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Simulation of hysteresis in magnetic nanoparticles with Nos¢hermostating
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The magnetic hysteresis of a two-dimensional lattice of rotors with four-way anisotropy interaction and a
Heisenberg exchange interaction is studied. The Hamiltonian dynamics of the lattice is thermostated using the
Nosethermostat, resulting in a system that approaches thermal equilibrium and which under certain conditions
can remain in metastable states. Using physically realistic values for the interactions in a nanoparticle of
monolayer thickness, we locate the Curie temperature of our lattice by determining the peak of the heat
capacity curve. We then compare the coercive field of our two-dimensional lattice below this Curie temperature
to the coercive field of an elliptical cobalt nanoparticle measured in experiment. We find an order of magnitude
agreement between our lattice model and the experimental results, even though the value of the anisotropy used
is more appropriate for a monolayer film than for the nanopatrticle.
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I. INTRODUCTION pare our results to experimental data obtained by Wernsdor-
fer et al. [6] for elliptical cobalt nanoparticles with similar
Over the past several decades, most of the dynamicalize. We obtain an order of magnitude agreement, and give
studies of hysteresis in magnetic systems have involved theuggestions for changes to the model which may improve the
use of Monte Carlo techniqu¢s—3] to reproduce hysteretic agreement. In Sec. VI, we compare the reversal of magneti-
behavior. However, Rapaport and Landai] have shown zation in our rotor model to the reversal of magnetization in
that it is possible to reproduce the critical dynamics of athe cobalt nanoparticle, and by examining the decay times
classical Heisenberg spin model by using a Gaussian therm@re able to set a time scale for our model. Finally, in Sec.
stat applied directly to the Newtonian dynamics of a systenV!l, we make some concluding remarks.
of classical Heisenberg rotofthe rotor model will be ex-
plained in Sec. .
In this paper, we will extend the approach of Rapaport IIl. SPIN DYNAMICS ON A SURFACE
and Landau to thg study of hy§teresis in a.periodic lattice of e dynamics of the lattice is determined by the exchange
rotors. However, instead of using a Gauss'?‘n thermostat, Witeraction and the surface anisotropy interaction of the thin
will use a Nosahermostat. While the Gaussian thermostat isgjiy, it represents, as well as by the interaction with the ap-
quite useful, the Nostnermostat gives a slightly more accu- yjieq magnetic field. Each rotor consists of a spherical mass
rat_e thermal _dlstr|but|on,_ anq deserves_mvestlgatlon becau?ﬁstribution with moment of inertia (the moment of inertia
of its basis in the Hamﬂtoman dynamics. The rotors eadlensor is diagonal with entries equal b and a magnetic
have a moment of inertia and a three-component magnetic,oment vector that is fixed along the barlgis of the rotor.

moment, and so have a kinetic energy as well as a potentigys yepresent the three-component magnetic moment vector
energy, and the possibility for an out-of-plane magnetization.

The rotors interact via a Heisenberg exchange interaction & -
well as theK, anisotropy term used by Moschet al. to  magnetic moment and the unit vectafq:(nix,niy,niz)
study the roughness in thin magnetic filfig. gives its direction in the lab frame.

In Sec. I, we introduce the dynamics of the lattice of The spherical rotor with attached magnetic moment, in-
rotors and show that the phase space is largely chaotic hyoduced by Rapaport and Landgii, should not be viewed
computing Lyapounov exponents for a group of random ini-as a literal model of an atom in the thin film lattice, since the
tial conditions. We also compute the density of states and thmagnetic moments in an actual thin film rotate without an
expected canonical distribution for the system. In Sec. lllaccompanying rotation of the atoms. The kinetic energy of
we apply thermostating to the Hamiltonian equations of mo-+the rotors is best seen as representing the thermal degrees of
tion for the lattice using techniques introduced by Nas®ed  freedom of the thin film(involving energy states within the
compare the thermal distributions obtained with the Noseatoms, lattice vibrations, elc.which act as a heat bath for
thermostat to the expected canonical distributions. In Sec. I\the magnetic moments. The rotors then allow us to use the
we use the thermostated equations to determine the depetechnique of Nosehermostatting to introduce thermal ef-
dence of the internal energy and the heat capacity on tenfects. In addition, following the work of Moschet al.[5] in
perature, enabling us to locate the critical point of the latticemodeling hysteresis in thin films, we take each rotor to rep-
In Sec. V, we show that our dynamical system produces hyssesent abxb block of aligned atomic spins. This “spin
teresis when a changing magnetic field is applied, and comblocking” allows us to model larger samples with our avail-

able computing power. Since the exchange length in cobalt is
about 7.0 nn{7] and the lattice spacing is 0.355 rj®], we
*Email address: drobb@alumni.utexas.net can choose a value &f= 20 for spin blocking.

theith rotor asu; =,uﬁi , Wherey is the magnitude of the
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TABLE |. The largest Lyapounov exponents for ten initial conditions of the lattice of rotors for an average of the threedgages (
(d/2,At), and d,At/2); the first row shows data with all three interactions present, while the second row shows data with just the exchange
interaction.

Initial condition 1 2 3 4 5 6 7 8 9 10
All interactions 0.643 0.663 0.649 0.645 0.667 0.662 0.675 0.676 0.651 0.658
Just exchange 0.492 0.507 0.491 0.503 0.516 0.489 0.511 0.516 0.493 0.483

The Lagrangian for the lattice in the laboratory frame can

be written as U, i ,t)= —JGED [sin(6;)sin( 6;)cos ¢; — ;)
+cog Gi)coﬁ 0;)]

1 I N
L= 5'21 wi2+J<iEj> ﬁi.ﬁj+,m(t)bZi§1 Niy —,uH(t)szl [sin(6;)sin( ;)]
N
N 2_ 1292 -
+3 Ktz o @ ~Kaab?3, [cod(24)sin0)]. ()
i=1 (nix+niy) '

. _ _ . The HamiltonianH then takes the form
where w; is the angular velocity of théth rotor, | is the

moment of inertia of each rotor] is the strength of the
Heisenberg exchange couplirg, is the strength of the sur-
face anisotropy interactiona is the lattice spacing, and
H(t)="H, cos(2rft) is the external magnetic field, with
magnitudeH, and frequency. The fact that we are dealing +U(6i, i 1), ®)
with blocks of spins introduces a factor of in the magnetic
field interaction and thé&, interaction. As pointed out by wherep,;, p4;, andp,; are the canonical momenta of the
Moschel et al. [5], the spin blocking leaves the exchange rotors.
interaction unchangel®], producing a Curie temperature in- It is useful to write the Hamiltonian in dimensionless
dependent of the size of the spin blocks, as one would expecinits. If we measure all energies in units of the exchange
physically. The labe{i,j), in the summation means that we coupling energyJ, we can introduce a dimensionless time
sum over each pair of the nearest neighbors just once.  t'=./J/It, frequency f'=\1/Jf, magnetic energyh

We can use Euler angles to describe the dynamics of this: ;,74,b?/J, anisotropy energy,=K,a?b?/J, angular ve-

system in the lab framéixed inertial frame. If we label the locity ¢/ \/TdJ angular momenturp’ — Dy, /13, and
| [l | I

three axes of the fixed inertia! frame y, z, and the corre- HamiltonianH' =H/J. If we substitute these guantities into
sponding axes of the body-fixed frame as 1,2,3, then the q. (5), and then drop the primes, we obtain

Euler angles are defined as followsis the angle of rotation

of the 1-axis about the axis; 6 is the angle of rotation of the N

3-axis about the new 1-axis; andis the angle of rotation of 1 S | p2 [Pyi—Pyi cOK6;)]2

the 1-axis about the new 3-axi$0]. The components of the 2 & P, Sin2(6,) TPy

unit vectorﬁi (which lies along the body frame 3-axiwith
respect to the lab frame axes are +V(6;,9i.1), (6)

N 2
[p¢,i_p¢,i cog )] 2
AL sir?(6;) * Py

. : . where
Nix=sing; sing;, nj=—sing; cos¢;, n;,=Cosv,.

2
_ o V(6;,¢i,t)=— >, [sin(6;)sin6;)cos ¢ — b))
We can now write the Lagrangian in terms of Euler angles {0
as

N
+cog 6;)cog 9,—)]—h(t)i§l [sin(6;)sin(¢;)]

N
| 2, [$8+ 67+ U +2¢ii cod 0)]-U(6:, i 1), '
_ @ ~ 43, [003(26)sin(0)] @

I\)Il—‘

where ¢;=d¢; /dt, 6,=d6;/dt, and y;=dy; /dt, and the and h(t)=h, cos(2rft). The equations of motion derived
potential energy is given by from this dimensionless Hamiltonian are given by
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ag; _ doi _ [Pg,i—Py,i co86i)]

dt _Peir gt - sif(6,)
%: o [Pg,i—Py,i cOS 6;)]coq )
dr Pe Sir(6)) ’

®

dpy,i _ N [Pgi—Pyi €OLO) I[P, SIP(0)]—[Pyi—Pyi cOL6)]%[cog 6;)]
dt 96, sin’(6,) ’

dqu),i . oV dpg&,i B oV B

at ~ ag At a2

We perform subsequent computations using this dimensiortrajectories of the thermostated system can sample most of
less system of dynamical variables. the available points in phase space. Posch, Hoover, and
Since we will compare our results to the magnetic prop-Vesely[14] found that a one-dimensional harmonic oscillator

erties of small cobalt nanoparticlgs], we need to determine is not fully thermalized by the Noséhermostat; slightly
a value of the exchange couplinin cobalt. Craik and more complex systems, however, are thermalized. To esti-
Tebble[11] summarize a group of experiments done in themate the degree of chaos in the lattice of rotors, in this sec-
1950s to determine the exchange constant, A, for cobalt in aon we calculate the largest Lyapounov exponents of the
continuum spin model with Heisenberg interaction. They re-10Xx 10 lattice with the Hamiltonian, Eq6), and potential
port that methods of fitting the Curie temperature of cobaltEqg. (7). We choose the valug,=0.67, as indicated above,
fitting the low temperature dependence of magnetization, andnd a constant magnetic fighd=h.,,s=1.00 in place of the
predicting results of spin-wave resonance experiments haume-varying fieldh(t).
given values ofA=1.03<10 % erg/cm, 1.5 10 ® erg/cm, In finding the largest Lyapounov exponents, we use the
and 1.3 10 ® erg/cm. The exchange coupling, can be algorithm due to Benettifil5] which records the degree of
related toA by the expressiod=2Aa/v [11], with a the  separation of nearby trajectories for a series of small time
lattice constan{0.355 nm in cobajtand » the number of steps, rescaling to the initial separation at each step. A very
atoms per unit cell of an fcc lattidgd), producing a range for useful summary of the method is given in REE6]. For a
J=(1.8-2.5x10 2! J. We can choos@=2.0x10 2! Jasa small enough time stept and (generi¢ separationd, the
convenient value. exponent found is independent of the time step and the sepa-
We can estimate the parametey, from a paper by ration. We verified this independence for our calculations,
Kowalewskiet al.[12] which gives the surface anisotropy of and we also verified that energy is conserved for the base
cobalt at 77 K a& ,=1.86x 10 ° J/n?. Because the experi- trajectory and the separation is rescaled to the initial value at
ment we will compare to is done at a low temperature, andtach time step. Using an Adams-Gear integration routine, we
the strength of the surface anisotropy increases at lower tenmntegrated the dimensionless equatig8sfor both the base
peraturg 13], we will chooseK,=2.65<107° J/n? as area- and nearby trajectories to a maximum tib¥e400.0. The ten
sonable value. In units of the exchange coupling, this givednitial conditions were chosen to be random in the configu-
k=K ,4a?b?/31=0.67. ration space of the potential energy, and to produce a kinetic
The magnetic field energy needed to produce reversal anehergy consistent with a temperature 133 K.
give hysteresis in the model was found by trial and error, and The results for the Lyapounov exponents are shown in
will be presented and then compared with the figltheeded Table I. As mentioned above, to ensure that the time step and
to produce reversal in experiments. The temperatures for thgeparation were chosen small enough, for each initial condi-
model are expressed in units &ffor example, we will pro-  tion we also calculated the exponent for the case where the
duce data for hysteresis loopsTat 20.0 K, T=60.0 K, and time step was halved, and for the case where the separation
T=100.0 K, which correspond t&kT/J=0.14, 0.42 and was(roughly) halved. For the three cased, At), (d/2,At),
0.69, respectively. Finally, to determine a value Fosince and d,At/2), the time step wadt=5.0x 10 3 for all initial
the rotors are not a direct physical model but allow for theconditions, while the separatond had range
thermalization of the magnetic moments, we will compare[3.1x102,3.7x10 ¥] and the halved separatiai2 had
the relaxation times of the model to experiment and choose sange[1.5x1073,1.9x10 3]. In general, the three expo-
value ofl that produces agreement with experimental resultsnents(not shown in the tab)eagreed to two significant fig-
ures. The average of the three values was taken as a best
estimate of the largest Lyapounov exponent for that initial
condition, and is presented in the table. For each of the ten
In order for the Noseechnique to thermalize the lattice, initial conditions, an average exponent well into the range
we need a classical phase space that is largely chaotic, so thgsociated with chaos was found. Although the size of the

A. Lyapounov exponents for the lattice of rotors
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phase space makes a systematic study of the degree of cha@siables. We divide the volume i@ space into smalfand
impractical, the consistency of these ten Lyapounov expouniform) volume elementa ), each representing a different
nents suggests that the phase space consists mainly of a largtate of the angular velocities(, . . . ,@y). The total num-
connected chaotic region. ber of these states with kinetic energy less thais N(K)

In addition, we have calculated Lyapounov exponents for=1(K)/AV, whereV(K) is the volume of a hypersphere in
the lattice of rotors with just the exchange interaction. Theg space whose surface has kinetic enefgy

results in Table | show that the exchange interaction alone is grom Eq.(11), W(K) is also the volume of a sphere with

enpugh to produce chaos at Igast for ten randomly Choser%dius|ﬁ|: J2K. Since each of thé\ rotors has three de-
points, so that the thermalization we expect for the system

does not depend on the value of the fialdr anisotropyx, ~ 9rees of freedom for the 010 lattice, the) space has 8
or other interactions which might be includéén exception ~ dimensions. Using tshNe fact that &limensional sphere has
to this would be the introduction of a very strong magnetic® volumeW(r)=Cyr=" (with C; a geometrical factor this
field or other interaction, which could dominate the exchangé'Ves

interaction and potentially give a nearly integrable system C,(23N12)K 312
In general, however, when the exchange interaction is N(K)= = (12
present, the phase space of the lattice is significantly chaotic, Ay

and we expect that the Noskeermostat will thermalize the

lattice to a large extent. Since the kinetic energy has no upper limit, we need to set a

maximum kinetic energy to arrive at a normalized density of
states. Since we will use temperatures bekgW= 5.0 (725

K), we set a maximum kinetic enerd¢,..~3X 3NkgT to

We need to check that the thermalization induced by theensure that the canonical distribution we calculate will in-

Nose thermostat is consistent with the canonical ensemblelude all the kinetic energies the thermostated system will
expected from thermodynamics. Since the kinetic energy desncounter(Note that as long aK,., is set safely above the
pends only on &4, ...,»y) and the potential energy de- energy range of the canonical distribution, the exact value of
pends only on the magnetic moment orientationskK,, Will not affect the canonical distribution calculatgd.

d The fraction of allowed states with kinetic energy less tkan

B. Finding the expected canonical distributions

(ﬁl, o ,FTN), the canonical distributions for the kinetic an
potential energies separate. That is, the canonical distributioff hen

for the total energyP(H,T), is the product of the two dis-
gy ( ) p N(K) (K)BNIZ

tributions P(K,T) andP(V,T), where P(K)= — _ (13)
N(Kma)  (Kma)*™?
g1(K)e AKX
P(K,T)= Koo (9)  We can take the derivative to find the density of states, giv-
f 91(K)e #*dK ing
0
4P _(3N (K)3N2z-1 14
and ga( )_W_ > —(Kmax)sN/Z. (14
gx(V)e #Y : o i _ 1491150 -
P(V.T)=— (100  For a 10<10 lattice, this giveg,(K)=150K""/K 7, with
f "“"‘ng(v)e—ﬁvdv Kmax=2000.0 a convenient maximum value.
Vmin

2. Potential energy density of states
The quantitiegy;(K) andg,(V) are the kinetic energy and . .
the potential energy density of states, respectively. If we can 0" @ 10<10 lattice, the potential energy, E{), depends

determineg,(K) andg,(V), then we can find the expected in a complex way on the angle®( ;) for i=1,...,100,
canonical distributions for the thermostated systems. and in many cases several values of the 200 angles will pro-

duce the same potential energy. We cannot find an analytic

expression foig,(V), and need to calculate it numerically.

S . . Since the 1& 10 lattice has a very large phase space, it is not
We first find the density of stateg; (K) for the total ki-  practical to place a finely spaced grid on the phase space and

1. Kinetic energy density of states

energy ofN rotors is given by sample the large phase space by choosing a large number of
N random points at which to calculate the energy. If we sample
K = E > (wi)2=£92, 1y @ Iargg number_of poinfcéhere 10 p_oints)_, and the_n sort the
2= 2 energies found into a histogram with fairly few bins, then the

sampled probability in each bin approximates the actual
whereﬁz(i)l, c 0N probability very closely. Since the probabilitg,(V)dV
To find g4(K), we can use a standard proced(see, e.g., represents a fraction of the phase space volume, if we
Ref.[17]) for finding the density of states in the case wherechoose values o, and ¢; with uniform probability in
the expression for the energy is quadratic in the phase spatiee range$0,7] and[0,27], we need to weight the contri-
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bution of each energy found by the volume element 0.3 @
I, sin(@)A6A¢,, and then normalize the resulting distri-
bution. 025t
Sampling N points from the phase space, each with a
probability p; of having an energy in thgth bin, we expect 02y
the average number of points falling in tjté bin to beNp; . S o145l
The standard deviation of the distribution of the actual num- &
ber of points in the bin is given b (Np;), and it can be 01t
shown that the relative width (Np;)/Np;, which is a mea-
sure of the accuracy of the sampling method for that bin, 0.05 |
increases as the probabilify; decreases. In our case, sam-
pling 10’ points from the phase space, we find that the rela- 0 :
tive width is 10% for a bin with probability 1C°, and 35% 2 10 - 6
for a bin with probability 10°. In performing this calcula-
tion for the 10< 10 lattice, we found that the probability of 0.12 i
bins in the energy histogram dropped belga10~° for ®)
energies belove=—85.0, and thus the density of states is 01}
only reliable down to this energy. For temperatures below
kT=4.0, energies belo = —85.0 begin to have an appre- 0.08 -
ciable probability in the canonical distribution, so for the <
10x 10 lattice we can only reliably calculate the thermal dis- & 906 |
tribution for kT=4.0.
If we consider smaller lattices, however, we can find more 0.04 1
accurate thermal distributions for lower temperatures. In or- 0.02
der to give an evidence that the Nogermostat does give
nearly a thermal distribution for the ¥QLO lattice, we will 0o L. . s
calculate potential energy densities of states for the22 -30 -20 -10 0 10 20
4X 4, and 6x 6 lattices and argue that the trends we see will v
continue with increasing lattice size. We present the densities 0.07 .
of states for the X2, 4X4 and 6x6 lattices in Fig. 1. As ) ()
described above, the calculation was made by choosifg 10 0.06
points at random from the configuratidgpotential energy
part of the phase space, and then including the relative vol- 0.05 1
ume of each point found in the appropriate bin of an energy _ g4 |
histogram. The requirement that the probability be larger <
than 10°° to give better than 10% accuracy makes the den- < 0.03 ¢
sities of states found accurate in the energy ranges 002 |
[—-9.85,4.0, [—27.0,15.9, [ —40.0,14.Q for the 2x2,
4X 4, and 66 lattices, respectively. 0.01
We will use the densities of states found here, and the ‘ ‘ . .
resulting expressions for the canonical distributions, E@js. 0_50 40 30 20 10 0 10 20
and(10), to show that the 18 10 lattice is well thermalized v
by the Nosethermostat. In the section following, we derive
the thermostated equation of motion for thexiID rotor FIG. 1. Potential energy density of statgg(V), for «,=0.67

lattice, and then compare the canonical distributions obtaine@"dh=hconsi=1.00. BothV and g,(V) are plotted in the dimen-
from the thermostated equations to those obtained above. \§#Pniess units defined in Sec. lB) 2x2 lattice, (b) 4X 4 lattice,
will find good agreement. and(c) 6x6 lattice.

dof’s forms an extended Hamiltonian system. If the thermo-
stated system is ergodic in the extended phase dpateh

Let us now return to the equations of motion and includerequires that the unthermostated phase space be sufficiently
a thermostat that will build temperature fluctuations and dischaotig, it can be shown that the energies visited by the
sipation into the equations of motion. We will use the ther-Nosethermostated system follow a canonical distribution for
mostatting procedure first introduced by Nasd 984[18], a  both the kinetic and potential energig].
very ingenious method for generating a canonical distribu-
tion of energies from molecular dynamics equations. In this
method, an extra “Nosealegree of freedon{dof) is added to
a Hamiltonian system; the Nos#of couples to the kinetic The Nosethermostatting procedure is based on an “ex-
energy of the original system, and together with the originatended” Lagrangian that can be written as

lll. THE NOSE THERMOSTAT

A. Equations of motion with Nosethermostat
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1 . . . .
Lex=7 2, STPI+O7+WF+20,W; cog0))]
i=1

Q%

~V(O;,®;, 1)+~~~ 3NksTIn(S). (15)

where the thermal energys T is measured in units of the
exchange coupling,J, ®;=d®;/d7r, ©,=d0O;/dr, V;
=dW¥,/dr, S=dS/dr, 7is the dimensionless time in the
extended dynamical system, and
V(O , P, ,T):—<iZj> [Sin(®;)sin(®,)cog ®;— D))
+cog0;)cog0))]

N
—h(r)i; [sin(©;)sin(®;)]

N
—K4; [co(2d;)sin(©))]. (16)

The quantityQ is a dimensionless weighting factor that con-
trols the rate at that fluctuations occur &t an additional

dimensionless degree of freedom which acts as an effective

heat bath. The factor® is the total number of degrees of

freedom of the lattice of rotors. The equations of motion in

PHYSICAL REVIEW E67, 056130 (2003

N

>

=1

[P<b,i—C05(®i)Pw,i]2
Siré(0))

2 2
Po.iT

Hextzg
PS

+V(®| !(I)i ,T)+ 2Q

+3NkgT In(S). (20)

The equations of motion that result from this extended
Hamiltonian are given by

the extended dynamical system are given by the Euler-

Lagrange equations

d
dr

Il ext
IR

7

|

where k= 1,2,3,4, Al,i = (bi s A2.i = ®i s A3,i :q,i s and A4,i
=S.

The relation between thertual variables that appear in
the extended Lagrangidn.,; and the physical variables that

IL ext
aAkyi '

dPg, =_ﬂ_[PG),i_COS(@i)P\I',i]P\P,i
dr 90 S? sin(0;)
N [Py, —Ccog0;)Py ]°cog0))
S sind(0;) ’
APy OV dPy,
dr  od," dr
d_Ps:i§ ,  [Po—cos®)Py *
dr & o Si(©,) o
3NkgT
——5 (21)
@:& @:[Pm_COi@i)Pw,i]
dr &' dr sid(0;)
ﬂ: Py, [Pg,i—cog®;)Py Jcog®;) d_S:P_S
dr & S sin(0;) dr Q°

The physical angular momenta are related to the angular

appear in Eq(3) is as follows. Since the squared quantitiesmomenta in the extended dynamical system as

in the kinetic energy term of a Lagrangian are by definition
the physical velocities, the positions and velocities in the

physical system and the extended system are related by

do, do,
o=, 6,=0;, Y=Yy, a9t Sar
do, _d®; dy; _d¥,
a9t Sar At Sdr (18

This implies that thédimensionlessphysical timet and the
time 7 in the extended system satisfy the condition
- |

rd7’
S ’

dr
gl

(19

f— P(I)

Pe
p¢_ S 1 =

Py

Py="g (22)

For the extended dynamical system, the equations of motion
for the variablesPy, ;, Pg i, Py, Ps, ®;, ©;, ¥;, Sare
obtained from the Hamiltonian, Eq20) using Hamilton’s
equations. However, the equations of motion for the physical
variables,py i, Pg,is Pyis ¢is 0, ¥ in the thermostat,ed
system cannot be obtained from a Hamiltonian. The Nose
thermostating causes the energy of the physical degrees of
freedom (that is, excluding the extra Nosgegree of free-
dom) to explore a canonical distribution at temperatiie
The equations of motion for the physical variableg; ,

Poi» Pyi» ¢, i, ¢ must be obtained directly from the

so that the times in the physical system and the extendeequations of motion for the variabl€¥;, ;, Pe i, Py, Ps,

system evolve at different rates.

®;, ©,, ¥, Sof the extended Hamiltonian system by ap-

The Hamiltonian for the extended system can be writterplying Egs.(18), (19), and(22) to Eq. (21). They are given

as

by
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FIG. 2. Comparison of thermostated distributions for the kinetic energy with canonical distributions for two different initial conditions of
the 10x 10 lattice. The kinetic energ§KE) and the probability density are plotted in the dimensionless units defined in Sec. Il. The canonical
distributions are shown as solid lines and the two thermostated distributions as dotte¢h)ifes20.0 K and(b) T=200.0 K.

dpy; N [pgi—cog0)py,ilPy.i mo_s_tated distribution.” As a check_ of the integration, we
at g6 sin(6,) verified that the extended Hamiltonian, E80), was a con-
I i . e .. . ..
stant of motion. Two initial conditions with random positions
[pg,i—cog ﬂi)p¢i]2005{ 6,) Py iPs in the configuration space were chosen for each lattice size.
+ - -—, The total kinetic energy of both initial conditions was set to
sin’( 6) Q correspond to the temperature of interest; we considered both
20.0 K and 200.0 K.
M: _ ﬂ_ Py.iPs  dpyi __ Py.iPs In order to keep our computer usage manageable, we in-
dt d; Q dt Q '’ tegrated the thermostated equations for the two total times
t=1000.0 andt=2000.0, with a sampling interval for the
dPs N ) [Py, —coY )Pyl ) energies_ of_At=_0.1. We found agreement of th_e_thermo-
Wizl Py,it SI(6,) +py.i | —3NkgT, stqted distributions fot_z 1000.0 andt=2000.0, giving an
i 29) evidence that the distribution has converged to its equilib-
rium distribution. Since the Lyapounov tintg=1/\~2.0
. . o _ A (see Table)l, the sampling intervalAt=0.1 does introduce
%: o %: [Py, .COS( 6Py} , some correlation into the data. To ensure that this was not a
dt dt Sir(6;) large effect, we took several distributions with total tite
=20000.0 and sampling intervalt=2.0, and found very
dg; [Pgi—cod6;)p,lcog6) dS SPs little difference from the distributions witht=0.1.
H—Dw_ SIrP(6) ©odt Q- As mentioned above, because the phase space of the

10X 10 lattice is so large, we cannot directly compare the
thermostated and canonical distributions for the potential en-

gy, although we can do so for the kinetic energies. There-
ore, we first show that the thermostated dynamics gives
of Hoover [20] who found the Nosehermostat to be the close agreement for the distribution of the kinetic energies.
most effective at intermediate values @fin the range of ~1hen we show that the thermostated 2, 4x4, and 66
Q=1.00. Ia'ttlces have potent!al energy distributions that agree well
with the expected distributions for the canonical ensemble.
We thus expect that the thermostated<i® lattice should
also agree closely. Finally, we will sho(in the following

We can now determine if the Nosieermostat thermalizes section that the thermostated average magnetization and en-
the lattice of rotors. If thermalization does take place, therergy at low temperature are very close to their expected val-
we expect that the distribution of energies visited by theues for the 1& 10 lattice, providing a strong evidence that
thermostated system will agree with the canonical distributhe agreement extends down to a very low temperature.
tions. To calculate the thermostated distributions, we wrote a In Fig. 2(a), the thermostated distributions of the kinetic
program implementing the system of equati¢®3) using an  energy are compared to the expected thermal distribution of
Adams-Gear integration algorithm. In integrating up to akinetic energiegfound from Eqs.(14) and(9)] for two ran-
maximum timet=2000.0, the energy was recorded at 2 dom initial conditions of the 18 10 lattice, at the tempera-
x 10* equal intervals, and the resulting list of energies wasure T=20.0 K. Figure 2b) shows the same comparison at
sorted into a histogram of 100 bins, which we call the “ther-temperaturel =200.0 K. In both cases, we see small devia-

These are the dimensionless equations of motion of th
thermostated physical system. In subsequent sections,
will take the value ofQ to be Q=1.00, following the work

B. Comparison of thermostated and canonical distributions
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tions in the widths of the distribution@nd therefore in the that the thermostated lattice of rotors will be a useful model
heights, since they are normalized to pnlut an overall for a real magnetic material.
agreement in the kinetic energy distributions.

Moving to the potential energy distributions, in FigaB IV. CALCULATING THE CRITICAL TEMPERATURE
the thermostated and thermal distributions for>a22 lattice OF THE LATTICE
at T=200.0 and 400.0 K are shown; the distributions for the
2X 2 lattice at 600.0 K are presented in FighB The agree-
ment of both initial conditions is quite close at all three tem-

peratures. In Figs.(8) and 3d), a comparison of the distri- {he temperature range where hysteresis loops are expected.

butions for a 4<4 lattice afT =400.0 and 600.0 K is shown. |, the infinite two-dimensional Ising lattice, the heat capacity
(Because of the statistical uncertainties in the density of

states, the canonical distribution Bt=200.0 K was not ac- Ju
curate enough for comparis@.he agreement is quite close Ch= oT
for both temperatures, but the thermostated distributions are

smaller at lower energies, with a slightly more pronouncedyss a logarithmic divergence at the critical point. While in
effect atT=400.0 K. In Figs. &) and 3f), the comparison tne definition, Eq(24), the variableU refers to the internal

is shown for a 6<6 lattice and is very similar to the results energy, in the case of the Ising lattit¢ includes only a

for the 4X 4 lattice. Based on this trend in the agreementmagnetic potential energy and not a kinetic energy. For our
with increasing lattice size, we expect that the<Ii® lattice  rotor model, the Hamiltonian, E¢6), includes both a kinetic
would give similar results. We will present more evidenceand a magnetic potential energy. However, the kinetic energy
for the agreement of the thermostated distributions at loweserves only to allow the Nos#nermostat to produce a ca-
temperatures in the following section. Thus, we can expechonical distribution[Eq. (10)] of the potential energy at a

Before calculating hysteresis loops for the lattice of ro-
tors, we first use the thermostating technique to calculate the
heat capacity of the 2010 lattice, so that we can determine

(24)

H,N
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FIG. 4. The thermal average internal energy and the heat capacity of thé&OLttice of rotors, calculated using the thermostated
equations of motion. The thermal average internal enérgynits of the exchange constahk is plotted vs temperature i@). The heat
capacity(in units of the exchange constaiK) is plotted vs temperature itb). The error bars result from the confidence intervals for the
calculated values of the average internal energy.

given temperature. Hence, in finding the heat capacity weéhe temperatures chosen abpwéth the linear approxima-
include only the magnetic potential energy in the internaltion

energy, and in this section internal energy refers only to this

potential energy. _

In the 10<10 lattice with Heisenberg exchange, we also Cu(M= (U)lr-ame—(U)lr-ame
expect to see a peak in the heat capacity, defining a transition AT
temperaturel .. (We will verify in more detail thafT. rep-
resents the Curie temperature in the following secti@®-  In Fig. 4(b), we plot the results for the heat capacity, and
cause of the finite size of the lattice, however, a less sharplgbserve a clear peak @.~60.0 K. At lower temperatures
defined T, would be expected, as the magnetic order belowthe confidence intervals fa€,,, given by
T. cannot have a diverging correlation length. In addition,
we expect that the presence of the anisotropy interaction
could shift the location of the peak. . ACy(M)= A(<U>)|T+Am+A(<U>)|T7AT/2,

To calculate the heat capacity, we started the lattice with AT
initial conditions corresponding to temperaturés=4.0,
10.0, 20.0, 30.0, and 40.0 K, and then fra=50.0 K to  become much larger due to the larger uncertainty in the val-
T=270.0 K in steps of 20.0 K. The initial conditions were ues of(U) [shown in Fig. 48)]. Even with the use of more
made to correspond to a given temperature by setting thimitial conditions, the energies of the low-energy metastable
total kinetic energy of the rotors equal to approximatelystates are given too much weight in the thermostated average
3NkgT. We integrated the thermostated equations of motiorat a low temperature, resulting in higher values(bf) as
for a time T=500.0 for 20 different initial conditions at tem- well as larger uncertainties.
peraturesT=40.0 K and above, disregarding the first Still, despite the long relaxation times of the low-energy
=200.0 to allow the system to approach equilibrium. Wemetastable states, the values {&r) do approach the abso-
calculated the average internal energy of the lattice for théute minimum of E=—267.0 of the lattice withx,=0.67
final t=300.0 for each trajectory. From these 20 values forandh=0.0. An applied field should produce a clear global
(U), we used the distribution to form a 95% confidence minimum and decrease the relaxation time of the metastable
interval [21] for the mean of(U) at each temperature. At states, allowing for more accurate thermal averaging. Thus to
temperatures beloW=40.0 K, the lattice could remain in a present further evidence that the thermostated distribution
metastablg(i.e., not fully aligned state for the entire time agrees closely with the thermal distribution at low tempera-
interval t=500.0, with a greater chance of this occurring astures, we plot in Fig. &) the average internal energy per site
the temperature decreased. We can understand this with t{g)=(u)/N (with 95% confidence intervalsfor tempera-
observation that belowW=40.0 K, the relaxation time of the tures T=20.0, 10.0, 6.0, and 2.0 K with applied field
low-energy metastable states becomes comparable to the ih=—1.0. The minimum of the internal energy per site is
tegration time, and can be much larger than the integratiobinj,=—3.67, with contributions of-2.00,—-0.67, and
time at the lowest temperatufle=4.0 K. We thus averaged —1.00 from the exchangeS,, and magnetic field interac-
over 30 initial conditions for temperatur@s=20.0 and 30.0 tions, respectively. If we extrapolate the linear relationship to
K, and over 60 initial conditions for temperaturgs=4.0 K~ T=0, we find an intercept ofu)=—3.667, very close to
and T=10.0 K in order to sample the thermal distribution Unin. In Fig. Sb) we plot for the same temperature range the
more accurately. magnetization per sitdm)=(M)/N, in units of u, the mag-

We then estimated the heat capacity at temperatures frometic moment per site in our dimensionless system of units.
7.0 K to 260.0 K(at the midpoints of the intervals defined by We find that{m) also increases linearly at low temperature,

(25

(26)
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FIG. 5. Thermostated average @ internal energy per sitéu) and(b) magnetization per sitém) at low temperature for the 2010
lattice, with interaction coefficients,=0.67 andh=—1.00. Here(u) is in units of the exchange constahtand(m) is in units of the
magnetic moment per site.

with an extrapolated value at zero temperature(iof= along one of the minima of thk, interaction, although the
—0.9974, quite close to the valyen)=—1.0 at full satura- higher temperature produces larger fluctuations away from a
tion. fully aligned state. In Fig. @) at T=50.0 K, just below the

peak temperature of Fig. 4, we see that the correlation length

has greatly decreased, supporting the interpretation of the

V. HYSTERESIS IN LATTICE OF ROTORS peak of the heat capacity as the Curie temperature. We will
WITH NOSE THERMOSTATING look at hysteresis loops in the model at low temperature, in

The Nosethermostat causes the lattice to move toward arin® neighborhood of the Curie temperature, and above the

equilibrium distribution and to undergo thermal fluctuationsCUr'e temperature. _ o
in the equilibrium distribution. In a real magnetic material, AS mentioned previously in the description of the thermo-
when a time-periodic magnetic field is applied, the magnetiStated distributions, the equations of moti@g) were inte-
zation lags behind the field because the magnetic momengated using an Adams integration method, with the potential
cannot respond as quickly as the field changes, or becaudd ;. ¢;,t) containing a time-dependent fielch(t)
the moments become pinned in a metastable state, for exz No cosft). To ensure accurate integration of the hysteresis
ample, when a domain wall becomes stuck at a defect dPOPS, we chose the accuracy of the integration routine to
when a group of spins waits for one spin in the group todive conservation oH?m from Eq. (20 to seven S|gn|f|can§
nucleate. While our thermostated lattice does not have ddigures in a constant field, and we required that the following
main walls or impurities, it is possible for the lattice to be- condition:
come stuck in a metastable state, and also possible for the
response of _the lattice to lag behind_the changing field. Both AHg= — 3g MO, @ t)dh, 27)
effects contribute to create hysteresis loops. =l

In Sec. IV, we found the peak of the heat capacity curve
for the 10<10 lattice to be approximately 60.0 K, much where M,(0;,®; ,t)=2szlsin(®j)sin(¢>j) was satisfied to
lower than the Curie temperature in bulk cobalt ©f five significant figures for each hysteresis loop generated. We
=1390 K. The Curie temperature of a single layer of iron onused initial conditions with total kinetic energy correspond-
tungsten [with iron in the crystallographic orientation ing to the temperature of the calculation and with randomly
Fe(110]is 225 K[22], and as the bulk Curie temperatures of oriented moments. In addition, we integrated over four field
cobalt and iron are comparaki£390 K and 1040 K thisis  cycles and averaged over the last three cy@asluding the
a good estimate for the Curie temperature of a cobalt thidirst to remove transient behavjaio produce the hysteresis
film as well. With the small planar dimensions of our modelloops. In experiments, the hysteresis loops are typically av-
further reducing the Curie temperature, a value of 60.0 K forraged over a number of field cyclesee Ref[23], for ex-
the Curie temperature appears to be reasonable. To enswample. We have averaged over three cycles because of the
that the peak of the heat capacity curve is actually the Curiéarge amount of computer time needed for the simulation of
temperature, we examined the system’s approach to equililihe lowest frequency, but we find that this is sufficient to give
rium for initial conditions with randomly oriented spins and well defined loops.
several temperatures up to the critical point. The spin orien- In Fig. 7, we plot the hysteresis loops for a field strength
tations at equilibrium shown in Fig. 6 are representative of &ng=3.0 and for frequencies=0.001, 0.005, 0.01, and 0.05.
sample of several initial conditions at each temperature. It each frequency, three loops, at temperatures 20.0, 60.0,
Fig. 6(@), we see that the equilibrium dt=10.0 K consists and 100.0 K, are shown corresponding to the outer, middle,
of spins aligned with one of the minima of tig, potential.  and inner loops, respectively. In Figi@J, the low frequency
At T=30.0 K, in Fig. Gb), we still see the moments aligned leads to a steep drop of the magnetization and a square hys-
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shown), we find that the hysteresis loop disappears, and the
magnetization retraces the same path on the return trip of the
field.

In Figs. 1b) and 7c), the area of the loops at each tem-
perature increases with increasing frequency, as the time for
the reversal of the magnetization becomes comparable to the
period of the field. We can see that for each temperature, the
reversal begins at approximately the same figdig= (0.8,
—0.3, andh=0.0, respectivelybut takes a larger and larger
portion of the field period as the frequency increases. In Fig.
7(d), the hysteresis loops fof =60.0 K and T=100.0 K
have continued to increase in area; in the hysteresis loop at
T=20.0 K, however, the magnetization has not finished its
reversal before the field reaches its minimum and begins to
increase, leading to an oval shape differing from the more
familiar S-shape taken by the rest of the loops.

Although our model applies most directly to a nanopar-
ticle with monolayer thickness, we can make an approximate
comparison to an experiment performed by Wernsdorfer
et al. [6]. In the experiment, elliptic nanoparticles were de-
fined from sputtered thin films of Ni, Co, and other materi-
als; the particles had thicknesses between 8 and 50 nm, and
had elliptic axis lengths between 50 nm anglkin. A small
superconducting quantum interference deuis®UID) was
deposited next to the particles, and detected the flux change
due to the changing magnetization of the particle. Since the
field was applied in the plane of the particle and the SQUID,
it did not affect the measurement of the flux.

We can compare the hysteresis loops from our model to
the hysteresis loop pictured in Fig. 3 of RE8] for the Co
particle with dimensions of either 260L00 nm or 100
X 50 nm, and thickness in the range from 8 nm to 30 nm. In
[6], Wernsdorfeet al. show that the distribution of switching
fields agrees with the prediction of the' &dBrown model
(which assumes a single domaiump to 6 K, so we can rea-
sonably neglect the dipole-dipole interaction in our model.
Also, as mentioned above, since the exchange length in co-
balt is about 7.0 nni7] and the lattice spacing is 0.355 nm
[8], the spin orientation in the nanoparticle can be considered
constant over-20 atoms. We can therefore expect that the
lattice of blocked spins forms a single domain and will apply
approximately to the Co nanopatrticle.

We note that the shape of the hysteresis loop at 20.0 K
andf=0.001 in Fig. Ta) closely resembles the shape of the

FIG. 6. Spin configurations after movement to equilibrium from hysteresis loop for the cobalt nanoparticle, with slightly more

a randomly oriented initial state of the X@O0 lattice, at tempera-
tures of 10.0, 30.0, and 50.0 K. The figures showXheprojection

rounding due to the higher temperature of Figa)7 The
coercive field found for the cobalt nanoparticle in Réf| is

of the magnetic moment for each site in the lattice, with a circle ats o A/m=0.07 T, while the coercive field for our model at

the end of the projection indicating a positive valueSffor that

site.

teresis loop. The coercive field, approximatély 0.8 or H
=hJ/ub?=0.26 T (using w=1.71ug for cobal for the T
=20.0 K loop, decreases for thle=60.0 K loops since the

20.0 K at the lowest frequency is 0.26 T. Given the mono-
layer thickness of our model, this order of magnitude differ-
ence is not unexpected. Several factors, however, suggest
that the model can be made more accurate. The first is that
we have used a value for the four-way anisotropy of cobalt,
k,=0.67, appropriate for a surface, but it is known that the
value of the anisotropy in the bulk is lowg24]. Using val-

lattice, supplied with more thermal energy and now aboveies ofx,=0.2 and 0.1, we found coercive fieltg,=0.09
the blocking temperature, is able to reverse at a lower fieléind 0.07 T, respectively. Choosing these valuescowould
strength. AfT=100.0 K, the lattice is past the blocking tem- make our model an effective two-dimensional model, with a

perature and the critical poifii;, but still is caught briefly in
a metastable state near zero field. At=200.0 K (not

parameter borrowed from the bulk. The second factor is that,
while we have used periodic boundary conditions in an effort
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FIG. 7. Plots ofM (averaged over three field cycjess h for frequenciega) f =0.001,(b) f=0.005,(c) f=0.01, andd) f=0.05. Each
plot shows three hysteresis loopsTat 20.0, 60.0, and 100.0 K, progressing from the outer to inner loop with increasing tempekéiare.
plotted here in units of the magnetic moment per siteandh is in the dimensionless units described in Sec. Il.

to increase the effective size of our model, changing thevhereE, andH2,, are the energy barrier and reversal field at
boundary conditions from periodic to nonperiodic is prob-zero temperature, and is found to be 1.5. At a finite tem-
ably more realistic for a nanoparticle. This reduces the coerperature, the survival probability for the magnetizatitime
cive field by 5%, with nucleation beginning at the corners ofprobability not to have switch@dafter a timet is given by
the square lattice where the sites have a lower coordinatiothe exponentiaP,,(t)=e "7, where

number of 2. Modeling the elliptical shape of the nanopar-

ticle would create a number of edge atoms with coordination T H)= E(H) 29
number 2, and would likely reduce the coercive field further. 7(T,H) =70 x kT | (29)
VI. THE APPROACH TO EQUILIBRIUM In their analysis of the switching field, Wernsdorteral.

. . . find an estimate for the prefacteg of 7.4x 10’ s; it is also
Since the lattice model does not have an intrinsic time, sqipie to estimate, directly from the survival probability

scalg(as de;cribed in S?C' Il, this allows the model to bePsur(t), and we will do that here for the lattice of rotors to
applied to different physical systeinsve need to make a stablish a time scale for our model.

correspondgnce between the dynamics of the Co nanopar.ti'ce The first step in obtaining the survival probability is to
and the lattice. We can use data for the approach to equilitg, the histogram of switching times. As outlined in Ref.
rium (magnetization revers)aln the experiment to set the [27], we placed the rotor lattice in an opposed field
time scale for the attice model. h=—0.75 close to the switching field for 200 initial condi-

B In thﬁir paggr,z Wefrns@rfget al. [6] applly the Nelt-) tions near saturatiofieach of the trajectories initially has
rown theory[25,2§| of activation over a single energy bar- magnetization near saturatiod,s). We then plotted a histo-

rier to analyze their data for the distribution of the switchinggram (normalizing its area to oneof the times taken for the
field, and are able to find a close fit to th_elr eXm”memalmagnetization to reverse, where reversal was defined as the
dgta. Accord_mg to t_he Ned-Brown theory, which apphe; 002 first time when the magnetization reached®.85M. (Note
smgle-}(dcl)dl”r1|_a|||.’1 ?artlcz;et, tEe energy barrietto reversal in a that the exact value of this cutoff is arbitrary, and the cutoff
given he IS Tound fo be needs only to fall close to the saturation vaMeg.) Integrat-

a ing the histogram from timé=0 to timet gave the prob-
) , (28) ability Pg,(t) of the magnetization having switched by time

t, and finally we calculated, (t) =1— Pg,(t).

E(H)=E0 1- o0

SW,
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VII. CONCLUSIONS

1
08 | We have studied the appearance of hysteresis in the re-
sponse of a thermostated>1Q0 lattice of magnetic rotors to
_ 06 a time-periodic magnetic field at low temperature. The equa-
K tions of motion were placed in dimensionless units for the
04 | integration; the values of the exchangend the rotor mo-
ment of inertial, which together give a physical meaning to
02 the dimensionless quantities, were determined by the system
being modeled. The hysteresis seen is a consequence of the
0 0 5 metastable states created by the surface anisotropy and the

exchange interaction, and is made possible by the thermali-
zation introduced by the Nostmermostat. The underlying
FIG. 8. Survival probabilityP,, vst for the 10< 10 lattice of ~ Chaotic dynamics of ,the rotor lattice is essential to the ther-
rotors initially aligned and placed in a reversal fieldrof —0.75.  malization by the Noséechnique.
Here, Py, is unitless, and the timeis plotted in the dimensionless For the values o andK, we used, the lattice was deter-
units defined in Sec. Il. The data are shown for four different tem-mined to have a Curie temperature Bf~60.0 K. Given
peraturesT =40.0, 30.0, 20.0, and 10.0 K, with the distribution at that the 1< 10 lattice has both the small dimensions of a
10.0 K at longest times and the times decreasing with increasinganoparticle and the thickness of a thin film, this value is
temperature. The distributions are based on 200 measurements @fasonable. In comparison of hysteresis in the lattice to the
magnetization reversal at each temperature. hysteresis observed by Wernsdorferal. [6] in a cobalt
nanoparticle, the experimental coercive field was 0.07 T and
our model gave a value of 0.26 T. The reduced valu pin
The results for temperatures 10.0, 20.0, 30.0, and 40.0 ¢ |k and the use of nonperiodic boundary conditions both
are shown in Fig. 8. The distributions do shift to greateringicate a potential for improved agreement. A comparison
times as the temperature decreases, and after a certain de{gif, experimental data for the switching time distribution
time follow an exponential form, as predicted by B89).  gets the timdand frequencyscale for our model as applied
We think the delay time is due to the fact that the thermo+, he cobalt nanoparticle, and allowed a determination of the
stated equations retain the original spin dynamics of the Unagactive moment of inertid of the rotors in the lattice
thermostated system, as well as thermal relaxation, while thg, qe|.
Neel-Brown model applies to a system undergoing only the  Ag oyr available computing power is increased, we are
thermal relaxation. o ~ . working to extend the model to a three-dimensional lattice.
If we use the time that the switching time distributions \yse think this can improve the agreement with experiment by
takes to decrease toelas a value ofr for each temperature, |oyyering the x, anisotropy used, thus decreasing the coer-
and perform a best fit for the quantityo, we find 7o jye field, and by increasing the average coordination num-
~14.4. We can make a rough correspondence between thig,. \hich should increase the critical temperature.
time and the timer,=7.4x 10’ s in the experiment, to find
the time unit\1/J=5.1x10"% s. This also establishes the
unit of frequency in our model as 2QLC° Hz, giving for ACKNOWLEDGMENTS
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