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Bifurcation diagram of a complex delay-differential equation with cubic nonlinearity
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We reduce the Lang-Kobayashi equations for a semiconductor laser with external optical feedback to a
single complex delay-differential equation in the long delay-time limit. The reduced equation has a time-
delayed linear term and a cubic instantaneous nonlinearity. There are only two parameters, the real linewidth
enhancement factor and the complex feedback strength. The equation displays a very rich dynamics and can
sustain steady, periodic, quasiperiodic, and chaotic regimes. We study the steady solutions analytically and
analyze the periodic solutions by using a numerical continuation method. This leads to a bifurcation diagram
of the steady and periodic solutions, stable and unstable. We illustrate the chaotic regimes by a direct numerical
integration and show that low frequency fluctuations still occur.
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[. INTRODUCTION Eqg. (2) extends well beyond that particular model. For in-
stance, the complex equation describing the small amplitude
Since the work of Verhulst1804—-1849 in population  oscillations of a system subject to a delayed effect shares a
dynamics, delay-differential equatiof®DESs) are used to common structure with Eq2), as discussed in Reff20,21]
model dynamical systems in many scientific and engineeringor the case of real-valued models of cl&sasers subject to
domains, e.g., optic§1,2], chemistry [3,4], climatology incoherent optical or optoelectronic feedbacks. Equatidn
[5,6], biology [7,8], car traffic[9,10], economy{11,12, and  has also been investigated in connection with the analysis of
cryptosystems based on synchronized hyperch&8s16.  experiments conducted on a single-mode,d#Ber with de-
Their widespread use stems from the fact that delayed termayed feedback of the lossef22,23 where a two-
handle two common situations. First, they mimic in a sim-dimensional(2D) representation of the time series was pro-
plistic way the time required for a component of the model toposed. Its justification was given in RéR4] where it was
switch between two states. Second, a time lag results natwroved that close to a Hopf bifurcation of E@), the solv-
rally from the finite propagation velocity of substan¢3]  ability condition (i.e., the slowly varying amplitude equa-
and energy field§1,2,18, as well as from the latency of tion) is a complex Ginzburg-Landau equation with real dif-

feedback loop$19). _ ~ fusion. The same result was also obtained for a 2D rate
In this paper, we focus our attention on the dynamicsequation model of a laser with external delayed feedback
generated by the simple DDE [25]. Similar experiments conducted on a cldssie-Ne la-
dE ser have also relied on an equation similar to Ez). for
e (1+ia)EIPE+ vE(t—1). 1 interpretation| 26,27
dt ( a)|E] XE( ) @ In this paper, we focus on the bifurcation diagram for the

steady and periodic solutions of E{.). There are two sur-
All variables and parameters in E€l) are dimensionless. prising features with this bifurcation diagrarti) its unex-
E(t) is a complex variable,is the time, andr andy are real  pected complexity andi) its similarity with the bifurcation
parameters. This equation has an instantaneous cubic nonligiagram derived for the full Lang-Kobayashi equations
earity |E|°E and a linear delayed terf(t—1). These two [20,28. The complexity of the bifurcation diagram stems
terms are necessary for the system to display an interestirfgom the bridges that connect the infinite set of periodic so-
dynamics: if =0, E(t) vanishes in the long time limit, |utions. This infinity is a simple and direct consequence of
while removing the nonlinearity leads to a linear equationthe delay. The bridges appear via the mechanism already
whose long term solution either vanishes or diverges. Thelescribed in Ref[28]. In addition, we describe a new
coefficienta couples the phase and amplitudeEbfMost of  mechanism that generates the bridge destruction. Finally, we
the results will be derived for regl. However, some bifur-  follow numerically two branches of chaotic solutions and
cation mechanisms are easier to understand, and some progfsow that low frequency fluctuations are still supported by
are made simpler if is complex. This is achieved by writ- Eq. (1). This paper is organized as follows. In Sec. II, we

ing x=ne '* with » andQ real: show how to derive Eq(1) from the Lang-Kobayashi rate
g equations. In Sec. lll, we study analytically the steady solu-
E . i tions and their stability. Section IV is devoted to the periodic
_ 2 —iQ _ .
dt (1+ia)|E[*E+7e ' 2E(t—1). 2 solutions whose bifurcation diagram is obtained numerically

by using a continuation method. In Sec. V, we report on the
As shown in Sec. I, Eq(2) models the problem of a occurrence of low frequency fluctuations in the simplified
semiconductor laser pumped at threshold and subject to anodel(1) and, for completeness, on the existence of chaotic
optical feedback with a large delay. However, the interest ofttractors.
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< L > In the large delay limit— oo, (T/7)dD/ds and 2D/ 7 vanish
in Eq. (7). The carrier density can then be adiabatically
'E eliminated because E(j7) reduces td(t)=p—|E(t)|2. In-
v serting that result into Eq6) and renaming by t leads to a
SC Laser Attenuator Mirror single cubic complex equation for the electric figR&2]:

FIG. 1. Schematic setup of a semiconductor laser diode subject E .
to delayed optical feedback. The output beam is reinjected inside —=(1+ia)(p—|E|?)E+ ne "*E(t—1). (8
the laser cavity after reflection on a mirror. An attenuator is used to dt
reduce the feedback beam intensity. The delaprresponds to the
round-trip time in the external cavity; i.er=2L/c, with ¢ being
the light velocity.

At the solitary laser threshold, i.e., f@r=0, Eq.(2) is re-
covered.
Before studying the dynamics of E@2), it should be
Il. LONG DELAY LIMIT stressed that E@8) is the regular limit of Eqs(3) and(4) for
=T and P=0(71). That is, no dynamical phenomenon
Lang and KobayasHi2] proposed a simple rate equation existing in this parameter domain is lost by simplifying Egs.
model to describe a semiconductor laser subject to opticaB) and(4) into Eq.(8) and, conversely, every feature of Eq.
feedback(Fig. 1). This model consists of two coupled differ- (8) is also a feature of Eqg3) and (4). This may seem
ential equations for the laser intracavity complex fi€ldnd contradictory with the fact that Eqé3) and (4) can display
the real excess carrier densib relaxation oscillations while Eq@8) cannot. Indeed, in the
absence of feedback, the long time solution of E&$.and

dé ) . (4) is given by
—=(1+ia)DE+ ke "E(t— 1), (3)
dt .
E=\Pé?, D=0, 9)
d_D: P—D—(1+2D)|&|2. (4y ~Whereg is a constant phase depending on the initial condi-
dt tion. If this stable state is perturbed, the system relaxes with

damped relaxation oscillations only ifP8T>1. Otherwise,
In these dimensionless equationss the linewidth enhance- the perturbation decays exponentially without oscillations.
ment factor,P the excess pump rate above the solitary laseBecause we consider the limi&=T andP=0(7"1), 8PT
threshold P=0 at threshold ifk=0), T the ratio of the <1 and Egs.3) and (4) do not display relaxation oscilla-
electronic carrier lifetime over the photon lifetime inside thetions. Thus, the absence of relaxation oscillations in (By.
cavity, 7 the round-trip time outside the laser cavikyz0 results from the scaling) and the limit7>1; the full model
the feedback strength, andthe free-running laser optical [Egs.(6) and(7)] and the reduced modgEqgs. (8) or (2)]
frequency. The dimensionless timand the delay- are mea- share this property.
sured in units of the photon lifetime.
Given the complexity of the Lang-Kobayashi equations, it lIl. STEADY SOLUTIONS
is useful to consider limits in which simplifications may be
expected. The obvious parameter on which a limit can be In this section, we study analytically the properties of the
based is the distance between the laser and the external mirivial solution E=0 and of the solutions of Eq2) with
ror, which controls the delay-time. The short delay time limitconstant modulugE|. Whatever the parameter values,
has been investigated experimentally and numerically=0 is always a solution of Eq2). A linear stability analysis
[29-31. In this paper, we consider the opposite limit of a shows that Hopf bifurcations exist for
long delay time. Many experiments on semiconductor lasers
focus on pump values close to the solitary laser threshold Qo=(3 +K) 7+ (—1) 7y, (10)
(|P|<1), weak feedback«<1), and large delay>1).
To study that range of parameters, we introduce the scalingvith k=0 or 1. We call these bifurcations primary Hopf
bifurcations. As seen in Fig. 2, these Hopf bifurcations form
E=V7&, D=1D, p=1P, p=7k, Q=7v, s=t/r. lines dividing the polar plane of the complex parameter
(5) ne~ ' into an infinite number of regions. Each time a Hopf
line is crossed, the trivial solution displays a new bifurcation.
In terms of the scaled variables and parameters, Bgsnd  Together with an analysis of the stability of the trivial solu-
(4) become tion for »<<1, this implies that the trivial solution is stable
only inside the innermost region, the black-filled domain
dE _ close to the origin in Fig. 2.
g~ (1Fia)DE+ ne '"E(s—1), (6) Using a two—time scale approach, the branch emerging
from a primary Hopf bifurcation can be analyzed in the usual
way. For that purpose, we define the vicinity of the bifurca-
Tdb_ _( 2 ) 2 tion: 7= 70(Q,k) + €27, with e<1 andz,==*1. We also
=p—-D—|1+-DJ||E|% 7 . ey =
7 ds T introduce a slow time variable= e“t and use the derivative
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(16) are stable only for supercritical branches emerging at
the border of the innermost region of Fig. 2 where the trivial
solution is stable. Note that the primary Hopf bifurcations
are not degenerated unle@sis a multiple ofs. In that case,
ak=0 and ak=1 bifurcation coalesce to produce a degen-
erate bifurcation of the trivial solution.

The solutions emerging from the primary Hopf bifurca-
tions are of the formE=psexp(wd). These solutions are
called external cavity modes in the Lang-Kobayashi prob-
lem. They are also often referred to as the steady state solu-
tions of Eq.(2) because the corresponding intengig)? is
constant in time. Nevertheless, it should be kept in mind that
the complex variabl& still has a harmonic time dependence.
InsertingE = pexplwd) into Eq. (2) leads to

pZ=1cog ws+Q), (17)

ws=— 1+ a’sin(ws+ Q)+ arctana). (18

FIG. 2. Location of the primary Hopf bifurcations, E4.0). The

null solution is stable only in the black-filled innermost domain. vticall h val g h
Note that forQ) = n# with ninteger, everk= 0 bifurcation collides analytically [33]. Each value ofws verifying Eq. (18), suc

with a k=1 bifurcation, leading to degenerate Hopf bifurcations. tNat cosbst()=>0, defines a distinct steady solution. To
The value ofa is irrelevant here. study its stability, we seek solutions of the forE¥x (pg

+ep)exdiod+iep(t)], with e small and real. After lineariz-
chain ruled/dt=g,+ €23,.. Introducing these expressions ing Eq.(2) around the steady state solution, the solutions are

into Eq. (2) and looking for a perturbed solution of the form of the form;(t) and ¢(t) <exp(\t). This gives a solvability
E(t)= eE4(t, o)+ €2E(t,0) + - - -, (11) (or characteristicequation for\,

Without further approximation, Eq18) cannot be solved

we obtain a cascade of nested problems, one for each power0=ps(1+a?)(3e* +e ™ —4)+2plawy(2e* +e " -3)
of €. Solving the first-order problem gives +wg(ehre*—2)+2p§)\(2e”—1)+)\2e”. (19
El(t,U') :Pl( a.)ei[¢1(0')+w1t], (12)
This transcendental equation admits an infinity of complex

with w;=(—1)*"19,. The slowly varying variablep,(o) roots. Roots with a zero real part indicate a change of stabil-
and ¢4(o) are determined by a solvability condition ob- ity, except for one root that always vanishes. It reflects the

tained at orde®: invariance of the solution with respect to a time translation.
For another zero root to exist, the derivative of Etp) with
dp, nzno—pf[l—(— 1)kano] respect ton must also admih =0 as a root. This occurs if
do P2 177 , (13 either ps=0 or 1+ 7 cosw+Q)=ansin(s+Q). The first
o possibility corresponds to the emergence of a steady branch
5 K from the trivial solution. The second possibility, together
%:(_1)“1 n2tpil ot (—1)%e] (14) with Eq. (18), corresponds to a turning point. Besides
do 1+ ,73 ' =0, the only other possibility to have a change of stability is
a pair of imaginary conjugated roots. Such a pair of roots
The steady solution is given by indicates the existence of a Hopf bifurcation leading to a
periodic regime. We call these bifurcations as secondary
5 270 Hopf bifurcations. Letw be the frequency of the periodic
pl,st:m’ (19 oscillation at the secondary Hopf bifurcations. We ingert
K =iwy into EqQ. (19). Separating real and imaginary parts
leads to
720
Prst ano—(—l)k. (19 waCOSwH+4p§wHSian=Z[Zpg(l-i- a2)+3p§aws+ wg]
For k=0 and an,>1, pi =0 implies 7,=—1, and the X(coswy—1), (20)
branch of solutions emerging from the Hopf bifurcation is
subcritical. Fork=1 or ang<1, 5,=1, and the branch is w?sinwy=2p3{wy(2 coswy—1)
supercritical. By linearizing Eq.13) around the steady solu- 5 5 )
tion (15), it is straightforward to show that solutiofs5) and +[ps(1+ a%) + awg]sinwy}. (21)
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These two equations, coupled to E@¢k7) and(18), form a  tion. It is then straightforward to expreas wg, 7, andQ in
system of four equations for the three variablgs ws, and  terms ofwy, andpy as

wy . Since the system is overdetermined, it is solvable onlyazz

for particular values ofp= ny(«,{2) which locate the sec-

ondary Hopf bifurcations. Further insight in the existence [2pf,sinwy+20up3(2 coswy—1) — w?siney]?
condition for a secondary Hopf bifurcation is obtained as
follows. Let wy be the oscillation frequency ang, the am-
plitude of the steady solution at the secondary Hopf bifurca- (22

2pi[2p}sirfwy+ 6wyp?sinwy + w?(1+coswy) ]’

Zpﬁ(l—l— a?)sinwy+ Zpra(Z coswy—1)— wasian

wg= , (23
° 2apasian
|
7= ph(1+a?) + 2awepd + oZ, (24) IV. PERIODIC SOLUTIONS
. Using the numerical continuation packageeBIFTOOL
P 34,35 for delay differential dynamical systems, the location
COZ(Q+ wg) = H (25 3439 y y y

and stability of the branches of periodic solutions can be
determined. Our results, reported in Figa)3 indicate that
Becausex?=0, Eq.(22) provides an implicit condition that the periodic solutions form bridges, at least for moderate
wy and py must also verify values ofp. The bridges emerge from the secondary Hopf
bifurcations discussed in the preceding section. They always
2p}isifwy+6woypsinwy+ w?(1+coswy)<0. (26)  connect a supercritical branch to a subcritical branch. The
bridge structure has been recently studied for the Lang-
That implies, in particular, the requiremeanf;sinwy<<0. The  Kobayashi equation$3) and (4) in Refs.[20,28. In Ref.
solutionE=p exp(wt) emerging from a secondary Hopf bi- [20], it was shown that a$§) approachesiw from below,
furcations is periodic, i.ep and w are periodic in time. In  every k=0 primary Hopf bifurcation moves towards la
the following section we study these periodic solutions by=1 primary Hopf bifurcation. AtQ =n, they collide and
means of a numerical continuation method because the exwo new secondary bifurcations appear. Increa$iyirther,
pressions obtained analytically fprand » are too compli- the two primary bifurcations move away from each other
cated to be useful. while the secondary Hopf bifurcations move up along their
In this paper, we are following the standard approach tasteady branches but remain connected by a bridge of periodic
study the secondary Hopf bifurcations. An alternative way tosolutions(see Fig. 5 in Ref.20]). As a consequence, second-
analyze the vicinity of the secondary Hopf bifurcations hasary bifurcations linked together by a periodic bridge result
been proposed in Rdi24] where it is shown that a multiple- from the same collision.
scale analysis leads to a complex Ginzburg-Landau equation From Fig. 3a) two properties of bridges emerging from a
with real diffusion. The occurrence of a partial differential stable steady branch can be fourid: the periodic branch
equation in the local analysis of the DDE underpins the comemerges stably if it is supercritical, afid) in the subcritical
plexity of its solutions. case, it emerges unstably but becomes stable after a turning
We illustrate the analytical results obtained so far with thepoint. The other side of the bridge always ends on an un-
bifurcation diagram displayed in Fig(&, shown fora=3 stable steady branch and is unstable. Therefore, there must
andQ =0. The steady branches of constagt|E| are seen be a bifurcation on the bridge. It is a tertiary Hopf bifurca-
to emerge from the trivial solution. Only the supercritical tion leading to a quasiperiodic regime. This tertiary bifurca-
branch emerging from the primary Hopf bifurcation locatedtion is found on every bridge of periodic solutions, even
at the origin =0 emerges as a stable solution. Far  those who are completely unstable, connecting a supercriti-
e]m/2,37/2[ mod(2w), that solution is shifted from the cal solution and a subcritical solution emerging from the
origin. At all other primary Hopf bifurcations, a pair of same primary bifurcation. Because the continuation package
subcritical-supercritical branches emerge. This is becausewae use cannot follow quasiperiodic solutions, we integrated
k=0 primary Hopf bifurcation collides k=1 primary Hopf = Eqg. (2) by using a variable step size Runge-Kutté3)4
bifurcation forQ)=ns, n being a non-negative integer. The method with Hermite interpolation to cope with the delayed
subcritical branches display a turning point after which theyterm[36]. In this way, we were able to follow the quasiperi-
become stable. Because all steady branches display an infidic solutions until they become unstable and lead to a cha-
nite number of secondary Hopf bifurcations, increasipg otic regime, as shown in Fig.(1). Finally, period-doubling
makes the destabilization of the stable steady solutions inbifurcations involving only unstable periodic regimes have
eluctable. been found with the numerical continuation package.

pﬁ(l-l— a2)+2awspa+w§.
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FIG. 3. Bifurcation diagram of Eq2) for a=3 andQ)=0. The
maximum temporal amplitude ¢E| is shown versus the feedback
strength. (a) Diagram obtained via numerical continuation. Thick
(thin) lines indicate stabléunstable solutions. Steady branches are
labeled “St,” branches without label are periodic. At=3/2,
there is a collision between a supercritical primary bifurcation and
subcritical primary bifurcation. Circles locate both secondary an
tertiary Hopf bifurcations, triangles locate period-doubling bifurca- been created at the collisiof)E
tions. Decreasing) by 27 maps the bifurcation point8;, B,
B,, andB; onto B,, B;, B;, andBj, respectively(b) Diagram
obtained by direct numerical integration of E@). Steady, peri-

10

FIG. 4. Details of the bifurcation diagrams of E() for «

odic, quasiperiodic, and chaofimcluding LFP regimes are drawn

with plain lines, dashed lines, dotted lines, and stars, respectively.s'
branches. This is precisely the scenario for sup-sub collision
[20]. However, the bifurcatioB, collides eventually with a

Unstable solutions are not displayed.

Up to now, we have focused on supercritical-subcritical
(sup-sub collisions, that is, collisions implying a supercriti-
cal and a subcritical branch. However, it follows from Egs.
(10) and(15) that if eithera<2/(37)=0.21 andQ)=2nr,
or a<2/7m=0.64 andQ=(2n+1), collisions involving
two supercritical branches are possible. In Figa,ld, we

=0.5, illustrating a collision between two primary supercritical bi-
furcations whileQ) is increased. Steadperiodig regimes are indi-
cated by plaindashed lines. Thick(thin) lines indicate stabléun-
stablg solutions. Circles indicate secondary Hopf bifurcations. The
arrows indicate how the branches and the bifurcations mou@ as
increases(a) QO =157/16, before the collision(b),(c) ) =3.25,

ight after the collision: the two Hopf bifurcatior3, andB; have

7). They sustain a bridge of

periodic solutions and move upwards on their respective branches.
(d) Q=177x/16, bifurcationsB; and B, have collided and disap-
peared. The bridge is replaced by a periodic solution emerging from

third bifurcationB; moving downward on the same steady
branch. This collision leads to the disappearance of Bgth
and B, bifurcations. At the point of collision, the periodic
bridge merges with the branch of periodic solutions associ-
ated previously witiB; [Fig. 4(d)].

Coming back to the question of degeneracy, this analysis
shows that fo)=nw+¢ ande—0, two Hopf bifurcations

show that fora=0.5 and) = the mechanism leading to collide if £¢<0, but four Hopf bifurcations collide it>0.
the bridge formation is also applicable to the collision of two Thus ) =n is a point of bifurcation collision and discon-

supercritical branches.

tinu

ity.

A bridge destruction mechanism has also been identified. Obvious differences between the sup-sub and sup-sup col-

Comparing Fig. 4a) (right before the collisionwith Figs.

lisions appear also in the stability of the steady and periodic

4(b,0) (right after the collision it is seen that two secondary branches. In the sup-sup case, both ends of the bridges are
Hopf bifurcationsB, andB3; have been created on the steadysubcritical, the whole bridge is unstable, and there is no ter-
branches, and that they are connected by a bridge of perioditary Hopf bifurcation. Before the primary Hopf bifurcations
solutions. Increasin@, the primary bifurcations move apart collide, one steady branch is stable and the other unstable
and the secondary bifurcations move up along the steadgiose to zero. After the collision, there has been an exchange
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FIG. 5. Unfiltered(upper figur¢ and low-pass filteredlower ]
figure) laser intensity using Eq.l) with »=7.1, «=3, and Eq.
(27) with 7==2. The time trace is typical of the chaotic LFF. E e o I

450 460 470 480 490

of stability and the steady branch emerging from the bifur- time

cation with the smaller value of is stable except between  F|G. 6. Coexisting steady, periodic, and chaotic attractors for
the bifurcationsB; andB,; the other steady branch emerges ,=5.9, 0=0, r=1, =3, andr==2.
unstable and becomes stable after the bifurcaign
In the bifurcation diagram displayed in Figias, it is seen h | . i de with i .
that the periodic branches have a very complex structure for € early experiments were made with osclloscopes acting as

p=1.5. Nevertheless, the explanation of the bridge forma-_" Pass filters or “”?e averaging devices. In_a simplified
tion is still relevant in that domain. Changirfg continu- model of that averaging effect, the recorded intensitg

ously, all steady and periodic branches move in the diagramr,elated to the instantaneous intengE}t* by the equation

as shown for a limited portion of the diagram in Fig. 4. But
after a variation of 2r, the bifurcation diagram is back to its d _ 2

o A ) . I/dt=(|E|*= 1)/ 7, 2
original shape since it is shape invariant under the transfor- (€] e @7)
mation Q—Q*2n7. The secondary Hopf bifurcations

move downwardgupwards on their steady branch &8  \ herer_ s the filter dimensionless time constant. The band-
decreasesincreases Thus, a periodic branch with a com-

_ M . width of the filter (expressed in Hzis equal to 1/fg7pn7),
plex structure is mapped onto another periodic branch with e e Ton i the photon lifetime in the laser. It is only re-
smallerp as{) is decreased. For instance, beginning with ety that streak cameras have been used to probe the dy-
Fig. 3@ for Q=2n and reducingQ) to 2(,n_1)77* the  hamics of these lasers without significant averaging effect
secondary Hopf bifurcations label&} andB; are mapped 140,43, Typical values ofr are of the order of unityr
onto the bifurcation point®, and B;, respectively, while 1 and Ton~ 10~%2s. In Fig. 5, we display the instanta-
the secondary Hopf bifurcations labeld®, and B, are  neous(upper tracgand the averagetlower trace intensity
mapped onto the bifurcation poinBy andB;, respectively. for the point of the chaotic branch locatedz 7.1 in Fig.
This suggests that the branches emerging fBgrandB; are ~ 3(b). It is a very neat example of LFF. The solution is com-
connected and are the two ends of a same bridge, thoughpmsed of plateaus separated by gradual drop-offs and sharp
possible bridge breaking mechanism is not ruled out. Werecoveries. The duration between two consecutive drop-offs
were not able to check this result numerically because thean reach a few hundred delay times. We have obtained LFF
software used here could not follow bridges with such awith plateaus lasting up to 388 delay times for E8). inte-
complex structure. grated withn=7.984, p= —2.09(slightly below the thresh-
old of the laser without feedbagkand a=2.5.

Increasingzn along that branch of chaotic solutions, an-
other chaotic attractor appears, and the solutions switch with-

The stable periodic branches are eventually destabilizedut any regularity between the two attractors. Increasing fur-
by a quasiperiodic branch, which itself is destabilized andher 5, only the new chaotic attractor is left. That attractor is
leads to a chaotic regime. This is the sequence obtained nof the classic type: it originates from a periodic attractor
merically and displayed in Fig.(B). It is also clear from that perturbed by a small amplitude chaos. However, on the next
picture that in general two or more attractors coexist. Thebranch of chaotic solution, the chaos is quite different, being
lower of the chaotic branches in Figld exhibits a phenom- characterized by seemingly random spikes. Finally, we have
enon that has been labeled low frequency fluctuatibR§s)  verified numerically that replacing the cubic nonlinearity
in semiconductor laser physi¢87—42. The time scales in |E|?E by the nonlinearitie§E|E, |E|E, and |E|*E, pre-
semiconductor physics are extremely small. Therefore, alerves the existence of LFF.

V. CHAOTIC SOLUTIONS
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VI. CONCLUSION first secondary bifurcation, coexistence of attractors is the

. rule. Numerically, bistability between steady state and cha-
We have reduced asymptotically the Lang-Kobayashiyic states is easily found. In Fig. 6, multistability is illus-

equations(the full mode to the single cubic complex delay  trated for the section ay=>5.9 in the bifurcation diagram of
differential equation, Eq(2). This equation has a bifurcation Fig. 3@) by showing three different coexisting attractors.
diagram of steady and periodic solutions, which displays all Beside the mechanism of bridge formati®0], a bridge

the complexity found in the full model. In particular, bridges destruction mechanism has also been identified for small val-
of periodic solutions connecting two steady branches are stilles of a. The asymptotic equation displays LFF. We have
observed. The bifurcation diagram and the numerical simualso verified numerically that equations of the tyf¢ with
lations have been obtained wih=3. This is a realistic algebraic nonlinearities of the fordE|"E with n=1,2,3,
value for semiconductor lasers today. Changingloes not and 4 can also sustain LFF regimes. This suggests that LFF
modify the topology of the bifurcation diagram, provided is a pervading property of DDEs rather than an exceptional
>2/7. Below that critical value, pairs of branches emergingfeature of Eq(1).
from the trivial solutions may be both supercritical, depend-

ing on (. A characteristic of the bifurcation diagram dis-

played in Fig. 8a) is that except for two small domains of  This research has been supported by the Fonds National
the normalized feedback strength, 1<84<1.86 and 3.70 de la Recherche Scientifique and the Interuniversity Attrac-
<7<3.86, there is always a stable steady state. Above théon Pole Program of the Belgian Government.
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