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Scattering and separators in dissipative systems
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Scattering of particlelike patterns in dissipative systems is studied, especially we focus on the issue how the
input-output relation is controlled at a head-on collision in the one-dimengiddakpace where traveling
pulses interact strongly. It remains an open problem due to the large deformation of patterns at a colliding
point. We found that a special type of steady or time-periodic solutions called separators and their stable and
unstable manifolds direct the traffic flow of orbits. Such separators are, in general, highly unstable even in the
1D case which causes a variety of input-output relations through the scattering process. We illustrate the
ubiquity of separators by using the Gray-Scott model and a three-component reaction diffusion model arising
in gas-discharge phenomena.
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[. INTRODUCTION Our approach to scattering phenomena is to find an origin
of the sorting mechanism rather than to try to describe the
Spatially localized moving objects such as pulses andletails of the large deformation of the solution. It turns out
spots form a representative class of dynamic patterns in dighat such an origin is identified as the unstable directions of
sipative systems. A propagating pulse of the FitzHugh-separators. One of the pioneering work in this direction is
Nagumo equations is a classical example of strong collisiofiscussed in Refl15], which analyzed the transition from
where annihilation of two colliding pulses is observed, whichannihilation to preservation of colliding waves arising in a
has been regarded as a characteristic feature of dissipativdmple model of continuum of pendula subjected to a con-
waves. One of the recent remarkable discoveries is the exi§tant torque and a viscous damping.
tence of localized moving patterns that not only behave like Although we are interested in collision process of stable
an elastic object upon collision, but also scatter in variougraveling pulses, it should be noted that, for dissipative sys-
ways. Such a phenomenon has been observed experimentalms. single localized pattern itself could be destabilized re-
and numerically, for instance, in gas-discharged sy§teg,  sulting in a variety of dynamics such as breathing, wave
CO-oxidization procesg3,4], chemical reactiongs—12), and ~ sPlitting, or back firing[3,7,16. A matched asymptotic
reaction-diffusion systems with a global feedback systeninethod was used in Refl17] to clarify the splitting process
[13,14]. of traveling pulses. For a repulsive dynamics between two
They resemble the solitons in a nonlinear integrable sysStanding pulses in a mildly strong interaction regime, a rig-
tem, however, the similarity is superficial. In fact, the shapeorous analysis was done in R¢L8], which might be useful
and the velocity of a soliton depend on the initial conditions,to understand the repulsion process after collision. Once such
on the other hand, such properties are uniquely determined destabilization occurs, the dynamics becomes, in general,
asymptotically for dissipative systems. Moreover, the input-ve€ry complex, for instance, it is known that self-splitting and
output relation of scattering in a dissipative system mayannihilation (or self-destruction are combined together to
change in various ways as parameters vary, especialfferm a spatiotemporal chaos in the Gray-Scott m¢aie|20)
through head-on collisions. A head-on collision may not beand CO-oxidization procedgl]. In order to understand the
generic in the higher-dimensional space, however, qualitativi/hole dynamics of such complex patterns, a computer-aided
properties such as the number of particles or topology offeometric approach is quite useful as was shown by Refs.
localized patterns can be changed only at strong collision, ih16,20,21. Our viewpoint combined with these works may
other words, if individual moving particle is stable, then newshed light on the anatomy of complex dynamics in which
qualitative features appear only through such singular eventélere are many moving objects with finite velocity and scat-
The aim of this paper is to investigate the scattering profering is unavoidable in such a situation.
cess of stable dissipative particlelike solutions and clarify the

underlying mechanism causing a variety of input-output re- || TWIN-HORN SEPARATOR FOR THE GRAY-SCOTT

lations. _ _ MODEL
Our goal is to show a special set of unstable patterns . . N o
called separators, which links input to output at collision. First, we consider a typical transition where repulsion is

It is clear that conventional analytical tools are not pow-Switched to annihilation as a parameter varies. Such a tran-
erful enough to understand the whole process of scatteringjtion is quite common and is observed in many model sys-
due to the large deformation of solution. Recall that the well-tems, however, in the sequel, we employ the following Gray-
known annihilation of the FitzHugh-Nagumo’s pulse in the Scott(GS) model (1) as a representative oitgee Ref[22])
one-dimension@lD) space still remains to be solved in rig-
0rous sense. u=D,Au—uv?+F(1—-u),
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F nism shown below is quite universal for other systems,
0022 — which we will discuss in Ref[23]. It is known that Eqs(1)
have a stable traveling pulse in an appropriate parameter re-
gion (Fig. 1. In what follows, we consider two cases in
0.0198— 3 which F is either 0.0198 or 0.0140 arldvaries as a bifur-
cation parameter. For all simulations for the GS model be-
low, we used the explicit scheme witAt=0.01, Ax
=0.005,D,=5.0x10°, andD,=2.5x10"°. The system
size is 2.0. FirstF is fixed to be 0.0198 and study a sym-
metric collision. Whenk is increased and exceeds
~0.049 7859, the input-output relation changes from anni-
hilation (a) to repulsion(b) as in Fig. 2. The input-output
relation depends on the initial condition, therefore, in order
0.0140— to make the transition poitk; to be well defined, we have to
specify the class of initial conditions. Theoretically, we em-
ploy a symmetric pair of true traveling pulses as an initial
o2 N condition, which starts initially ax=* and collides at the
0.036 0.04 0.044 0043 0.052 0.056 origin. Practically such an initial data and the resultiagre
0.0483 0.0498 well approximated by taking a well-settled symmetric pair of
pulses. Here, “well-settled pulse” means that it is obtained
FIG. 1. Existence region of stable traveling pulse for the Gray-after a long run simulation on a large interval as in Figs. 2
Scott model. The stgblg 1D traveliistanding wave is observgq i and 5. This makes sense because our traveling pulses are
STP(SSP. WhenF s fixed to be 0.01980.0140, the transition  agymptotically stable. In fact, convergence to the traveling
occurs from annihilaion to repulsion(preservation at k  jise js exponentially fast, therefore a good approximation
=0.0498 =0.0483). See the text for details. of k. can be obtained even for the initial condition of square
type. A remarkable thing is that there appears a quasisteady
vi=D,Av+uv?~(F+Kk)v, (1) state of twin-horn shape right after collision and the orbit
approaches it, stays there for certain time, then annihilate or
whereF>0 andk>0 are parameters related to inflow and emit two pulses. In fact, there exists a real steady state of
removal rate of chemical species. Note that the basic mech&win-horn shape, which is numerically confirmed by the

FIG. 2. Symmetric collisions
! N for F=0.0198. () Annihilation
occurs at k,F)
uy =(0.0497859,0.0198)(b) As k
is slightly increased to

AA. 0 j\/’({ 0.0497860, the transition from
(éﬁ) annihilation to repulsion occurs.
/V\ N Note that just before the occur-
2" v rence of annihilation or creation
0 of counter propagating pulses,
both orbits in(a) and(b) stay very
(c2) close to the separator depicted in
+ (c1). Only v component is shown

u”//\/\ in (@) and (b). (c1) The profile of
¢ W the unstable steady state of codim
_ = 3 (separator Three unstable
(c3) eigenfunctionse , ¢,, 5 are de-
picted as(c2)—(c4), and(c5) cor-
AA responds to the Goldstone mode.
The associated eigenvalues are
o) N1=0.06389%>\,=0.063 78>\
/V\ + =0.002 33. The first two eigen-
values are much larger than the
first one. The solidgray) line in-
u?" =y dicatesv (u) component.
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FIG. 4. Global bifurcation diagram for the twin-horn separator
of the GS model. The bifurcation parametborizontal axig is k
with F being fixed as 0.0198. The solidray) line indicates stable
(unstablg part. The twin-horn separator of Fig. 2 is designatedby
Note that it is connected to a stable standing pulse. The branch
appears to intersect with itself; however, this is an apparent inter-
section due to projection. Here, we usedo ([25]) to compute the

branch globally.

adjoint eigenfunction associated wiky. The inner product

gives a criterion that positivénegative means annihilation

(repulsion), although this criterion has a limitation due to its

linearity, namely, one can apply it to the case whieie not

too close tok; . A practical criterion for detecting the transi-

tion pointk. is to find a zero point of the above inner prod-

uct, which is a monotone decreasing functionkafiear the

transition pointk, .

Newton method(see, for instance, Ref24]). A linearized WhenF is decreased to 0.0140, the input-output relation
remains the same as before for symmetric collisions like in

eigenvalue problem;. ¢=\ ¢, whereL is the linearized op-
Fig. 5, which is consistent with the output from the separator

erator of the right-hand side of the systdf) around the
twin-horn steady state has three unstable eigenvalyes as in Figs. €&,d). Note that the outputs from the separator for

=0.06389>\,=0.06378>\;=0.00233 besides the zero the asymmetric perturbations in Figs(af) are different
eigenvalue\ , coming from the translation invariandeee from those in Figs. @&,b, which becomes crucial for the
Fig. 2(c)]. Note that the first two eigenvalues are much largerasymmetric collision in the sequel. The output for asymmet-
than the third one, hence the dynamics is basically controlledic collisions, i.e., two colliding pulses are not perfectly sym-
by \; and\,. The associated eigenfunctions are denoted bynetric, becomes delicate and the first eigenfunction of odd
¢i(i=1,...,4). Thetwin-horn pattern is called a separator symmetry[see Fig. 2c2) and Fig. %c2)] denoted by¢,
and plays a role as a traffic controller at collision. In fact, forcomes up to the stage. First note that an asymmetric collision
symmetric head-on collision, the second eigenfunction playgmplies the inner producf U (t*,x) —S(k)], ¢ ) is nonzero,
an important role to determine the fate of the orbit, namelywhich depends on the size of the perturbation as well as on
adding its small constant-multiple perturbation to the twin-the distance of initial two pulses. In Fig. 7, we employ as an
horn pattern, then the resulting behavior is either annihilationnitial data a well-settled pulse on the left side and its reflec-
or emission of two pulses depending on its sign of constantion on the right side with multiplication factor 0.9 for each
In other words, the output can be classified by looking at thezase. Recalling[U(t*,x)—S(k)],¢5)=0 holds atk=kg,
response of the separator along the unstable manifold as e above inner product withhf becomes dominant nekg,
Fig. 3. It should be noted that the separator can be obtaineghich implies that the output is controlled along the direc-
by continuation of a stable standing pulse as in Fig. 4, whichijon ¢, whenk~k,. For F=0.0198, the final outcome turns
not only shows that the separat§(k) depends smoothly on out to be the same as the symmetric collision, i.e., emission

kin a wider interval ofk, but also it is related to the observ- of two counterpropagating pulses, as in Figa)7which is
consistent with the result by adding a small positive pertur-

able patterns.
In order to predict the orbital behavior ne&(k), it is  bation of ¢, to the separator like in Fig.(B) [or Fig. 3a)].

convenient to introduce the following inner product as a firstqowever wherF is decreased to 0.0140, then there appears
approximation([U(t* ,x) —S(k)],¢3) where U(t*,x) de-  an interval ofk containingk. where only one pulse is emitted
notes the solution profile right after collision anth the as in Fig. 7c). This is again predictable by looking at the
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FIG. 3. Outputs from the separator fBr=0.0198. (a) [(b)] A
small positive(negative perturbation of¢, is added to the twin-
horn separatoi(c) [(d)] A small positive(negative perturbation of
¢, is added to the separator. The output of annihilatiwo-pulse
emission is consistent with that of Fig. 2.
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FIG. 5. Symmetric collisions

-

FIG. 6. Outputs from the separator fBr=0.0140.(a) [(b)] A
small positive(negative perturbation of¢, is added to the twin-
horn separatoi(c) [(d)] A small positive(negative perturbation of
¢, is added to the separator. The output of annihilattwo-pulse
emission is consistent with that of Fig. 5.

N for F=0.0140. (@) Annihilation
occurs at k,F)
5 =(0.0483009,0.0140)(b) As k
j\/( is slightly increased to
= 0.0483010, the transition from
(c1) annihilation to repulsion occurs.
Note that just before the occur-
e ;v rence of annihilation or creation
of counterpropagating pulses, both
orbits in (a8 and (b) stay very
(c2) close to the separator depicted in
(c1). Only v component is shown
u”//\/\ in (a) and (b). (c1) The profile of
W‘{ the unstable steady state of codim
v 3 (separator Three unstable
(c3) eigenfunctionse, , ¢, 5 are de-
v picted as(c2)—(c4), and(c5) cor-
u? Y N responds to the Goldstone mode.
The associated eigenvalues are
) N1=0.05485>\,=0.054 7>\,
=0.00374. The first two eigen-
u-%7 ~zV values are much larger than the
first one. The solidgray) line in-
dicatesv (u) component.
(c5)
(c)

response of the associated separator by perturbing it in the
positive direction of¢, as in Fig. 7d) [or Fig. 6a)], which
dominates the dynamics nela= k.. Taking a closer look at
these two outputs, the right hump splits into two counter-
propagating pulses in the first case and one of the emitting
pulse dies out in the second case. This is reasonable, since
the first case==0.0198 is closer to the self-replicating re-
gime in the parameter spack,F) (see Ref.[20]). These
observations suggest that the traffic control is regulated by
the outputs along the unstable directions of separators.

[ll. FUSION AND TIME-PERIODIC SEPARATORS
FOR A THREE-COMPONENT REACTION-DIFFUSION
MODEL

Such a separator may exist in a wider class of dissipative
systems in which traveling waves are observed. We illustrate
this by using a three-component reaction-diffusion system
(2), which was proposed as a qualitative model of gas-
discharge systerf?6] and displays a variety of dynamic pat-
terns including particlelike objects called dissipative solitons
[2,27]:

u=D,Au+f(U)— k3v — KgW+ K1,
v=D,Av+u—uv,
ow,=D, Aw+u—w, 2

where we setf(u)=2u—u®. We consider Eqs(2) with
(Dy.D,,D,)=(5.0x10"%,5.0x10"°,1.0x 10" 2) andr be-
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FIG. 7. Asymmetric collisions for the Gray-Scott model. Param-
eters areF=0.0198, k=0.049 35606 for(a) and (b), and F
=0.0140, k=0.048 247 827 for(c) and (d). The right pulse is
slightly smaller than the left one initially. The outputs depend-on
a two-pulse emission fdf =0.0198(a) and one-pulse emission for
F=0.0140(c), which can be predicted by the evolution starting
from the associated separator with adding a small perturbation of
¢, shape(b) and(d).

ing a bifurcation parameter. The other parameters are set t
be k;=—7.0, k3=1.0, k,=8.5, and6=1.0. In order to
integrate Eqs(2), we used a semi-implicit scheme witkx
=2"1%andAt=0.01 and the system size is either 0.5 or 1.0
subject to Neumann boundary conditions. This type of three-
component reaction-diffusion systems is an appropriate set
il e lucyof st f pariclelke soions P 1° 1. 5. (@ Schmatcprase dagram o e gasdischarge 15
metric collisions in the 1D space. The input-output diagramecn- D (H) denotes the driftHop bifurcation of the standing pulse

. . N . . . as 7 is increased(b) Bird’s-eye views of input-output for several

is depicted a_s in Fig.(8) as yvell as the_ _blfurcatlon diagram values (left 7=15.0, centerr=20.0, right 7=35.0). The initial

for the standing pulse asvaries. The initial data are t_aken 10 functions are taken to be a snhapshot of well-settled traveling pulse.
be well-settled pulses as in the GS case. Traveling pulsefe griginal simulations were done for the system size being equal
bifurcate supercritically at~9.7(=7") and they are repul- o 1, however, the central parts of them are displayed hje.
sive near the bifurcation point, in fact they scatter like in Fig. oscillatory separator for=235.0 which bifurcates frord and has a
8(b)(left). The input-output relation is, however, switched grift instability, however, it is observable on a half space with zero-
from two-pulse emissiofrepulsion to one-pulse emission at flux boundary conditions by suppressing the drift instability. The
7°~16.132807 9. Separators are again the key to understargstem size is 0.5.

this transition, in fact, there are two separators involved dur-

ing the scattering process; one is the twin-horn pattern ofwin-horn pattern but eventually leaves and repels each other.
codim 3[Fig. Ad)], similar to the GS case, and the other is On the other hand, whenis slightly larger than®, the orbit

the fusion solution(standing pulseof codim 1[Fig. Ab)].  first approaches the twin-horn pattern, then its middle part
For 7 being slightly smaller than®, the orbit approaches rises and becomes very close to the fusion patfsee the
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FIG. 9. Separators of the fusion and twin-horn ty(@@.Transition from repulsion to one-pulse emission occurs wiens. Whenr is
slightly larger thanr S, the orbit traverses two different types separators successively.uQugnponent is shown heré) Profile of fusion
pattern of codim 1 and the unstable eigenfunction is depictéc).iiid) Profile of twin-horn separator of codim 3. Three unstable eigenvalues
A1=0.9069>\,=0.1297>)3=0.0138 and the associated eigenfunctidns ®,, and®, are shown ase)—(g). We omit the Goldstone
modes here. The solid, gray, and broken lines indicatg andw components, respectively. The parameters are the same as in Fig. 8 and
the system size is 1.0.

maghnified picture of Fig. @]. Recalling that the fusion so- way as in the GS case, namely$ is the zero point of the
lution has a drift instability forr> 79, it starts to move either inner product([U(t*,x)—S(7)],®%) where U(t*,x) de-

to the left or to the right after some waiting tiniEig. 9(a)]. notes the solution profile right after the collisio®(7) the
Note that it is not predictable in which direction the pulseseparator of the twin-horn shape, abd the adjoint eigen-
eventually moves, since it comes from a tiny round-off er-function associated witth,. Moreover, this gives a criterion
rors. It is quite remarkable that the orbit passes by two difthat if the inner product is negati@ositive, it emits two
ferent separators successively; twin-horn type and fusiopulses(one pulsg with the same caveat as in the GS case.
type. Although the twin-horn separator has three unstabl@he abovers is theoretically defined when the initial data
eigenvalues, the first one is much larger than others ( for U(t*,x) is taken as a symmetric pair of true pulses on the
=0.9069>\,=0.1297>\3;=0.0138) and hence, it basically whole line. Numerically, as in the GS case’ is well ap-
controls the dynamics. In view of the eigenfon associ- proximated by using well-settled pulses as initial data. Still
ated with\ , [Fig. Ae)], it is symmetric and has a high peak is increased, the input-output relation remains the same,
in the middle, which drives a motion from twin horn to fu- however, the dynamics during the scattering process be-
sion. The transition point® can be characterized in a similar comes oscillatory as in the right figure of Figlb& This is
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because the fusion pattern undergoes a Hopf bifurcation dhe parameters contained in the system but also on a tiny
7~31.8 and the steady fusion separator is replaced by theifference of the initial condition. As a first step towards this

time-periodic ondsee the Hopf branch of gray color in Fig. direction, we proposed a viewpoint from separators. Separa-
8(a)]. The new time-periodic separator has only a drift insta-tors may be unstable steady states or time-periodic solutions
bility, therefore suppose a collision occurs in a perfectlyand their codimensiong.e., the number of unstable eigen-

symmetric way, or equivalently, the pulse collides a bound-values is, in general, high and the origin of a diversity of

ary with Neumann boundary condition, which suppresses thaput-output relations can be reduced to the local dynamics
drift instability, then it stays there as a stable time-periodicaround separators. We illustrated this viewpoint by using the
solution like in Fig. &). On the other hand, on an extended Gray-Scott model and a three-component model system aris-
domain, a tiny fluctuation causes a drift bifurcation and emitsng in a gas-discharge phenomenon. The orbit typically ap-

a single pulse as in the right figure of Figb8 proaches a separator right after collision and is sorted out
generically along one of the unstable directions of the sepa-
IV. CONCLUSION rator. The output can be predicted by using the information

) ) ) _ on the solution profile right after collision, separators and
Scattering phenomena among traveling pulses is studiegheir unstable eigenforms. Separators in dissipative systems
When two traveling pulses collide with nonsmall velocity, seems to be ubiquitous and useful to understand the scatter-
they are deformed a lot and it is, in general, very difficult t0jhg process, in fact, even in the higher-dimensional space
describe the detailed process and to reduce to a finites,ch separators are recently found numerically for various
dimensional dynamics. Two natural questions arise. First, igngdels including the three-component system studied here,

there any object that somehow controls the collision processzng the local dynamics around them is currently investigated
Second, how to predict the output after collision for a given[23).

initial data and parameters? The first one comes from an
intuition that when input and output are regarded as two
stable states, then there must be unstable objsatiklesin
between, although such objects are usually behind the scene
due to high codimensions and the collision process proceeds This work was supported by Grant-in-Aid for Scientific
in the infinite-dimensional space. The second one is veryResearchB) No. 13440027 and for Exploratory Research
subtle, since the input-output relation depends not only orsrant No. 14654018.
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