a dimensionless constant, ané the kinematic

7= VT(% + i (7y  Wwe find that a sufficient condition for unsteady flow mixing
X X transition is reached when the minimum of the laminar dif-
) o fusion layer and the Liepmann-Taylor microscale dimension
where the eddy viscosity, is assumed to have the form  grows to exceed the dimension of the inner viscous micros-
T cale. In effect, this criterion for mixing transition, in general,
vr=K™L. ®) is temporally flow dependent, since both the outer scale and

. . the outer-scale Reynolds number are temporally flow depen-
HerelL is the dominant length scale. Hence, a closed systeant.

is obtained _oncd-; Is speciﬁed_empirical_ly oris varied asa  ypg temporal criterion for turbulent mixing transition
parameter in a systematic investigatiénamely, a twWo-  4m |aminar(albeit unstable laminamultifiuid flow is par-
equation mode]11,24,23). . ticularly significant when one reviews ttialways unsteady
_Toillustrate a parallel with the buoyancy-drag model, oneyjq conditions in energetic, high density experimental ef-
eliminates the follqwmg. forts to recreate astrophysical environments. For example,
(1) the production from the mean she@econd term on  ocengy it has been established that a wide range of phe-
the RHS; o . nomena relevant to supernova mixing may be addressed in a
(2) the turbulence transport term, which is customarily|yqer target interaction facilitj29,36,37. Despite the diffi-
modeled based on a gradient transport hypothiésesfourth ¢ ties in experimentally attaining mixing transition to fully
term on the RHS . .. developed turbulence in the extremely short duration of laser
(3) the last term on the RHS, the effect of viscous dissi-qyjyen flows, these experiments provide novel flow and state

pation. environments for astrophysical studi¢s5,56. They are

We also note that unique sources for ultrahigh pressure and temperature state
(4) D/IDt=24dlat+u;dl9x; denotes the substantial deriva- and transport information, which together with the elevated

tive; Reynolds-number flow and almost arbitrary target material
(5) the turbulent dissipation term, the third term on theselection freedom make this class of experiments ideal for

RHS, is modeled as these applications. Note, however, that the experimental con-
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