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Onset of turbulence in accelerated high-Reynolds-number flow
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A new criterion, flow drive time, is identified here as a necessary condition for transition to turbulence in
accelerated, unsteady flows. Compressible, high-Reynolds-number flows initiated, for example, in shock tubes,
supersonic wind tunnels with practical limitations on dimensions or reservoir capacity, and high energy density
pulsed laser target vaporization experimental facilities may not provide flow duration adequate for turbulence
development. In addition, for critical periods of the overall flow development, the driving background flow is
often unsteady in the experiments as well as in the physical flow situations they are designed to mimic. In these
situations transition to fully developed turbulence may not be realized despite achievement of flow Reynolds
numbers associated with or exceeding stationary flow transitional criteria. Basically our transitional criterion
and prediction procedure extends to accelerated, unsteady background flow situations the remarkably universal
mixing transition criterion proposed by Dimotakis@P. E. Dimotakis, J. Fluid Mech.409, 69 ~2000!# for
stationary flows. This provides a basis for the requisite space and time scaling. The emphasis here is placed on
variable density flow instabilities initiated by constant acceleration Rayleigh-Taylor instability~RTI! or impul-
sive ~shock! acceleration Richtmyer-Meshkov instability~RMI! or combinations of both. The significant in-
fluences of compressibility on these developing transitional flows are discussed with their implications on the
procedural model development. A fresh perspective for predictive modeling and design of experiments for the
instability growth and turbulent mixing transitional interval is provided using an analogy between the well-
established buoyancy-drag model with applications of a hierarchy of single point turbulent transport closure
models. Experimental comparisons with the procedural results are presented where use is made of three
distinctly different types of acceleration driven instability experiments:~1! classical, relatively low speed,
constant acceleration RTI experiments;~2! shock tube, shockwave driven RMI flow mixing experiments;~3!
laser target vaporization RTI and RMI mixing experiments driven at very high energy density. These last
named experiments are of special interest as they provide scaleable flow conditions simulating those of
astrophysical magnitude such as shock-driven hydrodynamic mixing in supernova evolution research.

DOI: 10.1103/PhysRevE.67.056305 PACS number~s!: 47.27.Ak, 47.27.Cn
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I. INTRODUCTION

Our principal contribution here is the development of
turbulent mixing transitional criterion and a procedure
modeling and predicting the required time interval to achie
transition when the background flow is unsteady rather t
stationary. We submit that such a criterion and estimat
procedure is essential for analysis, experimental design,
diagnostic development. Emphasis is on studies of extrem
energetic, high pressure, supersonic, high-Reynolds-num
flow environment of current and continuing interest. Cons
ered are applications in supersonic combustion, hypers
aerothermodynamic design, and astrophysical stellar
planetary evolution research, among others. Specific em
sis here is given to research on the evolution of turbul
mixing states originating with accelerated flow instabiliti
such as RTI ~Rayleigh-Tailor instability! @1,2# or RMI
~Richtmyer-Meshkov instability! @3,4#. The researcher need
to conceptually bridge the significant transitional flow inte
val separating the initial accelerated unstable flow conditi
@5–7# from their potential evolution into fully developed tu
bulence @8–11#. The investigator charged with design
analysis of experiments in a supersonic, high energy fl
facility must determine the energetic drive duration~shock
tube length, diameter and drive energy density, or laser p
sequencing, for example! to ensure that mixing transition
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may be reliably attained during a test interval of unstea
background flow. The attendant problem of diagnostics
sign and implementation capable of recording a suffici
sequence of flow realizations for experimental verificati
also demands reliable estimates of mixing transition time
this paper we introduce the development, implementat
and test of a criterion and model procedure which provid
this information for accelerating, unsteady, compressib
high-Reynolds-number flows.

To avoid ambiguity here we define fully developed turb
lence as the concluding state of flow evolution which resu
in a statistically random distribution of velocity and sta
variable ~such as density and temperature! perturbations
within a mean transient or stationary background flow a
thermodynamic state. The concluding flow and state per
bations must reach sufficient intensity and persistence s
to excite all state-permissible, statistically distributed degr
of dynamic freedom.

The physical space visualization of turbulence may
recognized as a randomly distributed, seemingly disor
nized but dynamically connected continuum array of fi
mentary structures of all size scales with intermitten
changing boundaries and topological features. Howe
Fourier transformation of physical space observations
veals the universal spectral characteristics of fully develo
turbulence. One such spectral characteristic of onset
©2003 The American Physical Society05-1
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eventual attainment of fully developed turbulence is
growth and establishment of a Reynolds-number depen
inertial range separation in the universal turbulent ene
spectrum@12,13#. This inertial range separation is the tran
fer bridge for energy cascade from the larger scales of
tion where it is produced down to the smallest motion sca
where it is dissipated. In reality, of course, the energy c
cade is not unidirectional. Complete description includes
well-established~but often neglected! reverse cascade o
high frequency energy that is backscattered towards
larger production scale motions@14#. An important conse-
quence of this inertial range separation is the isolation, he
lack of direct influence of the dynamics of the largest sca
of motion on the smallest dissipation scale dynamics wh
are governed almost solely by molecular transport proces
Implicit in our procedure is development of a scale inter
tion model for estimating the time interval sufficient for e
tablishing this inertial range separation.

In our present work we generalize the mixing transiti
criteria proposed by Dimotakis@15# to include time develop-
ment of the mixing transition. One notes that establishing
time dependence and a general interval for mixing transi
to turbulence from the beginning of instability growth is n
generally feasible, since the outer-scale Reynolds num
and the foregoing key length scales may individually evo
with time as well as with variation in flow conditions. How
ever, once the time dependence of the driving inertial fl
field is established~such as is the case for RTI and RM
initiated flows! our procedure provides reasonable estima
of the time duration necessary for mixing transition to fu
developed turbulence.

Many predictions of RTI and RMI initiation and subs
quent history of the instability growth are based on the
plication of one of the variations of the familiar buoyanc
drag model@16–18#. These model predictions often illustra
general features whose details are usually traced in nume
simulations. The buoyancy-drag models have been sh
@19–23# to provide faithful representations of the early tim
instability growth and material penetration phases in dir
comparison with the experimental evidence in their m
refined and carefully applied versions. In cases wher
single length scale dominates, we illustrate here a para
between the buoyancy-drag models and a one-equation
bulence transport closure model@24,25#. We consider this
parallel in suggesting application of standard engineer
transport models for calculating the evolution of turbule
mixing of the RTI and RMI initiated flows after turbulenc
onset. Our analysis here suggests that once the mixing re
becomes turbulent, two-equation transport equations des
ing the evolution of both spatial and temporal scales
required to achieve even minimally accurate description
turbulent transport and multifluid mixing~see, for example
Ref. @26#!.

The paper is arranged as follows. First we discuss
background and development of a procedure for estima
the time required for mixing transition to turbulence wh
the background flow is nonstationary. Next, for comparis
we apply the procedure to three classes of RTI and R
experiments:~1! a classical low speed RTI experiment@27#;
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~2! shock tube initiated RMI experiments@28#; and~3! laser
driven high energy density RTI experiments@29#. Some
novel features and issues arising in the laser driven exp
ments demand special consideration, evaluation, and an
sis. The bulk of this latter discussion appears in sepa
papers@29,30#. Next we describe some of the dominant i
fluences of compressibility on transitional and developed
bulent mixing generally and their consideration in develo
ing the unsteady transitional criterion and procedural mo
specifically. In a subsequent section we will illustrate a p
allel to the buoyancy drag-model with single point closu
transport models, beginning with a prototypical on
equation, single point, turbulent transport closure model,
lowed by subsequent examination of more general sin
point transport model closure schemes.

We complete the present paper with a summary and c
clusions.

II. PREDICTED TIME INTERVAL FOR MIXING
TRANSITION TO TURBULENCE

A key in establishing the necessary time needed
achieving mixing transition to turbulence is to understand
physical relationship between several important len
scales. These length scales emerge in part from analys
the governing Navier-Stokes equation, conservation of
ergy, conservation of mass, and the classical statistical fl
dynamic ~Kolmogorov! representation of turbulent flow
@8–11#. The principal length scales under consideration
clude the following.

Length scale 1, The outer scale, d. The largest dynamic
flow length scale at which the external forcing~the drive
which produces both the overall background flow kinetic e
ergy and the kinetic energy of the turbulent fluctuations! is in
action.

Length scale 2, Dissipation (Kolmogorov) scale, lk . The
smallest dynamic flow length scale~microscale! at which the
continuum fluid turbulent kinetic energy dissipates in exci
tion of molecular scale motions. This is the limiting or sma
est length scale at the boundary between turbulent contin
motion and the molecular scale motions, represented on
average by the Boltzmann collision integral averaged tra
port properties.

The classical Kolmogorov theory@8–11# assumes that in
the inertial subrange, the dynamics at an intermediate sc
l, cannot be influenced by the outer, low frequency scalesd,
where turbulent energy is produced, nor can it be influen
by the inner, high frequency, viscous dissipation scales@rep-
resented by the Kolmogorov microscale,lK5(n3/«)1/4,
wheren is the kinematic viscosity and« is the dissipation
rate of the turbulent kinetic energy#.

lK!l!d.

The outer-scale Reynolds number

Re5
Ud

n

5-2
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ONSET OF TURBULENCE IN ACCELERATED . . . PHYSICAL REVIEW E67, 056305 ~2003!
must be defined carefully. It depends on the types of the fl
field. HereU is the characteristic velocity.

Length scale 3. The Taylor microscalelT . Another mi-
croscale having special utility is the Taylor microscalelT
somewhat larger than the Kolmogorov microscale previou
introduced. This microscale is directly related to the turb
lent statistical velocity autocorrelation function. It has a sp
cial identity and role in analysis and simulation of turbule
flow statistical structure@8–11#.

A. Mixing transition threshold proposed by Dimotakis
for stationary flows: A review

Recently, Dimotakis@15# assessed a large number of e
periments and concluded that mixing transition occurs
shear layers, jets, Couette-Taylor flows, and other station
flows when a novel Reynolds-number threshold for mixi
transition was reached. The comparisons suggested th
may be regarded as a nearly universal phenomenon sig
ling attainment of turbulent mixing transition. Dimotak
pointed out that the mixing transition threshold reflects
inability of the flow to remain stable as the damping effe
of viscosity are reduced with increasing Reynolds numb
Furthermore, the mixing transition occurs at Reynolds nu
bers beyond the classical velocity field transition and rep
sent a subsequent, often well-identified, transition in the fl
@15#. For all these flows, visualization illustrates that t
mixing transition is rather abrupt and results in an incre
ingly disorganized three dimensionality and sudden incre
in atomically mixed material.

The transition to a well-mixed state for jets, shear laye
boundary layers, and Couette-Taylor flows illustrates qu
tatively different behavior below and above a narrow ran
of Reynolds numbers. Dimotakis found that for all of the
flows, the resulting fully developed turbulent flow requir
that an outer-scale Reynolds number of Re>1–23104, or a
Taylor microscale Reynolds number of ReT>100– 140 must
be attained. Furthermore, mixing transition appeared in
extensive survey of stationary flows to be almost indep
dent of the details of the flow geometry. Dimotakis@15#
noted that the mixing transition coincides with the appe
ance of the inertial range.

The mixing transition threshold proposed by Dimotak
for stationary flows marks a significant advance in refin
and narrowing the Reynolds-number criterion for predict
mixing transition to fully developed turbulence. Dimotak
@15# illustrated that in the case of shear layers,U is taken as
the constant free-stream velocity difference andd is taken as
the local depth of the shear layer~or, in the case of a chemi
cally reacting shear layer, the local depth of the reaction z
within the shear layer!. In the case of round, turbulent jets,U
is taken as the local centerline velocity of the jet whiled is
taken as the local jet diameter. He pointed out that the c
acteristic flow structural difference between shear layers
jets and their dependence on local values, is of interest in
context of spatially developing flows and the evolution of t
distribution of scales and turbulence spectra.

The energy spectral interval of the complete Kolmogor
inertial range is usually too broad to be of practical use
05630
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experimental designs. To fix a tighter bound, Dimotakis p
posed that the extent of the effective inertial range influe
barrier can be narrowed to

ln,l,lL ,

where two new length scales can be deduced from the Ta
and dissipation microscales.

Length scale 4. The inner viscous scaleln . This may be
estimated@15# as a multiple of the Kolmogorov microscal
by inspecting the high-Reynolds experimental data comp
by Saddoughi and Veeravalli@13#, ln'50lK'50d Re23/4.

Length scale 5. The Liepmann-Taylor scalelL . This is
the upper limit of the microscale mixing range@15#. With d
representing the outer laminar vorticity growth thickness
is related to the Taylor correlation microscalelT . Based on
the experimental data, Dimotakis@15# determined thatlL
55lT , wherelT5d Re21/2. In nondimensional form,

ln

d
'50 Re23/4,

l

d
,

lL

d
'5 Re21/2.

The criterion for mixing transition to turbulence can b
determined only by the outer-scale Reynolds numbers, fo
given outer scaled. The insight offered by Dimotakis@15#
provides guidance for future experimental designs directe
achieving mixing transition in a wide range of stationa
flows.

B. New mixing transition threshold proposed
for time-dependent flows

The mixing problem for many applications is a trans
tional problem. For high energy density physics applicatio
such as experiments on lasers andZ pinches, flows start from
rest at t50. In high-Reynolds-number flows of short tim
duration, the Taylor microscale may not have sufficient tim
to reach its asymptotic value.

The Taylor microscale~for stationary, homogeneous, iso
tropic flow! depends on the integral scaled and the Reynolds
number aslT;d Re21/2. This is analogous to the develop
ment of a laminar viscous boundary layer on a flat platel
;X Re21/2 ~see Fig. 1!. For time-dependent viscous flow
classical similarity governs the outer-scale growth rate
follows.

Length scale 6. Growth rate of an outer-scale visco
shear layer scalelD . For time-dependent flows, we need
consider an additional scale, a growth rate scale. This is
vided by the growth rate of an outer-scale viscous sh
layer. We take this to represent the basic scale length gro

FIG. 1. Sketch of the development of a laminar viscous bou
ary layer on a flat plate.
5-3
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ZHOU, ROBEY, AND BUCKINGHAM PHYSICAL REVIEW E67, 056305 ~2003!
rate of shear generated vorticity. In our procedure this
given by the classical viscous layer similarity growth rate
a solid surface accelerated initially from rest. This similar
form for viscous shear layer growth was first identifi
nearly 150 yr ago and independently confirmed in seve
classical 19th century theoretical studies~Stokes@31#, Ray-
leigh @1#, Lamb @32#!. The temporal development of such
laminar viscous layer is well known to vary as (nt)1/2

@1,10,31,32#,

lD[C~nt !1/2.

Here the coefficient of the diffusion layer,C, was suggested
asA15 for isotropic, homogeneous turbulence@10#, as four
for unsteady parallel flows@33#, and as five for boundary
layer ~following the Liepmann-Taylor constant by Dimotak
@15#!.

For unsteady mixing transitional flows of interest here,
generalize the proposal of Dimotakis based on the follow
three observations.

~i! The outer scaled and the outer-scale Reynolds num
bers are both functions of time.

~ii ! The least upper bound of the developing inertial ran
influence barrier is the minimum of the Liepmann-Tayl
scalelL and laminar viscous scalelD : lmin[min@lL ,lD#.

~iii ! The greatest lower bound of the inertial range infl
ence barrier is the developing inner viscous scaleln .

The inequality just introduced provides a sufficient con
tion for estimating a mixing transition criterion for unstea
transitional flows, viz.,

lmin.ln .

For time-dependent transitional flows, mixing transition
achieved when a range of scales exists such that the tem
rally developing least upper bound is significantly larger th
the temporally developing greatest lower bound. In the pr
ence of a sufficient Reynolds number an additional inter
of time is required to generate the scales needed for a mi
transition@Re.(1–2)3104 and t.tC(lmin ,ln)].

Dimotakis @15# has made use of the classic viscous sim
larity transform in space; our application is in time. In eith
application, the temporal similarity transform is unique f
viscous flows. There are no others. Its origin is in the m
19th century as we noted already. Its application to mix
transition in the temporal sense is our contribution.

Care must be taken to properly compute the transp
properties, particularly viscosity@34# and for multifluid
flows, the diffusivity@35# at material interfaces in multifluid
mixing. Additional emphasis has been given to astrophys
flow situations and laser target interaction experiments
signed to create flow conditions which can mimic them w
appropriate scaling. Here the plasma influences on the fl
tuating fluidynamic field transport properties on calcula
scale growth are subjects of present and continuing exp
mental and theoretical research in these intensely ener
applications~@29,36,37#!.

We emphasize here flow situations where the explicit ti
dependence of the driving flow has been determined theo
cally and experimentally. This is a necessary first requ
05630
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ment in order to advance our procedure for application t
more general class of transitional mixing flow situations.
this regard, the time dependence of Re(t), ln(t), lL(t), and
lD(t) have intrinsic and independent dependence on de
oping outer flow conditions so that no universally applicab
criterion in terms of arbitrary time dependence of the ou
scale can be obtained.

C. Application of time-dependent mixing transition to RTI
and RMI induced flows

For the RTI and RMI induced flows, the outer-leng
scaled is uniquely identified~Cook and Dimotakis@38#! as
the mixing zone extent,h. The velocityU is given by its
growth rateḣ. Indeed, we stress that this mixing zone leng
scale is aligned with the flow vector rather than perpendi
lar to it as in the case of the previously described sh
layers. We offer a few remarks on the significance of t
flow aligned scale growth in RT and RMI investigations.

We note that the instability growth eigenvalues in t
outer RTI and RMI acceleration driven flows are compone
aligned with the acceleration vector. They are uniquely ch
acterized by streamwise component instability scales, in
tinct contrast to supplemental scale growth in normal or
eral directions. These scales characterize the l
developing, secondary, shear-driven instabilities. In the c
sical RTI theory only the distribution of streamwise amp
tudes appear as initial perturbation conditions. The ortho
nal dimensions and shape factors are parametrically impo
initial conditions on spatial frequency with periodic boun
ary conditions@5#. In effect, parametric variation of initia
amplitudes and distributions in model calculations prov
for systematic investigation of the influence of material
terface surface roughness on the actual physical situat
under study. Of course, prediction of the growth of the sca
developing orthogonally to the streaming coordinate in
secondary, later developing, shear layers, and particularly
evolution of critical microscales within them, and their rel
tion to the overall ‘‘clock time’’ associated with the oute
background acceleration driven scaled, are implicitly con-
sidered in our procedure.

We now illustrate the time dependence for a specific fl
in which we know ~from measurement or simulation! the
time history of the outer flow. The heavy fluid is denoted
i 5s ~spikes! and the light fluid is denoted byi 5b ~bubbles!.
We identify the length scaled with average amplitude o
depth of the turbulent material mixing zone

h~ t !5hb~ t !1hs~ t !.

For example, for the case of RTI flow, we know how th
outer scale develops as a function of time, and therefore,
the outer-scale Reynolds number depends on time. wh
satisfies the scaling law@39#

hi~ t !5a iAgt2.

Note thata5as1ab is the sum of two constants.
The Atwood number is given by
5-4
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A5
r12r2

r11r2
.

Using the form introduced in Zhou@40#, the scaling law
for the RMI flows is

hi5
K0

3/2

«0
H 11~C«221!

«0

K0
tJ u i

,

whereC«2 is a constant.K0 and«0 are the initial values of
turbulent kinetic energy and dissipation rate. Some theor
cal analysis estimated the values ofub to be between 2/3–
7/12 ~Zhou @40#!. Shvartet al. suggested values for the ex
ponentub are 0.4 for 2D@41# and 0.2–0.25 for 3D@42,43#.
Other studies reported the values ofub to be 2/3~Barenblatt
@44#, Youngs@45#, Ramshaw@46#!. For an initial condition
where the multiple length scales are reduced to a sin
dominant length scale, we have

hi5L0H 11~C«221!
V0

&L0

tJ u i

.

Shvartset al. @42# presented a detailed discussion on t
scaling of nonlinear RMI~as well as RTI! in two and three
dimensions. They argued that the RMI mixing zone is ch
acterized by two distinct scalestub andtus for the bubble and
spike front respectively, withus /ub'11A for both two and
three dimensions. Theub is found to be 0.2 for 3D@43#.
Clark and Zhou@47#, on the other hand, have argued th
ub5us[u, but with different time origin.

For RTI driven flow, we find that, by substituting R
52(aAg)2t3/n, the condition for the mixing transition indi
cateslD(t),lL(t) ~i.e., temporally limited flow develop-
ment!,

C~nt !1/2.50d Re23/4,

which gives the condition

tT.
1

2 S 50

C D 4/3

n1/3~aAg!22/3

for achieving mixing transition in RTI driven flows. For th
case oflD(t).lL(t) ~essentially the stationary flow limit o
the Liepmann-Taylor scale!, however, we demand that

lL~ t !55 Re21/2d.ln550d Re23/4.

As a result, the critical time for achieving mixing transitio
becomes

tT.10351/3n1/3~aAg!22/3.

The conditions of the flow, such as the Atwood number, v
cosity, and acceleration, determine which condition sho
apply.

Following the same procedure, we can estimate the t
required for achieving mixing transition for an RMI drive
flow. For simplicity, we take the late time limit and assum
us5ub so that
05630
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which is applicable for both multiple length scales case

g[2H ~C«221!
K0

~322ub!/2ub

«~12ub !/ub
J ub

or single dominant length scale case

g[2H ~C«221!
V0L0

~12ub! /ub

&
J ub

.

Now the outer-scale Reynolds number is

Re5
hḣ

n
'

ubg2t2ub21

n
.

For the temporally limited flow development case, we ha

tT.H 50n1/4

Cub
3/4g1/2J 4/~2ub21!

,

while for the stationary flow limit of Liepmann-Taylor scale
we find

tT.H 104
n

ubg2J 1/~2ub21!

.

For the RTI and RMI driven flow, the Kolmogorov scale an
the Taylor microscale are also time dependent~straightfor-
ward so not shown to limit the length of the paper!:

lK5h~ t !Re23/4}t21/4

and

lT~ t !'h~ t !Re21/2}t1/2.

The corresponding Reynolds number based on the Ta
microscale is given byRl'Re1/2}t3/2.

The turbulent kinetic energy and dissipation rate are
two most important quantities in turbulence modeli
@24,25#. Here the turbulent kinetic energy can be estima
as proportionately time dependent

K'S dh

dt D
2

}t2,

and from dimensional considerations the dissipation r
goes as

«'
~dh/dt!3

h
}t.

The turbulence length scale, defined from these two m
surements as,K3/2/«, clearly reduces to thet2 scaling. The
turbulence time scale, defined byK/«, is abouth/(dh/dt)
5t/2.

Sadotet al. @48# have proposed an alternative growth la
encompassing the linear, early nonlinear~see also the impor-
5-5
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ZHOU, ROBEY, AND BUCKINGHAM PHYSICAL REVIEW E67, 056305 ~2003!
tant theory by Zhang and Sohn@49#!, and later, pretransi
tional, asymptotic instability behavior of bubble and spi
amplitude. Recently, Jacobs and Krivets@28# reported that
the model by Sadotet al. @48# provides excellent agreemen
with the Mach 1.3 shocktube experiment. The model am
tude consists of both an inverse tangent function and a n
ral log and can be regarded as the outer scaled when repeat-
ing our analysis here. For brevity, we will not carry out th
straightforward calculation here.

III. ILLUSTRATIONS WITH EXPERIMENTAL
COMPARISONS

We first consider a classical fluid dynamics experim
conducted at Cambridge University@27#. The referenced au
thors describe an experimental investigation of Raylei
Taylor instability between two miscible fluids. This expe
ment made use of a unique low-perturbation remo
technique that minimized Kelvin-Helmholtz instabilit
growth. The specific object of the experiment was the inv
tigation of the gravitationally driven instability between sa
and fresh water layers. The experimental apparatus w
tank with longitudinal and lateral dimensions
2003400 mm2 and a height ofH5500 mm. The Atwood
number is about 0.002. Since the Atwood number is low,
kinematic viscosity of water at room temperature, 0.
cm2/sec provides an appropriate viscous dissipation cu
level. Dalziel et al. @27# reported that the flow is contam
nated by the wake induced by the stainless steel barrier w
drawal at 10 sec. Assuming the late time similarity scali
we found that the Reynolds number is just about 104. There-
fore, if the test section could be enlarged sufficiently,
mixing transition induced by RTI, in principle, can be me
sured without the contamination of the wake.

We next examine some low Mach number shock tu
experiments that provide encouraging evidence of our ab
to predict mixing transition times. These experimental inv
tigations of RMI flow development are usually carried out
shock tubes using elastic-plastic membranes to separat
two gases. However, the presence of these membrane
addition to introducing other experimental problems, such
the introduction of unwanted material strength influences
the initial conditions, obstruct use of advanced visualizat
techniques such as planar laser induced fluorescence~PLIF!.
In recent years Jacobs and co-workers@28# have developed
and successfully applied a new technique by which a p
turbed gas-gas contact surface interface is created in
shock tube without having to resort to a separating me
brane. A two-gas impingement stagnation plane of separa
is created using two small slots on opposing sides of
shock tube walls. These act as injection inlets for the t
gases flowing from opposing ends of the tube. A gentle ro
ing motion of the shock tube provides the initial perturbati
in the form of momentarily stationary waves. In their studi
PLIF visualization has been implemented and digital ima
captured for a sequence of low Mach numbers (Ms51.107,
1.207, and 1.3!. The visualization~Fig. 2! yields very clear
views of the instability growth@28#. The mixing width and
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Reynolds number for Ms51.3 are given in Figs. 3~a! and
3~b!, respectively.

Applying our procedure, we find that in the experimen
at Ms51.107 and Ms51.207, our predictions and the exper
ments~as evident from the PLIF images which can be se
in Fig. 2! indicate that mixing transition does not take pla
during the duration of the experiments for these two Ma
numbers ~not shown!. However, when the experimenta
Mach number is increased to 1.3, applying our procedure,
predict mixing transition may occur approximately att
52.5 ms@Fig. 3~c!#. Supporting this, the PLIF image for th
highest Mach number shows characteristically well dev
oped turbulent flow mixing structure in the vorticity gener
tion region of secondary flow beneath the contact interfa
All PLIF images are captured at the same experimental t
(t56 ms) for comparison.

As noted previously, the third class of experiments a
described and discussed in detail in a separate publica
@29#.

IV. INFLUENCES OF COMPRESSIBILITY

For the high-Reynolds number, high Mach number flo
of particular interest in many of our current research int
ests, compressibility significantly and directly influences t
outer scales,d, the associated outer-scale Reynolds numb
Re, and their growth rates, while indirectly influencing t
inner scales through significant alteration to transport a
state properties at these extremely energetic and highly c
pressed flow conditions.

The outer-scale direct influences are readily measure
the experiments concomitant with measured changes to
state properties. They are also explicitly traced in the fu
compressible numerical simulations currently applied to a
lyze and complement the experiments. However, to provid
fresh perspective on some of the more significant effects
compressibility on turbulent mixing layers and their potent
influences on our unsteady mixing transition procedure

FIG. 2. PLIF images of RMI shock tube flow development
t56 ms for incident shock Mach numbers: 1.1, 1.2, and 1.3~from
Ref. @28#!.
5-6
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will briefly review some of the salient visible and experime
tally verifiable features.

When transition to turbulence is attained in either co
pressible or incompressible flow, the visible mixing leng
scales undergo immediate and pronounced size incre
over pretransitional~laminar! scales. For example, in station
ary, wall-bounded shear mixing layers, the ratio of turbul
to laminar normal scale dimensions increases as a we
exponential function of the characteristic outer-scale R
nolds number,

d~ turbulent!/d~ laminar!;~1/14!Re3/10,

FIG. 3. ~a! Temporal evolution of the mixing zone amplitud
from a Ms51.3 shock tube experiment based on a fit of the exp
mental data~Ref. @31#! h52@0.23411.66 Sinh21(0.57t)#. ~b! RM
outer-scale Reynolds number based on outer scale.~c! Comparison
of the length scales for the RMI flow at Ms51.3 ~Solid line, tem-
porally developing least upper bound; dash line, temporally de
oping greatest lower bound!.
05630
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Schlichting~Ref. @33#!.
However, compressibility induces a significant reducti

in the ~spatial or temporal! growth rateof the outer, charac-
teristic scales in comparison to their incompressible grow
rate. This observable reduction in growth rate is a manif
tation of the increasing~with increasing Mach number! com-
petition between density variation influences on moment
and thermal energy dissipation in compressible shear lay
This predominately affects the outer, low frequency, flo
scales, since most of the turbulent kinetic energy subjec
this competition between momentum and thermal ene
transport is produced and contained within the low f
quency, large scale production end of the inertial range of
turbulent energy spectrum. This compressible flow comp
tion between variable density and temperature change
free shear layer mixing has stimulated considerable exp
mental attention. For example, the thermal and density va
tion competition and its influence on the dynamics of t
large scale free shear layer flow structure has been sys
atically examined in the well-known studies of Brown an
Roshko@50#.

For wall-bounded, compressible shear layers, the red
tion in growth rate has been found to have an inverse dep
dence on the square of the outer-flow Mach number. T
approximate ratio of compressible to incompressible grow
rates, based on a large number of experiments in air at
Mach number (M,2.7) is found to follow the scaling
~Schlichting@33#!,

~11cbM2!21.

Herecb denotes the product of two dimensionless quantiti
thermal recovery factor and shear stress coefficient.
product,cb, varies from about 1/10 to nearly unity dependin
on surface heat transfer, gas composition, and thermo
namic state.

A somewhat different Mach number dependence has b
observed for the ratio of compressible to incompressible f
shear layer growth rates at moderate flow Mach numb
More recent experimental evidence indicates that the ef
tive Mach number dependence should be based on the ‘‘c
vective Mach number’’ which is evaluated at the sound sp
associated with the recovery temperature for the two in
acting free shear streams and their relative velocities~Papa-
moschou and Roshko@51#!. At higher Mach numbers, indi-
cations are that the ratio of compressible to incompress
growth rates for both bounded and free shear layers bec
asymptotic to a constant small value,O ~1/5!.

The direct, outer scale, compressibility influences are
fectively isolated from the high frequency dissipation~mi-
croscale! range by the substantial inertial range associa
with the usual high-Reynolds numbers of the experimen
Localized, high frequency, dissipation range influences
compressibility on the statistical velocity correlations a
commonly approximated as near-infinitesimal corrections
the density-velocity product distributions. In recognition
the lack of an adequate experimental or direct numer
simulation data base~at the Reynolds numbers and Mac
numbers of practical interest!, this approximation is com-
monly applied, based partially on the assumption of very l

i-

l-
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values~with respect to 1.0! of the characteristic Mach num
ber of the ensemble averaged velocity fluctuations in c
junction with the negligibly low ratio of the averaged dens
fluctuations to the mean background density. This behavio
also predicted on the relatively large population of micro
cale dynamic encounters in the high frequency range wh
suggests a dynamic environment sufficiently dense in in
actions to promote and maintain a reasonable approxima
of a spatially homogeneous, near stationary statistical s
However, much more experimental evidence is sought,
ticularly, in decaying high Mach number turbulent flow
evaluate and improve our insight on microscale range ins
sitivity to direct effects of compressibility.

Our particular emphasis and attention here is given to
Indirect effects of high Mach number compressible flow a
its influences on the microscale dissipation range cutoff
the energy spectrum and corresponding contraction of
inertial range. The critical quantities here are the high d
sity, very high temperature transport properties, particula
viscosity and diffusivity, and the thermodynamic and p
tially ionized plasma composition states that develop in
high energy laser driven RTI and RMI experiments, and
supernova astrophysical events of primary interest to
These influences and other issues affecting our procedur
evaluated and discussed in detail in the separately publis
experimental paper@29#.

V. SCALING. PARALLELS BETWEEN BUOYANCY-DRAG
AND SINGLE POINT CLOSURE MODELS

The buoyancy-drag model@16–18# is in common use for
a description of the evolution of the mixed region mater
penetration boundaries in RTI and RMI driven flows@19–
23#. The model equation represents the force balance con
ing of three components: inertia, buoyancy, and Newton
drag. The physical assumption inherent in the buoyancy-d
model is the existence of a single growing length scale,
the order of the thickness of the mixing zone itself, gove
ing the dynamics of the mixing zone boundaries. Thus
model assumes that the large and growing length scale
fined by the mixing layer thickness dominates the dynam
and that the effects of the small length scales can be ign
for the purpose of studying the bulk motion of the mixin
layer @23#. The buoyancy-drag model has been develop
with regard to acceleration driven hydrodynamic instab
ties. It is instructive to view this in parallel with a lengt
scale dominant single point closure transport model with
tention to potential applications in transitional computatio
and analysis. To this end we make use of observations on
single point closure modeling hierarchy review by Spezi
@24#, by Wilcox @25#, and more recently by Pope@11#.

A. Before mixing transition with a single dominant scale

The typical buoyancy-drag model equation can be writ
in the following form:

dVi

dt
5bAg2Cd

r i

r11r2
Vi uVi u

~area!

~volume!
, ~1!
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whereg(t) may represent either a constant~RTI! or an im-
pulsive acceleration~RMI!. The heavy fluid is denoted byi
5s ~spikes! and the light fluid is denoted byi 5b ~bubbles!.
Vi is the bubble or spike penetration velocity.r i denotes the
density.b is the model constant for the buoyancy producti
andCd is the drag coefficient. Note that

Vi[
dhi

dt
,

wherehi denotes the instantaneous width of the mixing
gion.

The choice of specific surface and volume ratios leads
the apparent variation in the form of the basic buoyancy-d
models applied by many investigators. For example,
variation in forms applied by Youngs@19#, by Dimonte and
Schneider@22#, and by Shvarts and co-workers@7,23#. We
take particular note, however, of two recent refinements. T
work by Cheng, Glimm, and Sharp@23# illustrates existence
of a compelling universality in the theory. Their buoyanc
drag model fits all available data, including the limit ofA
51. This model also requires only a single numerical para
eter ~independent of Atwood number, for allA,0.8). The
model also predicts, for most values ofA, RMI data in terms
of RTI bubble data for most values ofA. Shvarts and co-
workers @42,43# have shown that a buoyancy-drag mod
similar to that proposed by Youngs@19#, but using the coef-
ficients from theA51 Layzer model@16#, can be used to
study the difference in the dynamics of development for
and 3D instability surface evolution.

Now in the case of a single, dominant length scale,
turbulent kinetic energy equations for bubbles and spikes
come

Ki5
1

2
Vi

2, ~2!

and the buoyancy production is

Gi}Vig. ~3!

From the buoyancy-drag model, we have

Vi

DVi

Dt
5bViAg~ t !2Cd

r i

r11r2

Vi
2

hi
uVi u, ~4!

with the empirical introduction of coefficientsbA to the
buoyancy production andCdr i /(r11r2) to the dissipation
rate term. The turbulent length scale introduced by the s
face and volume ratio,L, must, from dimensional similarity
be proportional to the only outer length scale apparent in
process,hi , the mixing zone amplitude for either bubbles f
spikes.

Assuming that the effects represented by these terms
be neglected in the developing stage before mixing transi
to turbulence, Eq.~4! reduces to

DK

Dt
5G2D

K3/2

L
. ~5!
5-8
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Using the assumption~in the context of a buoyancy-dra
model! that there is a single, dominant length scale, we s
show a useful parallel between the buoyancy-drag model
the one-equation transport model.

B. After mixing transition with broad band spectrum

Mode coupling ~nonlinear interactions! effects broaden
the spectrum of length scales. Velocity shear between
spikes and bubbles then leads to Kelvin-Helmholtz instab
ties, which further broaden the spectrum of scales crea
higher spatial frequencies. At large Reynolds numbers a
range of scales develops from sizes comparable to the siz
the system all the way down to those of the Kolmogor
viscous dissipation scale.

One-equation turbulence models were developed to
vide for the computation of the specific turbulent kinetic e
ergyK and to account for some limited nonlocal and histo
effects in the determination of the turbulent transport coe
cient ~eddy viscosity,nT). The transport equation is writte
@11,24,25# as

]K

]t
1ui

]K

]xi
5G2t i j

]ui

]xj
2«1

]

]xi
S nT

sk

]K

]xj
D1n¹2K.

~6!

Hereui is the mean velocity,G is a source~other than mean
shear!, sk is a dimensionless constant, andn is the kinematic
viscosity. The production of kinetic energy resulting from t
Reynolds stresst i j 5uiuj is the second term on the righ
hand side~RHS!. In single point, one equation transpo
model closure, the Reynolds stress is related to the e
viscosity by

t i j 52nTS ]ui

]xj
1

]uj

]xi
D , ~7!

where the eddy viscosityn t is assumed to have the form

nT5K1/2L. ~8!

HereL is the dominant length scale. Hence, a closed sys
is obtained onceL is specified empirically or is varied as
parameter in a systematic investigation~namely, a two-
equation model@11,24,25#!.

To illustrate a parallel with the buoyancy-drag model, o
eliminates the following.

~1! the production from the mean shear~second term on
the RHS!;

~2! the turbulence transport term, which is customar
modeled based on a gradient transport hypothesis~the fourth
term on the RHS!;

~3! the last term on the RHS, the effect of viscous dis
pation.

We also note that
~4! D/Dt5]/]t1ui]/]xi denotes the substantial deriv

tive;
~5! the turbulent dissipation term, the third term on t

RHS, is modeled as
05630
ll
nd

e
i-
g
ll
of

o-
-

-

dy

m

e

-

«5D
K3/2

L
, ~9!

whereD is a dimensionless constant that can be determi
by experimental measurements@52# or direct numerical
simulations@53,54#.

The buoyancy-drag model and calculated results from
use may thereby be seen as a preliminary stage. It posse
a direct link ~including definition of initial and boundary
conditions! to familiar models for computation in the pos
transitional turbulent mixing stages. The specific link a
association is here made to the familiar hierarchy of succ
sive levels of first order, single point closure, Reynold
averaged turbulent transport models@11,24,25#. This corre-
spondence with the one-equation transport model and w
established route to succeeding levels of hierarchical mo
refinement suggests a systematic procedure for includ
multiple length scale effects after mixing transition~for ex-
ample, by the two-equation transport model@26#!.

VI. SUMMARY AND DISCUSSION

A key finding from the present work is the suggestion th
a new approach should be adopted in considering transiti
flows induced by acceleration driven hydrodynamic instab
ties. Of particular importance is the observation that the c
dition for achieving mixing transition to turbulence in th
unsteady flows, including those associated with most h
energy density compressible flow experiments, is quite
ferent from the fixed Reynolds number almost universal c
terion found for stationary flows. In fact this stationary flo
Reynolds-number criterion is a necessary but not a suffic
mixing transition condition for unsteady flows. Essential
we find that a sufficient condition for unsteady flow mixin
transition is reached when the minimum of the laminar d
fusion layer and the Liepmann-Taylor microscale dimens
grows to exceed the dimension of the inner viscous micr
cale. In effect, this criterion for mixing transition, in genera
is temporally flow dependent, since both the outer scale
the outer-scale Reynolds number are temporally flow dep
dent.

The temporal criterion for turbulent mixing transitio
from laminar~albeit unstable laminar! multifluid flow is par-
ticularly significant when one reviews the~always unsteady!
flow conditions in energetic, high density experimental
forts to recreate astrophysical environments. For exam
recently, it has been established that a wide range of p
nomena relevant to supernova mixing may be addressed
laser target interaction facility@29,36,37#. Despite the diffi-
culties in experimentally attaining mixing transition to full
developed turbulence in the extremely short duration of la
driven flows, these experiments provide novel flow and st
environments for astrophysical studies@55,56#. They are
unique sources for ultrahigh pressure and temperature
and transport information, which together with the eleva
Reynolds-number flow and almost arbitrary target mate
selection freedom make this class of experiments ideal
these applications. Note, however, that the experimental c
5-9
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-ditions associated with the target interaction using intens
energetic laser beams brings in several novel issues f
plasma physics, which must be thoroughly understood
appreciated in interpreting the results and applying our m
ing transition criterion. These issues and attendant diagno
and interpretive considerations together with applications
our temporal transitional criterion and model procedure
discussed in a separate publication@29#.
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