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Analytical and numerical investigations of the phase-locked loop with time delay
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We derive the normal form for the delay-induced Hopf bifurcation in the first-order phase-locked loop with
time delay by the multiple scaling method. The resulting periodic orbit is confirmed by numerical simulations.
Further detailed numerical investigations demonstrate exemplarily that this system reveals a rich dynamical
behavior. With phase portraits, Fourier analysis, and Lyapunov spectra it is possible to analyze the scaling
properties of the control parameter in the period-doubling scenario, both qualitatively and quantitatively.
Within the numerical accuracy there is evidence that the scaling constant of the time-delayed phase-locked
loop coincides with the Feigenbaum constant4.669 in one-dimensional discrete systems.
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I. INTRODUCTION necessitates three effective control parameters to account for
the experimental data.

Many nonlinear dynamical systems in various scientific In this paper, we report about analytical and numerical
disciplines are influenced by the finite propagation time ofinvestigations of the rich dynamical behavior of another
signals in feedback loops. A typical physical system is pro-model system that was proposed some time ago by Wischert
vided by a laser where the output light is reflected and fect al. in Ref. [13]. It represents the first-order phase-locked
back to the cavity1,2]. But time delays also occur in biol- 100p (PLL) with time delay that synchronizes the phases of
ogy due to physiological control mechanisf&4] or in WO oscillators. In comparison with the Mackey-Glass

economy where the finite velocity of information processing™del this system has the advantage that it involves only a
has to be taken into accouf,6]. Furthermore, realistic single effective control parameter instead of three. Addition-
models in population dynamicé or in ecology 'include thea”y' it can be realized electronically under well-defined con-
duration for the replacement of resourd@ss] ditions. Furthermore, an extension of the PLL with time de-

All these different systems have in common that the in_Iay is capable of describing sensibly physiological control

. : S _ experimentg 14].
herent time delay may induce dynamical instabilities. Nu- The experimental setup for the electronic system of a
merous experimental and theoretical studies have demoqal-r

) X _—first-order PLL is shown in Fig. 3 of Ref13]. In many
strated this for the emergence of oscillatory behaviorygjications the PLL serves for synchronizing the phases of a

quasiperiodicity, chaos, or intermittency. But time-delayedieference oscillator and a voltage-controlled  oscillator
feedbacks can also have the opposite effect. They have eve)CO). Thereby the frequency of the output signal of the
been devised to stabilize previously unstable stationary stat&agco depends linearly on the input signal. The output signals
or limit cycles[9-11]. In particular, this method allows to of both oscillators are multiplied by the aid of a mixer. The
control or to prevent undesirable chaotic behavior in a timeinduced high-frequency components are then eliminated by a
continuous way. In comparison with the time-discretelow-pass filter. The resulting signal is fed back to the input of
method of Ott, Grebogi, and Yorkgl2] it can be easily the VCO. A delay line between the VCO and the mixer,
implemented as it relies on less information of the dynamicalmplemented analogously or numerically, induces the time
system. delay 7=0. The dynamical variable of interest is the phase
The choice of a paradigmatic model system for analyzingdifferenceq(t) between both incoming signals of the mixer
the fundamental properties of delay-induced instabilities igcompare with Fig. 3 of Refl13]). Under quite simple as-
determined by several practical conditions. On the one hangumptions, it becomes possible to derive a nonlinear scalar
it should be guaranteed that all observable instabilities aré€elay differential equation for this phase differeri¢&]:
purely a result of time delays. On the other hand, the dynam-
ics should be governed by a simple model equation and al- .
low for a quantitative comparison between theory and ex- mqm: —Ksifq(t—7)]. )
periment. These conditions are fulfilled, for instance, by the

Mackey-Glass mod¢B] that describes quite successfully the The parametek =0 denotes the so-called open loop gain of

anomalies in the regeneration of white blood cells. However,[he PLL. Performing an appropriate scaling of the ime con-
the underlying nonlinear scalar delay differential equatlonverts the PLL equatiof) to its standard form
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where the two parametersK are reduced to one effective Here the first time scale and the second time scalé are
control parameter related via

R=Kr. 3 t'=et, (6)

Thus varying the delay time corresponds to changing the where the smallness parametedenotes the deviation from
control parameteR. In this paper, we analyze both analyti- the bifurcation point according to E¢4), and the respective
cally and numerically the rich structure of delay-induced in-amplitudes have the properties

stabilities of the PLL equatiof2). In Sec. Il, we derive the B

normal form of the Hopf bifurcation by applying the multiple e (t)=ag(t")*, k=0,2,3,4; qu(t')=q(t")*.

scaling method. The emerging periodic orbit is confirmed in (7)
Sec. Il by numerical simulations. In Sec. IV, we study in

detail the period-doubling scenario beyond the Hopf bifurcaNow we insert our ansaté) in the PLL equation(2). By
tion with phase portraits, Fourier analysis, and Lyapunowloing so, we have to take into account that the slowly vary-
spectra. ing amplitudesy;” (t') have the time derivative

d d
Il. MULTIPLE SCALING METHOD aQi:(t/)ZSJQii(t/) ®)
Combining the mathematical methodd 6,16 for delay
differential equations with the synergetic system analysis L . .
[17-21), it was shown in Ref[13] that a Hopf bifurcation and that their time delay results in the expansion
[22—24 occurs in the PLL equatiof) at the critical value
R.=m/2. In the following we rederive the normal form of T . d ., | 2
this Hopf bifurcation by using the multiple scaling method g (t'—e)=ai (t )_8Eqi (t)+0(e%). ©
[25]. It represents a systematic technical procedure to deduce
the normal form by using an ansatz how the respective qua

" Rrhe strategy is then to compare all those terms with each
tities depend on the smallness parameter

other which have the same power in the smallness parameter
e. Thereby we have to guarantee that in each order the re-
_R- RCQR: R.(1+¢) 4) spective Fourier coefficients compensate each other.
R¢ ¢ ' (1) In the lowest ordee® we have only the frequency 0,
which leads to the equality
Although the multiple scaling method has been originally

developed for ordinary or partial differential equatid@é— R.SiN(Qsta) = 0. (10
30], it can be also applied to delay differential equatitsee,
for instance, the treatment in R¢81]). This fixes the stationary state to be
We start with discussing some properties of the Hopf bi-
furcation. At first, we mention that the amplitude of the Osta= 77, 1=0,£1,£2, ... . (11

emerging periodic solution has a characterigti® depen-

dence from the smallness parameteras can be deduced In the following we restrict ourselves to considering the ref-
from the linear stability analysis already presented in Reference statg.,,~0 as the other ong\,= 7 turns out to be
[13]. Furthermore, the trajectory approaches the limit cycleunstable for all values of the control paramefer

slowly near the instability due to the phenomenon of critical ~ (2) The orders*? contains only the frequency Q with
slowing down. Thus the oscillatory solutigi{t) of the PLL  the condition

equation(2) is based on two different time scales. Thast

time scale is provided by the peridd=27/Q of the oscil- +iQqg (t")=—R.e" %y (t'). (12)
latory solution, whereas thglow one characterizes the am-

plitude dynamics in the transient regime. Both time scaleszg the amplitudes; (t') should not vanish, we conclude
are separated by a factor of the smallness parametais

follows again from the linear stability analygi43]. These —ReT2TiO=0. (13)
considerations lead to the following ansatz for the oscillatory ¢

solution after the Hopf bifurcation: This condition coincides with the transcendental characteris-

o o tic equation(98) of the linear stability analysis of Ref13],
q(t)=0sart £ qp (')€" +qq (1) ] if the eigenvalues. at the instability are identified according

+s[q2+(t’)e2‘m+q1(t’)+q2’(t’)e*2im] to A=iQ. The real part of Eq(13),
+e3q g, (1)ed Mg (1) e M +gg (1) e ' cos(2=0, (14)

+q, (t)e 3+ 0(e?). (5 leads to the frequency
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a As the functionsgs (t') andqy (t') are of the order o&®?
0=, (19 according to the ansats), they are irrelevant for the order
in which we are interested. It remains to solve the order
whereas the imaginary part results in the critical value of thébarameter equatiori21) and(22) by using polar coordinates
control parameter:

Qo (") =R(t)e ¢, (25)
a
RC:E' (16 The resulting stationary solution turns out to be
(3) The ordere involves two frequency components. The R(t')=12 (26)
Fourier coefficients of the frequency 0 immediately lead to
) together with the phase
gy(t")=0, (17)

e(t)=¢q. (27)

Thus we conclude from Eq$5), (15), (17), (19), (26), and
(27) that the oscillatory solution after the Hopf bifurcation
has the frequency

and for the frequency: 2Q) we obtain
+2i00; (t')=—Ree" a5 (1), (18)
which reduces due to the characteristic equafi®) to
gz (t')=0. (19 Q(e)=R;+0(&?) (28)
(4) Also the order=®2 consists of two frequency compo- and reads
nents. For the frequency () we read off ()= Co(&)+Co(£)cOg ()t + g ]+ Col )
(1_Rce:isz)%qg(t/):(_Rce:isziiﬂ)qg(t,) X cog2¢(t)+ ]+ 0(%?), (29
where the respective coefficients are given by
—3Ree™ 205 (')

— 2 — 3/2
_q(‘)_*'(t/)ZqO:(t/)] (20) CO(S)_O+O(8 )l Cl(S)—\/g“‘O(S )1

— 2
The factor in front ofgs (t') vanishes because of the char- Ca(e)=0+0(e%). (30

acteristic equatior{13). Thus the functionsy; (t') are not
determined in this order, they only follow from the next or-
dere? and the frequency: Q. Taking into account the char-
acteristic equatiori13), we yield from Eq.(20) the normal
form of the order parameter equation:

It coincides with the result of the synergetic system analysis
in Ref.[13] up to the ordee. Although we restrict ourselves
to this order, the systematics of the multiple scaling method
is obvious, thus an extension of the ans&ygto higher or-
ders is straightforward, but the calculation would become
d quite cumbersome.
qp do (1) =A%ag (1) +B qs (1) s (). (2D
t I1l. NUMERICAL VERIFICATION

There the parametess™ andB~ are defined by In order to numerically verify our analytical result, we
integrated the underlying PLL equati¢?). By doing so, we
L TR s A~ varied the control parameté&in the vicinity of the instabil-

A T1tiR, B==- 2 (22 ity R,=/2 in such a way that the smallness parameter

=(R—R.)/R; took 200 equidistant values between %0
Note that the normal form(21) of the multiple scaling and 10, We used a Runge-Kutta-Verner method of the
method and the normal form of the synergetic system analyfMSL library as an integration routine and performed a linear
sis in Ref.[13] do not coincide, however, they can be interpolation between the respective values. In particular, in
mapped into each other using an appropriate coordinatdhe immediate vicinity of the instability the phenomenon of
transformation 25]. Correspondingly, we obtain for the fre- critical slowing down led to a transient behavior. To exclude
guency=*3Q this, we iterated the discretized delay differential equation
. for each value of the control parameter at least ies.
+3iQq; (t') =R qy (1')3—6q, (t")], (23)  Afterwards we calculated the power spectrum with a com-
plex fast Fourier transforr(FFT) so that the basic frequency

which reduces due to EqéL3), (15), and(16) to Q of the oscillatory solution could be determined with high
4 e resolution. Then we performed a real FFT with the period
qq (1) =230, (1')". (24 T=2x/Q of the simulated periodic signai(t) =q(t+T):
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TABLE I. Comparing the analytical and the numerical values for the frequéhgy) and the Fourier
coefficientscy(e), c1(e), c,(g) of the oscillatory solution of the PLL equation after the Hopf bifurcation.

Investigated Analytical Analytical Numerical
quantity expression value value
dA dA dA

A A(0) del o A(0) del,_, A(0) del o
Q %’ 0 1.5708 0.0 1.5708 16
Co 0 0 0.0 0.0 —-3x10°4 -2x10°8
Inc, 3Ing 3 1.0397 0.5 1.0356 0.4999
Cy 0 0 0.0 0.0 X104 6x10?

~10" 1. However, this successfully tests only the order pa-
rameter concept for delay systems, as the lowest nonlinear
term in the scalar delay differential equation of the RR)Lis

a cubic one. Therefore we analyzed the Wright equdah

with a quadratic nonlinearity in a separate publicati@g],
where we could successfully test not only the order param-
eter concept but also the slaving principle, i.e., the influence
of the center manifold on the order parameter equations.
Thus we demonstrated with the Wright equation the validity
of the circular causality chain of synergetids’—21] for the
Hopf bifurcation of a delay differential equation.

Qo - .
qt)= ?+k21 [a,cog kQt)+bysin(kQt)]. (31

The Fourier coefficients follow from integrations with re-
spect to one period =27/():

2 (T
aszJ'O dtf(t)cogkQt), k=0,1,... »;

2 (T
bk=$j0 dtf(t)sinkQt), k=1, ... (32)

. IV. FURTHER NUMERICAL RESULTS
From Eq.(31) follows then the spectral representation

In the following we summarize various simulations which
have been performed for the delay differential equati®n

o]

q(t)=co+k21 Creog kLt + ¢y (33 of a PLL with some initial functionq(t) for —1<t<0
[25,34. In order to check the quality of the numerical re-
with the quantities sults, standard integration routines of the Runge-Kutta type
o have been applied with different discretizations by ad-
ao > k equately taking into account the delay effects.
Co=7 . Ck=Vaitbi o= —arctana—k, First, it turns out that the trajectony(t) is restricted for
all times to the interval — #, + 7] if the effective control
k=1, ... 0. (34 parameteR is increased from 0 to about 4.9. If the transient

Thus our analytical resuli27) and(29) can be interpreted as
the first terms within a spectral representatid8), where the
frequencyQ =27/T and the Fourier coefficienty, ¢,, C,
are given by Eqs(28) and (30). Analyzing the Hopf bifur-
cation with a FFT, we numerically determind€d c,, ¢4,
c, as a function of the smallness parameterComparing
the respective numerical and analytical results, we observe
some deviations for small and for large values of the small-
ness parametets The former are due to the phenomenon of ¢
critical slowing down, i.e., the system stays longer in the
transient state when the instability is approached, and the
latter arise from the neglected higher-order corrections in the§
analytical approach. Therefore we restricted our numerical
analysis to the intermediate intervfl0 °,10 1] of the
smallness parameter.

In Table I, we see that the analytical and numerical deter-
mined quantities agree quantitatively very well. Thus our

a) b)

=
o

a0

bl s s

ndditormSmis o

d

a
bl memowan

Lc'nhc'».'o-'—e—nua-u-

weakly nonlinear analysis for the delay-induced Hopf bifur-
cation in the PLL equation is numerically verified up 40

FIG. 1. Phase portraits depicting several limit cyclés: R
=3.5, (b) R=4.1, (c) R=4.105, (d) R=4.11.
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FIG. 2. Power spectra indicating period doublings R FIG. 3. Bifurcation diagram obtained by a Poincaestion that

behavior has decayed, the resulting asymptotic dynamicsther oscillating solutions. Also this new limit cycle exhibits
could be classified as follows. ForstR< /2 there exist a point symmetry with respect to the origin of the phase
two stationary states, a stable ape=0 and an unstable one portrait. At R~4.11 this limit cycle splits into two new os-
g,=m. At R=7/2 a superstable Hopf bifurcation occurs cillating solutions with the initial functiong(t)==2 for
where the previously stable stationary stqi@FO becomes —1=<t=<0, so that the point symmetry is again destroyed
unstable and a new stable limit cycle emer§e3]. In the  [compare Fig. @d)]. It turns out that both of them pass
range m/2<R=3.77 this oscillatory solution shows a con- through a separate period-doubling scenario for 4.R1
spicuous point symmetry with respect to the origin of the<4.175. This is shown qualitatively by the power spectra
phase portrait in Fig. (B). This symmetry is broken aR (see Fig. 2for the first three period doublings. Each of these
~3.77 as the limit cycle splits into two coexisting limit bifurcations leads to a subsequent subharmonic and to corre-
cycles[35]. They are depicted in Fig.(h) as the asymptotic sponding higher combination frequencies. The bifurcation
dynamics of the initial functions|(t)=+1 for —1<t<0, diagram in Fig. 3 is an overview over this period-doubling
respectively. Both coexisting limit cycles are symmetric toscenario. It was obtained by Poincarections of the trajec-
each other concerning the point symmetry with respect to théories using the software packagent 4.669 [41-43,
origin and remain stable up ®®~4.9. Note that the insta- whereby the Poincareonditions wereq(t)=0 and q(t)
bility at R~3.77 was not detected during the initial investi- [1,2].
gations in Ref[13] as there only Fourier spectra were ana- In order to analyze a period-doubling scenario more quan-
lyzed. titatively, it is advantageous to determine the the Lyapunov
Increasing the effective control parameter leads to a furexponents of the underlying dynamics. In our case this ne-
ther bifurcation atR~4.105. Figure (c) illustrates that a cessitates to use the common concept of the Lyapunov expo-
new limit cycle emerges with the initial functian(t)=2 for  nents[36] and to extend it to delay differential equations
—1=<t=0, which coexists for 4.108R=<4.11 with the two  [25,37]. Thereby we have to take into account that their nu-

0.3 T v T 0.01
0.2 | 0
0.1 1 -0.01
s P T T T 2 0%
<0 f S 0031
< <
027 1 -0.04
03 -0.05
04 ] -0.06 |
-0.5 : . . -0.07 L :
4.15 4.175 42 4.225 4.25 41737 4.1738 4.1739 4.174
R R

FIG. 4. The Lyapunov spectra illustrating self-similarity. Shown are the two largest Lyapunov expapentd \ ,.
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TABLE Il. Bifurcation points of the period-doubling scenario.  a s b)
3 [1
Period before 3 !
n ParameteR, bifurcation 5, s 4 = ;
-1 2
0 4.158:5x10°° 1 1 2
1 41705510 ° 2 4.63r2x10? 4 :
2 4.17325x10°° 4 4.49+5x101 4324 '('0 1234 v w u 6 u ¥
3 4.1738025x10°7 8 4814x101 ! 0 !
4 4.17392722x10°7 16 476101 6 ‘
5  4.17395352.5x10°’ 32 4.46:3x10°1 o R
6  4.17395945x10 8 64 4.72-4x 1071 = !
7 4.173960652.5x10 ° 128 i, §.
4 4
4 +
merical integration is based on a discretization procedure. As  * % * ; vowo e woww PR

a consequence, the determination of the Lyapunov exponents

for time-delayed dynamical systems is reducible to the cal- FIG. 5. Analyzing the periodic window at 4.2083k<4.215:
culation of the Lyapunov exponents for a high-dimensionalia,p R=4.211, (c) R=4.2115,(d) R=4.213.

time-discrete mapping.

Figure 4a) shows the two largest Lyapunov exponentsperiod 3. This chaotic regime ends Bt=4.2405 when a
within and above the period-doubling scenario of the PLL.global bifurcation or a transition to transient chaos occurs.
The enlargement of Fig. (4) clearly reveals the self- For 4.2405-R<4.85, phase portraits and power spectra
similarity of the spikes and the characteristic scaling propershow that only those limit cycles coexist which emerged at
ties. One of both the Lyapunov exponents always vanisheB~3.77. AtR~4.85 two new limit cycles of period 2 are
due to the moving reference frame. The zeros of the secongenerated, which coexist for 4.88<4.90. For G<R
Lyapunov exponent coincide with the critical values of the<4.90 the dynamics has the characteristic property that the

effective control parameteiRy,R;,R,, ... where a period state space is divided in separate interdls1—1),(m
doubling occurs. Table Il lists the first bifurcation points and +1)#] with m=0,1,2 ... . In each of these intervals oc-
the scaling constants curs the dynamical scenario that has been described so far. At
R~4.90 it happens for the first time that previously sepa-
5= Rn-1— Ry (35) rated intervals are linked together, so that a new dynamical
" Ry—Rni1 behavior becomes possible. For 49R=<5.30, Figs. 6

and Gb) show that there exist, for instance, limit cycles of
of the effective control parameter. Within the numerical ac-period 2 in different intervals although the constant initial
curacy there is evidence that the scaling constaptson-  function q(t)=—2 (dashed dottegd —1 (dashe¢, 1 (dot-
verge to the Feigenbaum constait4.669 as in the case of ted), and 2 (solid) was chosen in the intervgl—, + ).
one-dimensional time-discrete systef88,39. If we assume  Thus the transient dynamics occurs in different intervals,
this to be true then we can estimate the end of the periodyhereas the asymptotic dynamics is restricted to one of these
doubling scenario, intervals.

SR, 1—R, ) b
Rm—T, (36)

<>

from the bifurcation points in Table Il. The finding&,
~4.173961 agrees quite well with the enlarged Lyapunov
spectrum in Fig. ®).
As typical for the period-doubling route to chaos, there a3 4 '0 T T RN EEE
exists not only the period doubling scenario below the criti- @ o
cal value, that is, foR<R.., which ends at the critical value d
R.. with the emergence of a Feigenbaum attractor, but alsc
the band-merging scenario with periodic windows above the
critical value, that is, foR>R,, . As an example the periodic
behavior in the window 4.2095R<4.215 was analyzed
more carefully. The phase portrait of Figaband the power
spectrum of Fig. &) show that aR~4.2095 a limit cycle of
period 3 emerges. AR~4.2115 it starts to pass through a
period-doubling scenaridsee Fig. %c)]. Finally, at R
~4.213 a chaotic attractor emerges whose power spectrum FIG. 6. Analyzing the regim&>4.90: (a),(b) R=4.95, (c),(d)
in Fig. 5(d) clearly reveals the structure of the limit cycle of R=6.
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k] cal systems possess chaotic attractors where the envelope of
% the Lyapunov dimensioD, is proportional to the time delay
7[25,37,4Q. To our knowledge a theoretical explanation for

b/ this universal phenomenon, which could predict the system

. specific slopes from the respective delay differential equa-
= B tions, is still lacking.

10

5 V. CONCLUSION

0 Here we have demonstrated by the example of the phase-

0 190 2 3 40 50 (] locked loop with time delay that an adequate combination of

R different analytical and numerical investigation methods re-
veals different aspects of the rich dynamical behavior in
time-delayed nonlinear systems. The multiple scaling
method allows to derive the normal form for the Hopf bifur-

At R~5.30 occurs another instability to chaotic behavior.c.atlon' Phase portraits resgltmg from .dl.fferent '”!“"’?' func-
tions are capable of detecting the splitting of a limit cycle

However, now the chaotic dynamics is no longer restricted tqQ dicating thereb breaking bif . A period
one of the above mentioned intervals, but it relates the pre'-n Icating thereby symmetry-breaking bifurcations. A perio
. : U doubling is qualitatively indicated in the power spectrum,
viously separated intervals. For a certain time the systeni

. ; : . H/hereas the Lyapunov spectrum allows more quantitative
dynamics remains restricted to one of these intervals an ) L .
. ) Statements. In this way we found, within the numerical ac-
moves then to the next intervgéee Figs. &) and Gd)]. . . . S
: : Y ) curacy, evidence that the period-doubling scenario in the
Thereby the time duration of the system within one interval e .
. . : o phase-locked loop with time delay is governed by the
differs from interval to interval. Such a dynamics is called . .
o L L . Feigenbaum constardt~4.669.
phase slippingor cycle slipping[13]. All numerical investi-
gations aboveR~5.30 show that only the phase slipping
behavior is stable. Analyzing the Lyapunov spectram ACKNOWLEDGMENTS
=\,= ..., the lyapunov dimension
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