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Receptors as a master key for synchronization of rhythms
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A simple, but general, scheme to achieve synchronization of rhythms is proposed. It can handle both external
synchronization and self-synchronization within a single mathematical framework. In this scheme, external
linear stimulations can be converted into internal nonlinear stimulations by the mathematical model receptor
without breaking the regular motions of limit cycle oscillators. Thus, even a small external periodic stimulation
can work very efficiently for achieving synchronization. Stimulation via model receptors is much more effec-
tive for synchronization than mechanically forced stimulations, and the phenomenonN#&llgthase locking
(N#1,M#1) can be suppressed in the weak coupling domain, too.
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Synchronization of rhythms plays a central role in systemceptors. In the current scheme, external small stimulations
control both in science and in technology. There are twdrom other oscillators can be converted into internal nonlin-
kinds of synchronizations: one is external synchronizationgar stimulations by the model receptor without breaking the
the other is self-synchronization. External synchronizatiod€gular motions of limit cycle oscillators. Thus, even a small
and self-synchronization are also called frequency entrain€Xternal periodic stimulation can work very effectively for

ment and mutual synchronization, respectively. For externa@ChiﬁVing syncr:jronizatioln. g heme f hroni
synchronization, external periodic stimulation is needed, but The proposed generalized receptor scheme for synchroni-

it is not necessary for self-synchronization. An example szatlon is as follows(Fig. 1). Let oscillators be described by

external synchronization is a circadian rhythid. Synchro- dx /dt=X;(x;,y;)
LT . ] I RESEa
nous swinging of pendulums of clocks on a wal|, flashing
of fireflies [3], and the intracellular cyclic adenosine dy; /dt=Y;(x;,y;), 1)

3’,5'-monophosphate production cycles between the cellular

- and they have a limit cycle, whebg(x;,y;) andY;(x;,y;)
slime mold amoeba4,5], when _they are starved, aré €X- re functions ok andy; . We regard one of two variabl
amples of the self-synchronization. Because of the impor- ! y

tance of synchronization of rhythms, its study started in th andy; as the density of a virtual diffusible chemidairtual

: X Eiiganol), which is produced individually, and the other as the
17th century and there is a large body of literature i6W  activity of a sensotvirtual receptor to detect it(see Ref[8]

However, in many cases, proposed theories so far are rathgy; he detail. Thus, when the same type of virtual chemical
complex or too simple and their applications have been limig provided externally, Eq(1) should be modified as
ited to their small related areas. This is reflecting the com-

plexity of real individual synchronization phenomena. For dx; /dt=X;(x;,Y;),
example, even in the case of circadian rhythm, a complex

mechanism is involved both in genetics and in biochemistry. dy; /dt=Y;(x;+ ij]?‘“,yj), 2
No single theory can explain every detail of all synchroniza-o,

tion phenomena in nature. However, synchronization of

rhythms itself is obviously a very simple phenomenon. Thus, dx; /dt=X;(x;,y;+ ¥y;"),

if we have a general mathematical scheme for studying syn-

chronization beforehand, it is surely helpful for finding the dy; /dt=Yj(x;.y}), ©)
underlying mechanism of synchronization. This paper in- Case 1 Case 2

tends to propose such a scheme.

In biological systems, mutually coupled oscillators, which y  x .
interact with the external environment, and receptors are @4: I.'ﬂ'/ @4: .
ubiquitous. Thus, a previously developed receptor scheme = oA
[7-9] is generalized and mathematically simplified very
much in order to handle both external synchronization and
self-synchronization within the same scheme. It is also to be
shown that synchr.()_nization, in generf:}l, is achievgd as are- o 1. Schematic view of a receptor-ligand coupling scheme
sult Qf the (_:omp_etltlo_n _be';we_e_n two kln_ds of nonllnearltle_s:for synchronization. Case Y; is regarded as the activity of the
one is nonlinearity within individual oscillators, the other is receptor;; andx?"" are the internal and the external stimuli, re-
the nonlinearity to couple between oscillators via model repectively, both of them are regarded as ligands; gnis the sen-

sitivity of the receptor. Case ¥; is the activity of the recepto;
. andy}’Ut are the internal and the external stimuli, respectively; both

Present address: Department of Applied Chemistry, Ritsumeikanf them are also regarded as ligands. In both cases, it is assumed
University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan. that two variables; andy; constitute a limit cycle oscillator.

|:| : receptor
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depending on whether we regatg, y; as ligandlike density
and receptorlike activity, respectivelye call Eq.(2) case ]
or vice versgwe call Eq.(3) case 2. Where we regaratj’“t

and yf“‘ as extraoscillatory ligandlike densitiey; is the
sensitivity of the receptor of thgh oscillator. In the case of

self-synchronizatiori8], we setx{"'=3;x; andy{"'=3y; .

Depending on the problem to be handled, sum]ma?quov—
ers every oscillator or self-term and just neighbor oscillators.
On the other hand, we substitw@"" or y?“' with external
periodic stimulation for handling the external synchroniza-

tion. The above procedure can work as a synchronization 0.01 .

scheme in general. 0.1 1 10
Let us consider why such simple procedures given by (d(q)

Egs. (2) or (3) can work as a general synchronization

scheme. As we know, a limit cycle oscillator has a tendency (b)

to return to regular periodic oscillation. Therefore, when

and x?”t or every oscillator are not synchronized, irregular

oscillations are always produced, for example, in 4. But 14

individual limit cycle oscillators have a tendency to return to

regular periodic oscillation forever; namely, an effort to

eliminate irregular oscillations can continue forever within o

every oscillator until synchronization is achieved. But it is &= 045

only if individual oscillatory motion itself is not destroyed.

This is true in Eq.(3), too. Oscillators cannot be synchro-

nized within the current scheme if they are not limit cycle

oscillators. Besides, every amplitudexgfcan be different in 001w .

the synchronized state and only synchronization of rhythms O.IL/(O

can be expected. 1
Since ,the cqrrent biological rec_eptor scheme has been de- FIG. 2. () External synchronization area of the van der Pol

veloped IndU(.:tI.ver from a modeling study of cellular SI,'me oscillator, where the sinusoidal stimulation is applied. Synchroniza-

mold, the validity of the scheme must be tested numericallyiop, is achieved when= v, , where the value of is the sensitivity

on a case-to-case basis. Although the current scheme may the receptor and that af stands for the strength of nonlinearity

look very simple, it should be noticed that the coupling be-of the van der Pol oscillator. The frequency of sinusoidal stimula-

tween oscillators in Eqg2) and(3) is also of nonlinear type.  tion is w, and the intrinsic frequency of the van der Pol oscillator is

The effect of coupling via model receptors is, thus, tremen+,=1. (b) Self-synchronization area of two van der Pol oscillators.

dous as explained later. Synchronization is achieved wher® vy, . Intrinsic frequencies are
To check the validity of the current scheme, we use thavw;=1.0 andw,. In both(a) and(b), cases 1 and 2 used Eg8) and

following two well-known nonlinear equations with a limit (3), respectively. Note that, compared with the external synchroni-

cycle. One is the van der Pol equatigdi0], zation, mutual synchronization of oscillators of the same type can

be easily achieved. See also Fig. 6.

10

X 4 et % s w0 @ d
— +e(x*— 1)+ wix=0,
dt2 dt =0 d—{sz—xzyEY(x,y), (6)
or where we use=1.0 andb=2.1 so that Eq(6) has a limit
dx cycle.
—=y=X(X,y), In our first test case, we apply the current scheme to ex-
dt ternal synchronization. Since the equation
dy 5 ’ d?x dx
- —1)y— = hallt} 2\ 2y
T (X =1)y—opx=Y(X,y), 6) e + e(x 1)dt + wgX= 7y CoSwt, (7)

where wy is the intrinsic frequency and is the positive a5 peen extensively investigate®—14, we adopt it as a
constant to represent the strength of nonlinearity. The other igs; test case, wherg cost is the external periodic stimu-
the Brusselator model equatifhl] given by lation [we call Eq.(7) case 3. As Fig. 2a) shows, synchro-
nization was achieved wheg= 1y, in the domain of 0.1
<w/wy=10.0, wherewy=1.0. Here x°“'=coswt in Eq.(2)

dx
—_—=a— 2 =
A= (bFXFXTY=X(x.y), (case 1 andy°®!'=coswt in Eq. (3) (case 2. Two examples

dt
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FIG. 3. (a),(b) External synchronization between the van der Pol
oscillator of intrinsic frequencyw=1 (thick line, its scale is on the x
left axis) and the external periodic stimulus of the frequeacithin
line, its scale is on the right axisThe parametee stands for the
strength of nonlinearity of the van der Pol oscillator. The parameter

v is the sensitivity of the receptor, whex€"!=coswt and Eq.(2) ® 0 t % oo

were used in case ¥°U'=coswt and Eq.(3) were used in case 2,

and Eq.(7) was used in case 3. In case 3(bf, 5:1 phase locking FIG. 5. Case 3 is an approximation of case 1. Wheis small

is clearly observed. and nonlinearity of van der Pol oscillator is weak, these cases be-

come identical.

are shown in Fig. 3. In the case of Brusselator mog®!
=cost+m)+1 in Eq. (2) (case 1 and y°“'=cos@t+7)  pendent when the ratio between the two frequencies is not
+1 in Eq. (3) (case 2 so that bothx°'! and y°!! are non- rational. However, as shown in Fig(l8, 1:1 synchroniza-
negative[see Fig. 4a)]. tion was achieved in this scheme even whereXh (N

In the case of Eq(7), synchronization between external #1,M# 1) phase locking phenomenon was observed in case
periodic stimulation and van der Pol oscillator is expected3 (for more detail, see Fig. 12.12 in R¢fl2] or Fig. 7.3 in
when stimulation frequency and the intrinsic frequency of Ref.[13]). Not only the suppression &®:M (N#1M#1)
the van der Pol oscillatorafy) are not so different. On the phase locking, but also the quality of synchronization has
other hand, the phenomendw:M phase locking[12,13 been significantly improved in generaee, e.g., Fig. @].
(N#1M+#1) [see, for example, case 3 in Figlbd| is ex-  To see more details of the above-described situation, we use
pected to occur when the two frequencies are very differenfaylor’s — expansion Y(x+yx°"'y)~Y(x,y) +dY(x,y)/
from each other, and there aM cycles of spontaneous dxyx°“'when vy is small, then from Eq(2) we can derive
rhythms at fixed phase for eadhcycles of external stimu-

lus. It is also known that two rhythms are completely inde- 4 q

L e(—1) o+ w2 24 ex X t
— Xe— X=— X—=| ycoswt,
(@ (b) dt? € dr @0 @oT LRG| VRIS
X — =0.2 —_— der Pol

g "0 R R i ®

2_ A

1 wherexdx/dt is not a large term becauses an oscillatory

0

variable andk anddx/dt are close to out of phase. Wher

is large ore is small, namely, when nonlinearity is small, Eq.
(8) becomes an example of casée3g., Fig. 5. This means
that recovering force to return to the limit cycle is weaker in
case 3 compared to case 18dM phase locking can not be
suppressed. It is because the effective coupling constant
(wgy) is larger thany. This comparison is made only for
understanding better the current scheme. More rigorous ana-
Iytical comparison between the two schemes is difficult due
to nonlinearities included in the current scheme.

FIG. 4. (a) External synchronization of the Brusselator when the ~ N€xt, we apply the current scheme to self-
sinusoidal stimulation is applied. Hera®"!=cost+m)+1 was  Synchronization. Figure (6) shows the synchronization of
used in case 1, ang®!'=cos@t+m)+1 was used in case 2b) two van der Pol oscillators. As shown in Figb2 synchro-
Self-synchronization between the Brusselator and the van der Pdlization was achieved whey= vy, in the domain of 0.1
oscillator. <w,/w;=<10.0, wherew,;=1.0. Figure 2 shows that higher
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(@)  &1.0=0.001 has proved that there is a scheme to overcomeNhd
Case 1 :2:]:3 phase locking i#1M# 1) even in the weak coupling do-

2 main, and 1:1 phase locking has been always achieved in any
o frequency ratio as shown in Fig. 2. Due to the nonlinearity of
Ex u coupling between oscillators, the common frequency in the

2 V synchronized state can be different from the original frequen-

— cies of individual oscillators. Namely, every oscillator has a

41 case2 tendency to look for a common frequency for the coupled

2 oscillator system depending on the coupling strength.

o ﬂ ’ T For achieving self-synchronization, a term of diffusive
= > type, k(X,—X;), is often added to Eq1) expecting thak,

2 - —X1—0 (t—) in the synchronized state. However, Figs. 3

20 40 G0 80 oo 120 b p % % and 4 show thak,—x;—0 (t—o) cannot be achieved in
t t the synchronized state unless all oscillators are of the same
type. When oscillators are of different types, only rhythm

FIG. 6. Examples of the self-synchronization of two van der Polsynchronization is achieved and amplitudes of individual os-
oscillators: cases 1 and 2 for Eq®) and (3), respectively. Here, cillators are generally different in the synchronized state.
xPU'=x3"'=x;+x, was used in Eq(2), and y;"'=y5"'=y,+y, To the author’s knowledge, no other scheme has ever suc-
was used in Eq(3). Even very weak sensitivity of the receptor is ceeded in handling external synchronization and the self-
suﬁicignt for achieving gelf-synchronization when the intrinsic fre- synchronization within the same mathematical framework.
quencies of the two oscillators are the same. The derived scheme may look very simple mathematically,

but it is a very powerful scheme as numerically demonstrated
sensitivity of receptors is necessary for the external synchran this paper. It was clarified that biological receptors work
nization than self-synchronization. Another example is theas apparatuses that can convert external stimulus to the form
synchronization between the van der Pol oscillator and thef nonlinear interaction within individual oscillators. Thus,
BrusselatofFig. 6(b)]. This type of self-synchronization has synchronization is achieved as a result of competition be-
not been reported yet, but it is not so surprising because thigveen two kinds of nonlinearities: one is nonlinearity within
current scheme does not require that every oscillator shoulshdividual oscillators, the other is the nonlinearity to couple
be of the same type. In Eql), every (X;,Y;) can be a between oscillators via receptors. The current biological re-
different type. ceptor scheme has been inductively generalized from the

Since Hayashi reported thé:M phase locking 12,13 modeling study of cellular slime mold, it is not a rigorous
(N#1,M+# 1) of the van der Pol oscillator in the presence of mathematical proof. Thus, it does not exclude any possibility
external sinusoidal stimulation in 1964, it has been generallpf another type of synchronization scheme. Nonetheless, the
taken as an avoidable phenomenon; namely, in the convemiological receptor scheme should significantly help in un-
tional scheme of case[&q. (7)], a cascade of phase locking derstanding the synchronization phenomena in biology since
events with different winding ratios occur as we graduallygroups of limit cycle oscillators and receptors are ubiquitous
change the ratio of frequencies. However, the current worln biological systems.

[1] J.S. Takahashi, Annu. Rev. Neurost8, 531 (1995. Stress edited by J.C. GutierrezResearch Signpost, Trivan-
[2] C. HuygensHologium OscillatoriumMuguet, Paris, 1673p. drum, India, 2002, pp. 1-16.
117. [10] B. van der Pol, Philos. Mag, 978(1926.
[3] J. Buck and E. Buck, Natur@d.ondon 211, 562 (1966. [11] G. Nicolis and I. Prigogine,Self-Organization in Non-
[4] S. Nagano, Phys. Rev. Le&0, 4826(1998. Equilibrium Systems. From Dissipative Structures to Order
[5] S. Nagano, Dev., Growth Diffed2, 541 (2000. Through Fluctuation(Wiley, New York, 1977.
[6] A.S. Pikovsky, M.G. Rosenblum, and J. Kurtl&/nchroniza- [12] C. Hayashi, Nonlinear Oscillations in Physical Systems
tion: A Universal Concepts in Nonlinear Sciend€ambridge (McGraw-Hill, New York, 1964.
University Press, Cambridge, 2001 [13] L. Glass and M.C. Mackeysrom Clocks to ChaogPrinceton
[7] S. Nagano, Prog. Theor. Phy)3 229 (2000. University Press, Princeton, 1988
[8] S. Nagano, Prog. Theor. Phy)7, 861 (2002. [14] 3.M.T. Thompson and H.B. StewaNpnlinear Dynamics and
[9] S. Nagano, inMicrobial Development under Environmental Chaos 2nd ed.(Wiley, New York, 2002.

056215-4



