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Disclinations in square and hexagonal patterns
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We report the observation of defects with fractional topological chafdisslinations in square and hex-
agonal patterns as numerical solutions of several generic equations describing many pattern-forming systems:
Swift-Hohenberg equation, damped Kuramoto-Sivashinsky equation, as well as nonlinear evolution equations
describing large-scale Rayleigh-Benard and Marangoni convection in systems with thermally nearly insulated
boundaries. It is found that disclinations in square and hexagonal patterns can be stable when nucleated from
special initial conditions. The structure of the disclinations is analyzed by means of generalized Cross-Newell
equations.
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[. INTRODUCTION Similar types of defects could be expected to exist in
square and hexagonal patterns that are observed in many

Topological defects in condensed- and soft-matter syspattern-forming systems such as convect{@), Faraday
tems are ubiquitous and very interesting objefd]. In  waves[6], granular material$7], directional solidification
particular, they are often observed in systems exhibiting8], reaction-diffusion systeni®], ferrofluids[10], nonlinear
spontaneous formation of spatially regular patterns. Theptical system$11], etc. In the case of a square pattern that
characteristic feature of spatially periodic patterns is thais characterized by a mutually orthogonal pair of directors,
they are characterized by one or more wave vectors and arhisclinations with the minimal absolute value of the topo-
invariant with respect to the wave vector sign change. Irogical charge correspond to the rotation of the square pat-
other words, the patterns are characterizedibgctorsrather  tern by =90°. In this case, a convex disclination has the
than wave vectors, much like liquid crystals. This makes ittopological charge 1/4 and a concave disclination has the
possible for special type of point defects with fractional to-topological charge —1/4. For these disclinations, the
pological charges-disclinations—to occur in such patterns. order  parameter is ~cogk(¢)-r]+cogk,(¢)-r]

Disclinations in roll patterns have been observed in sevwith ki(¢)=[cos(@p/4),* sin(¢p/4)] and Ko( )
eral pattern forming systems and have been analyzed by [ sin(¢/4),cosg/4)], where the signs: correspond to a
Newell and co-worker$3,4]. The characteristic feature of convex and a concave disclination, respectively. In the polar
these defects is that when going around the defect core, ormordinates, the order parameter iscogrcos(35/4)]
observes the pattern wave vector rotating. It is rotating in+cogrsin(34/4)] for a convex disclination and
such a way that after making a full circle around the core, the~ cogr cos(56/4)]+ cogr sin(5¢/4)] for a concave one.
wave vector of the roll pattern rotates byl180° so that the Similarly, in a hexagonal pattern, disclinations with the mini-
roll pattern “goes back to itself.” Such a defect can be char-mal absolute value of the topological charge correspond to
acterized by a topological charge—the angle of the patterthe pattern rotation by-=60°, with a convex disclination
wave vector rotation around the defect in fractions ef.2 having the topological charge 1/6 and a concave erig¢6.
Thus, two types of disclinations in roll patterns, with the The order parameter is~cogk,(¢)-r]+cogk,(¢)-r]
minimal fractional topological charge, can be distinguished:+ cogks(¢)-r], with ky(¢)=[cos@/6),=sin(¢/6)],k,( )
a convex disclination, with the topological charge 1/2, =[cos(@/6+ 7/3),* sin(¢p/6= 7/3)], and k() =[cos/6
and a concave one, with the topological charge/2.  +27/3),sin(@/6+2m/3)], where the signs: correspond to
An example of an order parameter field containing a discli-a convex and concave disclination, respectively. In the
nation can be constructed in the following way. Out of thepolar coordinates, the order parameter of a convex disclina-
disclination core, the roll pattern around the disclination istion is thus ~cogrcos(5/6)]+ cogr cos(5p/6-+ 7/3)]
represented by the order parametercogk(¢)-r],k(¢) +cogr cos(54/6+ 27/3)], while a concave disclination has
=[Fsin(¢/2),cosgl2)], where the signs correspond to a the order parameter~cogr cos(7/6)]+ cogr cos(7/6
convex and a concave disclination, respectively. In the polas- 7/3)]+ cogr cos(7p/6+ 27/3)].
coordinatesx=r cos¢, y=r sin¢, and therefore a convex  The subject of this paper is to investigate whether discli-
disclination in a roll pattern, with the topological charge 1/2, nations in square and hexagonal patterns can be expected to
is represented by the order parametecogr sin(¢/2)], be observed in pattern-forming systems. Disclinations in
while a concave disclination in a roll pattern, with the topo-square patterns are briefly discussed in R&2] (see also
logical charge—1/2, is represented by the order parameterRef.[13]) from the point of view of defects in a cubic crystal
~cogr sin(3¢/2)]. lattice. Also, square patterns resembling disclination struc-
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ture were observed in convection in a binary mixture in asgok
circular containef14]. Hexagonal patterns with defects pos-
sibly resembling disclinations were observed in experimentyso§
with chemical patterngl5] as well as in numerical simula- .
tions of some reaction-diffusion systefii6—18. However, 400}
to the best of our knowledge, there has been no systemat
investigation of these types of defects in square and hexagaso§
nal patterns. In this paper, we study disclinations in squar

and hexagonal patterns described above by solving numerzo
cally several generic nonlinear evolution equations, well g
known to describe pattern formation in a variety of systemsazso
We demonstrate that the existence of stable stationary discl :
nations in square and hexagonal patterns is possible in sezook
eral systems, with both potential and nonpotential dynamics |}

II. DISCLINATIONS IN SQUARE PATTERNS

As an example of a pattern-forming system in which a
square pattern is selected, we choose Rayleigh-Benard co
vection in a liquid layer between thermally nearly insulated | :
plates. The nonlinear evolution of this system is described b 50 100 150 200 250 800 350 400 450 500
the following evolution equatiop19—21]:

FIG. 1. Stable stationary solutions of Efl) with €2=0.4,

T 1 forming a convex disclination in a square pattern, with the topologi-
2:972 GZT_(1+V2)2T+§V . (VT|VT|2), (1) cal charge 1/4.

ently oriented squares, so that when one goes around the core
whereT is the mean temperature across the liquid layer. Ahe orientation of squareshe pattern wave vectorsotates
weakly nonlinear analyzis of this equation near the instabilcontinuously by* /2.
ity threshold €<1) predicts the appearance of a square The structure of disclinations in a square pattern can be
planform[22]. qualitatively understood on the basis of stationary Cross-

We have performed a numerical simulation of this equaNewell equations for a square pattern which are similar to

tion by means of a pseudospectral code with periodic boundhe Cross-Newell equations for hexagonal and triangular pat-
ary conditions. Our numerical simulations show that indeed,
starting from small-amplitude random data, a square patterr,
with some defects and domain walls between regions fillec
with differently oriented squares is formed. In order to ex-,.
amine a possibility for a disclination defect to exist in a &
square pattern we have solved Et). numerically, in a large
domain with lengthL =807 X 807, starting from two types ;
of small-amplitude initial conditions discussed above, anc,}
corresponding to a convex and a concave disclination wit
topological charges 1/4 and 1/4, respectively. Figure 1 54,
shows a stationary solution of E@.) in the form of a convex :
disclination with the topological charge 1/4 fef=0.4. Fig- 250
ure 2 shows a stationary solution of E@) in the form of a ‘
concave disclination with the topological chargel/4 for g
€°=0.1 [23]. One can see that both of these disclination
patterns consist of a core with threefdléig. 1) or fivefold {50
(Fig. 2 symmetry and a surrounding square pattern. Fo
larger e, the disclination structure is almost defect free. Forygo
smallere, there is a set of dislocations “emitted” from the
core(emission of dislocations is observed at small supercriti- 5
cality for both concave and convex disclinatipnBisloca- ;
tions appear because the pattern has a prescribed wavelenc
such a process of “healing” disclinations by dislocations was
gualitatively described in Ref12]. However, it is important FIG. 2. Stable stationary solutions of Efl) with €?=0.1,
that the set of dislocations isot continuous in that it does forming a concave disclination in a square pattern, with the topo-
not form a domain boundary separating regions with differ-ogical charge—1/4.
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terns in potential systems derived in Rg#4]. According to
the analysis presented in R¢R4], a pattern formed in a
potential system and based on two local wave vectove
phasesk,=V 0, andk,=V 0, is described by the station-
ary Cross-Newell equations

V_ * k{|+V ok =0 2
| ok? l_ 3(Ky-kg) 2) ’ @
V- *F ko, |+V o =0 3
22| "V ko) T 9

whereF is the Lyapunov functional of the system.
A spatiotemporal dynamics described by Et.is poten-
tial, since Eq.(1) can be written in the variational form

, 0T oF
2— =_—

ot ST @)

where the Lyapunov function& is

fdz [l T+ = [(1+V2)T]2 2|VT|4 . (5
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andB(k2,k? k,-k,) is obtained from Eq(10) by replacing
1 by 2 and vice vers&; = efl(kj —1). For perfect squares,
n,-n,=0 andC=0 exactly.

In the case of a disclination, Eg&8) and(9) can be rep-
resented as a single equation for a functionV® defined
[in the polar coordinatesr(#)] in the region G< <4,
such thatk,(8)=k(6), ko(0)=k(0+27), 0<6O=<2.

A reasonable approximation to the solution of E(H—
(10) can be found if the nonlinear interaction between rolls
in the rectangular pattern is weak so that one can neglect the
dependence dB(k3,k3,k;-k,) on all the arguments except
the first one, i.e., to consid&=B(k;). In this case, a solu-
tion to the Cross-Newell equations for rectangles can be con-
sidered as a solution for rolls, but defined in a regicr®
<44, Following Ref.[3], use the Legendre transformation
to obtain the following linear equation:

2A

J 970 B
+£[k3(k)](9752_o. (12)

k kBka@)
k| KB 2

An appropriate solution of Eq11) is ® = F,,(k)cosme,
where
K[kB(K)Fr(k)]" =

mekB(K)F (k) =0. (12)

Calculating the stationary solutions for rectangles for

small €,
T=ea, (1T KON Xy gq ATk Xy oot (6)
and substituting Eq6) in Eq. (5), one finds
1, 2 , 1,
k1= 5[1+2(ny-Ny) k1Kot 5 K5
L 213 2
€ ‘F=— , (7

4
1_5[1+2(n1'n2)2]2

where k;=1-4K3 and x,=1—4K3. Note that due to the
definitions of wave vectork,, k,, VXk;=V Xk,=0.
Since k;=1+¢€K;, k,=1+¢€K,, the expressions
B(k3 K3,k - ko) = dF/9k3 andB(k3,k3 k- ky) = 9F/ 9k are
O(e 1Y), while C(k?,k3,ky-ky)=aF/a(ky-ky) is O(1).
Thus, near the threshol@nd only therg one can disregard

C and write the Cross-Newell equations for rectangles in the

leading order as

V[B(k? k3 ky-ko)ky]=0, €)
V[B(K3,k,k;-ka)k,]=0, 9)
where (after rescaling
B(K3,k3,ky-ky)
o (1-4K) - (2/3)[1+2(n1 ny)?](1— 4K2)
o 1——[1+2(n1 n,)?]?
(10)

In the casem=1 corresponding to a disclination in a roll
pattern, Eq(12) can be solved analyticallj3].

A convex disclination in a square pattern, with the topo-
logical charge 1/4, corresponds m=3. In this case, an
approximate solution of Eq12) can be found in the far-field
region,r>1. Indeed, as follows from Ref3], the regionr
>1 corresponds to rolls witk close to the valudk, at the
boundary of the zigzag instability, whe&k,) =0 (in our
caseko=1, andKy=0). Neark=Kkg,

Fm(k)~In(ko—k), (13

and does not depend an. The solution of Eq.13) in x
space is given byx=V,®, which yields

r cog 60— ¢)=F/ (k)cosme, (14
. MFR(K)
rsin(f—¢)=— K sinme, (15

where ¢ determines the direction of the vector Thus, one
gets

0= ¢+ arctai tanme),

kFp(k)

In the limit (13) & is small, so that one obtains fast change of
0 near ¢=(m7/m)(2n+1) (i.e., sectors with nearly straight
rolls) and sectors witld= ¢+ n (i.e., sectors with targets

For example, an approximate far-field solution corre-
sponding to a convex disclination with the topological charge
1/4 is
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T=cogX CoS¢;+Yy SiN;) +COIX COSh,+ Yy COSh,), 500k
(17
450
where
400
= O<0<Z' qb:z 0<0<E
¢]_ 01 61 2 21 21 350
T 0 771'_ i T P 577_ 18 300
¢1—g, 5 0<% br=0, 5<0<4%: (18
250
T 377_ 5@ b7 1177.
h=bmm gbsgn demg b 200
T 37 117 150
¢l:§1 7<0<27T, (,bz:(g_’TT, ?<0<27T

100

In the far field this pattern is similar to that shown in Fig.
1, but does not contain the disclination core. Similar approxi- 50
mation for a concave disclination with the topological charge
—1/4 cannot be found within the framework of this approach T s 100
since the functioré(¢) turns out to be nonmonotonic in this
case which is unphysical. The approximation used underes- FIG. 3. Stable solution of E¢20) with €=0.02, in the form of
timates the role of the interaction between rolls forming the2 convex disclination in a hexagonal pattern, with the topological
square patterns. Nevertheless, the approximate sol(ipn ~ charge 1/6.
(18) reproduces correctly the basic topological features of the

350 400 450 500

numerical solution shown in Fig. 1. —1/6 resulting from Eq(19). One can see that the structure
of the disclinations in hexagonal patterns is similar to that in
[1. DISCLINATIONS IN HEXAGONAL PATTERNS a square one. It consists of a core that can be considered as a

o o bound state of several penta-hepta defects, and a hexagonal
exist in a hexagonal pattern, we have performed numericalenta-hepta defects around the core. It is important to note

simulations of two generic equations known to exhibit hex-that these penta-hepta defedts notform domain bound-
agonal planformsSwift-Hohenberg equatiowith a square

nonlinearity,
500

Y= ep— (1+V?) 24+ ay?— 4P, (19
450

which is typical of manypotentialsystemg 25|, anddamped
Kuramoto-Sivashinsky equation 400
2\2 1 2 350

h=eyp—(1+V7) w—§|V¢| : (20)

300
typical of manynonpotentialsystemd26].

Both these equations exhibit, near threshoid0, the for- .5,
mation of stationary hexagonal patterns. Starting from small
amplitude random noise, one observes the formation of dcyg,
mains filled with hexagons with different orientations,
divided by grain boundaries that consist of chains of penta;s,
hepta defects.

We started from small-amplitude initial conditions mim- o0
icing a convex and a concave disclination in hexagonal pat
terns with the topological charges 1/6 andl/6, respec- s
tively, discussed above. As a result, the solutions evolvel
into stable disclination patterns, examples of which are
shown in Figs. 3 and 4. Figure 3 shows a convex disclination
in a hexagonal pattern with the topological charge 1/6 result- FIG. 4. Stable solution of Eq19) with eé=0.02,a=1.0, in the
ing from Eq.(20). Figure 4 corresponds to a concave discli-form of a concave disclination in a hexagonal pattern, with the
nation in a hexagonal pattern with the topological chargeopological charge-1/6.

50 100 150 200 250 300 350 400 450 500
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250

5008 FIG. 6. (a) Concentric roll pattern resulting from a convex dis-

clination with the supercriticality increase froe+0.2 to e=0.8.

(b) Convex disclination in a hexagonal pattern restored from the
concentric roll pattern shown ifa), with the decrease of the super-
criticality from €=0.2 to e=0.8. Numerical solution of Eq(19)
with «=1.0.

400:
300 f
200
100 hexagons divided by domain walls composed of the chains
of penta-hepta defects. Such structure is different from the
disclinations shown in Figs. 3 and 4 in which the orientation
FIG. 5. Nucleation of a disclination in a square pattern— Of the hexagons is changingpntinuouslyaround the core.
numerical solution of Eq(1) with €2=0.1. This is probably due to the fact that a hexagonal pattern is
much less flexible than a square one due to resonance lock-
aries between domains with differently oriented hexagons aig of the pattern wave vectors.
is usually the case when a hexagonal pattern evolves from Another important question is what happens to disclina-
random initial data. Rather, it is possible to go around theions in square and hexagonal patterns with the change of the
core and remain in the same domain of hexagons whosgupercriticality. In the case of a disclination in a square pat-
wave vectors rotate continuously ky#/3 for a convex and tern described by Ed1), the increase of the supercriticality
a concave disclination, respectively. leads to elimination of dislocations and formation of almost
We have not succeeded in trying to get a qualitative picerfect, dislocation-free disclination, see Fig. 1. Formation of
ture of disclination in a hexagonal pattern from Cross-dislocation-free disclination can be explained by the fact that
Newell equations for hexagoig4] as we did for a convex farther from the threshold of the short-wave instability gen-
disclination in a square pattern, since the interactjgmase  erating the square pattern, the band of the excited wave num-
correlation of the systems of rolls forming the hexagonal bers becomes larger which gives more freedom for the local
pattern is crucial and one cannot neglect this interaction invave vectors of the pattern to adjust themselves to the bend-
the Cross-Newell equations. ing of squares caused by rotation of the disclination struc-
ture. With the decrease of the supercriticality, the dislocation-
free disclination structure “cracks”: numerous dislocations
appear in it(see Fig. 2
In the case of hexagonal patterns, the behavior of discli-
In order to see how robust the disclinations in square andations with the change of the supercriticality is different.
hexagonal patterns are, we have performed the following nuFor a disclination in a hexagonal pattern in the potential
merical experiment. We have simulated E¢B, (19), and system described by Ed19), we observed that with the
(20) starting from the initial conditions that had a small-sizeincrease of the supercriticality, the number of dislocations
nucleus of the corresponding disclination pattern with a(penta-hepta defegtsemained almost the same. With further
small amplitude, surrounded by a spatially random field withincrease of the superecriticality, the transition to a roll pattern
even smaller amplitude. As a result we have observed thbas been observed which is well known for systems de-
growth of disclination patterns from their nuclei into the ran- scribed by the Swift-Hohenberg equation as well as many
dom surrounding. Example of this growth is shown in Fig. 5other pattern-forming systeni25]. The resulting roll pattern
for the case of a square pattern resulting from @g. One is shown in Fig. €a) (computations were performed in a
can see that the disclination structure has grown to a consiémaller domain It consists of five domains of slightly
erable size, while at the periphery of the computational recurved rolls divided by almost dislocation-free domain
gion, domains with differently oriented squares have formedboundaries and retains the fivefold symmetry of its
The established disclination structure coexisting with the dopredecessor—the convex disclination with the topological
mains of squares at its periphery turns out to be stable. Theharge 1/6. It is interesting to note that with the decrease of
structure resulting from the disclination nucleus in a hexagothe supercriticality, the pattern shown in Figapis trans-
nal pattern described by E@19) appears to be somewhat formed back to the original disclination structure in a hex-
different. It evolves into four domains of differently oriented agonal pattern shown in Fig(l§.

100 200 300 400 500 100 200 300 400 500

IV. NUCLEATION OF DISCLINATIONS AND THEIR
STABILITY
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In a nonpotential system described by E20), the evo- 50
lution of disclinations in hexagonal patterns differs from that
discussed above for the potential system described by Euso
(19). In this case, the increase of the supercriticality leads t
a rapid growth of the number of defects that causes the deoo
struction of the disclination structure and the transition to
chaos. With the decrease of the supercriticality, the disclinasso
tion structure is not restored.

300

V. DISCUSSION AND CONCLUSIONS 250

In the present work, we have shown that topological de-
fects with fractional topological charges—disclinations—in 200
square and hexagonal patterns can be observed as station
solutions of several generic evolution equations describin5°
various pattern-forming systems. Stable disclinations ir
square patterns have topological chargel§4, in hexagonal 1%
patterns they have topological charged/6. Disclinations
in square and hexagonal patterns can be observed as a res
of the evolution starting from special initial conditions that s
mimic the disclination structure. We have not observed ¢ —  so 100 150 200 250 300 350 400 450 500
spontaneous formation of disclinations in square or hexago- S )
nal patterns from random noise. However, a disclination in a F!CG: 7- Disclination in a hexagonal pattern resulting from nu-
square pattern can be formed from a small nucleus that trigheical solution of Eq(21) with 5=0.98.
gers the propagation of the disclination structure through the .
system. We have also observed that the disclination defect§ermally insulated top and bottom surfa¢@8—30:
in square and hexagonal patterns are robust in that they are
stable within certain interval of the supercriticalities. With ;& +2A®+A%® -V - (|VP|2VD)+\V - (ADVD)
the increase of the supercriticality, the behavior of disclina-
tions in square patterns is different from that in hexagonal +uA[VO[2+ g0 =0, (22)
patterns. In square patterns, the increase of the supercritical-
ity leads to the disappearance of dislocations surrounding thehere ® is the temperature field at the free surface of the
disclination core and to the formation of almost perfect,liquid layer,\ = \7/8 u=3/7/4 andg is the bifurcation pa-
dislocation-free disclination structure. In hexagonal patternsiameter characterizing the heat flux through the liquid layer
it leads to either a destruction of the disclination pattern or tdn the quiescent steady state. The Marangoni convection in a
a transition to a concentric roll pattern that retains the symsystem described by E¢21) occurs forB<<1. One can see
metry of the disclination. It is important to note that the that Eq.(21) is similar to Eq.(1) but it contains additional
disclination structure can be restored by the decrease of thguadratic terms with the coefficienksand p that break the
supercriticality. ®— —® symmetry and allow for the appearance of a hex-

It would be very interesting to systematically study theagonal pattern typical of Marangoni convection.
described disclinations in square and hexagonal patterns in Figure 7 shows stable convex disclination structure, with
experiments. Although patterns resembling disclinationthe topological charge 1/6, in a hexagonal pattern resulting
structure were observed in a number of experimgidsl5g from the numerical solution of Eq21) starting from small-
and numerical simulations of some reaction-diffusion sys-amplitude initial data that mimic the convex disclination
tems[16—-18, we are currently not aware of any systematicstructure. This result may encourage experimentalists to try
experimental investigations of the disclination defects into obtain stable disclinations in hexagonal patterns in Ma-
square or hexagonal patterns. We could suggest that one ceangoni convection.
try to use Marangoni convection in large Prandtl number Note that a “pure” disclination, without defects except for
fluids as an experimental system in which the disclinationghe core, can be formed only from special initial conditions
could be observed. This system is known to exhibit bothand in a certain interval of supercriticalities. A more typical
square and hexagonal spatially regular patterns. Moreovesjtuation is characterized by the appearance of dislocations
an elegant experimental method of controlling and producingyenerated by the disclination structure. These dislocations
a desired pattern in Marangoni convection by means of @ften form chains that mark “domain walls” between the
laser radiation has been proposed and tested redely regions where the pattern orientation is almost constant. The

In order to check the possibility to observe disclinationschanges of the pattern orientations are located inside the do-
in Marangoni convection patterns, we have also performednain walls. The difference between a pure and a domain wall
numerical simulation of an evolution equation that describeslisclination seems to be quantitative rather than qualitative
large-scale Marangoni convection in a thin, large aspect ratiand could be characterized, for instance, by the mean dis-
layer of large(infinite) Prandtl number liquid, with nearly tance between the dislocations along the domain wall.
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