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Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes
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The net flow of electrolyte induced by an ac electric potential applied to an array of asymmetric pairs of
microelectrodes has recently been reported. The interaction between the oscillating electric field and the
oscillating induced charge at the diffuse double layer on the electrodes results in a steady electro-osmotic
velocity distribution on top of the electrodes. This slip velocity distribution is anisotropic and produces a net
flow of fluid. This paper presents a theoretical analysis of the pumping phenomena based upon an electro-
osmotic model in ac fields. The electrical equations are solved numerically using the charge simulation method.
The bulk flow generated by the electro-osmotic slip velocity is calculated. The dependence of the fluid flow on
voltage and frequency is described and compared to experiments.
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[. INTRODUCTION the component of the field normal to the electrode induces a
charge in the diffuse double layer; the tangential component
The last decade has seen a rapid growth in the develof the field produces a force on the induced charge. The force
ment of integrated microanalytical devices that function as &as a nonzero time average because if the sign of the field
laboratory on a chifpl]. New types of microelectromechani- reverses, so does the sign of the charge. This force produces
cal system$2] are also being developed. In both cases, there
is a requirement for precise control of small masses of lig-
uids, particularly where devices are used in the field of
chemical and bioanalytical sciencg3]. Many techniques
have been developed to pump liquids, including microme-
chanical methodp4], electro-osmosif5], electrowettind 6],
thermocapillary pumping[7], and electrohydrodynamic
pumping[8]. However, there are inherent drawbacks to all of
these systems; some require external temperature gradie
or high applied voltages, others use moving parts or produce
pulsating flow. Induced charge
Recently, Browret al.[9] have demonstrated pumping of
an electrolyte on an array of asymmetric microelectrodes en-
ergized by a single ac signal of the order of kHz and at low|
voltage(around 1 V. The system is, therefore, of interest in )
the development of micropumps. This type of pump fol-
lowed from the theoretical arguments regarding the unidirec-

tional flow resulting from spatially asymmetric applied po- \
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tentials[10]. The physical mechanism responsible for the

in channel '
flow is electro-osmosis in ac fields, where nonuniformities in

the field geometry produce a nonzero time-averaged electro @ \)

osmotic slip velocity at the surface of the electroffes-14. @ X
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It should be noted that this type of fluid flow is distinct from > \ 7

flow originated from electrothermal effedt8,15] which are Fast, small Slow, small

found at higher frequencies and generally, higher electrolytg ﬂ"ide?“ ﬂ"idf;“
over edge over eage

conductivities.

The.me_chamsm responsible for driving the flow is illus- FIG. 1. Schematic diagram of the physical mechanism of ac
trated in Fig. 1a), drawn for the geometry used by Brown gjectro-gsmosis in an asymmetric electrode array inside a microflu-
etal. An alternating potential difference is applied to eachigic channel (a) A diagram showing the charge induced in response
pair of asymmetric electrodes creating a nonuniform electrigy applied potentials on the electrodes, the resulting electric field in
field. At a certain time, the situation is as shown in the figureihe electrolyte, and the force on the induced chatigeA diagram

of the resulting bulk flow, with small rolls over the edges of the
electrodes and a large roll over the inner edge of the larger electrode
*Corresponding author. Email address: ramos@us.es that rolls over the others to produce a unidirectional flow.
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the electro-osmotic slip velocity, which consists of an oscil-
latory and a nonzero time-averaged component. For frequen
cies in the hundreds to kHz range, it is the time-averaged
velocity that is observed experimentally and gives rise to the
observed fluid flow. The arrangement of coplanar asymmet-
ric electrodes produces a nonsymmetric local flow that even
tually generates a global flow in the direction of broken sym-
metry[9,10].

Figure Xb) shows a simplified schematic diagram of the

Electrolyte -0, %—)O.V—w

fluid flows that occur above the electrodes in the experi- X L
ments. Rolling motion of the fluid is generated at every elec- 1 1\Gass / ()
trode edge, the magnitude of the velocity depending on the > e > E\Iectrode/s
tangential derivative of the electrical energy stored in the Wi § G Mo =

double layer at that locatiopl1,13,14. The double layer o e 4 x+l

accumulates electrical energy as a capacitor; the normal cur-

: : . FIG. 2. ti f the elect howing th -
rent to the interface charging the double layer. It is expecte% G. 2. Cross section of the electrode array showing the asym

etric pairs of electrodes and a summary of the electrical and me-

that the normal current to the interface and the electrica hanical boundary conditions.

energy stored in the double layer are more uniform along the
small electrode than along the big electrode, since they are

distributed over a shorter distance. This results in two rollds an insulating substratglass onto which an infinite peri-
over the small electrode, which are of similar size, moving inodic array of asymmetric pairs of electrodes is fabricated.
opposite direction, and, therefore, do not contribute appreciarhe electrodes are considered to be infinitely long and thin,
bly to the global directional flow. The rolls over the big sg that any single pair of electrodes can be characterized by

electrode are more asymmetric, with the higher velocity OC'vvidthswl andW,. The gaps between consecutive electrodes

curring at the edge closest to the small electrode, where th - . - :
electric field is stronger. This roll would be limited by the greGl andG, as shown in the figure. The size of a repeating

height of the chamber and follow the path shown by thebasic cell is, thereforel. =W, +G,+W,+G,. Above the

dotted arrow if the chamber were closed at the left and righE!ectrode array there is a solution of electrolyte, such as KCl,
ends. However, since the chamber is open and the other rolfith conductivity o and permittivitye. At the interfaces be-
do not extend upwards to any great height, the fluid insteagiveen the metal and the electrolyte, and glass and electrolyte,
moves outwards from the inner edge of the large electrodedouble layers are formed. The characteristic thickness of a
then up and over the outer edge and the small electrode, amtpuble layer is given by the Debye lengtly [16]. In most
then down towards the next large electrode as shown scheases, this is of the order of 10 nm, and is negligibly small
matically. This results in a directional flow along the elec-when compared to the other lengths in the system. When an
trode array as seen experimentddy. ac voltage is applied to the electrodes, an electrical current is
In Ref. [9], it was shown that the fluid flow could be established in the solution. To the first approximation, we
partly accounted for by the analytical theories laid down inassume that the applied voltage is low enough such that elec-
Refs.[11,13. However, the model presented in RgF] was  trolysis of the electrolyte does not occur. We also assume that
too simple and, if followed strictly, predicted a pumping ve-the frequency of the applied signal is low enough, i.e.,
locity in the direction opposite to that which is observed we/oc<1, so that the double layer is in quasiequilibrium
experimentally. In this paper, we present a theoretical analyf17]. Here, e/ o is the charge relaxation time of the liquid,
sis of the pumping phenomena reported in R8f.in order and can be viewed as the time an ion takes to travel the
to predict the direction, and the frequency and voltage debebye length by diffusionA3/D=s/o, where D is the
pendences of the fluid flow. This is done by using the lineamean diffusion coefficient of the ions. For periods of the
electro-osmotic model presented in Refs3,14. We begin  applied signal much greater than the charge relaxation time,
with the presentation of the electrical and mechanical equahe ions can equilibrate locally. Under these conditions, the
tions, together with the boundary conditions. The electricabulk electrolyte behaves in a resistive manner and the double
equations are then solved numerically using the charge simuayer can be considered to behave as an ideal capétifpr
lation method, taking into account the periodicity of the sys-Therefore, the electrical potential in the bulk electrolyte sat-
tem in the Green’s function. After calculating the electro-isfies Laplace’s equation
osmotic velocity, the stream function of the bulk fluid flow is
calculated through an integration of a Green’s function for
the velocity problem. Finally, the numerical results are pre-
sented, paying particular attention to the comparison with the
experimental data presented by Broeinal.

V2d=0. )

The boundary condition on the electrode surface describes
Il. FORMULATION OF THE PROBLEM the charging of the double layer due to the current in the
bulk, dqs/dt=—oE, . For sufficiently low voltage, there is
a linear relationship between the surface charge and the volt-
The system used to generate the fluid flow is shown byage drop across the double layer. In this case, the surface
the two-dimensional2D) geometry depicted in Fig. 2. There charge conservation equation can be written using phasors as

A. Equations and boundary conditions
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oM across the double laygncross the capacitorConversely,
UW:”"CDL((D_Vj): (20 when the frequency is high, most of the applied voltage is
dropped across the bulk electrolyte. The typical transition

where Cp, is the capacitance per unit of area of the totalfréquency can be estimated from simple circuit theory to be
double layer(diffuse plus compact or Stern laygrsis the ~@~0/(Cp.l) [11]. This surface capacitance can be esti-
imaginary unit,® is the potential just outside the double Mated from the Debye-tbkel theory asCp, =&/\p. The
layer, andV; is the potential applied to electrogeAt the ~ characteristic transition frequency delineating the two ex-
interface between the electrolyte and the glass, a similaféme conditions isu~(a/&)(Ap/l), which is several or-
boundary condition holds; however, in this case the boundar§lers of magnitude smaller than the charge relaxation fre-
condition can be simplified. In the absence of tangential curduency o/e. Fluid flow due to ac electro-osmosis is
rents, the total normal currerifree plus displacements  observed in the region of this characteristic frequency
continuous, [9,11,12,14.

Once the electric potential has been solved, the electro-
osmotic fluid velocity at the surface of the electrodes can be
calculated. For diffuse double layers in quasiequilibrium on
perfectly polarizable metal surfaces, the electro-osmotic slip
velocity is given by the Helmholtz-Smoluchowski formula
whereoy, &4, and®, are, respectively, the electrical con- [14,19
ductivity, permittivity, and potential in the glass. Since the
conductivity of the glass is negligible, and since the angular
frequency w<o/e<oley, the boundary condition on the sAD 5
glass from the liquid side simplifies to 7 ’

L b L P, 3
(o Isw)w—(a'g ISgG))W’ 3

Here, » is the viscosity of the fluidA®=®—®, is the
@ -0. (4) potential drop across the diffuse double layéry(is the po-
aay tential at the nonslip plangandE, is the tangential electric

- . .. field outside the double layer. For our problem, bath and
In defining both the boundary conditions, we have implicitly E, are oscillating functions of time, of frequenay. There-

ignored any lateral conduction current along the doublgq e the slip velocity has an oscillating component of fre-

Iayer..The tangential ohmi.c'current flux along.the doublequency 20 together with a steady-state componeffhere
layer is negligible because it is of the orderngf/I times the

3 , ; may also be an oscillating component of frequengywhich
normal current flux [ is a typical distance of the system jginates from the product of the intrinsic charge and the
[13]. Also, any current due to convection in the system has,jieq electric field.Since the observed fluid flow is driven
been neglected. This imposes a limit to the validity of theby the steady-state compond6t12,14, we ignore the oth-
velocity solution. In effect, in order to be consistent the sur-o.5 i any further analysis. The time-averaged horizontal

face chargeqs that is carried by convection at the double fig velocity at the interface between the double layer and
layer should be much smaller than the charge arriving at thg e puIk is[13,14)

electrodes through the normal current,

€ J
v G _v (W=7 A [(P=V)(P-V)~], (6)
i wgqd o o K

where * indicates the complex conjugate ahds the ratio

of the diffuse double layer impedance to the total double

layer impedance, given by

wherev is the slip velocity of the fluid. For typical values,
the ratiov/(wl) is very small and so the convection current
can be neglected safely3].

The boundary condition ay—c is that the potential

tends to zero. For a bidimensional problem, this is a correct : -1 c-t
i . . (iwCyq) d 1
boundary condition, provided that the total electrical flux at A=— — = —= , (7)
x=0 is zero over a wavelength, i.e., (iwCpy) Ccyjt+c;t 1+Cy/Cs
where C4 and Cg4 are the capacitances of the diffuse layer
f L2 @ dx=0 and the Stern or compact layer, respectively. The parameter
—Ldy ’ A accounts for the fact that only a fraction of the total volt-

age present across the double layer is dropped across the
This ensures that the electrical current cannot extend to indiffuse layer. For the glass-electrolyte interface, an estimate
finity. of the potential drop across the diffuse double layer shows
Owing to electrode polarizatiofl7,18, the electric field that this is negligibly small and, from Ed5), the electro-
in the bulk electrolyte is frequency dependent. When theosmotic velocity on the glass is negligitl4]. In effect, at
frequency is low, most of the applied voltage is droppedthe boundary
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b ID, B. General analysis of the solution
Ty ! @CpL(P=Pg)=ieqw ay ®) The pumping velocity) for an array of pairs of asymmet-
ric electrodes as shown in Fig. 2 is

taking the second equality, an estimate of the potential drop
X X
J’ 2u dx+J’ 4u dx)
X1 X3

across the diffuse double layer on the glass is U= E(
gg 00y  eghp e\ X2 0 ) X4 0 5
O-b,=—- ~ Dy, (9 = f —|®—-V,| dx+J —|®—V,|%dx
xg OX X

L
9 CDL 0-'y 8| N 477L

X3
which is of the order ol divided by the typical distance of eA
the systeml. ° e r = (Vi [Vl Vo2,
To obtain the velocity in the bulk, the Navier-Stokes

equations must be solved. For microsystems, the Reynolds —|<I>—V2|§3), (12
number is usually very small, so that the inertial terms in the

Navier-Stokes equations can be neglected. In the steadyherex; andx, are the positions of the edges of electrode 1,
state, and in the absence of externally applied body forcegnd x5 and x, the positions of the edges of electrode 2,

the equations reduce to therefore,X,—x1=Wy, X3—X>=Gy, X4—X3=W,, andx;
+ L_X4:Gz.
5 According to Eq.(12), the pumping velocity depends on
nV°u-Vp=0, V.u=0, (100 the values of®—V;|2 at the electrode edges. Without loss
of generality, we can choose;=0, so thatx,=W;, X3
wherep is the pressure andthe velocityu=ue+ve,. The  —w, +G,, andx,=W;+G;+W,. It is convenient to scale

boundary conditions for these equationsyatO are(a) the  |engths withW,, and potentials with the applied potential
tangential velocity is equal to the slip velocity on the e|eC'differenceV0=V2—V1. The electrical problem depends only
trodes, given by Eq6); (b) the tangential velocity is zero at on four independent nondimensional parametef&i‘
the glass; andc) the normal velocity is zero for any aty = ~ 1
=0 (electrodes and glassFar from the electrodes in the =W /W,  G1=G1/W,,  G=G,/W,, and
normal direction, the fluid can be considered to be free of- CoL@W2/o. The parametef) comes from the boundary

stress, wher@u/dy=0 andv=0. Given the periodicity of condition given by Eq(2). The pumping velocity is there-

the electrode array, we look for periodic solutions in the Or€

direction. A summary of the electrical and mechanical V2

boundary conditions is shown in Fig. 2. U=— HA(@_T/ 12— 1D —Vy2+|D -V,
49L x, 1lo 2lx,

If a net fluid flow occurs, the velocity tends te=Ueg, for
y—oo, whereU is a constant. This boundary condition pre-
sumes that the upper boundary of any actual device is very
much higher than the wavelength of the problem. To obtain
the velocity profile of the outer region, E¢LO) has to be Where variables with tilde are reduced or nondimensional
solved withu=Ug, as the boundary condition for the lower quantities. This equation shows us that the product
boundary. (nLU)/(sVSA) depends only oW,, G4, G,, and(). For

Net flow in a periodic array of microelectrodes will occur a given value of the applied voltage, the maximum value of
if the average value of the slip velocity over a wavelength isthe productUL as a function of frequency depends 94,

nonzero, 1.€., G,, andG,. Therefore, the same value for the maximuih
is obtained for W, W,,G;,Gy) and for
1f,_,2 (aWq,aW,,aG4,aG,). SinceUL is constant in this trans-

—[®-Vk ), (13

udx#0. (11)  formation, the pumping velocity increases as the wavelength
decreases. Greater velocities are obtained if the unit cell size
. ) , ) is reduced or, equivalently, if the number of cells per array
This equality can be proved by solving EQO) in the X |engih s increased. In principle, the validity of this result is

direction using Fourier analysis. The Fourier component ofegpricted to the validity of the approximations made in the
the velocity that produces net flow in the longitudinal direc- yarivation ieNp/l<1, welo<1, andu/(wl)<1.

tion is the component with zero wave number, the constant
component. The theoretical model presented in Fdfdoes

not take this into account, and in fact, the model predicts a
velocity in a direction opposite to that which is observed in  The electrical potential can be numerically solved for the

practice; from left to right in Fig. 2. Here, we show that by periodic array using the surface charge simulation method
solving the equations presented in this paper, the predictd@0,21]. The method seeks to find charges distributed over
direction of the fluid flow coincides with experimental obser-the boundaries that generate the potential solution in the do-
vations. main of interest. The periodicity of the system can be taken

—L/2

C. Electrical problem
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into account by considering the potential generated by an * _ * _
infinite array of parallel source lines. According to Rgf2], u= >, uy(y)eknx = > v, (y)ekn,
the potential due to a uniform grid of source lines of unit n=-= -
value, with spacing. along thex axis at positionsx=0, .
+L, 2L, *3L, ..., 1is i
p= 2 paly)e', (20

1 . .
Pxy) =~ 4—776In[5|nh2(ky/2)+sm2(kx/2)], (14) wherek,=nk=2ns/L andn s an integer. The Stokes equa-

tions[Eq. (10)] require that
wherek=27/L. The potential created by a periodic surface
charge distribution of periot placed aty=0 is, therefore, dv

ik U+ a—y”:o, (21)
L/2
20u)= [ dxaognexy.  as )
—LI2 2 IUn| .
77( —kKpup+ (9_)/2) —iknpn=0, (22)

Since the surface charge is related to the normal derivative of
the potential ay=0" throughqs/(2¢€) = —dd/dy, we can

2
write for y>0, 2, o Fon) _ 9Pn_
77( Koo+ ) 0, (23
1 (L2 '
D(x,y)= Eﬁuzdxﬂby(x’,O)In{5|nl"|2(ky/2) and the boundary conditions gt=0 andy—c require that
+sinf[k(x—x")/2]}, (16) 0.(0)= EJ'L/z . 0
L)t ’
where®,(x’,0)=d®/dy aty=0". The function
v,(0)=0, (25)
1 . .
G(x—x",y)= ZIn{smhz(ky/2)+S|n2[k(x—x’)/2]} u
(17) yli:rla—y%o, (26)
is the Green’s function that satisfi®G=0 for y>0 sub- )
jected to the conditiowG/dy=3/___8(x—x'—nL) aty limvn(y)=0, (27)

=0". y*°°
Puttingy=0 in Eq. (16), we arrive at the first equation

required for the numerical solution, whereu(x,0) is either the slip velocity at the electrodés;.

(6)] or zero at the glass. Combining the Stokes equations for
the Fourier components, it can be shown that

1 (L2 ) )
d(x,0)= Eﬁuzdx D (x",0)In{sirP[k(x—x")/2]}. 2 5
(18 a_yz_kn un(y)=0, (28

This equation relates the potential =0 to the normal )
derivative aty=0, and together with the boundary condi- 92 5 B
tion, is the governing equation fab, that has to be solved 7_kn vn(y)=0, (29
numerically.

If, instead of a periodic array, a finite number of elec- 72
trodes is considered, the equation equivalent to(E6). is ({;_yz_kﬁ) D (y)=0. (30)

1 0
CID(x,y)zZﬁwdx’@y(x’)ln[(x—x’)%yz], (19 The solution of these equations that satisfy the boundary
conditions is

where the potential solution for a charge line placedk at o
=x', y=0 has been us€@0,21]. U= E un(o)(l_|kn|y)e—|kn|y+iknx’ (31)

D. Velocity problem

The Fourier components of the time-averaged velocity v=—i 2 u,(0)k yef\kn|y+iknx (32)
and pressure are nSte N '
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p= —i2nn;m U, (0)k,e ™ knlyFiknx, (33

The only Fourier component of the velocity that creates a

nonzero net flow [ yu,(y)dy#0] is ug(0)=U [23]. There-
fore, the first objective is to findJ for a given electrode
array.

Defining the stream functioW by the pair of derivatives
dV/dy=u ando¥/ix=—v, we have

[

2 Up(0)yeknlkaly,

n=-—=

N4 (34

The stream function can be elaborated further by insertin
the definition ofu,(0),

1
Y=

L2 o .
f dx'u(x’,0y >, elknx=x)=lkaly (35
L/-Lre e

The series can be summed by considering tBgt ,r"
=r/(1—r) for |r|<1, andr.=exgk(xi(x—x")—y)]. The
result is

L2

f—L/Z

Following some manipulation

y sinh(ky)

coshiky) —cogk(x—x")]’
(36)

dx'u(x’,0)

IG(X—X",y)

oy (37

L2
‘P=f dx u(x’,0)y
—L/2

where the functiorG was defined in Eq(17). Therefore, we

can obtain the stream function for the velocity in the bulk
through an integral of the slip velocity previously calculated

multiplied by H(x—x",y)=ydG/dy. Thus,H is the Green’s
function for the stream function in our problem. A physical
interpretation oH is that it represents the stream function of
an array of velocity source lines with spacihcalong thex
axis at positionx=x"+nL. At y=0, these velocity sources
satisfy

v(x)=0,

ux)= > 8(x—x’—nL).

n=—oo

(39

Figure 3 shows a plot of the stream functibinfor the case
x'=0, andL=1. Forky>1, H tends toy/L i.e., the stream-
lines are parallel to thex axis. In the neighborhood af
=x', y=0, the stream functiokl takes the form

1

B y _sirfa
Ty2+(x—x)2 0w

2

(39
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FIG. 3. Streamlines for an array of velocity source lines.

Wards form/2< a<r. ExperimentallyH represents the lim-
iting case for the stream function generated by an array of
electrodes where the electro-osmotic slip velocity is only
nonzero in a small region of each pair of electrodes.

IIl. NUMERICAL ANALYSIS

The starting point is Eq.18), which defines the potential
aty=0, ®(x,0), as an integral of the normal derivative of
the potential ay=0 multiplied by the Green’s function. This
equality can be viewed as the potential created by a periodic
surface charge distribution placedyat 0. In our problem,
both the real and the imaginary parts of the potential satisfy
Eq. (18).

We now apply the boundary conditions given by E@.
and(4) to Eq. (18) to give

1 X2 X4
V1+.—CI>y(x)=f g(x—x’)(IJy(x’)dx'va g(x—x")
iQ X, X3

XPy(x")dx"  for xe(x1,Xz) (40

and

1 X2 Xq
V2+.—CI>y(x)=j g(x—x’)(I)y(x’)dx’+J g(x—x")
10 X1 X3

XDy (x)dx"  for xe(Xz,Xy), (41)

where

1
g(x—x")=G(x—x",00= >

m(X—X")

In 3

sin2(
(42)

The unknown parameter is the functigh,(x) over each
electrode.V,; and V, are not given individually, only the
differenceV, is fixed. One additional condition is needed to
complete the problem, and this is that the current flows from
one electrode to the other, i.e., the total flux of current
through the plang/=0 is zero. These two conditions are

where« is the angle in polar coordinates with the origin at expressed through the relations
x=x", y=0. The streamlines are radial lines in this neigh-
borhood and the flow is inwards for<Oa<#/2 and out-

V=V 1=V, (43

056302-6



PUMPING OF LIQUIDS WITH ac VOLTAGES APPLIED. .. PHYSICAL REVIEW BE7, 056302 (2003

X x 0.6
f “® (X’)dX’+J ‘o (x")dx' =0 (44) 5 um
X1 Y X3 y ’ 0.5 =10 #m

A15 um
X 20 4m
X 30 um

The set of equation$40), (41), (43), and (44) was solved 4ZVVL/IZ\U 0.4 -

numerically using the Galerkin method. In order to represent 0.3 |
the function®,(x) on each electrode, two types of basic
functions were used: the Legendre polynomials and the
piecewise constant functions. Both techniques gave very 0.1
similar results.

Let us definef,(x) as the Galerkin approximation to the

0.2

0 T r
0.1 1 10 100

normal derivative of the potential for points on electrode 1,
P . Q
X e (X1,X9), andf,(x) as the approximation to this normal
derivative at electrode X e (X3,X,4). The functionsf, and FIG. 4. Reduced slip velocity #AW,u/eVZA versus nondimen-
f, are written as sional frequency) at several positions on the electrode ft\,

=W,=100 um, G;=25 um, G,=10°W,. Points give numerical
N1 results from Ref[14]; solid lines give results from this work.

f1(x)= Zl Cqjwaj(X),
= ary condition given by Eq(2) reduces to this whef) goes

Ny to inlfinity. The elgctrical potential foy— o is of the form
fZ(X)ZE CoWy;(%), (45) Ag y..A comparison of the_ values of the cons_tamtob-
=1 tained in the present work with those from the finite-element
method shows a discrepancy smaller than 0.15%. These re-
wherewy; andw,; are the basic functions. sults were obtained for a high value @f usingn=18 Leg-
The equations for the Galerkin approximation are endre polynomials. Therefore, we believe that the results pre-

sented in this paper are correct with an estimated error
smaller than 0.2%.

The numerically calculated values for the velocity were
also compared with numerical results published previously.
In Ref.[14], the slip velocity produced by a pair of symmet-
ric electrodes was calculated using the finite-element
method. Figure 4 shows the reduced velocitu/s VA

N fxzdfo4dx’g(x—x’)fz(x’)wl-(x) versus the nondimensional frequen@y for different posi-

X1 X3 e tions on the electrodes, measured from the edge close to the

) gap. The electrode widths ak&;=W,=100 um, and the

J=1,... Ny, (46) gap between them i&,=25um. For the sake of compari-

) son, the other gaps, was chosen to be very larg&,
0=— J 4dx
X3

X2 1
O:—lex V,+ mfl(x) Wq;j(X)

X9 X2
N f dx f dx’ g(x—x")f3(x" )Wy (X)
X1 Xq

=10°W,, for these calculations. The figure shows that the
different methods for calculating the flow velocity agree per-

1
Vot mb(x))ng(x)

fectly.
X4 Xo
+f dxf dx’ g(x—x") (X" )wy;(x)
X3 X1 IV. RESULTS AND DISCUSSION
X X
+f 4dxf 4dx’g(x—x’)fz(x’)wzj(x), In the following section, for the sake of simplicity, re-
X3 %3 duced quantities will be used, except where otherwise stated.
i=1,...N,. (47) Lengths are scaled witW,, voltages are scaled wiW,, and
velocities are measured in units Q;‘\(SA)/(47;W2).
This discrete set of equations, together with H¢8) and Unidirectional fluid flow only occurs if the electrode pair

(44) represent the complete set of equations required to ddn the array is asymmetric, and again the flow velocity is a
fine the unknownsy;, C,;, V4, andV,. In the Appendix, ~function of frequency. The derivative ofb — V|2 with re-
the technique used to perform the Galerkin integrations iSpect tox gives the slip velocity on each electrode. Figure 5
described. shows the functiofd® — V|? for each electrode of a unit cell,

In order to test the numerical solutions and estimate thavhere Vo=1, W;=G;=0.3, W,=G,=1, and 1=4.12.
error of the present numerical results, we compared the reFhis is the frequency of maximum velocity for this particular
sults with some representative finite-element solutions. Irelectrode array. The functioh® —V|? is plotted against
Ref. [24], the electrical potential generated by an interdigi-x/W;, the position on the electrode scaled with the electrode
tated electrode array was numerically calculated using thidth, so thatx/W;=0 is the left edge and/W;=1 is the
finite-element method. In these computations, the electrodegght edge. AlthougH® —V|? is much greater at the narrow
had a fixed value of the potential. In our problem, the boundelectrode than at the wide electrode, its derivative is not.
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FIG. 7. Streamlines of the fluid velocity field for the caag
x/ W, =G;=0.3,W,=G,=1, Vo=1, 0=4.12.
FIG. 5. The function® —V/|? on top of the electrodes for the

caseW;=G;=0.3, W,=G,=1, Vo=1, 1=4.12. Curve 1, nar-  rant that arrives at a narrow electrode should be more evenly
row electrode; curve 2, wide electrode. distributed than for a wide electrode because this is a way of

) ) ) reducing the electrical resistance. Sinde-V is propor-
According to Eg.(13), the difference in the values of tional to o®,, it follows that at the narrow electrode the
|®—V|? at the edges gives the pumping velocity. The netoyumping effect is smaller than at the wide electrode. The
flow over the narrow electrode is to the left, while the flow model presented by Browet al. predicts a greater pumping
over the wide electrode is to the right. Figure 6 shows thesffect on the narrow electrode than on the wide one because
slip velocity u(x) on each electrode of the cell. The slip the current distribution between electrodes was assumed
velocity is more symmetrical over the narrow electrode, reyather than solved. This gave a current on the narrow elec-
sulting in a smaller pumping effect than for the wide elec-trode that was not as evenly distributed as in reality. Figure 7
trode, i.e.|[2u dX<|[}*u dx. Net fluid flow occurs in the shows the streamlines produced by these slip velocity func-
direction fronl] the narroi/v electrode to the nearest wide onglions over the electrodes. The arrows indicate the direction of
i.e., to the right in Fig. 2. This is the direction observed inthe fluid flow. It shows that at sufficient height, the fluid
experimentg9]. Here, we note that the potential difference Velocity is constant and the streamlines are parallel toxthe
|®—V| is more evenly distributed in the narrow electrode,@Xis. For the sake of comparison, Fig. 8 shows the stream-

which reduces the pumping effect of that electrode. The curlines for a symmetrical electrode array. It shows that there is
no net flow because the array is symmetric. At the level of

the electrodes, the flow direction is from the edges to the

0.6 :
center of each electrode as observed experimerthyl 4.
Figure 9 shows the pumping velocity as a function of
0.4 | frequency() for the asymmetric array withV;=G;=0.3,
(1) W,=G,=1, andV,= 1. The velocity-frequency curve has a
u(x) bell shape. The maximum occurs@t=4.12 and has a value
0.2 |
(2) 2 T T T T
0.0 ‘
olo 0.2
0.2 1
y
0.4 -
0.6
x/W;
FIG. 6. The slip-velocity functiom(x) on top of the electrodes X
for the casaV,=G;=0.3, W,=G,=1, Vy=1, 1=4.12. Curve 1, FIG. 8. Streamlines of the fluid velocity field for the caag
narrow electrode; curve 2, wide electrode. =W,=G;=G,=1, Vy=1, Q=10.

056302-8



PUMPING OF LIQUIDS WITH ac VOLTAGES APPLIED. ..

0.04

0.03

U 0.02

/

/ \—— G1=0.1
4_)( G1=0.2

-

~d

G1=0.3

0
01

1

10

100

PHYSICAL REVIEW B7, 056302 (2003

nondimensional variables, these parameters can be rewritten
aSW1:0.1634,W2: 1, G1201751, 62:06070, a.nd\/o

=1. The numerically calculated maximum velocity is then
Umax=0.01888, and this occurs at a frequency Qf
=6.3973. ForA=1 (no compact layer the corresponding
dimensional velocity iSU .= 257.6Vr2ms pum/s, where
V.ms IS the rms applied voltage. The experimental value
given by Brownet al. was around 2.7 times smalldy,,, .
=95V2 . um/s. An estimation of the surface capacitance
can be made fror€p, =&/\p, and this gives a frequency of

Q
FIG. 9. Pumping velocityJ versus nondimensional frequency
Q for W;=0.3, W,=G,=1, Vy=1, and different values dB;.

maximum velocity of f=(1/27)(a/e)(\p/W,)2=2.08
kHz, compared to a measured value of 2.9 kHz at low volt-
ages. The existence of a compact layer at the electrode sur-
face would reduce the predicted velocity and increase the
of U=0.0108. Figure 9 also shows the same functidn predicted frequency. The experimental values are obtained if
=U(Q), but with different values of gaf, between elec- the capacitances of the diffuse lay&y, and the compact
trodes. AsG; decreases, the maximum velocity increases folayer, Cg, are set equal t€;=1.9e/\p andCs=0.9/\p.
fixed values ofW;, W,, G,, andV,. The calculated streamlines for the electrode array used by
Figure 1Qa) showsU multiplied byL as a function of gap Brown et al. are very similar to those of Fig. 7. The rolls that
G, for G;=W;=0.3, W,=1, andQ)=5. G, is the separa- form on top of the electrodes resemble the sketch of flow
tion between a pair of electrodes. This figure shows that  profile given in Ref[9].
has a maximum value for infinite separatiG3. WhenG, The numerical solution can be used to determine the op-
=G,;=0.3, the velocity is zero; in this case there is a left-timum values of gap and width for the electrodes used by
right symmetry and no preferential direction of flow.®, Brown et al. As discussed previously, reducir@, causes
<G, the velocity changes sign. This should be obviousthe velocity to increase, therefore we have calculated the
since, in this case, the smallest gap is r@yand is between pumping velocity for fixedG,=0.1751 andV,=1. Setting
a wide electrode on the left and a narrow electrode on th&V, to 0.1634, an optimum value f@, is found, which is
right. In Fig. 1ab), the velocityU is plotted as a function of shown in Fig. 118). Each point of this figure gives the maxi-
the separatios,, with other parameters as for Fig.(B) A mum velocity as a function of frequency for a givés. The
maximum in velocity now occurs foB,~1. figure shows that the optimum value Gf, is around 0.7.
Brown et al. [9] presented experimental results showingHowever, the maximum is not very pronounced, and be-
how the pumping velocity varied as a function of frequencytweenG,=0.5 andG,=1.2 the difference is=5% or less.
and voltage. Their experimental array of interdigitated elecAn alternative approach is to s&, to 0.607, so that an
trodes had the following dimensions: electrode widths ofoptimum value oflW; can be found. In Fig. 1b), the maxi-
W;=4.2 um andW,=25.7 um, and gaps of5,=4.5um  mum velocityU,,.,, calculated as a function of frequency
andG,=15.6 um. The electrolyte had a conductivity of  for each value oW, is plotted agains¥V,. The optimum
=1.23x10 3Sm %, giving a Debye length of 30 nm. Using value of W, is found to be betweelV;=0.2 and 0.25. The

0.04 0.012
a) b)
uL U
0.03 1
0.008
0.02
4
0.004
0.01 1
0 + : ‘ 0 4
0.1 1 10 100 0 1 2 3 4 5

G; G,
FIG. 10. (a) Pumping velocityU multiplied by wavelength. versusG, and (b) pumping velocityU versusG,. CaseW;=G;=0.3,
W,=1, Q=5.
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b
0.018 - 2 00201 )
0.018 J FIG. 11. (8 Maximum pump-
U o 0.016 - U max ing velocity U .4 @s a function of
0.016 1 G, for W,=0.1634,G,=0.1751,
0.014 - 0.014 | W,=1. (b) Maximum pumping
velocity U,,,.x @s a function ofV;
0.012 1 0.012 | for G;=0.1751, W,=1, G,
001 | | 0.010 ‘ . ‘ ‘ =0.6070.
0 0.5 1 15 0 0.1 0.2 0.3 04 0.5
Gz W1

difference with respect to the peak velocity is less than 8%where x=3(X,—X;)s+ 3(Xo+X1), X' =3(Xo—X1)S' + 3(X,
for values of W; between 0.15 and 0.35. The value of +x);
Umax=0.01888 obtained using the experimental sizes is

around 8% from a maximum valug,,,,=0.0204 obtained X5 X4
with W;=0.24 andG,=0.8. f dXJ dxX' g(X=x")Ppr(X)Py(x")
X1 X3
V. CONCLUSIONS (Xo—X1)(X4—X3) (1 1
= 7 f dsf ds'g(x—x")
-1 -1

A theoretical analysis of the electro-osmotic pumping
generated by an ac electric potential applied to an array of
asymmetric pairs of microelectrodes has been presented. The
interaction between the oscillating electric field and the os-
cillating induced charge at the diffuse double layer on thewherex=3(X,—X;)s+3(Xa+X1), X' =3(Xsa—X3)s' + (X4
electrodes results in a steady electro-osmotic velocity distri==X3)-
bution on top of the electrodes. The broken left-right sym- In the first case, the singularity that occurs whens’
metry of the system produces a nonsymmetric slip velocityghould be taken into account. In the second case, it is always
distribution that drives a net fluid flow. X(s)#x'(s’) and the integration can be done numerically

The electrical equations have been solved numerically uswithout much problem. The singularity at=s’ is of the
ing the charge simulation method. The periodic nature of thdorm In(s—s')%. We can write
system has been taken into account in the Green'’s function,
so that only the unit cell of length has to be considered. 1 (1
The stream function of the bulk flow generated by the f f dsdsg(Xx—X")Pn(s)Py(s’)
electro-osmotic slip velocity has been calculated. “tot

The fluid flow dependence on voltage and frequency have 1 r1 Sir[k(x—x")/2]

f . f 1dstIn _—

X Pm(s)Pr(s’),

been described. Optimum values for the nondimensional pa- =
rametersG,, W; have been calculated in order to obtain
greater pumping velocities. A comparison with the experi- 1 1
ments reported by Browst al. has been made and a good +f f dsdsIn[(s—s")2]P,(S)P,(s"). (A1)
agreement has been found. -1J-1

Pm(s)Pn(s")

(s—s")?
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The integrations that appear in the method of Galerkin ><'”|1+X|_k20 (n+1)(k+ 1)Xn
using the Legendre polynomials are of the form
(A2)

X2 X2
d dx’ -x")P Pn(x’ . ) ,
fxl xfx1 X g(X= X Pm(X)Pn(x") is employed to obtain the value of the integral

) St dsdss™(s)"In[(s—s')?]. This together with the co-
:(Xz—X1> fl dsjl ds'g(x—x")P,(S)P(s'), efficient; of t_he Legelndrle polynomials aliow us to compute
2 -1 J-1 the required integraf = ; /= ;dsds In[(s—S')*]Pn(S)Pn(S).
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