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Simulation of hysteresis in magnetic nanoparticles with Nose´ thermostating

Daniel T. Robb,* Linda E. Reichl, and Eshel Faraggi
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The magnetic hysteresis of a two-dimensional lattice of rotors with four-way anisotropy interaction and a
Heisenberg exchange interaction is studied. The Hamiltonian dynamics of the lattice is thermostated using the
Noséthermostat, resulting in a system that approaches thermal equilibrium and which under certain conditions
can remain in metastable states. Using physically realistic values for the interactions in a nanoparticle of
monolayer thickness, we locate the Curie temperature of our lattice by determining the peak of the heat
capacity curve. We then compare the coercive field of our two-dimensional lattice below this Curie temperature
to the coercive field of an elliptical cobalt nanoparticle measured in experiment. We find an order of magnitude
agreement between our lattice model and the experimental results, even though the value of the anisotropy used
is more appropriate for a monolayer film than for the nanoparticle.
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I. INTRODUCTION

Over the past several decades, most of the dynam
studies of hysteresis in magnetic systems have involved
use of Monte Carlo techniques@1–3# to reproduce hysteretic
behavior. However, Rapaport and Landau@4# have shown
that it is possible to reproduce the critical dynamics o
classical Heisenberg spin model by using a Gaussian the
stat applied directly to the Newtonian dynamics of a syst
of classical Heisenberg rotors~the rotor model will be ex-
plained in Sec. II!.

In this paper, we will extend the approach of Rapap
and Landau to the study of hysteresis in a periodic lattice
rotors. However, instead of using a Gaussian thermostat
will use a Nose´ thermostat. While the Gaussian thermosta
quite useful, the Nose´ thermostat gives a slightly more acc
rate thermal distribution, and deserves investigation beca
of its basis in the Hamiltonian dynamics. The rotors ea
have a moment of inertia and a three-component magn
moment, and so have a kinetic energy as well as a pote
energy, and the possibility for an out-of-plane magnetizati
The rotors interact via a Heisenberg exchange interactio
well as theK4 anisotropy term used by Moschelet al. to
study the roughness in thin magnetic films@5#.

In Sec. II, we introduce the dynamics of the lattice
rotors and show that the phase space is largely chaotic
computing Lyapounov exponents for a group of random
tial conditions. We also compute the density of states and
expected canonical distribution for the system. In Sec.
we apply thermostating to the Hamiltonian equations of m
tion for the lattice using techniques introduced by Nose´, and
compare the thermal distributions obtained with the No´
thermostat to the expected canonical distributions. In Sec
we use the thermostated equations to determine the de
dence of the internal energy and the heat capacity on t
perature, enabling us to locate the critical point of the latti
In Sec. V, we show that our dynamical system produces h
teresis when a changing magnetic field is applied, and c
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pare our results to experimental data obtained by Werns
fer et al. @6# for elliptical cobalt nanoparticles with simila
size. We obtain an order of magnitude agreement, and
suggestions for changes to the model which may improve
agreement. In Sec. VI, we compare the reversal of magn
zation in our rotor model to the reversal of magnetization
the cobalt nanoparticle, and by examining the decay tim
are able to set a time scale for our model. Finally, in S
VII, we make some concluding remarks.

II. SPIN DYNAMICS ON A SURFACE

The dynamics of the lattice is determined by the excha
interaction and the surface anisotropy interaction of the t
film it represents, as well as by the interaction with the a
plied magnetic field. Each rotor consists of a spherical m
distribution with moment of inertiaI ~the moment of inertia
tensor is diagonal with entries equal toI ) and a magnetic
moment vector that is fixed along the bodyz axis of the rotor.
We represent the three-component magnetic moment ve

of the i th rotor asmW i5mnŴ i , wherem is the magnitude of the

magnetic moment and the unit vectornŴ i5(nix ,niy ,niz)
gives its direction in the lab frame.

The spherical rotor with attached magnetic moment,
troduced by Rapaport and Landau@4#, should not be viewed
as a literal model of an atom in the thin film lattice, since t
magnetic moments in an actual thin film rotate without
accompanying rotation of the atoms. The kinetic energy
the rotors is best seen as representing the thermal degre
freedom of the thin film~involving energy states within the
atoms, lattice vibrations, etc.!, which act as a heat bath fo
the magnetic moments. The rotors then allow us to use
technique of Nose´ thermostatting to introduce thermal e
fects. In addition, following the work of Moschelet al. @5# in
modeling hysteresis in thin films, we take each rotor to re
resent ab3b block of aligned atomic spins. This ‘‘spin
blocking’’ allows us to model larger samples with our ava
able computing power. Since the exchange length in coba
about 7.0 nm@7# and the lattice spacing is 0.355 nm@8#, we
can choose a value ofb520 for spin blocking.
©2003 The American Physical Society30-1
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TABLE I. The largest Lyapounov exponents for ten initial conditions of the lattice of rotors for an average of the three casesd,Dt),
(d/2,Dt), and (d,Dt/2); the first row shows data with all three interactions present, while the second row shows data with just the ex
interaction.

Initial condition 1 2 3 4 5 6 7 8 9 10

All interactions 0.643 0.663 0.649 0.645 0.667 0.662 0.675 0.676 0.651 0.6
Just exchange 0.492 0.507 0.491 0.503 0.516 0.489 0.511 0.516 0.493 0.
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The Lagrangian for the lattice in the laboratory frame c
be written as

L5
1

2
I(

i 51

N

v i
21J(

^ i , j &
nŴ i•nŴ j1mH~ t !b2(

i 51

N

nix

1(
i 51

N

K4a2b2
~nix

2 2niy
2 !2

~nix
2 1niy

2 !1.5
, ~1!

where vW i is the angular velocity of thei th rotor, I is the
moment of inertia of each rotor,J is the strength of the
Heisenberg exchange coupling,K4 is the strength of the sur
face anisotropy interaction,a is the lattice spacing, and
H(t)5H0 cos(2pft) is the external magnetic field, with
magnitudeH0 and frequencyf. The fact that we are dealin
with blocks of spins introduces a factor ofb2 in the magnetic
field interaction and theK4 interaction. As pointed out by
Moschel et al. @5#, the spin blocking leaves the exchan
interaction unchanged@9#, producing a Curie temperature in
dependent of the size of the spin blocks, as one would ex
physically. The label̂ i , j &, in the summation means that w
sum over each pair of the nearest neighbors~nn! just once.

We can use Euler angles to describe the dynamics of
system in the lab frame~fixed inertial frame!. If we label the
three axes of the fixed inertial framex, y, z, and the corre-
sponding axes of the body-fixed frame as 1,2,3, then
Euler angles are defined as follows:f is the angle of rotation
of the 1-axis about thez axis;u is the angle of rotation of the
3-axis about the new 1-axis; andc is the angle of rotation of
the 1-axis about the new 3-axis@10#. The components of the

unit vectornŴ i ~which lies along the body frame 3-axis! with
respect to the lab frame axes are

nix5sinu i sinf i , niy52sinu i cosf i , niz5cosu i .
~2!

We can now write the Lagrangian in terms of Euler ang
as

L5
1

2
I(

i 51

N

@ḟ i
21 u̇ i

21ċ i
212ḟ i ċ i cos~u i !#2U~u i ,f i ,t !,

~3!

where ḟ i5df i /dt, u̇ i5du i /dt, and ċ i5dc i /dt, and the
potential energy is given by
05613
n
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s

U~u i ,f i ,t !52J(
^ i , j &

@sin~u i !sin~u j !cos~f i2f j !

1cos~u i !cos~u j !#

2mH~ t !b2(
i 51

N

@sin~u i !sin~f i !#

2K4a2b2(
i 51

N

@cos2~2f i !sin~u i !#. ~4!

The HamiltonianH then takes the form

H5
1

2I (
i 51

N F pu,i
2 1

@pf,i2pc,i cos~u i !#
2

sin2~u i !
1pc,i

2 G
1U~u i ,f i ,t !, ~5!

wherepu,i , pf,i , andpc,i are the canonical momenta of th
rotors.

It is useful to write the Hamiltonian in dimensionles
units. If we measure all energies in units of the exchan
coupling energyJ, we can introduce a dimensionless tim
t85AJ/It , frequency f 85AI /J f , magnetic energy h
5mH0b2/J, anisotropy energyk45K4a2b2/J, angular ve-
locity ḟ i85AI /Jḟ i , angular momentumpf,i8 5pf,i /AIJ, and
HamiltonianH85H/J. If we substitute these quantities int
Eq. ~5!, and then drop the primes, we obtain

H5
1

2 (
i 51

N F pu,i
2 1

@pf,i2pc,i cos~u i !#
2

sin2~u i !
1pc,i

2 G
1V~u i ,f i ,t !, ~6!

where

V~u i ,f i ,t !52(
^ i , j &

@sin~u i !sin~u j !cos~f i2f j !

1cos~u i !cos~u j !#2h~ t !(
i 51

N

@sin~u i !sin~f i !#

2k4(
i 51

N

@cos2~2f i !sin~u i !# ~7!

and h(t)5h0 cos(2pft). The equations of motion derive
from this dimensionless Hamiltonian are given by
0-2



SIMULATION OF HYSTERESIS IN MAGNETIC . . . PHYSICAL REVIEW E 67, 056130 ~2003!
du i

dt
5pu,i ,

df i

dt
5

@pf,i2pc,i cos~u i !#

sin2~u i !
,

dc i

dt
5pc,i2

@pf,i2pc,i cos~u i !#cos~u i !

sin2~u i !
,

~8!
dpu,i

dt
52

]V

]u i
2

@pf,i2pc,i cos~u i !#@pc,i sin2~u i !#2@pf,i2pc,i cos~u i !#
2@cos~u i !#

sin3~u i !
,

dpf,i

dt
52

]V

]f i
,

dpc,i

dt
52

]V

]c i
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We perform subsequent computations using this dimens
less system of dynamical variables.

Since we will compare our results to the magnetic pro
erties of small cobalt nanoparticles@6#, we need to determine
a value of the exchange couplingJ in cobalt. Craik and
Tebble @11# summarize a group of experiments done in t
1950s to determine the exchange constant, A, for cobalt
continuum spin model with Heisenberg interaction. They
port that methods of fitting the Curie temperature of cob
fitting the low temperature dependence of magnetization,
predicting results of spin-wave resonance experiments h
given values ofA51.0331026 erg/cm, 1.531026 erg/cm,
and 1.331026 erg/cm. The exchange coupling,J, can be
related toA by the expressionJ52Aa/n @11#, with a the
lattice constant~0.355 nm in cobalt! and n the number of
atoms per unit cell of an fcc lattice~4!, producing a range for
J5(1.8–2.5)310221 J. We can chooseJ52.0310221 J as a
convenient value.

We can estimate the parameterk4 from a paper by
Kowalewskiet al. @12# which gives the surface anisotropy o
cobalt at 77 K asK451.8631025 J/m2. Because the experi
ment we will compare to is done at a low temperature, a
the strength of the surface anisotropy increases at lower
perature@13#, we will chooseK452.6531025 J/m2 as a rea-
sonable value. In units of the exchange coupling, this gi
k45K4a2b2/J50.67.

The magnetic field energy needed to produce reversal
give hysteresis in the model was found by trial and error, a
will be presented and then compared with the fieldH needed
to produce reversal in experiments. The temperatures for
model are expressed in units ofJ; for example, we will pro-
duce data for hysteresis loops atT520.0 K, T560.0 K, and
T5100.0 K, which correspond tokT/J50.14, 0.42 and
0.69, respectively. Finally, to determine a value forI, since
the rotors are not a direct physical model but allow for t
thermalization of the magnetic moments, we will compa
the relaxation times of the model to experiment and choo
value ofI that produces agreement with experimental resu

A. Lyapounov exponents for the lattice of rotors

In order for the Nose´ technique to thermalize the lattice
we need a classical phase space that is largely chaotic, s
05613
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trajectories of the thermostated system can sample mos
the available points in phase space. Posch, Hoover,
Vesely@14# found that a one-dimensional harmonic oscillat
is not fully thermalized by the Nose´ thermostat; slightly
more complex systems, however, are thermalized. To e
mate the degree of chaos in the lattice of rotors, in this s
tion we calculate the largest Lyapounov exponents of
10310 lattice with the Hamiltonian, Eq.~6!, and potential
Eq. ~7!. We choose the valuek450.67, as indicated above
and a constant magnetic fieldh5hconst51.00 in place of the
time-varying fieldh(t).

In finding the largest Lyapounov exponents, we use
algorithm due to Benettin@15# which records the degree o
separation of nearby trajectories for a series of small ti
steps, rescaling to the initial separation at each step. A v
useful summary of the method is given in Ref.@16#. For a
small enough time stepDt and ~generic! separationd, the
exponent found is independent of the time step and the s
ration. We verified this independence for our calculatio
and we also verified that energy is conserved for the b
trajectory and the separation is rescaled to the initial valu
each time step. Using an Adams-Gear integration routine,
integrated the dimensionless equations~8! for both the base
and nearby trajectories to a maximum timet5400.0. The ten
initial conditions were chosen to be random in the config
ration space of the potential energy, and to produce a kin
energy consistent with a temperatureT5133 K.

The results for the Lyapounov exponents are shown
Table I. As mentioned above, to ensure that the time step
separation were chosen small enough, for each initial co
tion we also calculated the exponent for the case where
time step was halved, and for the case where the separa
was ~roughly! halved. For the three cases (d,Dt), (d/2,Dt),
and (d,Dt/2), the time step wasDt55.031023 for all initial
conditions, while the separation d had range
@3.131023,3.731023# and the halved separationd/2 had
range @1.531023,1.931023#. In general, the three expo
nents~not shown in the table! agreed to two significant fig-
ures. The average of the three values was taken as a
estimate of the largest Lyapounov exponent for that ini
condition, and is presented in the table. For each of the
initial conditions, an average exponent well into the ran
associated with chaos was found. Although the size of
0-3
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phase space makes a systematic study of the degree of c
impractical, the consistency of these ten Lyapounov ex
nents suggests that the phase space consists mainly of a
connected chaotic region.

In addition, we have calculated Lyapounov exponents
the lattice of rotors with just the exchange interaction. T
results in Table I show that the exchange interaction alon
enough to produce chaos at least for ten randomly cho
points, so that the thermalization we expect for the sys
does not depend on the value of the fieldh or anisotropyk4
or other interactions which might be included.~An exception
to this would be the introduction of a very strong magne
field or other interaction, which could dominate the exchan
interaction and potentially give a nearly integrable syste!.
In general, however, when the exchange interaction
present, the phase space of the lattice is significantly cha
and we expect that the Nose´ thermostat will thermalize the
lattice to a large extent.

B. Finding the expected canonical distributions

We need to check that the thermalization induced by
Nosé thermostat is consistent with the canonical ensem
expected from thermodynamics. Since the kinetic energy
pends only on (vW 1, . . . ,vW N) and the potential energy de
pends only on the magnetic moment orientatio

(nŴ 1 , . . . ,nŴ N), the canonical distributions for the kinetic an
potential energies separate. That is, the canonical distribu
for the total energy,P(H,T), is the product of the two dis
tributionsP(K,T) andP(V,T), where

P~K,T!5
g1~K !e2bK

E
0

Kmax
g1~K !e2bKdK

~9!

and

P~V,T!5
g2~V!e2bV

E
Vmin

Vmax
g2~V!e2bVdV

. ~10!

The quantitiesg1(K) and g2(V) are the kinetic energy an
the potential energy density of states, respectively. If we
determineg1(K) andg2(V), then we can find the expecte
canonical distributions for the thermostated systems.

1. Kinetic energy density of states

We first find the density of statesg1(K) for the total ki-
netic energy of the 10310 lattice. We note that the kineti
energy ofN rotors is given by

K5
1

2 (
i 51

N

~v i !
25

1

2
V2, ~11!

whereVW 5(vW 1, . . . ,vW N).
To find g1(K), we can use a standard procedure~see, e.g.,

Ref. @17#! for finding the density of states in the case whe
the expression for the energy is quadratic in the phase s
05613
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variables. We divide the volume inV space into small~and
uniform! volume elementsDV, each representing a differen
state of the angular velocities (vW 1 , . . . ,vW N). The total num-
ber of these states with kinetic energy less thanK is N(K)
5V(K)/DV, whereV(K) is the volume of a hypersphere i
VW space whose surface has kinetic energyK.

From Eq.~11!, V(K) is also the volume of a sphere wit
radius uVW u5A2K. Since each of theN rotors has three de
grees of freedom for the 10310 lattice, theVW space has 3N
dimensions. Using the fact that a 3N dimensional sphere ha
a volumeV(r )5C1r 3N ~with C1 a geometrical factor!, this
gives

N~K !5
C1~23N/2!K3N/2

DV . ~12!

Since the kinetic energy has no upper limit, we need to s
maximum kinetic energy to arrive at a normalized density
states. Since we will use temperatures belowkBT55.0J ~725
K!, we set a maximum kinetic energyKmax'33 3

2 NkBT to
ensure that the canonical distribution we calculate will
clude all the kinetic energies the thermostated system
encounter.~Note that as long asKmax is set safely above the
energy range of the canonical distribution, the exact value
Kmax will not affect the canonical distribution calculated!
The fraction of allowed states with kinetic energy less thanK
is then

P~K !5
N~K !

N~Kmax!
5

~K !3N/2

~Kmax!
3N/2

. ~13!

We can take the derivative to find the density of states, g
ing

g1~K !5
dP

dK
5S 3N

2 D ~K !3N/221

~Kmax!
3N/2

. ~14!

For a 10310 lattice, this givesg1(K)5150K149/Kmax
150 , with

Kmax52000.0 a convenient maximum value.

2. Potential energy density of states

For a 10310 lattice, the potential energy, Eq.~7!, depends
in a complex way on the angles (u i ,f i) for i 51, . . .,100,
and in many cases several values of the 200 angles will
duce the same potential energy. We cannot find an ana
expression forg2(V), and need to calculate it numericall
Since the 10310 lattice has a very large phase space, it is
practical to place a finely spaced grid on the phase space
calculate energies at the points of the grid. Instead,
sample the large phase space by choosing a large numb
random points at which to calculate the energy. If we sam
a large number of points~here 107 points!, and then sort the
energies found into a histogram with fairly few bins, then t
sampled probability in each bin approximates the act
probability very closely. Since the probabilityg2(V)dV
represents a fraction of the phase space volume, if
choose values ofu i and f i with uniform probability in
the ranges@0,p# and @0,2p#, we need to weight the contri
0-4
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bution of each energy found by the volume eleme
) i 51

N sin(ui)DuiDfi , and then normalize the resulting distr
bution.

Sampling N points from the phase space, each with
probability pj of having an energy in thej th bin, we expect
the average number of points falling in thej th bin to beNpj .
The standard deviation of the distribution of the actual nu
ber of points in the bin is given byD(Npj ), and it can be
shown that the relative widthD(Npj )/Npj , which is a mea-
sure of the accuracy of the sampling method for that b
increases as the probabilitypj decreases. In our case, sam
pling 107 points from the phase space, we find that the re
tive width is 10% for a bin with probability 1025, and 35%
for a bin with probability 1026. In performing this calcula-
tion for the 10310 lattice, we found that the probability o
bins in the energy histogram dropped belowp51025 for
energies belowE5285.0, and thus the density of states
only reliable down to this energy. For temperatures bel
kT54.0, energies belowE5285.0 begin to have an appre
ciable probability in the canonical distribution, so for th
10310 lattice we can only reliably calculate the thermal d
tribution for kT>4.0.

If we consider smaller lattices, however, we can find m
accurate thermal distributions for lower temperatures. In
der to give an evidence that the Nose´ thermostat does give
nearly a thermal distribution for the 10310 lattice, we will
calculate potential energy densities of states for the 232,
434, and 636 lattices and argue that the trends we see w
continue with increasing lattice size. We present the dens
of states for the 232, 434 and 636 lattices in Fig. 1. As
described above, the calculation was made by choosing7

points at random from the configuration~potential energy!
part of the phase space, and then including the relative
ume of each point found in the appropriate bin of an ene
histogram. The requirement that the probability be lar
than 1025 to give better than 10% accuracy makes the d
sities of states found accurate in the energy ran
@29.85,4.0#, @227.0,15.0#, @240.0,14.0# for the 232,
434, and 636 lattices, respectively.

We will use the densities of states found here, and
resulting expressions for the canonical distributions, Eqs.~9!
and~10!, to show that the 10310 lattice is well thermalized
by the Nose´ thermostat. In the section following, we deriv
the thermostated equation of motion for the 10310 rotor
lattice, and then compare the canonical distributions obtai
from the thermostated equations to those obtained above
will find good agreement.

III. THE NOSÉ THERMOSTAT

Let us now return to the equations of motion and inclu
a thermostat that will build temperature fluctuations and d
sipation into the equations of motion. We will use the th
mostatting procedure first introduced by Nose´ in 1984@18#, a
very ingenious method for generating a canonical distri
tion of energies from molecular dynamics equations. In t
method, an extra ‘‘Nose´’’ degree of freedom~dof! is added to
a Hamiltonian system; the Nose´ dof couples to the kinetic
energy of the original system, and together with the origi
05613
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dof’s forms an extended Hamiltonian system. If the therm
stated system is ergodic in the extended phase space~which
requires that the unthermostated phase space be suffici
chaotic!, it can be shown that the energies visited by t
Noséthermostated system follow a canonical distribution
both the kinetic and potential energies@19#.

A. Equations of motion with Noséthermostat

The Nose´ thermostatting procedure is based on an ‘‘e
tended’’ Lagrangian that can be written as

FIG. 1. Potential energy density of states,g2(V), for k450.67
and h5hconst51.00. BothV and g2(V) are plotted in the dimen-
sionless units defined in Sec. II.~a! 232 lattice, ~b! 434 lattice,
and ~c! 636 lattice.
0-5
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Lext5
1

2 (
i 51

N

S2@Ḟ i
21Q̇ i

21Ċ i
212Ḟ iĊ i cos~Q i !#

2V~Q i ,F i ,t!1
QṠ2

2
23NkBT ln~S!. ~15!

where the thermal energykBT is measured in units of the

exchange coupling, J, Ḟ i5dF i /dt, Q̇ i5dQ i /dt, Ċ i

5dC i /dt, Ṡi5dSi /dt, t is the dimensionless time in th
extended dynamical system, and

V~Q i ,F i ,t!52(
^ i , j &

@sin~Q i !sin~Q j !cos~F i2F j !

1cos~Q i !cos~Q j !#

2h~t!(
i 51

N

@sin~Q i !sin~F i !#

2k4(
i 51

N

@cos2~2F i !sin~Q i !#. ~16!

The quantityQ is a dimensionless weighting factor that co
trols the rate at that fluctuations occur andS is an additional
dimensionless degree of freedom which acts as an effec
heat bath. The factor 3N is the total number of degrees o
freedom of the lattice of rotors. The equations of motion
the extended dynamical system are given by the Eu
Lagrange equations

d

dt S ]Lext

]Ȧk,i
D 5S ]Lext

]Ak,i
D , ~17!

where k51,2,3,4, A1,i5F i , A2,i5Q i , A3,i5C i , and A4,i
5S.

The relation between thevirtual variables that appear in
the extended LagrangianLext and the physical variables tha
appear in Eq.~3! is as follows. Since the squared quantiti
in the kinetic energy term of a Lagrangian are by definiti
the physical velocities, the positions and velocities in
physical system and the extended system are related by

f i5F i , u i5Q i , c i5C i ,
df i

dt
5S

dF i

dt
,

du i

dt
5S

dQ i

dt
,

dc i

dt
5S

dC i

dt
. ~18!

This implies that the~dimensionless! physical timet and the
time t in the extended system satisfy the condition

t5E tdt8

S
, dt5

dt

S
, ~19!

so that the times in the physical system and the exten
system evolve at different rates.

The Hamiltonian for the extended system can be writ
as
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Hext5
1

2S2 (
i 51

N S PQ,i
2 1

@PF,i2cos~Q i !PC,i #
2

sin2~Q i !
1PC,i

2 D
1V~Q i ,F i ,t!1

PS
2

2Q
13NkBT ln~S!. ~20!

The equations of motion that result from this extend
Hamiltonian are given by

dPQ,i

dt
52

]V

]Q i
2

@PQ,i2cos~Q i !PC,i #PC,i

S2 sin~Q i !

1
@PF,i2cos~Q i !PC,i #

2cos~Q i !

S2 sin3~Q i !
,

dPF,i

dt
52

]V

]F i
,

dPC,i

dt
50,

dPS

dt
5

1

S3 (
i 51

N S PQ,i
2 1

@PF,i2cos~Q i !PC,i #
2

sin2~Q i !
1PC,i

2 D
2

3NkBT

S
, ~21!

dQ i

dt
5

PQ,i

S2
,

dF i

dt
5

@PF,i2cos~Q i !PC,i #

S2 sin2~Q i !
,

dC i

dt
5

PC,i

S2
2

@PF,i2cos~Q i !PC,i #cos~Q i !

S2 sin2~Q i !
,

dS

dt
5

PS

Q
.

The physical angular momenta are related to the ang
momenta in the extended dynamical system as

pf5
PF

S
, pu5

PQ

S
, pc5

PC

S
. ~22!

For the extended dynamical system, the equations of mo
for the variablesPF,i , PQ,i , PC,i , PS , F i , Q i , C i , S are
obtained from the Hamiltonian, Eq.~20! using Hamilton’s
equations. However, the equations of motion for the phys
variables,pf,i , pu,i , pc,i , f i , u i , c i in the thermostated
system cannot be obtained from a Hamiltonian. The N´
thermostating causes the energy of the physical degree
freedom~that is, excluding the extra Nose´ degree of free-
dom! to explore a canonical distribution at temperatureT.
The equations of motion for the physical variablespf,i ,
pu,i , pc,i , f i , u i , c i must be obtained directly from th
equations of motion for the variablesPF,i , PQ,i , PC,i , PS ,
F i , Q i , C i , S of the extended Hamiltonian system by a
plying Eqs.~18!, ~19!, and~22! to Eq. ~21!. They are given
by
0-6
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SIMULATION OF HYSTERESIS IN MAGNETIC . . . PHYSICAL REVIEW E 67, 056130 ~2003!
FIG. 2. Comparison of thermostated distributions for the kinetic energy with canonical distributions for two different initial conditi
the 10310 lattice. The kinetic energy~KE! and the probability density are plotted in the dimensionless units defined in Sec. II. The can
distributions are shown as solid lines and the two thermostated distributions as dotted lines.~a! T520.0 K and~b! T5200.0 K.
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dpu,i

dt
52

]V

]u i
2

@pf,i2cos~u i !pc,i #pc,i

sin~u i !

1
@pf,i2cos~u i !pc i

#2cos~u i !

sin3~u i !
2

pu,i PS

Q
,

dpf,i

dt
52

]V

]f i
2

pf,i PS

Q
,

dpc,i

dt
52

pc,i PS

Q
,

dPS

dt
5(

i 51

N S pu,i
2 1

@pf i
2cos~u i !pc,i #

2

sin2~u i !
1pc,i

2 D 23NkBT,

~23!

du i

dt
5pu,i ,

df i

dt
5

@pf,i2cos~u i !pc,i #

sin2~u i !
,

dc i

dt
5pc,i2

@pf,i2cos~u i !pc,i #cos~u i !

sin2~u i !
,

dS

dt
5

SPS

Q
.

These are the dimensionless equations of motion of
thermostated physical system. In subsequent sections
will take the value ofQ to beQ51.00, following the work
of Hoover @20# who found the Nose´ thermostat to be the
most effective at intermediate values ofQ in the range of
Q51.00.

B. Comparison of thermostated and canonical distributions

We can now determine if the Nose´ thermostat thermalize
the lattice of rotors. If thermalization does take place, th
we expect that the distribution of energies visited by
thermostated system will agree with the canonical distri
tions. To calculate the thermostated distributions, we wro
program implementing the system of equations~23! using an
Adams-Gear integration algorithm. In integrating up to
maximum time t52000.0, the energy was recorded at
3104 equal intervals, and the resulting list of energies w
sorted into a histogram of 100 bins, which we call the ‘‘the
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mostated distribution.’’ As a check of the integration, w
verified that the extended Hamiltonian, Eq.~20!, was a con-
stant of motion. Two initial conditions with random position
in the configuration space were chosen for each lattice s
The total kinetic energy of both initial conditions was set
correspond to the temperature of interest; we considered
20.0 K and 200.0 K.

In order to keep our computer usage manageable, we
tegrated the thermostated equations for the two total tim
t51000.0 andt52000.0, with a sampling interval for th
energies ofDt50.1. We found agreement of the therm
stated distributions fort51000.0 andt52000.0, giving an
evidence that the distribution has converged to its equi
rium distribution. Since the Lyapounov timetL51/l'2.0
~see Table I!, the sampling intervalDt50.1 does introduce
some correlation into the data. To ensure that this was n
large effect, we took several distributions with total timet
520 000.0 and sampling intervalDt52.0, and found very
little difference from the distributions withDt50.1.

As mentioned above, because the phase space of
10310 lattice is so large, we cannot directly compare t
thermostated and canonical distributions for the potential
ergy, although we can do so for the kinetic energies. The
fore, we first show that the thermostated dynamics gi
close agreement for the distribution of the kinetic energi
Then we show that the thermostated 232, 434, and 636
lattices have potential energy distributions that agree w
with the expected distributions for the canonical ensemb
We thus expect that the thermostated 10310 lattice should
also agree closely. Finally, we will show~in the following
section! that the thermostated average magnetization and
ergy at low temperature are very close to their expected
ues for the 10310 lattice, providing a strong evidence th
the agreement extends down to a very low temperature.

In Fig. 2~a!, the thermostated distributions of the kinet
energy are compared to the expected thermal distributio
kinetic energies@found from Eqs.~14! and ~9!# for two ran-
dom initial conditions of the 10310 lattice, at the tempera
ture T520.0 K. Figure 2~b! shows the same comparison
temperatureT5200.0 K. In both cases, we see small dev
0-7
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FIG. 3. Comparison of ther-
mostated distributions for poten
tial energy with canonical distri-
butions for two different initial
conditions of lattices of increasing
size. BothV and the probability
density are in the dimensionles
units as described in Sec. II.~a!
232 lattice at T5200.0 K and
400.0 K; ~b! 232 lattice at 600.0
K; ~c!,~d! 434 lattice at T
5400.0 K, 600.0 K; and~e!,~f! 6
36 lattice atT5400.0 K, 600.0
K.
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tions in the widths of the distributions~and therefore in the
heights, since they are normalized to one!, but an overall
agreement in the kinetic energy distributions.

Moving to the potential energy distributions, in Fig. 3~a!
the thermostated and thermal distributions for a 232 lattice
at T5200.0 and 400.0 K are shown; the distributions for t
232 lattice at 600.0 K are presented in Fig. 3~b!. The agree-
ment of both initial conditions is quite close at all three te
peratures. In Figs. 3~c! and 3~d!, a comparison of the distri
butions for a 434 lattice atT5400.0 and 600.0 K is shown
~Because of the statistical uncertainties in the density
states, the canonical distribution atT5200.0 K was not ac-
curate enough for comparison.! The agreement is quite clos
for both temperatures, but the thermostated distributions
smaller at lower energies, with a slightly more pronounc
effect atT5400.0 K. In Figs. 3~e! and 3~f!, the comparison
is shown for a 636 lattice and is very similar to the resul
for the 434 lattice. Based on this trend in the agreeme
with increasing lattice size, we expect that the 10310 lattice
would give similar results. We will present more eviden
for the agreement of the thermostated distributions at lo
temperatures in the following section. Thus, we can exp
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that the thermostated lattice of rotors will be a useful mo
for a real magnetic material.

IV. CALCULATING THE CRITICAL TEMPERATURE
OF THE LATTICE

Before calculating hysteresis loops for the lattice of r
tors, we first use the thermostating technique to calculate
heat capacity of the 10310 lattice, so that we can determin
the temperature range where hysteresis loops are expe
In the infinite two-dimensional Ising lattice, the heat capac

CH5S ]U

]T D
H,N

~24!

has a logarithmic divergence at the critical point. While
the definition, Eq.~24!, the variableU refers to the internal
energy, in the case of the Ising latticeU includes only a
magnetic potential energy and not a kinetic energy. For
rotor model, the Hamiltonian, Eq.~6!, includes both a kinetic
and a magnetic potential energy. However, the kinetic ene
serves only to allow the Nose´ thermostat to produce a ca
nonical distribution@Eq. ~10!# of the potential energy at a
0-8
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FIG. 4. The thermal average internal energy and the heat capacity of the 10310 lattice of rotors, calculated using the thermosta
equations of motion. The thermal average internal energy~in units of the exchange constantJ) is plotted vs temperature in~a!. The heat
capacity~in units of the exchange constantJ/K) is plotted vs temperature in~b!. The error bars result from the confidence intervals for
calculated values of the average internal energy.
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e,
given temperature. Hence, in finding the heat capacity
include only the magnetic potential energy in the inter
energy, and in this section internal energy refers only to
potential energy.

In the 10310 lattice with Heisenberg exchange, we al
expect to see a peak in the heat capacity, defining a trans
temperatureTc . ~We will verify in more detail thatTc rep-
resents the Curie temperature in the following section.! Be-
cause of the finite size of the lattice, however, a less sha
definedTc would be expected, as the magnetic order bel
Tc cannot have a diverging correlation length. In additio
we expect that the presence of the anisotropy interac
could shift the location of the peakTc .

To calculate the heat capacity, we started the lattice w
initial conditions corresponding to temperaturesT54.0,
10.0, 20.0, 30.0, and 40.0 K, and then fromT550.0 K to
T5270.0 K in steps of 20.0 K. The initial conditions we
made to correspond to a given temperature by setting
total kinetic energy of the rotors equal to approximate
3
2 NkBT. We integrated the thermostated equations of mot
for a timeT5500.0 for 20 different initial conditions at tem
peraturesT540.0 K and above, disregarding the firstt
5200.0 to allow the system to approach equilibrium. W
calculated the average internal energy of the lattice for
final t5300.0 for each trajectory. From these 20 values
^U&, we used thet distribution to form a 95% confidenc
interval @21# for the mean of̂ U& at each temperature. A
temperatures belowT540.0 K, the lattice could remain in
metastable~i.e., not fully aligned! state for the entire time
interval t5500.0, with a greater chance of this occurring
the temperature decreased. We can understand this with
observation that belowT540.0 K, the relaxation time of the
low-energy metastable states becomes comparable to th
tegration time, and can be much larger than the integra
time at the lowest temperatureT54.0 K. We thus averaged
over 30 initial conditions for temperaturesT520.0 and 30.0
K, and over 60 initial conditions for temperaturesT54.0 K
and T510.0 K in order to sample the thermal distributio
more accurately.

We then estimated the heat capacity at temperatures
7.0 K to 260.0 K~at the midpoints of the intervals defined b
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the temperatures chosen above! with the linear approxima-
tion

CH~T!5
^U&uT1DT/22^U&uT2DT/2

DT
. ~25!

In Fig. 4~b!, we plot the results for the heat capacity, a
observe a clear peak atTC'60.0 K. At lower temperatures
the confidence intervals forCH , given by

DCH~T!5
D~^U&!uT1DT/21D~^U&!uT2DT/2

DT
, ~26!

become much larger due to the larger uncertainty in the
ues of^U& @shown in Fig. 4~a!#. Even with the use of more
initial conditions, the energies of the low-energy metasta
states are given too much weight in the thermostated ave
at a low temperature, resulting in higher values of^U& as
well as larger uncertainties.

Still, despite the long relaxation times of the low-ener
metastable states, the values for^U& do approach the abso
lute minimum of E52267.0 of the lattice withk450.67
and h50.0. An applied field should produce a clear glob
minimum and decrease the relaxation time of the metast
states, allowing for more accurate thermal averaging. Thu
present further evidence that the thermostated distribu
agrees closely with the thermal distribution at low tempe
tures, we plot in Fig. 5~a! the average internal energy per si
^u&5^u&/N ~with 95% confidence intervals! for tempera-
tures T520.0, 10.0, 6.0, and 2.0 K with applied fiel
h521.0. The minimum of the internal energy per site
umin523.67, with contributions of22.00,20.67, and
21.00 from the exchange,K4 , and magnetic field interac
tions, respectively. If we extrapolate the linear relationship
T50, we find an intercept of̂u&523.667, very close to
umin . In Fig. 5~b! we plot for the same temperature range t
magnetization per site,^m&5^M &/N, in units ofm, the mag-
netic moment per site in our dimensionless system of un
We find that^m& also increases linearly at low temperatur
0-9



ROBB, REICHL, AND FARAGGI PHYSICAL REVIEW E67, 056130 ~2003!
FIG. 5. Thermostated average of~a! internal energy per sitêu& and ~b! magnetization per sitêm& at low temperature for the 10310
lattice, with interaction coefficientsk450.67 andh521.00. Here,̂ u& is in units of the exchange constantJ, and ^m& is in units of the
magnetic moment per sitem.
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with an extrapolated value at zero temperature of^m&5
20.9974, quite close to the value^m&521.0 at full satura-
tion.

V. HYSTERESIS IN LATTICE OF ROTORS
WITH NOSÉ THERMOSTATING

The Nose´ thermostat causes the lattice to move toward
equilibrium distribution and to undergo thermal fluctuatio
in the equilibrium distribution. In a real magnetic materi
when a time-periodic magnetic field is applied, the magn
zation lags behind the field because the magnetic mom
cannot respond as quickly as the field changes, or bec
the moments become pinned in a metastable state, for
ample, when a domain wall becomes stuck at a defec
when a group of spins waits for one spin in the group
nucleate. While our thermostated lattice does not have
main walls or impurities, it is possible for the lattice to b
come stuck in a metastable state, and also possible for
response of the lattice to lag behind the changing field. B
effects contribute to create hysteresis loops.

In Sec. IV, we found the peak of the heat capacity cu
for the 10310 lattice to be approximately 60.0 K, muc
lower than the Curie temperature in bulk cobalt ofTc
51390 K. The Curie temperature of a single layer of iron
tungsten @with iron in the crystallographic orientatio
Fe~110!# is 225 K@22#, and as the bulk Curie temperatures
cobalt and iron are comparable~1390 K and 1040 K!, this is
a good estimate for the Curie temperature of a cobalt
film as well. With the small planar dimensions of our mod
further reducing the Curie temperature, a value of 60.0 K
the Curie temperature appears to be reasonable. To en
that the peak of the heat capacity curve is actually the C
temperature, we examined the system’s approach to equ
rium for initial conditions with randomly oriented spins an
several temperatures up to the critical point. The spin ori
tations at equilibrium shown in Fig. 6 are representative o
sample of several initial conditions at each temperature
Fig. 6~a!, we see that the equilibrium atT510.0 K consists
of spins aligned with one of the minima of theK4 potential.
At T530.0 K, in Fig. 6~b!, we still see the moments aligne
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along one of the minima of theK4 interaction, although the
higher temperature produces larger fluctuations away fro
fully aligned state. In Fig. 6~c! at T550.0 K, just below the
peak temperature of Fig. 4, we see that the correlation len
has greatly decreased, supporting the interpretation of
peak of the heat capacity as the Curie temperature. We
look at hysteresis loops in the model at low temperature
the neighborhood of the Curie temperature, and above
Curie temperature.

As mentioned previously in the description of the therm
stated distributions, the equations of motion~23! were inte-
grated using an Adams integration method, with the poten
V(u j ,f j ,t) containing a time-dependent fieldh(t)
5h0 cos(ft). To ensure accurate integration of the hystere
loops, we chose the accuracy of the integration routine
give conservation ofHext from Eq. ~20! to seven significant
figures in a constant field, and we required that the follow
condition:

DHext52 R Mx~Q j ,F j ,t !dh, ~27!

where Mx(Q j ,F j ,t)5( j 51
N sin(Qj)sin(Fj) was satisfied to

five significant figures for each hysteresis loop generated.
used initial conditions with total kinetic energy correspon
ing to the temperature of the calculation and with random
oriented moments. In addition, we integrated over four fi
cycles and averaged over the last three cycles~excluding the
first to remove transient behavior! to produce the hysteresi
loops. In experiments, the hysteresis loops are typically
eraged over a number of field cycles~see Ref.@23#, for ex-
ample!. We have averaged over three cycles because of
large amount of computer time needed for the simulation
the lowest frequency, but we find that this is sufficient to gi
well defined loops.

In Fig. 7, we plot the hysteresis loops for a field streng
h053.0 and for frequencies,f 50.001, 0.005, 0.01, and 0.05
At each frequency, three loops, at temperatures 20.0, 6
and 100.0 K, are shown corresponding to the outer, mid
and inner loops, respectively. In Fig. 7~a!, the low frequency
leads to a steep drop of the magnetization and a square
0-10
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SIMULATION OF HYSTERESIS IN MAGNETIC . . . PHYSICAL REVIEW E 67, 056130 ~2003!
teresis loop. The coercive field, approximatelyh50.8 or H
5hJ/mb250.26 T ~using m51.71mB for cobalt! for the T
520.0 K loop, decreases for theT560.0 K loops since the
lattice, supplied with more thermal energy and now abo
the blocking temperature, is able to reverse at a lower fi
strength. AtT5100.0 K, the lattice is past the blocking tem
perature and the critical pointTc , but still is caught briefly in
a metastable state near zero field. AtT5200.0 K ~not

FIG. 6. Spin configurations after movement to equilibrium fro
a randomly oriented initial state of the 10310 lattice, at tempera-
tures of 10.0, 30.0, and 50.0 K. The figures show theXY projection
of the magnetic moment for each site in the lattice, with a circle
the end of the projection indicating a positive value ofSz for that
site.
05613
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shown!, we find that the hysteresis loop disappears, and
magnetization retraces the same path on the return trip o
field.

In Figs. 7~b! and 7~c!, the area of the loops at each tem
perature increases with increasing frequency, as the time
the reversal of the magnetization becomes comparable to
period of the field. We can see that for each temperature,
reversal begins at approximately the same field (h520.8,
20.3, andh50.0, respectively! but takes a larger and large
portion of the field period as the frequency increases. In F
7~d!, the hysteresis loops forT560.0 K and T5100.0 K
have continued to increase in area; in the hysteresis loo
T520.0 K, however, the magnetization has not finished
reversal before the field reaches its minimum and begin
increase, leading to an oval shape differing from the m
familiar S-shape taken by the rest of the loops.

Although our model applies most directly to a nanop
ticle with monolayer thickness, we can make an approxim
comparison to an experiment performed by Wernsdo
et al. @6#. In the experiment, elliptic nanoparticles were d
fined from sputtered thin films of Ni, Co, and other mate
als; the particles had thicknesses between 8 and 50 nm,
had elliptic axis lengths between 50 nm and 1mm. A small
superconducting quantum interference device~SQUID! was
deposited next to the particles, and detected the flux cha
due to the changing magnetization of the particle. Since
field was applied in the plane of the particle and the SQU
it did not affect the measurement of the flux.

We can compare the hysteresis loops from our mode
the hysteresis loop pictured in Fig. 3 of Ref.@6# for the Co
particle with dimensions of either 2003100 nm or 100
350 nm, and thickness in the range from 8 nm to 30 nm.
@6#, Wernsdorferet al.show that the distribution of switching
fields agrees with the prediction of the Ne´el-Brown model
~which assumes a single domain! up to 6 K, so we can rea
sonably neglect the dipole-dipole interaction in our mod
Also, as mentioned above, since the exchange length in
balt is about 7.0 nm@7# and the lattice spacing is 0.355 nm
@8#, the spin orientation in the nanoparticle can be conside
constant over;20 atoms. We can therefore expect that t
lattice of blocked spins forms a single domain and will app
approximately to the Co nanoparticle.

We note that the shape of the hysteresis loop at 20.
and f 50.001 in Fig. 7~a! closely resembles the shape of th
hysteresis loop for the cobalt nanoparticle, with slightly mo
rounding due to the higher temperature of Fig. 7~a!. The
coercive field found for the cobalt nanoparticle in Ref.@6# is
60kA/m50.07 T, while the coercive field for our model a
20.0 K at the lowest frequency is 0.26 T. Given the mon
layer thickness of our model, this order of magnitude diff
ence is not unexpected. Several factors, however, sug
that the model can be made more accurate. The first is
we have used a value for the four-way anisotropy of cob
k450.67, appropriate for a surface, but it is known that t
value of the anisotropy in the bulk is lower@24#. Using val-
ues ofk450.2 and 0.1, we found coercive fieldsHc50.09
and 0.07 T, respectively. Choosing these values fork4 would
make our model an effective two-dimensional model, with
parameter borrowed from the bulk. The second factor is t
while we have used periodic boundary conditions in an eff

t

0-11
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ROBB, REICHL, AND FARAGGI PHYSICAL REVIEW E67, 056130 ~2003!
FIG. 7. Plots ofM ~averaged over three field cycles! vs h for frequencies~a! f 50.001,~b! f 50.005,~c! f 50.01, and~d! f 50.05. Each
plot shows three hysteresis loops atT520.0, 60.0, and 100.0 K, progressing from the outer to inner loop with increasing temperatureM is
plotted here in units of the magnetic moment per sitem, andh is in the dimensionless units described in Sec. II.
th
b
e
o
tio
ar
io
er

m
be

rti
ili
e

r-
ng
ta

at
-

o

to
f.
ld
i-
s

the

off

e

to increase the effective size of our model, changing
boundary conditions from periodic to nonperiodic is pro
ably more realistic for a nanoparticle. This reduces the co
cive field by 5%, with nucleation beginning at the corners
the square lattice where the sites have a lower coordina
number of 2. Modeling the elliptical shape of the nanop
ticle would create a number of edge atoms with coordinat
number 2, and would likely reduce the coercive field furth

VI. THE APPROACH TO EQUILIBRIUM

Since the lattice model does not have an intrinsic ti
scale~as described in Sec. II, this allows the model to
applied to different physical systems!, we need to make a
correspondence between the dynamics of the Co nanopa
and the lattice. We can use data for the approach to equ
rium ~magnetization reversal! in the experiment to set th
time scale for the lattice model.

In their paper, Wernsdorferet al. @6# apply the Ne´el-
Brown theory@25,26# of activation over a single energy ba
rier to analyze their data for the distribution of the switchi
field, and are able to find a close fit to their experimen
data. According to the Ne´el-Brown theory, which applies to a
single-domain particle, the energy barrierE to reversal in a
given fieldH is found to be

E~H !5E0S 12
H

HSW
0 D a

, ~28!
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whereE0 andHSW
0 are the energy barrier and reversal field

zero temperature, anda is found to be 1.5. At a finite tem
perature, the survival probability for the magnetization~the
probability not to have switched! after a timet is given by
the exponentialPsur(t)5e2t/t, where

t~T,H !5t0 expS E~H !

kBT D . ~29!

In their analysis of the switching field, Wernsdorferet al.
find an estimate for the prefactort0 of 7.431027 s; it is also
possible to estimatet0 directly from the survival probability
Psur(t), and we will do that here for the lattice of rotors t
establish a time scale for our model.

The first step in obtaining the survival probability is
find the histogram of switching times. As outlined in Re
@27#, we placed the rotor lattice in an opposed fie
h520.75 close to the switching field for 200 initial cond
tions near saturation~each of the trajectories initially ha
magnetization near saturation,Ms). We then plotted a histo-
gram~normalizing its area to one! of the times taken for the
magnetization to reverse, where reversal was defined as
first time when the magnetization reached20.85Ms . ~Note
that the exact value of this cutoff is arbitrary, and the cut
needs only to fall close to the saturation valueMs .) Integrat-
ing the histogram from timet50 to time t gave the prob-
ability Psw(t) of the magnetization having switched by tim
t, and finally we calculatedPsur(t)512Psw(t).
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SIMULATION OF HYSTERESIS IN MAGNETIC . . . PHYSICAL REVIEW E 67, 056130 ~2003!
The results for temperatures 10.0, 20.0, 30.0, and 40.
are shown in Fig. 8. The distributions do shift to grea
times as the temperature decreases, and after a certain
time follow an exponential form, as predicted by Eq.~29!.
We think the delay time is due to the fact that the therm
stated equations retain the original spin dynamics of the
thermostated system, as well as thermal relaxation, while
Néel-Brown model applies to a system undergoing only
thermal relaxation.

If we use the time that the switching time distributio
takes to decrease to 1/e as a value oft for each temperature
and perform a best fit for the quantityt0, we find t0
'14.4. We can make a rough correspondence between
time and the timet057.431027 s in the experiment, to find
the time unitAI /J55.131026 s. This also establishes th
unit of frequency in our model as 2.03105 Hz, giving for
the frequency range used in the hysteresis loops in Fig.
range from 2.03102 to 1.03104 Hz. From the value of the
time unit we can also find the effective moment of inertia
the rotors to beI 55.2310232 kg m2. ~Since the moment o
inertia does not correspond directly to the atoms in the m
terial but allows coupling of the magnetic degree of freed
to the thermal degrees of freedom, we do not expect to
able to relateI to the size or mass of the atoms.!

FIG. 8. Survival probabilityPsur vs t for the 10310 lattice of
rotors initially aligned and placed in a reversal field ofh520.75.
Here,Psur is unitless, and the timet is plotted in the dimensionles
units defined in Sec. II. The data are shown for four different te
peraturesT540.0, 30.0, 20.0, and 10.0 K, with the distribution
10.0 K at longest times and the times decreasing with increa
temperature. The distributions are based on 200 measuremen
magnetization reversal at each temperature.
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VII. CONCLUSIONS

We have studied the appearance of hysteresis in the
sponse of a thermostated 10310 lattice of magnetic rotors to
a time-periodic magnetic field at low temperature. The eq
tions of motion were placed in dimensionless units for t
integration; the values of the exchangeJ and the rotor mo-
ment of inertiaI, which together give a physical meaning
the dimensionless quantities, were determined by the sys
being modeled. The hysteresis seen is a consequence o
metastable states created by the surface anisotropy an
exchange interaction, and is made possible by the therm
zation introduced by the Nose´ thermostat. The underlying
chaotic dynamics of the rotor lattice is essential to the th
malization by the Nose´ technique.

For the values ofJ andK4 we used, the lattice was dete
mined to have a Curie temperature ofTc'60.0 K. Given
that the 10310 lattice has both the small dimensions of
nanoparticle and the thickness of a thin film, this value
reasonable. In comparison of hysteresis in the lattice to
hysteresis observed by Wernsdorferet al. @6# in a cobalt
nanoparticle, the experimental coercive field was 0.07 T
our model gave a value of 0.26 T. The reduced value ofK4 in
the bulk and the use of nonperiodic boundary conditions b
indicate a potential for improved agreement. A comparis
with experimental data for the switching time distributio
sets the time~and frequency! scale for our model as applie
to the cobalt nanoparticle, and allowed a determination of
effective moment of inertiaI of the rotors in the lattice
model.

As our available computing power is increased, we
working to extend the model to a three-dimensional latti
We think this can improve the agreement with experiment
lowering thek4 anisotropy used, thus decreasing the co
cive field, and by increasing the average coordination nu
ber, which should increase the critical temperature.
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