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Noise-sustained structures in differential-flow reactors with autocatalytic kinetics

Bernardo von Haeften* and Gonzalo Izu´s†
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We have studied the formation of noise-sustained structures in a differential-flow reactor with cubic auto-
catalytic kinetics~the Gray-Scott model!. In this system the interplay between advection, diffusion, reaction,
and noise fluctuations leads to the formation of noise-sustained patterns in the key species. Numerical integra-
tion in one and two spatial dimensions shows that the structures are nonlocally cross correlated. Near threshold,
the observed correlation is related to the properties of the convectively unstable critical modes.
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I. INTRODUCTION

Pattern formation is an ubiquitous manifestation of no
linearity @1–3# which presents specially interesting featur
in chemical systems, where the study of spatiotempo
structures supported by reaction-diffusion~RD! systems is
actively pursued@2,4#. It is well known that chemical sys
tems that are locally in thermodynamic equilibrium, but he
far from the chemical equilibrium, can undergo phase tr
sitions toward new stable states that show striking behavi
The emerging states may be steady states in which the
tive concentrations of the chemical components vary
space ~Turing structures! @5#, spatially uniform states in
which the concentrations of some constituents vary on t
~chemical clocks! @6#, or even nonlinear traveling waves i
the concentrations of some components@7#. A description of
many of these phenomena in terms of universal amplit
equations gives the link that relates chemical patterns w
those similarly observed in other systems@1,3,8#.

A growing interest in mechanisms of pattern formati
has been stimulated by the experimental observation of
ing patterns in the chlorite-iodide-malonic acid reaction@9#.
As Turing predicted@10#, a homogeneous reactive syste
may lose its stability and develop inhomogeneous structu
due to the interaction of diffusion and reaction. In these s
tems, Turing instability can only take place if there is
autocatalytic species~or activator! and an inhibitor with a
diffusion coefficient sufficiently larger than the autocataly
one, allowing the activator to grow locally while lateral in
hibition prevents the spread of growth@11#. However, key
species can be disengaged more generally by their diffe
tial transport. For example, a homogeneous steady state
be destabilized by flows of activators and inhibitors at diff
ent flow rates in the so-called differential-flow-induce
chemical instability ~DIFICI! mechanism. This instability
was predicted@12# and experimentally observed by Men
inger and Rovinsky for the ferroin catalyzed Belouso
Zhabotinsky reaction in a quasi-one-dimensional flow tu
@13#.

Experimental observation of DIFICI requires
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differential-flow reactor. Such a device comprises a flow s
tem in which one or more of the species are immobiliz
while the remaining species are flowing through the reac
producing an open system. For example, in the so-ca
packed-bed reactors a solid matrix—usually a catio
exchange resin—is packed inside the reactor and it imm
lizes one reactive while the remaining reactants flow a
diffuse @13#. An additional cross flow of reagents is applie
in cross-flow reactors. This configuration may be achiev
for example, through semipermeable membranes or disc
injection and removal ports positioned along the reactor a
allowing to keep the system uniformly far from equilibrium
@14#.

The convective nature of the DIFICI mechanism was r
ognized in numerical simulations@15# and theoretically es-
tablished for the Brusselator@16# and the Gray-Scott~GS!
kinetics @17,18#. The distinction between absolute and co
vective instabilities in the unstable region is important
elucidate the mechanisms underlying the formation of dis
pative structures; in particular, to separate noise-susta
structures~NSSs! from those originated from the intrinsi
dynamics. In the convectively unstable regime, local pert
bations of the steady state are advected much rapidly
their rate of spreading@19#. In consequence, the amplitude
a perturbation at a fixed point decays to zero, but it grows
a comoving frame being drifted out of the system in t
absence of a continuous source of noise. This is the m
difference from the absolutely unstable regime where per
bations grow everywhere in time.

In the GS kinetics the stationary state is globally stable
the flow is below a critical value and it is convectively u
stable for all value of flow above threshold@17#. The analogy
of the GS system in an open flow configuration with oth
convectively unstable models suggests that macrosc
NSSs can be expected above the instability thresh
@17,19#. In this case, macroscopic patterns can arise and
observed only if noise is continuously applied to regener
the patterns at any time@23#. When the noise is switched off
the structures disappear through the boundaries and the
mogeneous state is recovered. NSSs have been observ
experiments with nematic liquid crystals@20#, and they have
been also studied in other convectively unstable syste
such as Taylor-Couette flows@21,22# and nonlinear optical
systems@23,24#. These are examples of a constructive ro
©2003 The American Physical Society07-1
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played by fluctuations in extended dissipative systems.
other example of noise-induced order is the stochastic r
nance induced by random modulations on feeding spee
nonlinear chemical reactions@25#.

There are convectively unstable systems that exhibit m
than one NSS simultaneously. For example, optical param
ric oscillators show two locally correlated NSSs at differe
frequencies or polarization components@24,26–28#. The
same situation can also take place in multicomponent c
vectively unstable chemical systems, where the interplay
tween diffusion, advection, reaction, and fluctuations c
generate NSSs. In this paper we report the existence of N
for the DIFICI in the GS model. The NSSs are observed
both key species above the threshold of unstable advec
Numerical simulations indicate that the structures are no
cally correlated. The correlation, which is expected to
pend on the critical modes, is described in terms of a cro
correlation length~CCL!.

The paper is organized as follows. Section II reviews
equations for the system. In Sec. III we resume the thresh
analysis. The instability is characterized in terms of t
eigenfunctions associated with the critical modes. In Sec
we study, for one and two spatial dimensions, the genera
of NSSs and characterize the typical features of the st
tures and their correlation. Finally, we summarize the m
conclusions in Sec. V.

II. THE MODEL

The GS model that we consider describes a cubic a
catalytic kinetics that takes place in three steps and it is h
far from equilibrium by allowing the reaction to advanc
only in one direction,

P→
k0

A,

A12B→
k1

3B,

B→
k2

C. ~1!

A nonequilibrium regime is established by pumping t
precursorP at a constant rate and by removing the in
productC as soon as it is produced. The simultaneous p
ence ofA and B enhances the rate of production ofB by
means of a positive feedback loop in the system. We ass
that reactantA is immobilized inside the reactor on a sol
support while autocatalystB is made to flow with a constan
velocity v as well as it is able to diffuse with diffusion co
efficient DB . The calculations presented in this paper a
carried out for the following dimensionless RD equations

]a

]t
5m2ab21Aej~rW,t !,

]b

]t
5¹2b2f

]b

]x
2b1ab2, ~2!
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wherea(rW,t) and b(rW,t) are the local concentrations of th
chemical speciesA and B, respectively; and we have intro
duced the concentrationAk2 /k1, time k2

21, and length
ADB /k2 scales to obtain dimensionless rate equations foA

andB @17#. The vectorrW is the spatial vector,t is the time, the
Laplacian operator describes diffusion, and the gradient
advection. We remark that the imposed flow breaks the
flection symmetry in the dynamical equations and leads t
convective term~hereafter the advection is taken to occ
along thex axis, for simplicity!. Dimensionless parameters i
Eq. ~2! are given by

m5
k0p0

k2
S k1

k2
D 1/2

, f5v/Ak2DB, ~3!

wherem measures the constant rate of production ofA from
P, p0 is the concentration ofP, and f ~bifurcation param-
eter! is a measure of the advection ofB. Finally, j(rW,t) is a
real Gaussian white noise of intensitye, with zero mean and
d-correlated in space and time. This term describes noise
a large variety of practical situations such as thermal nois
input fluctuations as well—for example, in the production
A from P @29,30#.

As the reactantA is immobile, boundary conditions~BCs!
on this species are not required for the numerical simulati
of Eqs.~2!. Dirichlet BC is assumed at the inlet of the rea
tion domain (x50) and Neumann BC at the end of the r
actor (x5LX). The lengthLX is choosen in such a way tha
any spatiotemporal pattern that evolves does so well befo
reaches the right end of the reactor. For two-dimensio
~2D! reactors, Neumann BC are assumed for they coordinate
(0<y<LY).

III. LINEAR INSTABILITY ANALYSIS

A. Threshold analysis

In this section we briefly recall the linear stability analys
of the steady state solution of Eqs.~2! corresponding to the
chemical reactor operating below the DIFICI threshold. T
uniform steady state is

a05m21, b05m. ~4!

The eigenvaluesv1,2(qW ) of the linear instability problem
are obtained in terms of the wave vectorsqW 5(qx ,qy)
through the following dispersion relation@17#:

v21v~q21m2211 iqxf!1m2~q2111 iqxf!50, ~5!

where q25qx
21qy

2 ~one-dimensional case,qx5q). By in-
creasingf the homogeneous symmetric solution becom
unstable atf5fc , wherefc5f(qW c) is the minimum on the
neutral curve

f25
~11q2!~12q22m2!2

qx
2~12q2!

. ~6!
7-2
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The critical unstable modes are traveling wavesa,b
;exp(iqWc•rW1iVct) with wave vectorqW c5(6qc ,0) and fre-
quency of oscillation,

Vc5Im~vc!56qc

m2fc

12qc
22m2

. ~7!

In Ref. @17# it was shown that the instability is convectiv
for all f>fc , and the threshold for Eqs.~2! does not de-
pend on the BCs, except for periodic BCs, which are
considered here@17#.

The instability thresholdfc depends onm. Form,1, the
convective instability takes place at zero advection (fc
50), while for m.1 the threshold increases monotonica
with m. In particular,fc;2A2(m21)1/21••• for m→11

andfc;(11A2)m2 for m@1. In all the cases the instabilit
takes place at a finite wave vector except form51, where
the critical mode is the homogeneous one@see Fig. 1~a!#. For
f.fc , there is a band of unstable modes. To illustrate t
point, in Fig. 1~b! we show the real part of the critical eigen
valuevc as a function ofq for the critical casef5fc and
for one case above threshold. All the modes with Re(v)
.0 are linearly unstable.

B. Critical modes

Next we consider some features of the early time dyna
ics that can be understood in terms of the eigenvectors
responding to the eigenvalues of the linearized problem
cussed above. In Fig. 2 we show numerical results, in

FIG. 1. ~a! Critical wave number as a function ofm. ~b! Real
part of the eigenvaluev as a function ofq. The solid line corre-
sponds tof59.5 and the dotted line corresponds to criticality. He
m52 (fc58.1605,qc50.5899). The most unstable modes cor
spond to the maximum of each line. The level Re(vc)50 is also
indicated as a dashed horizontal line as reference.
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presence of noise, for typical profiles ofa(x1Dx,t) and
b(x,t) after f is increased beyond its threshold value. T
results correspond to snapshots for a short time in a o
dimensional~1D! case. The selected value ofDx—which
will be introduced below—reveals that speciesA andB sup-
port nonlocally cross-correlated NSSs. To quantify this p
nomenon, the following cross-correlation functionC(t,z) at
equal times is introduced:

C~ t,z!

5C$a~x,t !,b~x,t !,z%

5E @a~x1z,t !2^a&#@b~x,t !2^b&#dx/As~a!s~b!,

~8!

where^•& denotes the mean value in space ands(•) is the
corresponding variance. In Fig. 3~a! we showC(t,z) as a
function of z for a short time: A maximum of order 1 is
observed atz5Dx reflecting the high nonlocal cross corre
lation between the NSSs. This correlation persists on time
we show in Fig. 3~b! where the time evolution ofC(t,Dx) is
showed for a typical realization of Eqs.~2!. Note that for a
short time the structures are not well developed~they have
small amplitude! but they are highly correlated. In conse
quence, after a transition time, uncorrelated initial conditio
evolve toward correlated NSSs characterized by a CCL.

These numerical facts can be explained in terms of
eigenvectors associated with the critical eigenvaluevc intro-
duced in Eq.~5!. At threshold, the eigenvectorsL(qW ,x) are
damped for anyqW except forqW c56qcx̂, which are marginal
~zero growth rate! and define the direction in the functiona
space along which the convective instability takes place:

Fa2a0

b2b0
G;L6~qc ,x!exp~6 iVct !

5k~m,qc!FA4/~m41Vc
2!exp~6 iqcDx!

1
G

3exp~6 iqcx!exp~6 iVct !, ~9!

where the amplitude

-

FIG. 2. a andb as functions ofx for t58 ~short time!. Note that
a is shifted inDx53.6 and it is magnified by a scale factor 3.7
obtain an appreciable curve. Parameter values arem52.0, f
59.5, e5531028, andLX5800.
7-3
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k21~m,qc!52pA11
2

m4~12qc
2!

~10!

is a normalization factor andDx is the CCL introduced be
fore, given at threshold by

Dx5
lc

2
S 12

1

p
arcsinA11qc

2

2
D , ~11!

wherelc is the critical wavelength. In Fig. 4 we show th
Dx is a monotonically decreasing function ofm.

The form of the critical eigenvectors explains our nume
cal finding that at short times, when the linear approximat
to the dynamics remains valid, speciesA andB sustain pat-
terns with the same wave vector but they are nonlocally cr
correlated in space. AlthoughDx is not defined at threshold

FIG. 3. ~a! C(t,z) as a function ofz/Dx for the NSSs shown in
Fig. 2. ~b! Cross correlationC(t,Dx) as a function of time for a
characteristic realization of Eqs.~2!. The value of the parameter
are the same of Fig. 2.

FIG. 4. Dx as a function ofm. Note that along the curve,fc

varies@fc5fc(m)#, in particularfc→0 for m→11.
05620
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for m→11 (qc→0), in the following section we show tha
even in this limit case, a finite CCL can be defined.

IV. NOISE-SUSTAINED CROSS-CORRELATED
STRUCTURES

In this section we give a numerical description@31# and a
theoretical analysis of the NSSs observed in one and
spatial dimensions. We consider both cases separately.

A. One-dimensional case

For 1D systems the instability takes place atqx56qc ,
and the noise keeps excited both wave vectors. To illust
the dynamical evolution, in Figs. 5~a! and 5~b! we show
snapshots of well developed noise-sustained patterns at
different times. We can appreciate thatA andB support non-
locally cross-correlated NSSs, as was discussed in Sec
@see Fig. 3~b!#. In fact, the patterns are not stationary, b
drift in the direction of the flow. Although the structure
travel to the right, they are continuously regenerated by
namical amplification of noise that excites all the unsta
modes at each space point—locally sustained. Thus, the
eral picture is that there is a competition between conv
tively unstable modes, which generates a nonlocally cro
correlated NSS forA andB, respectively. In Fig. 3~b! we can
observe that the correlation reaches the order of the unity

FIG. 5. Well developed NSSs forA and B as a function ofx.
Note the amplitude of the structures in comparison with Fig.
Parameters arem52.0, f59.5, e51027, and ~a! t5460 and~b!
t5528. The value ofDx is the same as in Fig. 2.
7-4
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short times and the dynamics preserves the order of the
relation during time evolution.

Close to criticality, we numerically observe that the CC
does not change with respect to the value observed for s
times. For example, the value ofDx is the same for Figs. 2
5~a!, and 5~b! (Dxobserved53.660.1), in agreement with the
obtained value from Eq.~11! (Dxpredicted53.69). This fact
can be explained in terms of a weakly nonlinear analy
Near the critical point, a convective complex Ginzbur
Landau equation can be derived for a slowly varying en
lope amplitudeC(s,t) which governs the dynamics:

S a

bD
(x,s,t,t)

5S a0

b0
D 1eC~s,t!L~qc ,x!exp~ iVct !1cc,

~12!

where t5e2t ~long time scale!, s5ex ~long length scale!,
and e5Af2fc measures the distance to criticality. Equ
tion ~12! is valid to O(e) ~see Ref.@17# for derivation!. The
envelopeC(s,t) governs the dynamics close to the instab
ity threshold. However, as results from Eq.~12!, the CCL is
determined by the critical modes in a similar way that Eq.~9!
determinesDx for the linearized dynamics.

The degree of correlation between speciesA and B de-
pends on the noise intensity and/or distance to the thresh
For larger noise intensity and/or advection, the magnitude
the correlation is decreased but it keeps the order of ma
tude for a wide range of values of the parameters. Actua
the same scenario is also observed in the presence of
independent sources of additive noise@one for each rate
equation in Eqs.~2!#, reflecting the fact that the noise~s! sus-
tains the structures by driving the convectively unsta
modes, which determines the CCL both in the linear and
the nonlinear regime.

A limiting situation is given when6qc collapses to zero
This occurs form→11; in this casefc→0 and for any finite
value of f there is a band of unstable modes with a lar
excited wave length. In the presence of a source of noise
nonlinear wave number selection can be traced back to
behavior of the growth rate. Atm51 the instability takes
place atq50, but the most unstable modes have a non-n
wave vector forf.fc . To illustrate this fact, in Fig. 6~a!
we show the growth rate of the unstable modes as a func
of q for f50—criticality—and for a non-null value off.
Numerical simulations form51 indicate that NSSs with a
finite CCL are solutions of Eq.~2! @see Fig. 6~b!#. As a result
of the Fourier analysis, NSSs are generated by the unst
modes with maximum growth rate. Therefore, an estimat
of Dx for m51 can be obtained from this active unstab
mode. For example, for the patterns of Fig. 6~b! the observed
and predicted values for the CCL areDx554.260.1 and
58.69, respectively.

B. Two-dimensional case

For 2D chemical reactors the convective instability tak
place atqy50, and the growth rate of the most unstab
modes is maximum atqW c5(6qc,0). For f.fc , the qW

modes that satisfyuqxu;qc and uqyu&qcA2(f2fc)/fc are
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excited in the neighborhood of the critical point. The noi
and the nonlinear competition keep all these wave vec
excited for long time and the most rapidly spreading mod
interfere generating stripes. To illustrate the dynamical e
lution, we show in Fig. 7 snapshots of the pattern configu
tion near threshold at three different times. The result
structure is similar to that observed in the 1D case, except
smooth variations of the fronts along they direction pro-
duced by the unstableqy modes~with large wavelength!,
which are driven by noise. At the left side of the pattern t
generation from noise of small-amplitude structures can
appreciated. This is a typical feature of NSSs in two spa

FIG. 6. ~a! Real part of the eigenvaluev as a function ofq. The
solid line corresponds tof50.08 and the dotted line corresponds
criticality. Here m51 (fc50). The most unstable modes corr
spond to the maximum of each line.~b! a andb as functions ofx.
Parameter values arem51, f50.08, t54491, ande51027. Here
Dx554.260.1 ~note thex scale!.

FIG. 7. Snapshots ofb(x,y,t) spontaneously generated from
random initial conditions close to the trivial steady state:~a! t
536, ~b! t568, and ~c! t5272. Parameters arem51.5, f
54.42 (fc53.87), e50.0004,LX5300, andLY550.
7-5
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dimensions@24,26#. We remark that the nonlocal cross co
relation discussed previously for 1D systems is also obse
near threshold in 2D structures. After transient,b(x,y,t) be-
comes nonlocally cross correlated witha(x1Dx,y,t), where
the CCL is still given by Eq.~11!. The agreement betwee
the predicted and observed values of the CCL is as goo
in the 1D case. For example, the observed and predi
values ofDx for the structures of Fig. 7 are 4.060.25 and
4.12, respectively.

Far from threshold, strong variations appear in the fr
structure, as result from the noise-assisted activation oqy
modes. In this case, bifurcations and joints of fronts are
served during the time evolution. To illustrate this fact,
Fig. 8 we show snapshots of configurations at differ
times.

V. CONCLUSION

In conclusion, we have shown that NSSs can be gener
in differential-flow reactors with cubic autocatalytic kinetic

FIG. 8. Snapshots as in Fig. 7 forf510; ~a! t55, ~b! t515,
and ~c! t545. Parameters arem51.5, e50.0006, LX5750, and
LY5125.
n
,
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They appear spontaneously in both activator and inhib
species when the advection is above the threshold va
These structures are the result of a selective noise ampli
tion by the dynamics in several orders of magnitude lead
to the formation of stochastic self-organized structures.

We have analyzed the formation of NSSs for one and t
spatial dimensions. Special features appear, due to the n
of the convectively unstable modes. In particular, they g
rise to a nonlocal cross correlation between the NSSs tha
observed both in the linear~short time! and the nonlinear
regimes. The analytic expression for the CCL was contras
with numerical simulations in 1D and 2D near thresho
with a good agreement between the observed and pred
values. Form→11, the dynamics becomes more comp
cated because the active modes are not closed to the cr
ones, and the instability takes place atfc50. However, an
estimation of the order of magnitude of the CCL is possi
even in this case. The selected unstable modes also orig
the observed orientation of the 2D stripes. Near thresh
2D NSSs appear as quasi-one-dimensional, reflecting the
that only longy wavelength modes are excited from nois
Far from threshold, irregular noise-sustained fronts are
served with appreciable variations along they axis, as a re-
sult of the noise activation of a larger number ofqy modes.

We finally point out that chemical NSSs should be obse
able for different chemical reactions in differential-flow r
actors. The imposed flow breaks the spatial symmetry of
system for any reaction in a generic way, allowing event
convective instabilities. Thus, we expect that chemical NS
should be observed in differential-flow reactors under v
general conditions; we hope that these results can be q
tatively applied to other autocatalytic chemical systems w
the DIFICI mechanism.
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