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Scattering and separators in dissipative systems
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Scattering of particlelike patterns in dissipative systems is studied, especially we focus on the issue how the
input-output relation is controlled at a head-on collision in the one-dimensional~1D! space where traveling
pulses interact strongly. It remains an open problem due to the large deformation of patterns at a colliding
point. We found that a special type of steady or time-periodic solutions called separators and their stable and
unstable manifolds direct the traffic flow of orbits. Such separators are, in general, highly unstable even in the
1D case which causes a variety of input-output relations through the scattering process. We illustrate the
ubiquity of separators by using the Gray-Scott model and a three-component reaction diffusion model arising
in gas-discharge phenomena.
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I. INTRODUCTION

Spatially localized moving objects such as pulses a
spots form a representative class of dynamic patterns in
sipative systems. A propagating pulse of the FitzHug
Nagumo equations is a classical example of strong collis
where annihilation of two colliding pulses is observed, whi
has been regarded as a characteristic feature of dissip
waves. One of the recent remarkable discoveries is the e
tence of localized moving patterns that not only behave
an elastic object upon collision, but also scatter in vario
ways. Such a phenomenon has been observed experime
and numerically, for instance, in gas-discharged system@1,2#,
CO-oxidization process@3,4#, chemical reactions@5–12#, and
reaction-diffusion systems with a global feedback syst
@13,14#.

They resemble the solitons in a nonlinear integrable s
tem, however, the similarity is superficial. In fact, the sha
and the velocity of a soliton depend on the initial condition
on the other hand, such properties are uniquely determ
asymptotically for dissipative systems. Moreover, the inp
output relation of scattering in a dissipative system m
change in various ways as parameters vary, espec
through head-on collisions. A head-on collision may not
generic in the higher-dimensional space, however, qualita
properties such as the number of particles or topology
localized patterns can be changed only at strong collision
other words, if individual moving particle is stable, then ne
qualitative features appear only through such singular eve

The aim of this paper is to investigate the scattering p
cess of stable dissipative particlelike solutions and clarify
underlying mechanism causing a variety of input-output
lations.

Our goal is to show a special set of unstable patte
called separators, which links input to output at collision.

It is clear that conventional analytical tools are not po
erful enough to understand the whole process of scatte
due to the large deformation of solution. Recall that the w
known annihilation of the FitzHugh-Nagumo’s pulse in t
one-dimensional~1D! space still remains to be solved in rig
orous sense.
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Our approach to scattering phenomena is to find an or
of the sorting mechanism rather than to try to describe
details of the large deformation of the solution. It turns o
that such an origin is identified as the unstable directions
separators. One of the pioneering work in this direction
discussed in Ref.@15#, which analyzed the transition from
annihilation to preservation of colliding waves arising in
simple model of continuum of pendula subjected to a c
stant torque and a viscous damping.

Although we are interested in collision process of sta
traveling pulses, it should be noted that, for dissipative s
tems, single localized pattern itself could be destabilized
sulting in a variety of dynamics such as breathing, wa
splitting, or back firing @3,7,16#. A matched asymptotic
method was used in Ref.@17# to clarify the splitting process
of traveling pulses. For a repulsive dynamics between t
standing pulses in a mildly strong interaction regime, a r
orous analysis was done in Ref.@18#, which might be useful
to understand the repulsion process after collision. Once s
a destabilization occurs, the dynamics becomes, in gen
very complex, for instance, it is known that self-splitting a
annihilation ~or self-destruction! are combined together to
form a spatiotemporal chaos in the Gray-Scott model@19,20#
and CO-oxidization process@4#. In order to understand the
whole dynamics of such complex patterns, a computer-ai
geometric approach is quite useful as was shown by R
@16,20,21#. Our viewpoint combined with these works ma
shed light on the anatomy of complex dynamics in whi
there are many moving objects with finite velocity and sc
tering is unavoidable in such a situation.

II. TWIN-HORN SEPARATOR FOR THE GRAY-SCOTT
MODEL

First, we consider a typical transition where repulsion
switched to annihilation as a parameter varies. Such a t
sition is quite common and is observed in many model s
tems, however, in the sequel, we employ the following Gra
Scott ~GS! model ~1! as a representative one~see Ref.@22#!

ut5DuDu2uv21F~12u!,
©2003 The American Physical Society10-1
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v t5DvDv1uv22~F1k!v, ~1!

whereF.0 andk.0 are parameters related to inflow an
removal rate of chemical species. Note that the basic me

FIG. 1. Existence region of stable traveling pulse for the Gr
Scott model. The stable 1D traveling~standing! wave is observed in
STP ~SSP!. WhenF is fixed to be 0.0198~0.0140!, the transition
occurs from annihilation to repulsion~preservation! at k
50.0498 (k50.0483). See the text for details.
05621
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nism shown below is quite universal for other system
which we will discuss in Ref.@23#. It is known that Eqs.~1!
have a stable traveling pulse in an appropriate paramete
gion ~Fig. 1!. In what follows, we consider two cases
which F is either 0.0198 or 0.0140 andk varies as a bifur-
cation parameter. For all simulations for the GS model
low, we used the explicit scheme withDt50.01, Dx
50.005, Du55.031025, and Dv52.531025. The system
size is 2.0. First,F is fixed to be 0.0198 and study a sym
metric collision. When k is increased and exceedskc

'0.049 785 9, the input-output relation changes from an
hilation ~a! to repulsion~b! as in Fig. 2. The input-outpu
relation depends on the initial condition, therefore, in ord
to make the transition pointkc to be well defined, we have to
specify the class of initial conditions. Theoretically, we em
ploy a symmetric pair of true traveling pulses as an init
condition, which starts initially atx56` and collides at the
origin. Practically such an initial data and the resultingkc are
well approximated by taking a well-settled symmetric pair
pulses. Here, ‘‘well-settled pulse’’ means that it is obtain
after a long run simulation on a large interval as in Figs
and 5. This makes sense because our traveling pulses
asymptotically stable. In fact, convergence to the travel
pulse is exponentially fast, therefore a good approximat
of kc can be obtained even for the initial condition of squa
type. A remarkable thing is that there appears a quasiste
state of twin-horn shape right after collision and the or
approaches it, stays there for certain time, then annihilat
emit two pulses. In fact, there exists a real steady state
twin-horn shape, which is numerically confirmed by th
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FIG. 2. Symmetric collisions
for F50.0198. ~a! Annihilation
occurs at (k,F)
5(0.049 785 9,0.0198).~b! As k
is slightly increased to
0.049 786 0, the transition from
annihilation to repulsion occurs
Note that just before the occur
rence of annihilation or creation
of counter propagating pulses
both orbits in~a! and~b! stay very
close to the separator depicted
~c1!. Only v component is shown
in ~a! and ~b!. ~c1! The profile of
the unstable steady state of codi
3 ~separator!. Three unstable
eigenfunctionsf1 ,f2 ,f3 are de-
picted as~c2!–~c4!, and ~c5! cor-
responds to the Goldstone mod
The associated eigenvalues a
l150.063 89.l250.063 78.l3

50.002 33. The first two eigen
values are much larger than th
first one. The solid~gray! line in-
dicatesv(u) component.
0-2
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SCATTERING AND SEPARATORS IN DISSIPATIVE SYSTEMS PHYSICAL REVIEW E67, 056210 ~2003!
Newton method~see, for instance, Ref.@24#!. A linearized
eigenvalue problem;Lf5lf, whereL is the linearized op-
erator of the right-hand side of the system~1! around the
twin-horn steady state has three unstable eigenvaluesl1
50.063 89.l250.063 78.l350.002 33 besides the zer
eigenvaluel4 coming from the translation invariance@see
Fig. 2~c!#. Note that the first two eigenvalues are much larg
than the third one, hence the dynamics is basically contro
by l1 andl2. The associated eigenfunctions are denoted
f i( i 51, . . .,4). Thetwin-horn pattern is called a separat
and plays a role as a traffic controller at collision. In fact,
symmetric head-on collision, the second eigenfunction pl
an important role to determine the fate of the orbit, name
adding its small constant-multiple perturbation to the tw
horn pattern, then the resulting behavior is either annihilat
or emission of two pulses depending on its sign of const
In other words, the output can be classified by looking at
response of the separator along the unstable manifold a
Fig. 3. It should be noted that the separator can be obta
by continuation of a stable standing pulse as in Fig. 4, wh
not only shows that the separatorS(k) depends smoothly on
k in a wider interval ofk, but also it is related to the observ
able patterns.

In order to predict the orbital behavior nearS(k), it is
convenient to introduce the following inner product as a fi
approximation^@U(t* ,x)2S(k)#,f2* & where U(t* ,x) de-
notes the solution profile right after collision andf2* the

FIG. 3. Outputs from the separator forF50.0198. ~a! @~b!# A
small positive~negative! perturbation off1 is added to the twin-
horn separator.~c! @~d!# A small positive~negative! perturbation of
f2 is added to the separator. The output of annihilation~two-pulse
emission! is consistent with that of Fig. 2.
05621
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adjoint eigenfunction associated withl2. The inner product
gives a criterion that positive~negative! means annihilation
~repulsion!, although this criterion has a limitation due to i
linearity, namely, one can apply it to the case wherek is not
too close tokc . A practical criterion for detecting the trans
tion point kc is to find a zero point of the above inner pro
uct, which is a monotone decreasing function ofk near the
transition pointkc .

WhenF is decreased to 0.0140, the input-output relat
remains the same as before for symmetric collisions like
Fig. 5, which is consistent with the output from the separa
as in Figs. 6~c,d!. Note that the outputs from the separator f
the asymmetric perturbations in Figs. 6~a,b! are different
from those in Figs. 3~a,b!, which becomes crucial for the
asymmetric collision in the sequel. The output for asymm
ric collisions, i.e., two colliding pulses are not perfectly sym
metric, becomes delicate and the first eigenfunction of o
symmetry @see Fig. 2~c2! and Fig. 5~c2!# denoted byf1
comes up to the stage. First note that an asymmetric collis
implies the inner product̂@U(t* ,x)2S(k)#,f1* & is nonzero,
which depends on the size of the perturbation as well as
the distance of initial two pulses. In Fig. 7, we employ as
initial data a well-settled pulse on the left side and its refl
tion on the right side with multiplication factor 0.9 for eac
case. Recallinĝ @U(t* ,x)2S(k)#,f2* &50 holds atk5kc ,
the above inner product withf1* becomes dominant nearkc ,
which implies that the output is controlled along the dire
tion f1 whenk'kc . ForF50.0198, the final outcome turn
out to be the same as the symmetric collision, i.e., emiss
of two counterpropagating pulses, as in Fig. 7~a!, which is
consistent with the result by adding a small positive pert
bation off1 to the separator like in Fig. 7~b! @or Fig. 3~a!#.
However whenF is decreased to 0.0140, then there appe
an interval ofk containingkc where only one pulse is emitte
as in Fig. 7~c!. This is again predictable by looking at th

FIG. 4. Global bifurcation diagram for the twin-horn separa
of the GS model. The bifurcation parameter~horizontal axis! is k
with F being fixed as 0.0198. The solid~gray! line indicates stable
~unstable! part. The twin-horn separator of Fig. 2 is designated byS.
Note that it is connected to a stable standing pulse. The bra
appears to intersect with itself; however, this is an apparent in
section due to projection. Here, we usedAUTO ~@25#! to compute the
branch globally.
0-3
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FIG. 5. Symmetric collisions
for F50.0140. ~a! Annihilation
occurs at (k,F)
5(0.048 300 9,0.0140).~b! As k
is slightly increased to
0.048 301 0, the transition from
annihilation to repulsion occurs
Note that just before the occur
rence of annihilation or creation
of counterpropagating pulses, bot
orbits in ~a! and ~b! stay very
close to the separator depicted
~c1!. Only v component is shown
in ~a! and ~b!. ~c1! The profile of
the unstable steady state of codi
3 ~separator!. Three unstable
eigenfunctionsf1 ,f2 ,f3 are de-
picted as~c2!–~c4!, and ~c5! cor-
responds to the Goldstone mod
The associated eigenvalues a
l150.054 85.l250.054 71.l3

50.003 74. The first two eigen
values are much larger than th
first one. The solid~gray! line in-
dicatesv(u) component.
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FIG. 6. Outputs from the separator forF50.0140. ~a! @~b!# A
small positive~negative! perturbation off1 is added to the twin-
horn separator.~c! @~d!# A small positive~negative! perturbation of
f2 is added to the separator. The output of annihilation~two-pulse
emission! is consistent with that of Fig. 5.
05621
response of the associated separator by perturbing it in
positive direction off1 as in Fig. 7~d! @or Fig. 6~a!#, which
dominates the dynamics neark5kc . Taking a closer look at
these two outputs, the right hump splits into two count
propagating pulses in the first case and one of the emit
pulse dies out in the second case. This is reasonable, s
the first caseF50.0198 is closer to the self-replicating re
gime in the parameter space (k,F) ~see Ref.@20#!. These
observations suggest that the traffic control is regulated
the outputs along the unstable directions of separators.

III. FUSION AND TIME-PERIODIC SEPARATORS
FOR A THREE-COMPONENT REACTION-DIFFUSION

MODEL

Such a separator may exist in a wider class of dissipa
systems in which traveling waves are observed. We illustr
this by using a three-component reaction-diffusion syst
~2!, which was proposed as a qualitative model of g
discharge system@26# and displays a variety of dynamic pa
terns including particlelike objects called dissipative solito
@2,27#:

ut5DuDu1 f ~u!2k3v2k4w1k1 ,

tv t5DvDv1u2v,

uwt5DwDw1u2w, ~2!

where we setf (u)52u2u3. We consider Eqs.~2! with
(Du ,Dv ,Dw)5(5.031026,5.031025,1.031022) andt be-
0-4
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SCATTERING AND SEPARATORS IN DISSIPATIVE SYSTEMS PHYSICAL REVIEW E67, 056210 ~2003!
ing a bifurcation parameter. The other parameters are s
be k1527.0, k351.0, k458.5, andu51.0. In order to
integrate Eqs.~2!, we used a semi-implicit scheme withDx
52210 andDt50.01 and the system size is either 0.5 or 1
subject to Neumann boundary conditions. This type of thr
component reaction-diffusion systems is an appropriate
ting for the study of scattering of particlelike solutions in t
higher-dimensional space@27#. Here, we focus on the sym
metric collisions in the 1D space. The input-output diagr
is depicted as in Fig. 8~a! as well as the bifurcation diagram
for the standing pulse ast varies. The initial data are taken t
be well-settled pulses as in the GS case. Traveling pu
bifurcate supercritically att'9.7([td) and they are repul-
sive near the bifurcation point, in fact they scatter like in F
8~b!~left!. The input-output relation is, however, switche
from two-pulse emission~repulsion! to one-pulse emission a
ts'16.132 807 9. Separators are again the key to unders
this transition, in fact, there are two separators involved d
ing the scattering process; one is the twin-horn pattern
codim 3 @Fig. 9~d!#, similar to the GS case, and the other
the fusion solution~standing pulse! of codim 1 @Fig. 9~b!#.
For t being slightly smaller thants, the orbit approaches

FIG. 7. Asymmetric collisions for the Gray-Scott model. Para
eters areF50.0198, k50.049 356 06 for~a! and ~b!, and F
50.0140, k50.048 247 827 for~c! and ~d!. The right pulse is
slightly smaller than the left one initially. The outputs depend onF;
a two-pulse emission forF50.0198~a! and one-pulse emission fo
F50.0140 ~c!, which can be predicted by the evolution startin
from the associated separator with adding a small perturbatio
f1 shape~b! and ~d!.
05621
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ftwin-horn pattern but eventually leaves and repels each ot
On the other hand, whent is slightly larger thants, the orbit
first approaches the twin-horn pattern, then its middle p
rises and becomes very close to the fusion pattern@see the

-

of

FIG. 8. ~a! Schematic phase diagram for the gas-discharge
tem:D ~H! denotes the drift~Hopf! bifurcation of the standing pulse
ast is increased.~b! Bird’s-eye views of input-output for severalt
values ~left t515.0, centert520.0, right t535.0). The initial
functions are taken to be a snapshot of well-settled traveling pu
The original simulations were done for the system size being eq
to 1, however, the central parts of them are displayed here.~c!
Oscillatory separator fort535.0 which bifurcates fromH and has a
drift instability, however, it is observable on a half space with ze
flux boundary conditions by suppressing the drift instability. T
system size is 0.5.
0-5
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FIG. 9. Separators of the fusion and twin-horn type.~a! Transition from repulsion to one-pulse emission occurs whent't s. Whent is
slightly larger thant s, the orbit traverses two different types separators successively. Onlyu component is shown here.~b! Profile of fusion
pattern of codim 1 and the unstable eigenfunction is depicted in~c!. ~d! Profile of twin-horn separator of codim 3. Three unstable eigenva
l150.9069.l250.1297.l350.0138 and the associated eigenfunctionsF1 , F2, andF3 are shown as~e!–~g!. We omit the Goldstone
modes here. The solid, gray, and broken lines indicateu, v, andw components, respectively. The parameters are the same as in Fig.
the system size is 1.0.
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magnified picture of Fig. 9~a!#. Recalling that the fusion so
lution has a drift instability fort.td, it starts to move either
to the left or to the right after some waiting time@Fig. 9~a!#.
Note that it is not predictable in which direction the pul
eventually moves, since it comes from a tiny round-off
rors. It is quite remarkable that the orbit passes by two
ferent separators successively; twin-horn type and fus
type. Although the twin-horn separator has three unsta
eigenvalues, the first one is much larger than othersl1
50.9069.l250.1297.l350.0138) and hence, it basicall
controls the dynamics. In view of the eigenformF1 associ-
ated withl1 @Fig. 9~e!#, it is symmetric and has a high pea
in the middle, which drives a motion from twin horn to fu
sion. The transition pointt s can be characterized in a simila
05621
-
f-
n
le

way as in the GS case, namely,t s is the zero point of the
inner product^@U(t* ,x)2S(t)#,F1* & where U(t* ,x) de-
notes the solution profile right after the collision,S(t) the
separator of the twin-horn shape, andF1* the adjoint eigen-
function associated withF1. Moreover, this gives a criterion
that if the inner product is negative~positive!, it emits two
pulses~one pulse! with the same caveat as in the GS ca
The abovet s is theoretically defined when the initial dat
for U(t* ,x) is taken as a symmetric pair of true pulses on
whole line. Numerically, as in the GS case,t s is well ap-
proximated by using well-settled pulses as initial data. Stit
is increased, the input-output relation remains the sa
however, the dynamics during the scattering process
comes oscillatory as in the right figure of Fig. 8~b!. This is
0-6
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SCATTERING AND SEPARATORS IN DISSIPATIVE SYSTEMS PHYSICAL REVIEW E67, 056210 ~2003!
because the fusion pattern undergoes a Hopf bifurcatio
t'31.8 and the steady fusion separator is replaced by
time-periodic one@see the Hopf branch of gray color in Fig
8~a!#. The new time-periodic separator has only a drift ins
bility, therefore suppose a collision occurs in a perfec
symmetric way, or equivalently, the pulse collides a bou
ary with Neumann boundary condition, which suppresses
drift instability, then it stays there as a stable time-perio
solution like in Fig. 8~c!. On the other hand, on an extend
domain, a tiny fluctuation causes a drift bifurcation and em
a single pulse as in the right figure of Fig. 8~b!.

IV. CONCLUSION

Scattering phenomena among traveling pulses is stud
When two traveling pulses collide with nonsmall velocit
they are deformed a lot and it is, in general, very difficult
describe the detailed process and to reduce to a fin
dimensional dynamics. Two natural questions arise. Firs
there any object that somehow controls the collision proce
Second, how to predict the output after collision for a giv
initial data and parameters? The first one comes from
intuition that when input and output are regarded as t
stable states, then there must be unstable objects~saddles! in
between, although such objects are usually behind the s
due to high codimensions and the collision process proce
in the infinite-dimensional space. The second one is v
subtle, since the input-output relation depends not only
ica

v.

t.

ey

oc

ett

05621
at
he

-

-
e

c

s

d.

e-
is
s?

n
o

ne
ds
ry
n

the parameters contained in the system but also on a
difference of the initial condition. As a first step towards th
direction, we proposed a viewpoint from separators. Sep
tors may be unstable steady states or time-periodic solut
and their codimensions~i.e., the number of unstable eigen
values! is, in general, high and the origin of a diversity o
input-output relations can be reduced to the local dynam
around separators. We illustrated this viewpoint by using
Gray-Scott model and a three-component model system
ing in a gas-discharge phenomenon. The orbit typically
proaches a separator right after collision and is sorted
generically along one of the unstable directions of the se
rator. The output can be predicted by using the informat
on the solution profile right after collision, separators a
their unstable eigenforms. Separators in dissipative syst
seems to be ubiquitous and useful to understand the sca
ing process, in fact, even in the higher-dimensional sp
such separators are recently found numerically for vari
models including the three-component system studied h
and the local dynamics around them is currently investiga
@23#.
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