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Linearized stability analysis of accelerated planar and spherical fluid interfaces
with slow compression
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We present linearized stability analyses of the effect of slow anisotropic compression or expansion on the
growth of perturbations at accelerated fluid interfaces in both planar and spherical geometries. The interface
separates two fluids with different densities, compressibilities, and compression rates. We show that a pertur-
bation of large mode number on a spherical interface grows at precisely the same rate as a similar perturbation
on a planar interface subjected to the same normal and transverse compression rates.
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[. INTRODUCTION fluid to be independent of the interface motion. This makes
the results more symmetrical and facilitates comparison with
There is an increasing interest in the effects of slow comthe planar case, where the compression rates are, of course,
pression on the growth of small perturbations at unstabl@lso independent of the acceleration of the interface. We also
fluid interfaceq1,2). The meaning of “slow” in this context argue that this generalization of the spherical analysis is
is that the compression rates are assumed to be sufficientiely to provide a more accurate approximation in situations
small that the density remains essentially uniform in spacdvhere the densities are no longer uniform within each fluid.
within each fluid. This, in turn, requires the Mach number A comparison of the evolution equations for the perturba-
associated with the compression velocities to be small. Howton amplitudes in the planar and spherical cases then shows
ever, a prolonged slow compressigar expansion will that a per_turbatlon with large ngendre made number on a
eventually result in large density changes, so the resultin pherical interface grows at precisely the same rate as a simi-

integrated compression need not, and, in general, will not, b r perturbation on a pIanar interface V.V'th the same .normal
small. Results of this type are also useful as simple approxi"fmd transverse compression rgtgs. This shows that interface

C ’ . curvature effects become negligible for large mode number,
mations to the behavior at higher Mach numbers, as the

h ial alobal eff f . th ¥4nd has the practical consequence that in this limit the planar
capture the essential global effects of compression WIthouf . is is equally applicable in spherical geometry. A single

the additional complications of a fully compressible treat-¢qrmyation is therefore sufficient to describe and analyze
ment. Such results are useful in estimating the growth of)yh cases.

interfacial instabilities during the implosion of inertial con-
finement fusion capsuld®], where compression effects are
essential.

The effects of slow compression can readily be deter- In the absence of tangential velocities parallel to the in-
mined by the application of linear stability analysis to aterface, the planar case requires only straightforward modi-
slight generalization of the conventional potential flow fications to the previous treatment of RgL]. We consider
theory[1,2]. Such analyses have recently been reported fon initially planar interface that separates two immiscible
accelerated shear layers in planar geomgtiyand for ac-  fluids with negligible surface tension in zero gravity. The
celerated interfaces in spherical geomg#j In Ref.[2] the  unit normal to the interface is denoted hy which by con-
two fluids were allowed to have different compression ratesyention points from fluid 1 into fluid 2. The system is sub-
while Ref.[1] was restricted to the case in which the com-jected to a time-dependent normal accelerasifnn relative
pression rates were the same in both fluids. Our main puito an inertial laboratory frame. However, it is more conve-
pose here is to generalize the planar analysis of Réfto  nient to describe the system in a comoving Cartesian coordi-
allow for unequal compression rates in the absence of shearate frame in which the unperturbed interface remains sta-
Thus we neglect the Kelvin-Helmholtz instability while re- tionary for allt. The interface is then defined by the time-
taining the Rayleigh-Taylor and Richtmyer-Meshkov insta-independent equatiom-r =0, wherer is the position vector
bilities and hybrid combinations thereof. The further gener-relative to an origin located somewhere on the interface. The
alization of the planar case to nonzero tangential velocitiesystem then experiences an artificial external body force per
(i.e., accelerated shear layemsith different compression unit mass of—a(t)n due to the acceleration of the coordi-
rates in the two fluids is considerably more complicated andate frame.
will be presented elsewhere. Without yet perturbing the interface, we now suppose that

The present generalization of the planar analysis to unthe two fluids are being anisotropically compressed and/or
equal compression rates may then be compared to the correxpandedi.e., straineglat rates that are uniform within each
sponding spherical results of Amerttal. [2]. For this pur-  fluid but may differ between the two fluids. In the notation of
pose, however, it is convenient to slightly generalize theRef. [1], the unperturbed velocity of fluid then becomes
spherical analysis to allow the compression rate in the innecuiD= D;-r, where the uniform symmetric tensBri=Vu!3 is

II. PLANAR GEOMETRY
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the gradient of the velocity field associated with the com- pizp?(t)+pi(:C, (6)
pression or expansion within fluid Thus negative eigenval-

ues ofD; imply compression, while positive eigenvalues im- where

ply expansion in their respective principal directions. The q

normal components of the velocitie$ must, of course, be koC=+ ol —(h=D-h)+Du(h—D-h) = p.akh. (7
continuous at the interface, and indeed must vanish there for P==pi) g nif) +Dil i) |~ piakh. (1)

the interface to remain stationary. This require®;-t=0, ) i . .
wheret is any tangent vector normal 1o, i.e., n-t=0. It If Eq. (6) is spatially averaged over the interface, the cosine

follows thatD; must be of the fornD;=Dnn+Dy;, where ~ €rM averages to zero and drops out. ThPisas the signifi-
D,i-n=0, so thatD,;=n-D;-n. Moreover, in order to pre- Cance of the average pressure of flyid/hich is related tg;,
vent the compression velocities from generating secondarly an appropriate equation of Starél-:fi(l)i)_- _
Kelvin-Helmholtz instabilities, we must further require the ~ The dynamical evolution of the system is determined by
tangential components af° to be continuous at the inter- requiringp,=p, for all k-r. The two terms irp; in Eq. (6)
face; i.e.t-Dyy-t=t-Dy,-t. Sincet is an arbitrary tangential are linearly independent, so their coefficients must be sepa-
o T . . L 0/+y— 0 C_C
vector, this impliesD;;=D,,=D;. Thus only the normal rately equal; i.e.p;(t)=p,(t) and py=p;. The former
components 0D; andD, can differ, andD; takes the form condition implies a relation between the overall compression
rates in the two fluids, since it may be differentiated with
D;=D,nn+D,. (1) respect to time to yielgh,(df,/dp1)D1=p,(df,/dp,)D,.
For isentropic compressions, this reduces to
Since the compressions or expansions are uniform within ) 5
each fluid, the fluid densities; also remain uniform within p1€1D1=pC5D>, ®

each fluid but now become dependent on time according t?/vhere ¢ is the speed of sound in fluid Since D;=D,,

+D,, Eq.(8) is a constraint on the allowed values bf,; ,
D,., andD,, only two of which can be independently speci-
fied.

pi=—Dipi, (2

—V.u°=D.-U=D.. -D.- -
where D; =V - U7 =D; :U=Dpi+D;, D=Dy:U, and U is The conditionp$=pS determines the equation of motion

the unit dyadic. for the linearized time evolution of the perturbation ampli-
The remainder of the analysis requires only straightfor- P P

ward modifications to the development of REF], so most tude h. After some algebra, this equation reduces to

of the details will be omitted. The interface is perturbed by 2

subjecting each point thereof to a small vectorial displace- 2 pi a(h_ D,;h)+Dy(h—D,h) [=Apka(t)h, (9)
ment h(t)Cn, where C=cogk(t)-r], k-n=0, and |hk]| i=1

<1 [3]. The interface is then defined by the equatiom
=hC. As before, the time dependence lofs necessary to oo - P
allow for the change in wavelength due to the tangentiaIDI_Dk_0 and Dy, =D;, EQ. (9) reduces to the infinite-

compression; i.e., nonzeid,. This time dependence is de- thickn_ess_limit €,d,—<) of Eq. (62) of_Goncharovet al.
termined by[1] [4]. Sincek=—D\k, Eq.(9) can be cast into the more com-

pact form

whereAp=p,—p;. In the special case whdn=0, so that

kz—Dt-kZ—Dk, (3)

dil . di1 .
. Pl&[i(h_Dnlh) +p2&h(h—Dn2h)}=Apa(t)h.
which further implies thatk=—D.k, where k=|k| and (10
k?D,=k-D-k=k-D,-k. The resulting potential flow field in
ﬂUlle to/ﬁrstDor(iier inh is given byui=V¢;, where¢;  Equation(9) can also be rewritten in an alternative form that
=¢i +¢i, ¢ =3r-Dj-r, and more clearly exhibits the effects of unequal compression
rates:

1. _
¢{=1;(h—Dmh)Ce+k“‘“, 4 d . _ . df1 . _—
a(h_Dnh)"_Dk(h_Dnh):ka E(h_Dnh)
where the upper sign applies forr>hC (i=2), and the _ )
lower sign forn-r<hC (i=1). =[Aka(t)+B(AD)]h,

The pressures in the two fluids are determined by the (11)

generalized time-dependent Bernoulli equafith -

50 where (p;+p2)Dn=p1Dp1+p2Dn2, AD=Dy2—Dp =D

i —Dq, A=Apl/(p,+p,) is the Atwood number andB

-yt ]2 . 0 1 pPI\pP27T P1 )

Pi=—pi| o T2Vl +tamn-r+pit), (6 =p1p2/(p1+p2)% In the special case wherB,;=D,,
=D,,, D, reduces tdD,,, AD=0, and Eq.(11) reduces to

where pY(t) is a function of time alone. Setting-r=hC  the result of setting the transverse velocity differenoe
and linearizing inh, we find =0 in Eqg. (22) of Ref.[1]. In the general case whek#,;
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#D,», we see that the time derivative of the net instability which determine<; in terms ofD; and the motion of the

growth rateh—Dh is increased by the terB(AD)?h, in  interface. Combining Eqst2) and (13) for i=1, we find
which the coefficient o is positive definite. It is interesting 4mp,E;=m;, wherem,;=(47/3)R%p; is the total mass of

to note that this term enters into the evolution equation inthe inner fluid 1. Thus a nonzero value Bf implies a ve-
much the same way as the Kelvin-Helmholtz growth termlocity singularity and a corresponding mass source or sink of
B(k-Au)?h in Eq. (22) of Ref. [1]. It even has the same strength 4rp,E; at the origin. In Ref[2], this singularity
density dependence, but it has a different wavelength depeland mass source were ruled out on physical grounds and
dence, being of zeroth rather than second ordé in were therefore removed by settirig; =0, which implies

It is also of interest to reexpress E@) in terms of the ), —0 andD,=3R/R. Here, however, we shall leavg,
masses transported across the original unperturbed interfaggyitrary, thereby allowind, to be specified independently
by the instability, which removes the purely geometrical ef-of the interface motion. This leads to more symmetrical re-
fects of normal compression on the perturbation amplitude gyjts and facilitates the comparison to the planar case, where
[1]. The mass of fluid that has moved across some Lagrang-p_ is, of course, also independent of the acceleration of the
ian area4 of the original interface by time is given by  interface.

M;(t)=7"'p;Ah, where A=D.A due to the transverse  The velocity gradient tensdd;=VuP in fluid i is given
compressiori1]. The total mass having crossed that area bypy
time t is thereforeM =M+ M,, the evolution equation for

which is readily found to be U U, 1 2E,
7 Tu—nm=|Zp -
o _ D,= o nn-+ ; (U=nn) 3DI 3 )nn
M+ (D,+DM=[Aka(t)+B(AD)?IM, (12
1 E
+| 5Dj+— | (U—nn). 14
which generalizes Eq23) of Ref.[1] to nonzeraAD. Equa- 37" 3 ( ) 19

tion (12) shows that when the purely geometrical effects of

normal compression oh are removed, the remaining dy- |n contrast to the planar case, we see thaiis no longer
namical effects of compression enhance the instabilit;gpatia"y uniform within each fluid, even though its trade
growth in two ways{a) the mean compression rate increaseSs yniform by assumption.

M by a term proportional td/, just as beforg1], while (b) It is straightforward to repeat the analysis of Ref] for
the difference between compression rates further increases arbitrary value oE;, so the details will again be omitted.

M by a term proportional to/. The final result may be written as

P1 d . P2 d . . ..
Ill. SPHERICAL GEOMETRY 7 gilR(=Dmh)]+ 7= S[R(h=Dyph)]=ApRN,

An analogous analysis of the effects of slow compression (15
on instability growth at accelerated spherical interfaces has
recently been presented by Amemdtal. [2]. It is of interest where{ is the Legendre mode number of the perturbation
to compare the planar and spherical cases to obtain insighg], and D,,;=D;—2R/R, which is simply the value of
into how and why they differ, and the circumstances unden-D;-n=(du;/dr) atr=R. Equation(15) may be rewritten
which one may or may not be accurately approximated byn the equivalent form
the other. For this purpose, however, it is convenient to

slightly generalize the analysis of R¢f] as described be- ppd[ 1 d , p, d d ,

low. 7 dtl o rat PR+ ﬁ[_R gi (PR h)}
We consider an initially spherical interfage=R(t) in P1 P2

spherical polar coordinates, wherés the radial coordinate. = ApRh. (16)

This interface separates an inner fluid 1 and an outer fluid 2

with different densities a_nd compressibili_ties. _The unit nor,’Equation(lB) is identical to the infinite-shell-thickness limit
maln to the unperturbed interface is then identical to the unit, —) of Eq. (209 of Goncharovet al. [4], which they
a . . ,

vgctor in the radial direction. The unperturbed velocity field .. ed under the assumption tiat=0. The present analy-

Ui in fluid i is assumed to be purely radial with uniform ;o chows that Eq15) or (16) is more generally valid for an
divergenceD;. ThusuP=u;n and r?D;=(d/dr)(r?u;), so arbitrary value ofE;.

thatu;=3Dir +E;/r?, whereE; is an integration constant.  when the derivatives are expanded, Ef5) takes the
Since D; is uniform within each fluid, the fluid densities form
continue to obey Eq2). The unperturbed interface is a La-
grangian surface, so the velocities must be continuous

with the common valu® atr=R. This implies h+

R

3R . [UR V(R
Vi - T+?+W€ h=0, (17)

E,=R?’R-iR°D;, (13  where
I
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C(L—1)p,—(£+1)(£+2)p; orderh [7] and (b) p;, D,;, andD; are interpreted as their
= €+ 1)p+Llp ; (18 local values immediately adjacent to the interface. Since Eq.
1o (2) applies locally in a Lagrangian sense, it may be used to
determine the local interfacial values Bf; from the local
(€+1)p1Dy+€p,Dy ) o : .
Tl Dplp, (190 values ofp; andp;. This, in turn, determines the local inter-
facial values oD ,;=D;—2R/R. If p; is nonuniform within
uid 1, thenD, must, of course, be nonuniform as well, an
(£+1)piD1+€p,D, fluid 1, thenD f b if Il, and

(20 its local value near the interface will in general no longer be

3R/R. A nonzero value of; is then required to mimic this

An expression of the same form as H47) was derived situation in the present analysis. The corresponding mass
some years ago in a widely circulated unpublished memorarsource or sink at the origin is artificial but harmless; it
dum by Fishef5], but with an unfortunate algebraic error in merely represents the mass source or sink that would be re-

the termV/,Rh/R [2]. In the special case whef, =0, D,  quired if the true local values gf; andD, near the interface

reduces to B/R, and Eq.(17) then reduces, after some al- were to be maintained uniformly everywhere within fluid 1.
gebra, to Eq.(4b) of Ref. [2]. If we further specialize to
situations in which the outer fluid is incompressiblB 5( IV. SUMMARY
=0), we recover a recent result of Léet al. [6].

It is instructive to compare the planar case with the
spherical case in the limit of large mode numb&s; 1. In
this limit the effective wave number of the perturbation be-

T (t+1)pittp,

Linear stability analyses have been performed to deter-
mine the effect of slow anisotropic compression or expansion
on the growth of perturbations at accelerated planar and

- . . spherical interfaces between two fluids with different densi-
comesk=£/R [1], and Eq.(15) reduces immediately to Eq. ties, compressibilities, and compression rates. The resulting

(10) with the planar acceleratiaa(t) replaced by the spheri- ordinary differential equations that govern the time depen-

cal acceleratiofiR. The planar and spherical cases with COM-dence of the perturbation amplitudes are given by @,
pression therefore become identical in the limit of Iarge(lo) or (11) in the planar case, and by E@.5), (16), or (17)
mode number, just as they do for incompressible fllilds  in the spherical case. We have also shown that when the
This shows that there are no residual curvature effects in thiggnsverse compression rates in the planar case are properly
limit, and that the remaining effects of the spherical geom-pecialized to those in the spherical case, the perturbation
etry are entirely due to the transverse compression resultin@rowth rates in the two cases become identical for large
from the convergence of radial lines to the origin_. This con-mode number. This correspondence implies that interface
vergence effect is unrelated to curvature and arises becauggrvature effects become negligible in that limit, and that the
the transverse compression rétgcannot be specified inde- remaining “convergence” effects commonly associated with
pendently in spherical coordinates but is inherently deterspherical geometry are in reality merely transverse compres-
mined geometrically by the interface motion via the identity sion effects that are completely and correctly captured by a
D.=D;—D,;=2R/R. It follows that curvature effects intrin- planar stability analysis. This observation lends some valu-
sic to spherical geometry are significant only for low modeable insight into the intrinsic nature of curvature, compres-
numbers, and all remaining spherical convergence effects agton, and convergence effects, and helps to clarify the dis-
merely transverse compression effects that are correctly capinctions between them. It also has the practical advantage
tured by the planar stability analysis, provided tkandD, that the same equations can now be used to analyze both
are replaced by their appropriate spherical values as givecases.
above. This provides a useful economy of description, since

both the planar case and the spherical casé$ot can now

be analyzed using the planar results of Sec. II.

Finally, we remark that Eq15), (16), or (17) may also be We are grateful to Karnig Mikaelian for many helpful
useful as an approximation when the fluid densigieare not  discussions and to Bill Moran for thoughtful comments on
strictly uniform within each fluid as assumed in the analysisthe manuscript. This work was performed under the auspices
In such situations, one would intuitively expect these equaef the U.S. Department of Energy by the University of Cali-
tions to provide a good approximation provided tkatthe  fornia Lawrence Livermore National Laboratory under Con-
fluid densities remain essentially uniform over distances ofract No. W-7405-Eng-48.
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