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Linearized stability analysis of accelerated planar and spherical fluid interfaces
with slow compression

John D. Ramshaw and Peter A. Amendt
Lawrence Livermore National Laboratory, University of California, P.O. Box 808, L-097, Livermore, California 94551

~Received 5 November 2002; published 13 May 2003!

We present linearized stability analyses of the effect of slow anisotropic compression or expansion on the
growth of perturbations at accelerated fluid interfaces in both planar and spherical geometries. The interface
separates two fluids with different densities, compressibilities, and compression rates. We show that a pertur-
bation of large mode number on a spherical interface grows at precisely the same rate as a similar perturbation
on a planar interface subjected to the same normal and transverse compression rates.
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I. INTRODUCTION

There is an increasing interest in the effects of slow co
pression on the growth of small perturbations at unsta
fluid interfaces@1,2#. The meaning of ‘‘slow’’ in this context
is that the compression rates are assumed to be sufficie
small that the density remains essentially uniform in sp
within each fluid. This, in turn, requires the Mach numb
associated with the compression velocities to be small. H
ever, a prolonged slow compression~or expansion! will
eventually result in large density changes, so the resul
integrated compression need not, and, in general, will not
small. Results of this type are also useful as simple appr
mations to the behavior at higher Mach numbers, as t
capture the essential global effects of compression with
the additional complications of a fully compressible tre
ment. Such results are useful in estimating the growth
interfacial instabilities during the implosion of inertial con
finement fusion capsules@2#, where compression effects a
essential.

The effects of slow compression can readily be de
mined by the application of linear stability analysis to
slight generalization of the conventional potential flo
theory @1,2#. Such analyses have recently been reported
accelerated shear layers in planar geometry@1# and for ac-
celerated interfaces in spherical geometry@2#. In Ref. @2# the
two fluids were allowed to have different compression rat
while Ref. @1# was restricted to the case in which the co
pression rates were the same in both fluids. Our main
pose here is to generalize the planar analysis of Ref.@1# to
allow for unequal compression rates in the absence of sh
Thus we neglect the Kelvin-Helmholtz instability while re
taining the Rayleigh-Taylor and Richtmyer-Meshkov ins
bilities and hybrid combinations thereof. The further gen
alization of the planar case to nonzero tangential veloci
~i.e., accelerated shear layers! with different compression
rates in the two fluids is considerably more complicated a
will be presented elsewhere.

The present generalization of the planar analysis to
equal compression rates may then be compared to the c
sponding spherical results of Amendtet al. @2#. For this pur-
pose, however, it is convenient to slightly generalize
spherical analysis to allow the compression rate in the in
1063-651X/2003/67~5!/056304~5!/$20.00 67 0563
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fluid to be independent of the interface motion. This mak
the results more symmetrical and facilitates comparison w
the planar case, where the compression rates are, of co
also independent of the acceleration of the interface. We
argue that this generalization of the spherical analysis
likely to provide a more accurate approximation in situatio
where the densities are no longer uniform within each flu

A comparison of the evolution equations for the perturb
tion amplitudes in the planar and spherical cases then sh
that a perturbation with large Legendre mode number o
spherical interface grows at precisely the same rate as a s
lar perturbation on a planar interface with the same norm
and transverse compression rates. This shows that inter
curvature effects become negligible for large mode numb
and has the practical consequence that in this limit the pla
analysis is equally applicable in spherical geometry. A sin
formulation is therefore sufficient to describe and analy
both cases.

II. PLANAR GEOMETRY

In the absence of tangential velocities parallel to the
terface, the planar case requires only straightforward mo
fications to the previous treatment of Ref.@1#. We consider
an initially planar interface that separates two immiscib
fluids with negligible surface tension in zero gravity. Th
unit normal to the interface is denoted byn, which by con-
vention points from fluid 1 into fluid 2. The system is su
jected to a time-dependent normal accelerationa(t)n relative
to an inertial laboratory frame. However, it is more conv
nient to describe the system in a comoving Cartesian coo
nate frame in which the unperturbed interface remains
tionary for all t. The interface is then defined by the tim
independent equationn•r50, wherer is the position vector
relative to an origin located somewhere on the interface. T
system then experiences an artificial external body force
unit mass of2a(t)n due to the acceleration of the coord
nate frame.

Without yet perturbing the interface, we now suppose t
the two fluids are being anisotropically compressed and
expanded~i.e., strained! at rates that are uniform within eac
fluid but may differ between the two fluids. In the notation
Ref. @1#, the unperturbed velocity of fluidi then becomes
ui

D5Di•r , where the uniform symmetric tensorDi5“ui
D is
©2003 The American Physical Society04-1
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the gradient of the velocity field associated with the co
pression or expansion within fluidi. Thus negative eigenval
ues ofDi imply compression, while positive eigenvalues im
ply expansion in their respective principal directions. T
normal components of the velocitiesui

D must, of course, be
continuous at the interface, and indeed must vanish there
the interface to remain stationary. This requiresn•Di•t50,
where t is any tangent vector normal ton; i.e., n•t50. It
follows thatDi must be of the formDi5Dninn1Dt i , where
Dt i•n50, so thatDni5n•Di•n. Moreover, in order to pre-
vent the compression velocities from generating second
Kelvin-Helmholtz instabilities, we must further require th
tangential components ofui

D to be continuous at the inter
face; i.e.,t•Dt1•t5t•Dt2•t. Sincet is an arbitrary tangentia
vector, this impliesDt15Dt2[Dt . Thus only the normal
components ofD1 andD2 can differ, andDi takes the form

Di5Dninn1Dt . ~1!

Since the compressions or expansions are uniform wi
each fluid, the fluid densitiesr i also remain uniform within
each fluid but now become dependent on time according

ṙ i52Dir i , ~2!

where Di5“•ui
D5Di :U5Dni1Dt , Dt5Dt :U, and U is

the unit dyadic.
The remainder of the analysis requires only straightf

ward modifications to the development of Ref.@1#, so most
of the details will be omitted. The interface is perturbed
subjecting each pointr thereof to a small vectorial displace
ment h(t)Cn, where C5cos@k(t)•r #, k•n50, and uhku
!1 @3#. The interface is then defined by the equationn•r
5hC. As before, the time dependence ofk is necessary to
allow for the change in wavelength due to the tangen
compression; i.e., nonzeroDt . This time dependence is de
termined by@1#

k̇52Dt•k52D•k, ~3!

which further implies thatk̇52Dkk, where k5uku and
k2Dk5k•D•k5k•Dt•k. The resulting potential flow field in
fluid i to first order inh is given by ui5¹f i , where f i

5f i
D1f i8 , f i

D5 1
2 r•Di•r , and

f i857
1

k
~ ḣ2Dnih!Ce7kn•r, ~4!

where the upper sign applies forn•r.hC ( i 52), and the
lower sign forn•r,hC ( i 51).

The pressures in the two fluids are determined by
generalized time-dependent Bernoulli equation@1#

pi52r i S ]f i

]t
1 1

2 u¹f i u21a~ t !n•r D1pi
0~ t !, ~5!

where pi
0(t) is a function of time alone. Settingn•r5hC

and linearizing inh, we find
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pi5pi
0~ t !1pi

CC, ~6!

where

kpi
C56r iF d

dt
~ ḣ2Dnih!1Dk~ ḣ2Dnih!G2r iakh. ~7!

If Eq. ~6! is spatially averaged over the interface, the cos
term averages to zero and drops out. Thuspi

0 has the signifi-
cance of the average pressure of fluidi, which is related tor i

by an appropriate equation of state:pi
05 f i(r i).

The dynamical evolution of the system is determined
requiringp15p2 for all k•r . The two terms inpi in Eq. ~6!
are linearly independent, so their coefficients must be se
rately equal; i.e.,p1

0(t)5p2
0(t) and p1

C5p2
C . The former

condition implies a relation between the overall compress
rates in the two fluids, since it may be differentiated w
respect to time to yieldr1(d f1 /dr1)D15r2(d f2 /dr2)D2.
For isentropic compressions, this reduces to

r1c1
2D15r2c2

2D2 , ~8!

where ci is the speed of sound in fluidi. Since Di5Dni
1Dt , Eq. ~8! is a constraint on the allowed values ofDn1 ,
Dn2, andDt , only two of which can be independently spec
fied.

The conditionp1
C5p2

C determines the equation of motio
for the linearized time evolution of the perturbation amp
tudeh. After some algebra, this equation reduces to

(
i 51

2

r iF d

dt
~ ḣ2Dnih!1Dk~ ḣ2Dnih!G5Drka~ t !h, ~9!

whereDr5r22r1. In the special case whenDt50, so that
Dt5Dk50 and Dni5Di , Eq. ~9! reduces to the infinite-
thickness limit (d1 ,d2→`) of Eq. ~62! of Goncharovet al.

@4#. Sincek̇52Dkk, Eq. ~9! can be cast into the more com
pact form

r1

d

dt F1

k
~ ḣ2Dn1h!G1r2

d

dt F1

k
~ ḣ2Dn2h!G5Dra~ t !h.

~10!

Equation~9! can also be rewritten in an alternative form th
more clearly exhibits the effects of unequal compress
rates:

d

dt
~ ḣ2D̄nh!1Dk~ ḣ2D̄nh!5k

d

dt F1

k
~ ḣ2D̄nh!G

5@Aka~ t !1B~DD !2#h,

~11!

where (r11r2)D̄n5r1Dn11r2Dn2 , DD5Dn22Dn15D2
2D1 , A5Dr/(r21r1) is the Atwood number andB
5r1r2 /(r11r2)2. In the special case whereDn15Dn2

[Dn , D̄n reduces toDn , DD50, and Eq.~11! reduces to
the result of setting the transverse velocity differenceDu
50 in Eq. ~22! of Ref. @1#. In the general case whereDn1
4-2
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ÞDn2, we see that the time derivative of the net instabil
growth rateḣ2D̄nh is increased by the termB(DD)2h, in
which the coefficient ofh is positive definite. It is interesting
to note that this term enters into the evolution equation
much the same way as the Kelvin-Helmholtz growth te
B(k•Du)2h in Eq. ~22! of Ref. @1#. It even has the sam
density dependence, but it has a different wavelength de
dence, being of zeroth rather than second order ink.

It is also of interest to reexpress Eq.~9! in terms of the
masses transported across the original unperturbed inte
by the instability, which removes the purely geometrical
fects of normal compression on the perturbation amplitudh
@1#. The mass of fluidi that has moved across some Lagran
ian areaA of the original interface by timet is given by
Mi(t)5p21r iAh, where Ȧ5DtA due to the transvers
compression@1#. The total mass having crossed that area
time t is thereforeM5M11M2, the evolution equation for
which is readily found to be

M̈1~D̄n1Dk!Ṁ5@Aka~ t !1B~DD !2#M , ~12!

which generalizes Eq.~23! of Ref. @1# to nonzeroDD. Equa-
tion ~12! shows that when the purely geometrical effects
normal compression onh are removed, the remaining dy
namical effects of compression enhance the instab
growth in two ways:~a! the mean compression rate increas
M̈ by a term proportional toṀ , just as before@1#, while ~b!
the difference between compression rates further incre
M̈ by a term proportional toM.

III. SPHERICAL GEOMETRY

An analogous analysis of the effects of slow compress
on instability growth at accelerated spherical interfaces
recently been presented by Amendtet al. @2#. It is of interest
to compare the planar and spherical cases to obtain ins
into how and why they differ, and the circumstances un
which one may or may not be accurately approximated
the other. For this purpose, however, it is convenient
slightly generalize the analysis of Ref.@2# as described be
low.

We consider an initially spherical interfacer 5R(t) in
spherical polar coordinates, wherer is the radial coordinate
This interface separates an inner fluid 1 and an outer flu
with different densities and compressibilities. The unit n
mal n to the unperturbed interface is then identical to the u
vector in the radial direction. The unperturbed velocity fie
ui

D in fluid i is assumed to be purely radial with unifor
divergenceDi . Thus ui

D5uin and r 2Di5(]/]r )(r 2ui), so
that ui5

1
3 Dir 1Ei /r 2, whereEi is an integration constant

Since Di is uniform within each fluid, the fluid densitie
continue to obey Eq.~2!. The unperturbed interface is a La
grangian surface, so the velocitiesui must be continuous
with the common valueṘ at r 5R. This implies

Ei5R2Ṙ2 1
3 R3Di , ~13!
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which determinesEi in terms ofDi and the motion of the
interface. Combining Eqs.~2! and ~13! for i 51, we find
4pr1E15ṁ1, wherem15(4p/3)R3r1 is the total mass of
the inner fluid 1. Thus a nonzero value ofE1 implies a ve-
locity singularity and a corresponding mass source or sink
strength 4pr1E1 at the origin. In Ref.@2#, this singularity
and mass source were ruled out on physical grounds
were therefore removed by settingE150, which implies
ṁ150 and D153Ṙ/R. Here, however, we shall leaveE1
arbitrary, thereby allowingD1 to be specified independentl
of the interface motion. This leads to more symmetrical
sults and facilitates the comparison to the planar case, w
D1 is, of course, also independent of the acceleration of
interface.

The velocity gradient tensorDi5“ui
D in fluid i is given

by

Di5
]ui

]r
nn1

ui

r
~U2nn!5S 1

3
Di2

2Ei

r 3 D nn

1S 1

3
Di1

Ei

r 3D ~U2nn!. ~14!

In contrast to the planar case, we see thatDi is no longer
spatially uniform within each fluid, even though its traceDi
is uniform by assumption.

It is straightforward to repeat the analysis of Ref.@2# for
an arbitrary value ofE1, so the details will again be omitted
The final result may be written as

r1

,

d

dt
@R~ ḣ2Dn1h!#1

r2

,11

d

dt
@R~ ḣ2Dn2h!#5DrR̈h,

~15!

where, is the Legendre mode number of the perturbat
@2#, and Dni5Di22Ṙ/R, which is simply the value of
n•Di•n5(]ui /]r ) at r 5R. Equation~15! may be rewritten
in the equivalent form

r1

,

d

dt F 1

r1R

d

dt
~r1R2h!G1

r2

,11

d

dt F 1

r2R

d

dt
~r2R2h!G

5DrR̈h. ~16!

Equation~16! is identical to the infinite-shell-thickness lim
(r a→`) of Eq. ~209! of Goncharovet al. @4#, which they
derived under the assumption thatE150. The present analy
sis shows that Eq.~15! or ~16! is more generally valid for an
arbitrary value ofE1.

When the derivatives are expanded, Eq.~15! takes the
form

ḧ1S 3Ṙ

R
2V,D ḣ2S U,R̈

R
1

V,Ṙ

R
1W,D h50, ~17!

where
4-3
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U,5
,~,21!r22~,11!~,12!r1

~,11!r11,r2
, ~18!

V,5
~,11!r1D11,r2D2

~,11!r11,r2
, ~19!

W,5
~,11!r1Ḋ11,r2Ḋ2

~,11!r11,r2
. ~20!

An expression of the same form as Eq.~17! was derived
some years ago in a widely circulated unpublished memo
dum by Fisher@5#, but with an unfortunate algebraic error
the termV,Ṙh/R @2#. In the special case whereE150, D1

reduces to 3Ṙ/R, and Eq.~17! then reduces, after some a
gebra, to Eq.~4b! of Ref. @2#. If we further specialize to
situations in which the outer fluid is incompressible (D2
50), we recover a recent result of Linet al. @6#.

It is instructive to compare the planar case with t
spherical case in the limit of large mode number,,@1. In
this limit the effective wave number of the perturbation b
comesk5,/R @1#, and Eq.~15! reduces immediately to Eq
~10! with the planar accelerationa(t) replaced by the spheri
cal accelerationR̈. The planar and spherical cases with co
pression therefore become identical in the limit of lar
mode number, just as they do for incompressible fluids@1#.
This shows that there are no residual curvature effects in
limit, and that the remaining effects of the spherical geo
etry are entirely due to the transverse compression resu
from the convergence of radial lines to the origin. This co
vergence effect is unrelated to curvature and arises bec
the transverse compression rateDt cannot be specified inde
pendently in spherical coordinates but is inherently de
mined geometrically by the interface motion via the ident
Dt5Di2Dni52Ṙ/R. It follows that curvature effects intrin
sic to spherical geometry are significant only for low mo
numbers, and all remaining spherical convergence effects
merely transverse compression effects that are correctly
tured by the planar stability analysis, provided thatk andDt
are replaced by their appropriate spherical values as g
above. This provides a useful economy of description, si
both the planar case and the spherical case for,@1 can now
be analyzed using the planar results of Sec. II.

Finally, we remark that Eq.~15!, ~16!, or ~17! may also be
useful as an approximation when the fluid densitiesr i are not
strictly uniform within each fluid as assumed in the analys
In such situations, one would intuitively expect these eq
tions to provide a good approximation provided that~a! the
fluid densities remain essentially uniform over distances
.L

an
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orderh @7# and ~b! r i , Dni , andDi are interpreted as thei
local values immediately adjacent to the interface. Since
~2! applies locally in a Lagrangian sense, it may be used
determine the local interfacial values ofDi from the local
values ofr i and ṙ i . This, in turn, determines the local inte
facial values ofDni5Di22Ṙ/R. If r1 is nonuniform within
fluid 1, thenD1 must, of course, be nonuniform as well, an
its local value near the interface will in general no longer
3Ṙ/R. A nonzero value ofE1 is then required to mimic this
situation in the present analysis. The corresponding m
source or sink at the origin is artificial but harmless;
merely represents the mass source or sink that would be
quired if the true local values ofr1 andD1 near the interface
were to be maintained uniformly everywhere within fluid

IV. SUMMARY

Linear stability analyses have been performed to de
mine the effect of slow anisotropic compression or expans
on the growth of perturbations at accelerated planar
spherical interfaces between two fluids with different den
ties, compressibilities, and compression rates. The resu
ordinary differential equations that govern the time dep
dence of the perturbation amplitudes are given by Eq.~9!,
~10! or ~11! in the planar case, and by Eq.~15!, ~16!, or ~17!
in the spherical case. We have also shown that when
transverse compression rates in the planar case are pro
specialized to those in the spherical case, the perturba
growth rates in the two cases become identical for la
mode number. This correspondence implies that interf
curvature effects become negligible in that limit, and that
remaining ‘‘convergence’’ effects commonly associated w
spherical geometry are in reality merely transverse comp
sion effects that are completely and correctly captured b
planar stability analysis. This observation lends some va
able insight into the intrinsic nature of curvature, compre
sion, and convergence effects, and helps to clarify the
tinctions between them. It also has the practical advant
that the same equations can now be used to analyze
cases.
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@7# The essential physical condition for this uniformity is that t
time required for sound waves to travel a distance of orderuhu
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