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Noise-sustained structures in differential-flow reactors with autocatalytic kinetics
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We have studied the formation of noise-sustained structures in a differential-flow reactor with cubic auto-
catalytic kinetics(the Gray-Scott modgl In this system the interplay between advection, diffusion, reaction,
and noise fluctuations leads to the formation of noise-sustained patterns in the key species. Numerical integra-
tion in one and two spatial dimensions shows that the structures are nonlocally cross correlated. Near threshold,
the observed correlation is related to the properties of the convectively unstable critical modes.
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I. INTRODUCTION differential-flow reactor. Such a device comprises a flow sys-
tem in which one or more of the species are immobilized
Pattern formation is an ubiquitous manifestation of non-while the remaining species are flowing through the reactor
linearity [1-3] which presents specially interesting featuresproducing an open system. For example, in the so-called
in chemical systems, where the study of spatiotemporapacked-bed reactors a solid matrix—usually a cation-
structures supported by reaction-diffusigRD) systems is exchange resin—is packed inside the reactor and it immobi-
actively pursued?2,4]. It is well known that chemical sys- lizes one reactive while the remaining reactants flow and
tems that are locally in thermodynamic equilibrium, but helddiffuse [13]. An additional cross flow of reagents is applied
far from the chemical equilibrium, can undergo phase tranin cross-flow reactors. This configuration may be achieved,
sitions toward new stable states that show striking behaviorgor example, through semipermeable membranes or discrete
The emerging states may be steady states in which the rel&zjection and removal ports positioned along the reactor axis,
tive concentrations of the chemical components vary inallowing to keep the system uniformly far from equilibrium
space (Turing structurel [5], spatially uniform states in [14].
which the concentrations of some constituents vary on time The convective nature of the DIFICI mechanism was rec-
(chemical clocks[6], or even nonlinear traveling waves in ognized in numerical simulatiorf45] and theoretically es-
the concentrations of some compondmtk A description of  tablished for the Brusselatdd6] and the Gray-ScottGS)
many of these phenomena in terms of universal amplitudé&inetics[17,18. The distinction between absolute and con-
equations gives the link that relates chemical patterns witlvective instabilities in the unstable region is important to
those similarly observed in other systefis3,8]. elucidate the mechanisms underlying the formation of dissi-
A growing interest in mechanisms of pattern formationpative structures; in particular, to separate noise-sustained
has been stimulated by the experimental observation of Tusstructures(NSS9 from those originated from the intrinsic
ing patterns in the chlorite-iodide-malonic acid reactiéh dynamics. In the convectively unstable regime, local pertur-
As Turing predicted10], a homogeneous reactive systembations of the steady state are advected much rapidly than
may lose its stability and develop inhomogeneous structuretheir rate of spreadingl9]. In consequence, the amplitude of
due to the interaction of diffusion and reaction. In these sysa perturbation at a fixed point decays to zero, but it grows in
tems, Turing instability can only take place if there is ana comoving frame being drifted out of the system in the
autocatalytic specietor activatoj and an inhibitor with a absence of a continuous source of noise. This is the main
diffusion coefficient sufficiently larger than the autocatalytic difference from the absolutely unstable regime where pertur-
one, allowing the activator to grow locally while lateral in- bations grow everywhere in time.
hibition prevents the spread of growfl]. However, key In the GS kinetics the stationary state is globally stable if
species can be disengaged more generally by their differenhe flow is below a critical value and it is convectively un-
tial transport. For example, a homogeneous steady state mayable for all value of flow above threshdlti7]. The analogy
be destabilized by flows of activators and inhibitors at differ-of the GS system in an open flow configuration with other
ent flow rates in the so-called differential-flow-induced convectively unstable models suggests that macroscopic
chemical instability (DIFICI) mechanism. This instability NSSs can be expected above the instability threshold
was predicted12] and experimentally observed by Menz- [17,19. In this case, macroscopic patterns can arise and be
inger and Rovinsky for the ferroin catalyzed Belousov-observed only if noise is continuously applied to regenerate
Zhabotinsky reaction in a quasi-one-dimensional flow tubethe patterns at any tinff@3]. When the noise is switched off,
[13]. the structures disappear through the boundaries and the ho-
Experimental observation of DIFICI requires a mogeneous state is recovered. NSSs have been observed in
experiments with nematic liquid crystdl20], and they have
been also studied in other convectively unstable systems
*Electronic address: bvhuefte@mdp.edu.ar such as Taylor-Couette flowi1,22 and nonlinear optical
TElectronic address: izus@mdp.edu.ar systemg23,24]. These are examples of a constructive role
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played by fluctuations in extended dissipative systems. Angsherea(r,t) andb(r,t) are the local concentrations of the
other example of noise-induced order is the stochastic resghemical specie# and B, respectively; and we have intro-
nance induced by random modulations on feeding speed ifjyced the concentrationk,/k;, time k;*, and length

n0r'I]'ILIneergraCrre]ecrgIrf\?elzcrt?\?ecltlot?r?s?]a;ble systems that exhibit more Ds /k; scales to obtain dimensionless rate equationsifor
y Y ndB[17]. The vector is the spatial vectot,is the time, the

than one NSS simultaneously. For example, optical paramef- lac tor d ibes diffusi dth dient
ric oscillators show two locally correlated NSSs at different aplacian operator describes difiusion, and the gradient one
advection. We remark that the imposed flow breaks the re-

frequencies or polarization component4,26—-28. The flocti v in the d ical i 4 leads t
same situation can also take place in multicomponent con-cction symmetry in the dynamical equations and ieads 1o a
convective term(hereafter the advection is taken to occur

vectively unstable chemical systems, where the interplay be-I h ' for simplicit. Di onl ters i
tween diffusion, advection, reaction, and fluctuations cal on(%) a?éaé(ilvsénotr);lmplm Y. Dimensionless parameters in

generate NSSs. In this paper we report the existence of NS
for the DIFICI in the GS model. The NSSs are observed for kopo [ Ky| 2
both key species above the threshold of unstable advection. _ ~orFo [Pl N =
Numerical simulations indicate that the structures are nonlo- S (k2> - #=vlvkeDe, ®
cally correlated. The correlation, which is expected to de-
pend on the critical modes, is described in terms of a crosswhereu measures the constant rate of productioldfom
correlation lengtCCL). P, po is the concentration oP, and ¢ (bifurcation param-
The paper is organized as follows. Section Il reviews thestep is a measure of the advection Bf Finally, £(r,t) is a
equations for the system. In Sec. Il we resume the thresholgha) Gaussian white noise of intensity with zero mean and
analysis. The instability is characterized in terms of thes correlated in space and time. This term describes noise for
eigenfunctions associated W|th_the _cr|t|ca_l modes. In Sec. _I\é large variety of practical situations such as thermal noise or
we study, for one and two spatial dimensions, the generatiofyyt fluctuations as well—for example, in the production of
of NSSs and characterize the typical features of the struca from p [29,30.
tures and their correlation. Finally, we summarize the main ag the reactand is immobile, boundary condition®Cs)
conclusions in Sec. V. on this species are not required for the numerical simulations
of Eqgs.(2). Dirichlet BC is assumed at the inlet of the reac-
Il. THE MODEL tion domain &=0) and Neumann BC at the end of the re-
. . . actor Xx=Ly). The lengthLy is choosen in such a way that
The_ GS. mpdel that we con5|d_er describes a cul:_)lc_ auto-ny sp());tioté)mporal pa?ternxthat evolves does so well )l;efore it
catalytic kinetics that takes place in three steps and it is hel aches the right end of the reactor. For two-dimensional
far from equilibrium by allowing the reaction to advance (2D) reactors, Neumann BC are assumed forytaeordinate

only in one direction, (O=y=Ly).

ko

P—A, Ill. LINEAR INSTABILITY ANALYSIS

Ky A. Threshold analysis
A+2B—3B, In this section we briefly recall the linear stability analysis
of the steady state solution of Eq®) corresponding to the

ko chemical reactor operating below the DIFICI threshold. The

B—C. (1) uniform steady state is

A nonequilibrium regime is established by pumping the a=pn"", bo=p. 4

precursorP at a constant rate and by removing the inert
productC as soon as it is produced. The simult_aneous pres- The eigenvaluea)lyz(ﬁ) of the linear instability problem
ence ofA and B _enhances the rate of production Bfby 516 obtained in terms of the wave vectoﬁ$(qx,qy)
means of a positive feedback loop in the system. We assu”}ﬂrough the following dispersion relatida7]:

that reactantA is immobilized inside the reactor on a solid
support while autocataly® is made to flow with a constant
velocity v as well as it is able to diffuse with diffusion co-
efficient Dg. The calculations presented in this paper are

2_ 2 2 : H _ H
carried out for the following dimensionless RD equations; Where °=a+d, (one-dimensional case,=q). By in-
creasing¢ the homogeneous symmetric solution becomes

o’ + (0P +p?—1+igyp) + u(g®+1+ig,p)=0, (5)

Ja , R unstable ath= ¢, , Whereg.= ¢(q.) is the minimum on the
E=M—ab +e&(r b), neutral curve

2 2 2\2
b b , (1+g9)(1—-g°—u)
A v T 2 P = - (6)
gt =V b ¢y —brabt, @ qi(1-9?)
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% 000
s presence of noise, for typical profiles a{x+Ax,t) and
-0.06 b(x,t) after ¢ is increased beyond its threshold value. The
0.12 results correspond to snapshots for a short time in a one-

— — dimensional(1D) case. The selected value afx—which
0.00 0.25 0.50 0.75 1.00 will be introduced below—reveals that speckandB sup-
() q port nonlocally cross-correlated NSSs. To quantify this phe-
nomenon, the following cross-correlation functi@gt,z) at

FIG. 1. (a) Critical wave number as a function @f. (b) Real ) =
equal times is introduced:

part of the eigenvalue as a function ofg. The solid line corre-
sponds top= 9.5 and the dotted line corresponds to criticality. Here

u=2 (¢.=8.1605,q,=0.5899). The most unstable modes corre- C(t.2)

spond to the maximum of each line. The level Bg(=0 is also =C{a(x,t),b(x,t),z}

indicated as a dashed horizontal line as reference.

The critical unstable modes are traveling wavash :f [a(x+z,t)—(a)][b(x,t) —(b)]dX/Va(a)a(b),
~exp(g.-r+iQd) with wave vectorg.=(*+q.,0) and fre- ®)

qguency of oscillation,
where(-) denotes the mean value in space ai(d) is the

Q.= . wibe 7 corresponding variance. In Fig(é3 we showC(t,z) as a
c= m(‘”c)_—qu_qz_luz' (") function of z for a short time: A maximum of order 1 is
C

observed az=Ax reflecting the high nonlocal cross corre-
In Ref.[17] it was shown that the instability is convective lation between the NSSs. This correlation persists on time, as

for all = ¢, and the threshold for Eq$2) does not de- We show in Fig. 8) where the time evolution oE(t,AX) is
pend on the BCs, except for periodic BCs, which are noghowed for a typical realization of Eq&2). Note that for a
considered hergl7]. short time the structures are not well develogttey have
The instability thresholdb. depends om.. Foru<1, the — small amplitudg but they are highly correlated. In conse-
convective instability takes place at zero advectiap, ( duence, after a transition time, uncorrelated initial conditions
=0), while for u>1 the threshold increases monotonically €volve toward correlated NSSs characterized by a CCL.
with . In particular, po~2v2(u—1)"2+ - - for p—1* ~These numerical facts can be explained in terms of the
and .~ (1+ \2)u2 for u>1. In all the cases the instability eigenvectors associated with the critical mgenva{gentro-
takes place at a finite wave vector except for1, where duced in Eq.(5). At threshold, the eigenvectors(q,x) are
the critical mode is the homogeneous ¢see Fig. 1a)]. For  damped for any] except forﬁc= +qcX, Which are marginal
¢> ¢, there is a band of unstable modes. To illustrate thigzero growth rateand define the direction in the functional
point, in Fig. Xb) we show the real part of the critical eigen- space along which the convective instability takes place:
value w. as a function ofg for the critical casep= ¢, and
for one case above threshold. All the modes with &e(
>0 are linearly unstable.

a—ag

b, |~ (O XX IO

VA4 Q2)exp +ig.Ax)

Next we consider some features of the early time dynam- 1
ics that can be understood in terms of the eigenvectors cor- ; ;
) . ) . ) Xexpxigcx)exp( il t), 9
responding to the eigenvalues of the linearized problem dis- R=lgex)exl 2 ©
cussed above. In Fig. 2 we show numerical results, in thevhere the amplitude

B. Critical modes
= K(quc)
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FIG. 3. (a) C(t,2) as a function ofzZ/Ax for the NSSs shown in \éi
Fig. 2. (b) Cross correlatiorC(t,Ax) as a function of time for a 3
characteristic realization of Eq§2). The value of the parameters 0.0
are the same of Fig. 2. : ' '
75 175 275 375

2 (b) x
-1 =27\ [1+ ——— 10
K 0e) m M4(1_q§) (10 FIG. 5. Well developed NSSs fok andB as a function ofx.

Note the amplitude of the structures in comparison with Fig. 2.
Parameters arg=2.0, $=9.5, e=10"7, and(a) t=460 and(b)

is a normalization factor and x is the CCL introduced be- {=528. The value of\x is the same as in Fig. 2.

fore, given at threshold by

1 [1+¢?
1— —arcsin
T 2
IV. NOISE-SUSTAINED CROSS-CORRELATED

where\ is the critical wavelength. In Fig. 4 we show that STRUCTURES

Ax is a monotonically decreasing function at In this section we give a numerical descriptici] and a

The form of the critical eigenvectors explains our numeri- . . .
o . : .~ theoretical analysis of the NSSs observed in one and two
cal finding that at short times, when the linear approximation

to the dynamics remains valid, speciésind B sustain pat- spatial dimensions. We consider both cases separately.
terns with the same wave vector but they are nonlocally cross

for u—1" (q.—0), in the following section we show that,
_ A even in this limit case, a finite CCL can be defined.

sz

, (12)

correlated in space. Althoughx is not defined at threshold A. One-dimensional case
For 1D systems the instability takes placeggt +q.,
5 ' and the noise keeps excited both wave vectors. To illustrate

the dynamical evolution, in Figs.(& and 3b) we show
snapshots of well developed noise-sustained patterns at two
different times. We can appreciate thfatindB support non-

4t . locally cross-correlated NSSs, as was discussed in Sec. I
[see Fig. 8)]. In fact, the patterns are not stationary, but
drift in the direction of the flow. Although the structures
travel to the right, they are continuously regenerated by dy-

Az

3 . namical amplification of noise that excites all the unstable
1 2 3 modes at each space point—Ilocally sustained. Thus, the gen-
u eral picture is that there is a competition between convec-

tively unstable modes, which generates a nonlocally cross-
FIG. 4. Ax as a function ofu. Note that along the curvep,  correlated NSS foA andB, respectively. In Fig. &) we can
varies[ ¢.= ¢.(u)], in particular¢.—0 for u—1%. observe that the correlation reaches the order of the unity for
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short times and the dynamics preserves the order of the cor- 0.001
relation during time evolution.

Close to criticality, we numerically observe that the CCL
does not change with respect to the value observed for short
times. For example, the value Afx is the same for Figs. 2,
5(a), and 3b) (AXypseweq= 3-6=0.1), in agreement with the
obtained value from Eq11) (AXpregicted= 3-69). This fact
can be explained in terms of a weakly nonlinear analysis.
Near the critical point, a convective complex Ginzburg-
Landau equation can be derived for a slowly varying enve-
lope amplitude¥ (s, 7) which governs the dynamics: 1.1

Re(w)

0.000 LTI -

-0.001 L
0.00 0.05 0.10

)
<

a
b

b° +eW(s,)A(qe,x)expi Q) +cc,
0

(x,s,t,7) I
where 7= €%t (long time scalg s=ex (long length scalg
and e= \¢— ¢. measures the distance to criticality. Equa-

tion (12) is valid to O(e€) (see Ref[17] for derivation. The 0.9 : '
500 1000 1500 2000

afz+Az,t),b(x,t)

envelopeV (s, 7) governs the dynamics close to the instabil- b) -

ity threshold. However, as results from EG2), the CCL is

determined by the critical modes in a similar way that €. FIG. 6. (a) Real part of the eigenvalue as a function ofy. The
determinesAx for the linearized dynamics. solid line corresponds t¢=0.08 and the dotted line corresponds to

The degree of correlation between spedfeand B de-  criticality. Here u=1 (¢.=0). The most unstable modes corre-
pends on the noise intensity and/or distance to the thresholdpond to the maximum of each lingn) a andb as functions oi.
For larger noise intensity and/or advection, the magnitude oParameter values age=1, ¢=0.08,t=4491, ande=10"'. Here
the correlation is decreased but it keeps the order of magnidx=>54.2£0.1 (note thex scalg.
tude for a wide range of values of the parameters. Actually,
the same scenario is also observed in the presence of twcited in the neighborhood of the critical point. The noise
independent sources of additive noigene for each rate and the nonlinear competition keep all these wave vectors
equation in Eqs(2)], reflecting the fact that the noigp sus-  excited for long time and the most rapidly spreading modes
tains the structures by driving the convectively unstabléinterfere generating stripes. To illustrate the dynamical evo-
modes, which determines the CCL both in the linear and inution, we show in Fig. 7 snapshots of the pattern configura-
the nonlinear regime. tion near threshold at three different times. The resulting

A limiting situation is given when* g, collapses to zero. structure is similar to that observed in the 1D case, except the
This occurs foru—17; in this casep.—0 and for any finite  smooth variations of the fronts along tlyedirection pro-
value of ¢ there is a band of unstable modes with a largeduced by the unstablg, modes(with large wavelength
excited wave length. In the presence of a source of noise, thghich are driven by noise. At the left side of the pattern the
nonlinear wave number selection can be traced back to thgeneration from noise of small-amplitude structures can be
behavior of the growth rate. Ak=1 the instability takes appreciated. This is a typical feature of NSSs in two spatial
place atq=0, but the most unstable modes have a non-null
wave vector for¢p> ¢.. To illustrate this fact, in Fig. @&
we show the growth rate of the unstable modes as a function
of q for ¢=0—criticality—and for a non-null value o#.
Numerical simulations fow=1 indicate that NSSs with a
finite CCL are solutions of Eq2) [see Fig. @)]. As a result
of the Fourier analysis, NSSs are generated by the unstable
modes with maximum growth rate. Therefore, an estimation
of Ax for u=1 can be obtained from this active unstable
mode. For example, for the patterns of Fi¢h)gthe observed
and predicted values for the CCL atex=54.2+0.1 and (b)

o

For 2D chemical reactors the convective instability takes FIG 7. S
. 7. Snapshots ob(x,y,t) spontaneously generated from
place atqy=0, and the growth rate of the most unStablerandom initial conditions close to the trivial steady state): t
modes is maximum at.=(*q.0). For ¢>¢., the q =36, (b) t=68, and (c) t=272. Parameters ar@=1.5, ¢
modes that satisfyg,| ~q. and|qy|<0cvV2(d— dc)/ e are  =4.42 (p.=3.87), €=0.0004, Lx=300, andLy=50.

(a)
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FIG. 8. Snapshots as in Fig. 7 fgr=10; (a) t=5, (b) t=15,

and (c) t=45. Parameters are=1.5, ¢=0.0006, Ly= 750, and
L,=125.

dimensiong 24,26. We remark that the nonlocal cross cor-

relation discussed previously for 1D systems is also observeg

near threshold in 2D structures. After transids(tx,y,t) be-
comes nonlocally cross correlated wifx+ Ax,y,t), where
the CCL is still given by Eq(11). The agreement between
the predicted and observed values of the CCL is as good
in the 1D case. For example, the observed and predict
values ofAx for the structures of Fig. 7 are 4®.25 and
4.12, respectively.

Far from threshold, strong variations appear in the frontSystem for any reaction in a generic way.

structure, as result from the noise-assisted activatiog,of

modes. In this case, bifurcations and joints of fronts are ob
served during the time evolution. To illustrate this fact, in

PHYSICAL REVIEW E67, 056207 (2003

They appear spontaneously in both activator and inhibitor
species when the advection is above the threshold value.
These structures are the result of a selective noise amplifica-
tion by the dynamics in several orders of magnitude leading
to the formation of stochastic self-organized structures.

We have analyzed the formation of NSSs for one and two
spatial dimensions. Special features appear, due to the nature
of the convectively unstable modes. In particular, they give
rise to a nonlocal cross correlation between the NSSs that are
observed both in the lineaishort timg and the nonlinear
regimes. The analytic expression for the CCL was contrasted
with numerical simulations in 1D and 2D near threshold,
with a good agreement between the observed and predicted
values. Foru—1*, the dynamics becomes more compli-
cated because the active modes are not closed to the critical
ones, and the instability takes placedat=0. However, an
estimation of the order of magnitude of the CCL is possible
even in this case. The selected unstable modes also originate
the observed orientation of the 2D stripes. Near threshold,
D NSSs appear as quasi-one-dimensional, reflecting the fact
that only longy wavelength modes are excited from noise.
Far from threshold, irregular noise-sustained fronts are ob-
served with appreciable variations along thaxis, as a re-

(}?It of the noise activation of a larger numbergpf modes.

We finally point out that chemical NSSs should be observ-
able for different chemical reactions in differential-flow re-
actors. The imposed flow breaks the spatial symmetry of the
allowing eventual
convective instabilities. Thus, we expect that chemical NSSs
Should be observed in differential-flow reactors under very
general conditions; we hope that these results can be quali-

Fig. 8 we show snapshots of configurations at differentyiyely applied to other autocatalytic chemical systems with

times.

V. CONCLUSION

the DIFICI mechanism.

ACKNOWLEDGMENT

In conclusion, we have shown that NSSs can be generated We acknowledge financial support from the National Uni-

in differential-flow reactors with cubic autocatalytic kinetics.

versity of Mar del Plata.

[1] M.C. Cross and P.C. Hohenberg, Rev. Mod. Ph§s. 851
(1993.

[2] H.S. Wio, An Introduction to Stochastic Processes and Non-

equilibrium Statistical Physic§World Scientific, Singapore,
1994).

[3] D. Walgraef, Spatio-Temporal Pattern Formatio(Springer-
Verlag, New York, 1995

[4] G. Nicolis and I. PrigogineSelf-Organization in Nonequilib-
rium System$Wiley, New York, 1976; P.C. Fife,Mathemati-
cal Aspects of Reacting and Diffusing Systebesture Notes
in Biomathematics, Vol. 2&Springer, Berlin, 1979 in Non-

equilibrium Cooperative Phenomena in Physics and Related

Fields edited by M.G. VelardéPlenum, New York, 1984 p.
371; G. Nicolis, T. Erneux, and M. Herschkowitz-Kaufman, in
Advances in Chemical Physjcsdited by I. Prigogine and S.
Rice (Wiley, New York, 1978, Vol. 38.

[5] D. Walgraef, G. Dewel, and P. Borckmans, Phys. ReRIA
397(1980; Adv. Chem. PhysXLIX , 311(1982; Q. Ouyang

and H.L. Swinney, NaturglLondon 352 610 (1991); G.
Dewelet al, Physica A213 181 (1995.

[6] E. Mielczarek, J. Turner, D. Leiter, and L. Davis, Am. J. Phys.
51, 32(1983.

[7] M. Orban, P. de Kepper, I.R. Epstein, and K. Kustin, Nature
(London 282, 816 (1981); S. Jakubith, H.H. Rotermund, W.
Engel, A. von Oertzen, and G. Ertl, Phys. Rev. Lé8&, 3013
(1990.

[8] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence
(Springer, Berlin, 1981

[9] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Phys.
Rev. Lett.64, 2953(1990.

[10] A. Turing, Philos. Trans. R. Soc. London, Ser. 87, 37

(1952.

[11] H. Meinhardt,Models of Biological Pattern FormatiofAca-

demic, New York, 198R

[12] A.B. Rovinsky and M. Menzinger, Phys. Rev. Le®9, 1193

(1992.

056207-6



NOISE-SUSTAINED STRUCTURES IN DIFFERENTIAL . . PHYSICAL REVIEW E 67, 056207 (2003

[13] A.B. Rovinsky and M. Menzinger, Phys. Rev. LeR0, 778 Phys. Rev. E58, 3843(1998.

(1993. [25] L. Yang, Z. Hou, and H. Xin, J. Chem. Phyi.0, 3591(1999);
[14] V.Z. Yakhnin, A.B. Rovinsky, and M. Menzinger, Chem. Eng. 110, 3591(1999.

Sci. 50, 2853(1995. [26] G. IzUs, M. Santagiustina, M. San Miguel, and P. Colet, J. Opt.
[15] X. Wu, S. Nakata, M. Menzinger, and A. Rovinsky, J. Phys. Soc. Am. B16, 1592(1999.

Chem.100, 15810(1996. [27] G. Izs, M. Santagiustina, M. San Miguel, and P. Cdlet-
[16] M. Sangalli, and H.C. Chang, Phys. Rev4E, 5207 (1994. published.
[17] R-A. Satnoianu, J.H. Merkin, and S.K. Scott, Physicd®k  [2g] 4. ward, M.N. Ouarzazi, M. Taki, and P. Glorieux, Phys. Rev.

345(1998. E 63, 016604(2001).

[18] R.A. Satnoianu, J.H. Merkin, and S.K. Scott, Chem. Eng. Sci
55, 461 (2000.

[19] R.J. Deissler, Stat. Phy€0, 376 (1985; 54, 1459 (1989;
Physica D56, 303(1992.

[20] I. Rehberget al,, Phys. Rev. Lett67, 596 (1991).

[21] K.L. Babcock, G. Ahlers, and D.S. Cannell, Phys. Rev. Lett.

T29] M. San Miguel and R. Toral, itnstabilities and Nonequilib-
rium Structures VJedited by E. TirapeguiKluwer Academic,
Dordrecht, 1998

[30] J. Garca-Ojalvo, and J.M. Sanchd\oise in Spatially Ex-
tended System@pringer-Verlag, New York, 1999

67, 3388(1991 [31] Equations(2) have been integrated using a finite difference
[22] A. Tsameret and V. Steinberg, Phys. Rev. L&%, 3392 scheme. We use a grid of 8000 samples with a grid spgce

(1991). =0.1 and time stepA;=0.0001 in the 1D caséor u=1 we
[23] M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, ~ Use a grid of 24000 samplesand we use a grid of 1000

Phys. Rev. Lett79, 3633(1997. X250 samples witl\, ,=0.5 and time ste@;=0.0002 in the

[24] M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, 2D case.

056207-7



