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Disclinations in square and hexagonal patterns
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We report the observation of defects with fractional topological charges~disclinations! in square and hex-
agonal patterns as numerical solutions of several generic equations describing many pattern-forming systems:
Swift-Hohenberg equation, damped Kuramoto-Sivashinsky equation, as well as nonlinear evolution equations
describing large-scale Rayleigh-Benard and Marangoni convection in systems with thermally nearly insulated
boundaries. It is found that disclinations in square and hexagonal patterns can be stable when nucleated from
special initial conditions. The structure of the disclinations is analyzed by means of generalized Cross-Newell
equations.
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I. INTRODUCTION

Topological defects in condensed- and soft-matter s
tems are ubiquitous and very interesting objects@1,2#. In
particular, they are often observed in systems exhibit
spontaneous formation of spatially regular patterns. T
characteristic feature of spatially periodic patterns is t
they are characterized by one or more wave vectors and
invariant with respect to the wave vector sign change.
other words, the patterns are characterized bydirectorsrather
than wave vectors, much like liquid crystals. This makes
possible for special type of point defects with fractional
pological charges—disclinations—to occur in such patterns

Disclinations in roll patterns have been observed in s
eral pattern forming systems and have been analyzed
Newell and co-workers@3,4#. The characteristic feature o
these defects is that when going around the defect core,
observes the pattern wave vector rotating. It is rotating
such a way that after making a full circle around the core,
wave vector of the roll pattern rotates by6180° so that the
roll pattern ‘‘goes back to itself.’’ Such a defect can be ch
acterized by a topological charge—the angle of the pat
wave vector rotation around the defect in fractions of 2p.
Thus, two types of disclinations in roll patterns, with th
minimal fractional topological charge, can be distinguish
a convex disclination, with the topological charge 1/
and a concave one, with the topological charge21/2.
An example of an order parameter field containing a dis
nation can be constructed in the following way. Out of t
disclination core, the roll pattern around the disclination
represented by the order parameter;cos@k(f)•r #,k(f)
5@7sin(f/2),cos(f/2)#, where the signs7 correspond to a
convex and a concave disclination, respectively. In the p
coordinatesx5r cosf, y5r sinf, and therefore a conve
disclination in a roll pattern, with the topological charge 1/
is represented by the order parameter;cos@r sin(f/2)#,
while a concave disclination in a roll pattern, with the top
logical charge21/2, is represented by the order parame
;cos@r sin(3f/2)#.
1063-651X/2003/67~5!/056202~7!/$20.00 67 0562
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Similar types of defects could be expected to exist
square and hexagonal patterns that are observed in m
pattern-forming systems such as convection@5#, Faraday
waves @6#, granular materials@7#, directional solidification
@8#, reaction-diffusion systems@9#, ferrofluids@10#, nonlinear
optical systems@11#, etc. In the case of a square pattern th
is characterized by a mutually orthogonal pair of directo
disclinations with the minimal absolute value of the top
logical charge correspond to the rotation of the square
tern by 690°. In this case, a convex disclination has t
topological charge 1/4 and a concave disclination has
topological charge 21/4. For these disclinations, th
order parameter is ;cos@k1(f)•r #1cos@k2(f)•r #
with k1(f)5@cos(f/4),6sin(f/4)# and k2(f)
5@7sin(f/4),cos(f/4)#, where the signs6 correspond to a
convex and a concave disclination, respectively. In the po
coordinates, the order parameter is;cos@r cos(3f/4)#
1cos@r sin(3f/4)# for a convex disclination and
;cos@r cos(5f/4)#1cos@r sin(5f/4)# for a concave one.
Similarly, in a hexagonal pattern, disclinations with the min
mal absolute value of the topological charge correspond
the pattern rotation by660°, with a convex disclination
having the topological charge 1/6 and a concave one21/6.
The order parameter is;cos@k1(f)•r #1cos@k2(f)•r #
1cos@k3(f)•r #, with k1(f)5@cos(f/6),6sin(f/6)#,k2(f)
5@cos(f/66p/3),6sin(f/66p/3)#, and k3(f)5@cos(f/6
62p/3),sin(f/662p/3)#, where the signs6 correspond to
a convex and concave disclination, respectively. In
polar coordinates, the order parameter of a convex discl
tion is thus ;cos@r cos(5f/6)#1cos@r cos(5f/61p/3)#
1cos@r cos(5f/612p/3)#, while a concave disclination ha
the order parameter;cos@r cos(7f/6)#1cos@r cos(7f/6
1p/3)#1cos@r cos(7f/612p/3)#.

The subject of this paper is to investigate whether dis
nations in square and hexagonal patterns can be expect
be observed in pattern-forming systems. Disclinations
square patterns are briefly discussed in Ref.@12# ~see also
Ref. @13#! from the point of view of defects in a cubic crysta
lattice. Also, square patterns resembling disclination str
©2003 The American Physical Society02-1
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ture were observed in convection in a binary mixture in
circular container@14#. Hexagonal patterns with defects po
sibly resembling disclinations were observed in experime
with chemical patterns@15# as well as in numerical simula
tions of some reaction-diffusion systems@16–18#. However,
to the best of our knowledge, there has been no system
investigation of these types of defects in square and hex
nal patterns. In this paper, we study disclinations in squ
and hexagonal patterns described above by solving num
cally several generic nonlinear evolution equations, w
known to describe pattern formation in a variety of system
We demonstrate that the existence of stable stationary di
nations in square and hexagonal patterns is possible in
eral systems, with both potential and nonpotential dynam

II. DISCLINATIONS IN SQUARE PATTERNS

As an example of a pattern-forming system in which
square pattern is selected, we choose Rayleigh-Benard
vection in a liquid layer between thermally nearly insulat
plates. The nonlinear evolution of this system is described
the following evolution equation@19–21#:

e2
]T

]t
5e2T2~11¹2!2T1

1

3
¹•~¹Tu¹Tu2!, ~1!

whereT is the mean temperature across the liquid layer
weakly nonlinear analyzis of this equation near the insta
ity threshold (e!1) predicts the appearance of a squa
planform @22#.

We have performed a numerical simulation of this eq
tion by means of a pseudospectral code with periodic bou
ary conditions. Our numerical simulations show that inde
starting from small-amplitude random data, a square patt
with some defects and domain walls between regions fi
with differently oriented squares is formed. In order to e
amine a possibility for a disclination defect to exist in
square pattern we have solved Eq.~1! numerically, in a large
domain with lengthL580p380p, starting from two types
of small-amplitude initial conditions discussed above, a
corresponding to a convex and a concave disclination w
topological charges 1/4 and21/4, respectively. Figure 1
shows a stationary solution of Eq.~1! in the form of a convex
disclination with the topological charge 1/4 fore250.4. Fig-
ure 2 shows a stationary solution of Eq.~1! in the form of a
concave disclination with the topological charge21/4 for
e250.1 @23#. One can see that both of these disclinati
patterns consist of a core with threefold~Fig. 1! or fivefold
~Fig. 2! symmetry and a surrounding square pattern.
largere, the disclination structure is almost defect free. F
smallere, there is a set of dislocations ‘‘emitted’’ from th
core~emission of dislocations is observed at small superc
cality for both concave and convex disclinations!. Disloca-
tions appear because the pattern has a prescribed wavele
such a process of ‘‘healing’’ disclinations by dislocations w
qualitatively described in Ref.@12#. However, it is important
that the set of dislocations isnot continuous in that it does
not form a domain boundary separating regions with diff
05620
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ently oriented squares, so that when one goes around the
the orientation of squares~the pattern wave vectors! rotates
continuously by6p/2.

The structure of disclinations in a square pattern can
qualitatively understood on the basis of stationary Cro
Newell equations for a square pattern which are similar
the Cross-Newell equations for hexagonal and triangular p

FIG. 1. Stable stationary solutions of Eq.~1! with e250.4,
forming a convex disclination in a square pattern, with the topolo
cal charge 1/4.

FIG. 2. Stable stationary solutions of Eq.~1! with e250.1,
forming a concave disclination in a square pattern, with the to
logical charge21/4.
2-2
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DISCLINATIONS IN SQUARE AND HEXAGONAL PATTERNS PHYSICAL REVIEW E67, 056202 ~2003!
terns in potential systems derived in Ref.@24#. According to
the analysis presented in Ref.@24#, a pattern formed in a
potential system and based on two local wave vectors~two
phases! k15“Q1, andk25“Q2 is described by the station
ary Cross-Newell equations

“F ]F

]k1
2

k1G1“F ]F

]~k1•k2!
k2G50, ~2!

“F ]F

]k2
2

k2G1“F ]F

]~k1•k2!
k1G50, ~3!

whereF is the Lyapunov functional of the system.
A spatiotemporal dynamics described by Eq.~1! is poten-

tial, since Eq.~1! can be written in the variational form

e2
]T

]t
52

dF

dT
, ~4!

where the Lyapunov functionalF is

F5E d2xH 1

2
e2T21

1

2
@~11¹2!T#21

1

12
u¹Tu4J . ~5!

Calculating the stationary solutions for rectangles
small e,

T5ea1ei (11eK1)n1•x1ea1ei (11eK2)n2•x1c.c.1•••, ~6!

and substituting Eq.~6! in Eq. ~5!, one finds

e24F52

1

2
k1

22
2

3
@112~n1•n2!2#k1k21

1

2
k2

2

12
4

9
@112~n1•n2!2#2

, ~7!

wherek15124K1
2 and k25124K2

2. Note that due to the
definitions of wave vectorsk1 , k2 , “3k15“3k250.

Since k1511eK1 , k2511eK2, the expressions

B(k1
2 ,k2

2 ,k1•k2)5]F/]k1
2 andB(k2

2 ,k1
2 ,k1•k2)5]F/]k2

2 are

O(e21), while C(k1
2 ,k2

2 ,k1•k2)5]F/](k1•k2) is O(1).
Thus, near the threshold~and only there!, one can disregard
C and write the Cross-Newell equations for rectangles in
leading order as

“@B~k1
2 ,k2

2 ,k1•k2!k1#50, ~8!

“@B~k2
2 ,k1

2 ,k1•k2!k2#50, ~9!

where~after rescaling!

B~k1
2 ,k2

2 ,k1•k2!

54K1

~124K1
2!2~2/3!@112~n1•n2!2#~124K2

2!

12
4

9
@112~n1•n2!2#2

,

~10!
05620
r

e

andB(k2
2 ,k1

2 ,k1•k2) is obtained from Eq.~10! by replacing
1 by 2 and vice versa,K j5e21(kj21). For perfect squares
n1•n250 andC50 exactly.

In the case of a disclination, Eqs.~8! and ~9! can be rep-
resented as a single equation for a functionk5“Q defined
@in the polar coordinates (r ,u)] in the region 0<u<4p,
such thatk1(u)[k(u), k2(u)[k(u12p), 0<u<2p.

A reasonable approximation to the solution of Eqs.~8!–
~10! can be found if the nonlinear interaction between ro
in the rectangular pattern is weak so that one can neglec
dependence ofB(k1

2 ,k2
2 ,k1•k2) on all the arguments excep

the first one, i.e., to considerB5B(k1). In this case, a solu-
tion to the Cross-Newell equations for rectangles can be c
sidered as a solution for rolls, but defined in a region 0<u
<4p. Following Ref.@3#, use the Legendre transformatio
to obtain the following linear equation:

k
]

]k
FkB~k!

]Q̂

]k
G1

]

]k
@kB~k!#

]2Q̂

]f2
50. ~11!

An appropriate solution of Eq.~11! is Q̂5Fm(k)cosmf,
where

k@kB~k!Fm8 ~k!#82m3kB~k!Fm~k!50. ~12!

In the casem51 corresponding to a disclination in a ro
pattern, Eq.~12! can be solved analytically@3#.

A convex disclination in a square pattern, with the top
logical charge 1/4, corresponds tom53. In this case, an
approximate solution of Eq.~12! can be found in the far-field
region,r @1. Indeed, as follows from Ref.@3#, the regionr
@1 corresponds to rolls withk close to the valuek0 at the
boundary of the zigzag instability, whereB(k0)50 ~in our
casek051, andK050). Neark5k0,

Fm~k!; ln~k02k!, ~13!

and does not depend onm. The solution of Eq.~13! in x

space is given byx5“kQ̂, which yields

r cos~u2f!5Fm8 ~k!cosmf, ~14!

r sin~u2f!52
mFm~k!

k
sinmf, ~15!

wheref determines the direction of the vectork. Thus, one
gets

u5f1arctan~d tanmf!, d52
mFm~k!

kFm8 ~k!
. ~16!

In the limit ~13! d is small, so that one obtains fast change
u nearf5(p/m)(2n11) ~i.e., sectors with nearly straigh
rolls! and sectors withu5f1np ~i.e., sectors with targets!.

For example, an approximate far-field solution corr
sponding to a convex disclination with the topological char
1/4 is
2-3
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T5cos~x cosf11y sinf1!1cos~x cosf21y cosf2!,
~17!

where

f15u, 0,u,
p

6
; f25

p

2
, 0,u,

p

2
;

f15
p

6
,

p

6
,u,

7p

6
; f25u,

p

2
,u,

5p

6
; ~18!

f15u2p,
7p

6
,u,

3p

2
; f25

5p

6
,

5p

6
,u,

11p

6
;

f15
p

2
,

3p

2
,u,2p; f25u2p,

11p

6
,u,2p.

In the far field this pattern is similar to that shown in Fi
1, but does not contain the disclination core. Similar appro
mation for a concave disclination with the topological char
21/4 cannot be found within the framework of this approa
since the functionu(f) turns out to be nonmonotonic in thi
case which is unphysical. The approximation used unde
timates the role of the interaction between rolls forming
square patterns. Nevertheless, the approximate solution~17!,
~18! reproduces correctly the basic topological features of
numerical solution shown in Fig. 1.

III. DISCLINATIONS IN HEXAGONAL PATTERNS

In order to study a possibility for a stable disclination
exist in a hexagonal pattern, we have performed numer
simulations of two generic equations known to exhibit he
agonal planforms:Swift-Hohenberg equationwith a square
nonlinearity,

c t5ec2~11¹2!2c1ac22c3, ~19!

which is typical of manypotentialsystems@25#, anddamped
Kuramoto-Sivashinsky equation,

c t5ec2~11¹2!2c2
1

2
u¹cu2, ~20!

typical of manynonpotentialsystems@26#.
Both these equations exhibit, near thresholde50, the for-

mation of stationary hexagonal patterns. Starting from sm
amplitude random noise, one observes the formation of
mains filled with hexagons with different orientation
divided by grain boundaries that consist of chains of pen
hepta defects.

We started from small-amplitude initial conditions mim
icing a convex and a concave disclination in hexagonal p
terns with the topological charges 1/6 and21/6, respec-
tively, discussed above. As a result, the solutions evol
into stable disclination patterns, examples of which
shown in Figs. 3 and 4. Figure 3 shows a convex disclina
in a hexagonal pattern with the topological charge 1/6 res
ing from Eq.~20!. Figure 4 corresponds to a concave disc
nation in a hexagonal pattern with the topological cha
05620
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21/6 resulting from Eq.~19!. One can see that the structur
of the disclinations in hexagonal patterns is similar to that
a square one. It consists of a core that can be considered
bound state of several penta-hepta defects, and a hexag
pattern with a certain number of symmetrically locate
penta-hepta defects around the core. It is important to n
that these penta-hepta defectsdo not form domain bound-

FIG. 3. Stable solution of Eq.~20! with e50.02, in the form of
a convex disclination in a hexagonal pattern, with the topologi
charge 1/6.

FIG. 4. Stable solution of Eq.~19! with e50.02,a51.0, in the
form of a concave disclination in a hexagonal pattern, with t
topological charge21/6.
2-4
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DISCLINATIONS IN SQUARE AND HEXAGONAL PATTERNS PHYSICAL REVIEW E67, 056202 ~2003!
aries between domains with differently oriented hexagons
is usually the case when a hexagonal pattern evolves f
random initial data. Rather, it is possible to go around
core and remain in the same domain of hexagons wh
wave vectors rotate continuously by6p/3 for a convex and
a concave disclination, respectively.

We have not succeeded in trying to get a qualitative p
ture of disclination in a hexagonal pattern from Cros
Newell equations for hexagons@24# as we did for a convex
disclination in a square pattern, since the interaction~phase
correlation! of the systems of rolls forming the hexagon
pattern is crucial and one cannot neglect this interaction
the Cross-Newell equations.

IV. NUCLEATION OF DISCLINATIONS AND THEIR
STABILITY

In order to see how robust the disclinations in square a
hexagonal patterns are, we have performed the following
merical experiment. We have simulated Eqs.~1!, ~19!, and
~20! starting from the initial conditions that had a small-si
nucleus of the corresponding disclination pattern with
small amplitude, surrounded by a spatially random field w
even smaller amplitude. As a result we have observed
growth of disclination patterns from their nuclei into the ra
dom surrounding. Example of this growth is shown in Fig
for the case of a square pattern resulting from Eq.~1!. One
can see that the disclination structure has grown to a con
erable size, while at the periphery of the computational
gion, domains with differently oriented squares have form
The established disclination structure coexisting with the
mains of squares at its periphery turns out to be stable.
structure resulting from the disclination nucleus in a hexa
nal pattern described by Eq.~19! appears to be somewha
different. It evolves into four domains of differently oriente

FIG. 5. Nucleation of a disclination in a square pattern
numerical solution of Eq.~1! with e250.1.
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hexagons divided by domain walls composed of the cha
of penta-hepta defects. Such structure is different from
disclinations shown in Figs. 3 and 4 in which the orientati
of the hexagons is changingcontinuouslyaround the core.
This is probably due to the fact that a hexagonal pattern
much less flexible than a square one due to resonance l
ing of the pattern wave vectors.

Another important question is what happens to disclin
tions in square and hexagonal patterns with the change of
supercriticality. In the case of a disclination in a square p
tern described by Eq.~1!, the increase of the supercriticalit
leads to elimination of dislocations and formation of almo
perfect, dislocation-free disclination, see Fig. 1. Formation
dislocation-free disclination can be explained by the fact t
farther from the threshold of the short-wave instability ge
erating the square pattern, the band of the excited wave n
bers becomes larger which gives more freedom for the lo
wave vectors of the pattern to adjust themselves to the be
ing of squares caused by rotation of the disclination str
ture. With the decrease of the supercriticality, the dislocatio
free disclination structure ‘‘cracks’’: numerous dislocation
appear in it~see Fig. 2!.

In the case of hexagonal patterns, the behavior of dis
nations with the change of the supercriticality is differen
For a disclination in a hexagonal pattern in the potent
system described by Eq.~19!, we observed that with the
increase of the supercriticality, the number of dislocatio
~penta-hepta defects! remained almost the same. With furthe
increase of the supercriticality, the transition to a roll patte
has been observed which is well known for systems
scribed by the Swift-Hohenberg equation as well as ma
other pattern-forming systems@25#. The resulting roll pattern
is shown in Fig. 6~a! ~computations were performed in
smaller domain!. It consists of five domains of slightly
curved rolls divided by almost dislocation-free doma
boundaries and retains the fivefold symmetry of
predecessor—the convex disclination with the topologi
charge 1/6. It is interesting to note that with the decrease
the supercriticality, the pattern shown in Fig. 6~a! is trans-
formed back to the original disclination structure in a he
agonal pattern shown in Fig. 6~b!.

FIG. 6. ~a! Concentric roll pattern resulting from a convex dis
clination with the supercriticality increase frome50.2 to e50.8.
~b! Convex disclination in a hexagonal pattern restored from
concentric roll pattern shown in~a!, with the decrease of the supe
criticality from e50.2 to e50.8. Numerical solution of Eq.~19!
with a51.0.
2-5
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In a nonpotential system described by Eq.~20!, the evo-
lution of disclinations in hexagonal patterns differs from th
discussed above for the potential system described by
~19!. In this case, the increase of the supercriticality leads
a rapid growth of the number of defects that causes the
struction of the disclination structure and the transition
chaos. With the decrease of the supercriticality, the discl
tion structure is not restored.

V. DISCUSSION AND CONCLUSIONS

In the present work, we have shown that topological
fects with fractional topological charges—disclinations—
square and hexagonal patterns can be observed as stati
solutions of several generic evolution equations describ
various pattern-forming systems. Stable disclinations
square patterns have topological charges61/4, in hexagonal
patterns they have topological charges61/6. Disclinations
in square and hexagonal patterns can be observed as a
of the evolution starting from special initial conditions th
mimic the disclination structure. We have not observed
spontaneous formation of disclinations in square or hexa
nal patterns from random noise. However, a disclination i
square pattern can be formed from a small nucleus that
gers the propagation of the disclination structure through
system. We have also observed that the disclination def
in square and hexagonal patterns are robust in that they
stable within certain interval of the supercriticalities. Wi
the increase of the supercriticality, the behavior of disclin
tions in square patterns is different from that in hexago
patterns. In square patterns, the increase of the supercri
ity leads to the disappearance of dislocations surrounding
disclination core and to the formation of almost perfe
dislocation-free disclination structure. In hexagonal patte
it leads to either a destruction of the disclination pattern o
a transition to a concentric roll pattern that retains the sy
metry of the disclination. It is important to note that th
disclination structure can be restored by the decrease o
supercriticality.

It would be very interesting to systematically study t
described disclinations in square and hexagonal pattern
experiments. Although patterns resembling disclinat
structure were observed in a number of experiments@14,15#
and numerical simulations of some reaction-diffusion s
tems@16–18#, we are currently not aware of any systema
experimental investigations of the disclination defects
square or hexagonal patterns. We could suggest that one
try to use Marangoni convection in large Prandtl numb
fluids as an experimental system in which the disclinatio
could be observed. This system is known to exhibit b
square and hexagonal spatially regular patterns. Moreo
an elegant experimental method of controlling and produc
a desired pattern in Marangoni convection by means o
laser radiation has been proposed and tested recently@27#.

In order to check the possibility to observe disclinatio
in Marangoni convection patterns, we have also perform
numerical simulation of an evolution equation that descri
large-scale Marangoni convection in a thin, large aspect r
layer of large~infinite! Prandtl number liquid, with nearly
05620
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thermally insulated top and bottom surfaces@28–30#:

] tF12DF1D2F2“•~ u“Fu2
“F!1l“•~DF“F!

1mDu“Fu21bF50, ~21!

whereF is the temperature field at the free surface of t
liquid layer,l5A7/8,m53A7/4 andb is the bifurcation pa-
rameter characterizing the heat flux through the liquid lay
in the quiescent steady state. The Marangoni convection
system described by Eq.~21! occurs forb,1. One can see
that Eq.~21! is similar to Eq.~1! but it contains additional
quadratic terms with the coefficientsl andm that break the
F→2F symmetry and allow for the appearance of a he
agonal pattern typical of Marangoni convection.

Figure 7 shows stable convex disclination structure, w
the topological charge 1/6, in a hexagonal pattern result
from the numerical solution of Eq.~21! starting from small-
amplitude initial data that mimic the convex disclinatio
structure. This result may encourage experimentalists to
to obtain stable disclinations in hexagonal patterns in M
rangoni convection.

Note that a ‘‘pure’’ disclination, without defects except fo
the core, can be formed only from special initial conditio
and in a certain interval of supercriticalities. A more typic
situation is characterized by the appearance of dislocati
generated by the disclination structure. These dislocati
often form chains that mark ‘‘domain walls’’ between th
regions where the pattern orientation is almost constant.
changes of the pattern orientations are located inside the
main walls. The difference between a pure and a domain w
disclination seems to be quantitative rather than qualitat
and could be characterized, for instance, by the mean
tance between the dislocations along the domain wall.

FIG. 7. Disclination in a hexagonal pattern resulting from n
merical solution of Eq.~21! with b50.98.
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