PHYSICAL REVIEW E 67, 056129 (2003
Magnetization distribution in the transverse Ising chain with energy flux
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The zero-temperature transverse Ising chain carrying an energycfisxstudied with the aim of determin-
ing the nonequilibrium distribution function®(M,) and P(M,) of its transverse and longitudinal magneti-
zations, respectively. An exact calculation reveals B{@! ,) is a Gaussian both =0 and atjg# 0, and the
width of the distribution decreases with increasing energy flux. The distribution of the order-parameter fluc-
tuations,P(M,), is evaluated numerically for spin chains of up to 20 spins. For the equilibrium gase (
=0), we find the expected Gaussian fluctuations away from the critical point, while the critical order-
parameter fluctuations are shown to be non-Gaussian with a scaling fun@tieh=>(M,/(M,))
=(M,)P(M,) strongly dependent on the boundary conditions. WheA0, the system displays long-range,
oscillating correlations buP(M,) is a Gaussian nevertheless, and the width of the Gaussian decreases with
increasingjg . In particular, we find that, at critical transverse field, the width h@g%? asymptotic in the

je—0 limit.
DOI: 10.1103/PhysReVvE.67.056129 PACS nuni)er05.50+q, 05.60.Gg, 05.70.Ln, 75.10.Jm
[. INTRODUCTION in Ref. [14] and it has been found that, in addition to the

equilibrium phases, a flux-carrying nonequilibrium phase ap-

Nonequilibrium steady stateéNESS have been much pears, which is distinct by its correlations decaying with dis-
studied but a description of some generality has not emerge@dnce as a power law. We shall be concerned with the distri-
so far. Among the many approaches tried, there is one thddution function in the various phases of the above system.
continues to receive particular attention. It is an attempt taMore precisely, we shall determine the steady-state distribu-
understand the general features of NESS through studies @bn functionsP(M,) and P(M,) of the M, (nonordering
nonequilibrium phase transitiofd-3]. The basic assump- field) and M, (ordering field components of the macro-
tion here is that the universality displayed by equilibrium scopic magnetization in all three phases of the system at and
phase transitions carries over to critical phenomena in NESS$,e gy its critical point.
as well. Thus, by investigating the similarities and differ-  he results are surprisingly simple. The distribution func-
ences from equilibrium, one may gain an understanding ofions are Gaussian in the equilibrium phases away from the

the role of various components of the competing dynamiCgyitical point. This is expected since we have macroscopic

generating the steady state. For example, one may find bé{uantity and the correlations decay exponentially. The distri-

observing the_ universality cla_sses OT various nonequ'I.'bmm.'bution of the nonordering field remains a Gaussian at the
phase transitions that dynamical anisotropies often yield di-

) 7 . . critical point of the equilibrium system, as well. The reason
polelike effective interactionf4—6] or that competing non- for this is that although the appropriate correlations deca
local dynamics(anomalous diffusiongenerates long-range, ith dist 9 | pr; thp tinth y
power-law interaction§7]. with distancen as a power law but the exponent in the power

The extension of concepts of critical phenomena to phasi$ 1arge (1h?), so that the fluctuationéM 2)—(M;)? do not
transitions in NESS also implies that the distribution func-diverge ath=h.. The distribution function of the ordering
tions of macroscopic quantitiésuch as the order parameter field becomes nontrivial dt. and our numerical calculations
are nontrivial(non-Gaussian They are universal, however, demonstrate thaP(M,) depends strongly on the boundary
and characterize the given nonequilibrium universality classgonditions taken to be periodic, antiperiodic, and free. The
too. The advantage of studying the scaling functions assocknexpected simplicity is in the current-carrying phase where
ated with the distribution functions is that building thesethe energy flux generates long-range correlations decaying as
functions does not involve any fitting procedure and thusa power law (1{/n) but, nevertheless, the distributions are
they allow for a fit-free comparison with experiments. In- Gaussian. The mathematical reason for this lies in the oscil-
deed, using these distribution functions, a number of interfating character of the correlations, which prevents the diver-
esting results have been derived for surface growth as well ggence of the spatial sum of the correlations which in turn are
for other nonequilibrium processgd8—13). proportional to the fluctuations. Physically, the oscillations in

In this paper, we continue our studies of nonequilibriumthe correlations can be traced to the form of energy [faee
distribution functions by investigating the effects of a non-Eq. (3) below], which suggest that the consecutixendy
equilibrium constraint on a well-knowguantumphase tran- components of the spins are more and more rigidly intercon-
sition; namely, we take the transverse Ising chain that has amected agg is increased and thus fluctuations decrease with
order-disorder transition as the transverse fiels varied, increasingjz. This picture will be seen to be valid near the
and drive it by a field to produce an energy flyxthrough  nonequilibrium phase boundaries where the fluctuations as a
the system. The resulting steady states have been describfohction of jg can be explicitly calculated.
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The above results are presented in the following order. 2 . T
Section Il contains a review of the transverse Ising model
with energy flux, including the setup of the formalism con- h
venient for calculating the distribution functions. NéSec. .
1), distribution P(M,) is calculated exactly. Numerical <6,>=0
work on P(M,) and preliminary analytic work on correla- ) O N <0§0,’>~1—5in(kn) """"
tions are presented in Sec. IV, followed by concluding re- ordered o x Vo
marks in Sec. V.

disordered nonequilibrium phase
J E:O o x JE¢0

Il. TRANSVERSE ISING MODEL WITH ENERGY FLUX

The transverse Ising chain is one of the simplest systems 0 2 4 6 8
displaying a critical order-disorder transiti¢h4—19. It is | A
defined by the Hamiltonian

h FIG. 1. Phase diagram of the driven transverse Ising model in
g XX z the h—|\| plane whereh is the transverse field whila is the
Hi= JEi SiSi+1 2 2.: S @ effectivla f|ieFI)d that drives the flux of energy. Pairs of dual-conjugate
points are shown by filled squares, circles, and stars; andhline

where §i = %&i and o (@=x,y,z) denotes the three Pauli =1 is self-dual as discussed in the text. Power-law correlations are
matrices at sites=1,2, ... N of ad=1 chain, anch is the present in the nonequilibrium phask,# 0, and on the Ising criti-
transverse field in units of the Ising coupling<1 is setin  C&line in the equilibrium phasde=0 (h=1, 0<[)|<2).
the rest of the papgrWe shall mainly consider periodic )
boundary conditions &, ,=s%), which are the simplest value of energy fluxje=(Jg)/N becomes nonzero fdi |
ones allowing for a nonzero energy current to flow through™>\. The resulting phase diagram is depicted in Fig. 1.
the chain(free boundary conditions imply a zero steady-state Here we note a hitherto unnoticed property of the Hamil-
current in the above model and as it turns out the same holdenian (2); namely, the duality properties of the transverse
for antiperiodic boundary conditions Ising model[18] have an appropriate generalization to the

The order parameter of this systemMs==;s’, and the  full nonequilibrium phase diagram #1. Indeed, let us de-
ground state of this Hamiltonian changes from being disornote the action of duality transformation tsf— s and
dered(M,)=0 for h>1 to orderedM,)#0 forh<1. The define the transformation as is done for the Ising model in a
transition pointh=h, is a critical point in the universality transverse field
class of the two-dimensional Ising model.

We would like to investigate the nonequilibrium states of

H, which carry a given energy flux. At zero temperature, this
amounts to finding the lowest energy stateFpfwith a pre-

scribed energy flux. This can be accomplisti¢d—17 by |t can be verified then that the Hamiltoni& h,\,{s}] (2)
introducing a Lagrange multiplier conjugate to the energy characterized by the two couplings,§) transforms into an
currentJg. Thus one should find the ground state of theidentical Hamiltonian with couplingsh(\)* =(h~1,—\h),
following Hamiltonian:

1
Zk __ XX Xk Xk __ z
ST =2SiSi11, SUST1T5S 4

) h ) HLh A\ {s’H1=hH[h~ %, —Xh{s"*}]. (5
A=-> si"sﬁl—zz SP—NJg. )
! ! Hence the duality transformation leaves the whiolg= X\
curve globally invariant and, furthermore, it leaves the
=1 line pointwise invariantiexamples of dual-conjugate
points are given in Fig. )1 In order to keep the formulas
simple, from now on we shall restrict our analysisnz 0,
h that is tojg=0.
Je=7 2 (sist 1~ ssi 1) ©) The self-dualh=1 line is expected to display special
49 properties. For example, quantities such a9\, or the
. . L wave vectorsg.. where the excitation spectrum is gapless,
l}lote that the t|meA evolution of the chaans still governed byare left invariant by the duality transformation. Furthermore,
H, through whichJg was initially definedH is just a math-  the functional form of various physical quantiti¢gisper-
ematical intermediary to determine the nonequilibriumsion, energy flux, fluctuatiopsonsiderably simplify on this
steady state ol . line and thus the knowledge of self-duality helps in locating
The driven system defined by Eg&) and (3) can be limits where exact calculation can be carried out.
solved [14] and one finds that the ground state does not Our main goal is to calculate distribution functions
change and the energy flux is zero up to a critical value P(M,) and P(M,) in various regions in the above phase
=\.(h) of the driving field. The ground-state expectation diagram. These functions are defined as

Here the driving field\ is again measured in units 6f and

the current operatodg is the sum of local energy fluxes
given by the following expression:
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d
P(Ma>=<5(Ma—Z sf*)>, ©
| (C_q(— 0)Cq(@)) =(Cq(@)C_q( —w))*

where brackets denote the quantum mechanical expectation 1

value in the ground statgnote that we have omitted the sing

. . . . . 2 1 1
index « in P,(.), i.e., the argument of the function defines = — ,
which distribution is considerdd 20 \iw—A; iw—Ag

There are two parts to our calculations. Funct®{M,)
is evaluated numerically by diagonalizity for chains con-

taining up toN=18-20 spins, whileP(M,) is found ana-  yyhereA , andA > are the dispersion relations fék andF,
lytically. The exact calculation is possible becault, respectively,

=Eq(cacq—1/2) is a quadratic form in the fermion opera-

11)

tors (¢}, cq) in which the HamiltoniarH = H,— X J is qua- 1 ,
dratic as well. Thus the calculation of the generating function Aq=5V1+h"+2hcosq, (12)
G(s)=(e =) Y i \h
Ay =*A,+ —sing. (13

q q
becomes a problem of evaluating Gaussian integrals. We be- 4

gin with this part of the problem. In order to return to the time variables, we must first study

the two branche‘ACT of the spectrum.
A. Formalism

HamiltonianH can be diagonalizefdL4] by first introduc- B. Spectrum and energy flux

ing creation-annihilation operators, then employing the £y of energy is present in the system only above a criti-

Jordgn—Wigner transfogmatio[ils')] to traqsform them' into cal drive\ >\ [14] (see Fig. 1, where

fermion operatorsq, ,c,) and, finally, using a Bogoliubov

transformation on the andc’[q components of the Fourier 2 if h=1,

transforms ofc,-s. The calculation oP(M,) becomes rela- A(h)={ 2 (14)
tively simple if after using the Jordan-Wigner transformation ¢ if h<1.

one passes to a path-integral formulatisae, e.g., Ref20] h
for a pedagogical accouniOne then finds that the system is

described by the following quadratic action:
Se.c] Ag(NSN)>0, Ay (A=\)<O0. (15)

Indeed, it is not hard to see that

dw [ dq|1l _q( —w) Hence the ground state is unchanged with respect to the pure
= f ﬂf oy [Cq(w)C—q( 0)]Bg 0 Ising model ground state as long as the driving field does not
Cq(®) exceedAh.(h). This means that all observables will assume
(8)  their Ising model values and no energy current will be flow-
ing through the chain.
where the Grassmann fieldg(w) andcy(w) are related to ~ However, forA=\. one may see thaky (A,) changes
c! andc, correspondingly, while the scattering matt,, ~ Sign over the intervall,=[q_,q.] (I,=[—q:,—q-]).
has the following inverse The explicit expression for the wave vectars is deduced
from
By~ ((c_q(—@cq(w» <C‘q(_w)c‘q(_w)>) _ — 4+ (NPT 4N 4)
(Cq(w)Cq()) (cq(@)Cg(—w)) €0sq. = h , —m<(.=<0.
9

Here the correlators are given by Beyond the critical drive, the excitation spectrum gives rise

to a ground state that breaks the left-right symmetry and,

(Cq(@)Cq())=(Cq(@)Cq())* indeed, it may be verifieftL4] that a nonzero energy flux is
h 1 h 1 present in the chain with the explicit form of the flux given
b
1 > 2cosq Aq 2 2cosq+A y
2Mq|  iw—A; iw—Ag h \/ 4
q q : 2 2
= N ——|(\"—4). 1
10 Je=, 3 h2>( ) 17
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For later applications, we specify the=jg(\) function in
the vicinity of the critical drive, ad —\ ,

( [n2_71

h"—1 A—2 for h>1, A.=2,

A

1

je~ _()\—2) for h=1, A.=2, (18
h3/2 /1 h2 2
—— for h<1, )\C=H.
\

PHYSICAL REVIEW E67, 056129 (2003
result for Grassmann integrdl0]: the vacuum expectation

value of observables of form expgz.c4c,) can be obtained
as

(o] -3 2

- \/Zquq( Bc;l)ll
= de
g v {

—1+2_¢(By D12

- N Zquq(B;l)ZZ

(23

Besides, as they will naturally arise in the upcoming discus-

sion, we further define here intervals=[—m,q_],
=[q,,—0.], andlg=[—q_,#] which are complementary
tol, andl, in [—m,m].

C. Inverse of the scattering matrix in the absence or presence
of energy flux

When no current flows through the systefjg=0, the
equal-time transform ofE{q,w)‘l, denoted byBal, reads

1 h 1 A
I Esmq §+ ECOSC]‘F q
2A 2A
-1_ q q
Bq ho1 N 1 (19
E + 5C0S0+ A i>sing
2Aq 2Aq

For jg#0, on the other hanqu_l is given by Eq.(19)
only for qelUlzUls. If qel,Ul,, its expression is
changed to

L, [0 o0 L (01
l2:Bg*=| o] lBit={, o)

Having the expressions chal, we can start the calculation
of the distribution functiorP(M,).

(20

[ll. DISTRIBUTION FUNCTION
FOR THE TRANSVERSE MAGNETIZATION

A. Calculation of the generating function and its moments

The generating functioi7) of P(M,) can be expressed
through fermionic operators as

G<s>=<e‘st>=eNg2< exp(—sE CISCq)>- (21)
q

. t .
After normal orderinge 3% and using the Grassmann

fields, we are left with evaluating the following expression:

G(s)zeN§<exp( —S>, ¢4Cq > s=1-e% (22
q

and the fields in the exponentials are evaluated at some fixed

time. In order to evaluate E@22), we recall the following

1+24(BgHa
As one can se&(s) is a special case of E§23) and it can
be evaluated by using the appropriate expressia8s or
(20) for By *.
If no current flows, that is, foh<\., we find that InG
(the cumulant generating functipis given by

InG(s)——f In[(l ng)e+nqge °], (24

where

=(h+cosq+2Ay)/(4Ay). (25
One can verify that the normalization conditi@(0)=1 is
satisfied, and one can also recover the well-known result
found by Pfeuty[21] for the magnetization
dInG(s) dqg
e RS

1
nq— E) . (26)

As we shall see belowp(M,) is a Gaussian thus, in ad-
dition to (M), the variance of the transverse magnetization
No?(h)=(M2)—(M,)? will characterize the distribution. It
can be obtained from the second derivative oB(8) as

7 d
az(h)zzﬁ %nq(l—nq). (27)

It is interesting to note that the fluctuationsh, are inde-

pendent of the magnetic field in the ordered phase

1/4
1/(4h?)

for |h|<1,

|h|>1. 28

Uz(h)=[
In the presence of nonzero energy flix\.), the gen-

erating function is more complicated only because of the
limits of integration in Eq.(24),

—In[(l nges+nse ). (29

1L UlaUlg 2T

In G)\(s)——f

Accordingly, the first and second cumulants of the magneti-
zation are given by

N

2

2

dq h+cosq

— = 30
1U|3U|527T 2Aq ( )

<Mz>)\:
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dq sirfq

1

2
Am-z AL @

=3 1101301527 14+ h2+ 2h cosq 3y
where we have used E@25) to write out the integrands
explicitly. Note that we added & subscript toG, (M,), and
o in order to indicate that these quantities do depend on
for A>\;.

B. The transverse magnetization distribution is a Gaussian

In order to show that the transverse magnetization distri-

bution is a Gaussian, let us consider tith cumulantMJ),
which is the coefficient in front of £s)"/n! in the expan-
sion of InG(s). The latter coefficient it times an integral of
a polynomial inn,, both in the current-carrying and current-
free phases and, furthermong, is a nonsingular, strictly
positive function ofqg (note thatn, is finite even ath=1).
Hence each cumulant depends linearlyhonn particular, as
we have seen, the varianceMf, denoted byNo? anda? [in
Eqg. (31 or Eq.(27)] is finite.

It follows from the linearN dependence of the cumulants
that

(MZ)e N

NTz/e | ~N@-2
(M2 N2

(32

thus the above ratio goes to zero for mib2 asN—o~. We
may therefore conclude that the limiting form of the distri-

bution function of the transverse magnetization is a Gaussian

of varianceN ¢

P(MZ): e_(Mz_<Mz>)2/2N‘72_ (33)

1
JV2m7Na?
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-2 1

- 0 1
M,-<M,>)/

\/<Mzz>-<Mz>z

FIG. 2. Distribution functionP(M,) for the transverse magne-
tization M, on the critical lineh=h.=1, A<2. Results for peri-
odic boundary conditions are displayed. The solid line is the
asymptotic Gaussian while the dashed line is the displacement dis-

tribution of a 20-step random walk of step length 1/2 having a drift
generating an average displacement equaMg).

r—1
7(1—h—2)(>\—>\c)1/2 for h>1, \.=2,

The above result applies over the whole phase diagram and it

is useful to check the numerical procedure employed in Sec.

IV by evaluatingP(M,) for finite-size systems. As can be

seen in Fig. 2, there is a convergence to the limiting form

with increasingN and, furthermore, the nearly Gaussian fluc-

tuations ofM, are observed already at small sizéé=(16

—20). It is remarkable that the deviations from the Gaussian

are very close to those of astep random walk with a drift
determined from a correspondence between the(tifht)
moves and the ufdown) spins generating the averagd ).

C. Width of the Gaussian

Recalling the expression of the average and the varianc

Egs.(26) and(27), we calculate them in the limit of vanish-
ing flux (\—X\_). Let us define

SM,=(M),—(My), &So?=0i(h)—o?(h). (39

The above quantities exhibit singular behavior as one ente

the current-carrying phase. For the magnetization we find

M ,= TV (39

Nfmdq h+cosq
q 2m q

IS,

-1
M = ¢ — (=)o) for h=1, \,=2,
-1 2
_ T W52y 3/2 [
\ 7Th (N—N\¢) for h<1, A, h
(36)
and for the variance
) 1
h=1, )\C=2, oo 2—m )\—7\0,
2 Vh
h=<1, Ne=p 502:—7 A— e (37
Using Eq.(18) we find, asjg—0,
h#1, So?=—jg, (39

h=1, o&0°=—j¢?.
As can be seen, the variance of the transverse magnetization
is smaller in the current-carrying phase than in the current-

free phase. This supports the view that imposing a current

Stiffens the system, and thus decreases fluctuations.

IV. DISTRIBUTION FUNCTION FOR THE
LONGITUDINAL MAGNETIZATION

The exact evaluation d?(M,) appears to be a nontrivial
task and we have been able to calculate it only numerically
for finite-size chains. Since expressi®®) for P(M,) is a
ground-state expectation value, we had to find the ground-
state wave function and, due to the sparseness of the Hamil-
tonian matrix, the Lanczos algorithf22] could be used ef-
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FIG. 3. Scaling function for the distributioR(M,) of the lon- FIG. 5. Distribution functionP(M,) for the longitudinal mag-

gitudinal magnetizatio, on the critical lineh=h.=1, <2, for netizationM, away from the critical lineh=h.=1, A<2.
periodic boundary conditions. In order to demonstrate the smallness

of finite-size effects, the small systemd+£8,10,12) are displayed
by full symbols while the larger systemdNE& 16—20) are all
shown by a single empty symbol.

a remarkable feature that has been observed in a series
of equilibrium- and nonequilibrium-critical ~ states
[8,9,11,23,24 Note also that the finite-size effects show up
fectively. Since the ground-state wave function is neede(ﬁEamlym thle Igrgd\/lxll V<'\::X> r;:-gllon. This is in accorq Wltr} h
with precision, we were able to accomplish this task forine general observation that the large-argument region of the

chain lengths of up tdN=20 with the results displayed on scaling function is related to the long-wavelength properties
Figs. 3-5 of the system.

Figure 4 shows the critical point scaling functions for
various boundary conditiongeriodic sy, ;=57 , antiperi-
odic sy.,=—57, and fre¢. One can observe here not only

In the equilibrium systemje=0), the correlation length the strongly non-Gaussian character of the distributions, but
is infinite only at the critical point. Thus one expe&éM,) also the fact that scaling functions do vary with changing the
to be a Gaussian fdn>1, a sum of two Gaussians for ~ boundary conditions. The boundary condition dependence of
<1, and a nontrivial distribution emerges only at criticality the critical scaling functions is knowf25-2§. It is also
(h=h.,=1). This is indeed what we observe, apart from theknown that the scaling functions depend on the shape of the
finite-size effects showing up in non-Gaussian correctionsystem as well. In case of tlte=2 Ising model, this means
close toh=1. At the critical point itselfP(M,) shows fast that the scaling function depends on the aspect iaid a
convergence to the asymptotic form as can be seen in Fig. @ctangular sample. Since the transverse Ising model has its
where the N=16 points appear to have settled on theorigin in the transfer matrix of the=2 Ising model in an
asymptotic curve. This means that tine dependence of anisotropic limit[26], we speculate that the distribution func-
P(M,) is almost all in the scaling variabIMX/«/<MX2>, tions displayed in Fig. 4 are equal to tHe-2 critical order

parameter distributions in the— 0 limit with the boundary
0.7 . . . . . conditions in the “short” direction being in thd=1 andd

A. Equilibrium distribution

=2 systems. Implicit in this belief is the assumption that the
06 1 e periodic—- g boundary conditions in the “long” direction do not affect the
0s | . ° s, scaling function providec— 0.
% 04 | 5 Ena 5 a B. Nonequilibrium distribution
< 03} ["“:KN:“" io ,x“/free ] In the nonequilibrium casg £#0), we find that similarly
£ é,o@’ Ch . 8 o to M,, the fluctuations of the longitudinal magnetizatilgh
021 o %\D’jp PR 1 are also GaussiafFig. 5. Remarkably, the finite-size, non-
o1l ¥ antiperiodic ] Gaussian corrections are small even near hlkel, A=2
' & % point.
o 2. . : . . The Gaussian result is somewhat surprising since the flux

2 -1 1 2 X

0 generates power-law correlations {s§s;) decaying with
MX/V<MX2> .
distance as i/n [14]. Thus one may presume that the
FIG. 4. Distribution functionP(M,) for the longitudinal mag- current—car(ying states are gffectively cripicaj. This is not so,
netizationM,, at the critical lineh=h.=1, \<2. Results for peri- Nowever, since the correlations are oscillating and the fluc-
odic, free, and antiperiodic boundary conditions are displayed fofuations(MZ) (given by the integral of the correlationare
system sized=16-20. finite. Actually (M2) is decreasing with increasing (see
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below) and thus we see here another example of fluxes gen- (M2 Nk~ 3N j 38, (42
erating power-law correlations but, nevertheless, making the
system more rigid.

2 . . . . .
The decrease ofM;) with increasingje can be seen in The ahove expression demonstrates the decrease of fluctua-
the numerical studies of the finite spin chains. On the selftjons with increasing flux and it also tells us how the Gauss-

dual line (h=1), however, this can be shown analytically in jan gistribution crosses over to the nontrivial shape observed
the limit of vanishing flux § —\.=2), where one finds at the critical point.

(M2)y=Njg %5, (39)

The derivation of the above result is possible because the V. FINAL REMARKS
(h=1, A=\,) point is a critical point with infinite correla-
tion length. Approaching this point along tie=1, )\—>)\§
line, one can observe from numerical studjéd] that the
wavelengthk ~ ! of the oscillation of the correlation function
Cu(r)=(s's}, yccos«r diverges asc™ toc (A —\¢) Y2 This

Returning to the problems discussed in the Introduction,
we can see that the connection between NESS and critical
states in terms ofuniversal distribution functions is not
straightforward. NESS is generated by fluxes, and fluxes

diverging wavelength allows one to take a continuum limit™&Y Of may not generate long-range correlations. There are

and to establisfi33] to all orders in perturbation theory, that Numerous examples—3] where the fluxes are spatially lo-
the order-parameter correlations possess the following scaf@lized and long-range correlations do not developless

ing form: the system is at a special point in the parameter gpace
Clearly, in such cases, one cannot hope for a general descrip-
A tion to emerge. If the fluxes are global, as is the case for the
Cu(r)~ rl—,f(Kf). (400 model treated in the present paper, long-range correlations do

emerge frequentljLl—3]. Even in this case, however, it is far

with the small argument limit of the scaling function explic- from trivial whether these correlations drive the system to an
itly given by F(x) = 1—x2/2+ x*/16+ O(x°). effectively critical state or whether they make the system

The derivation of the above results follows the idg2&-  more rigid.
32] used for the calculation of the order-parameter fluctua- The driven transverse Ising model treated above is an ex-
tions in the equilibrium transverse Ising model; namely, theample where a global flux of energy generates long-range
correlations are expressed as a Pfaffian of a block Toeplitzorrelations but the resulting state becomes more rigid in the
matrix constructed of X2 matrices. Then, in the equilib- sense that the fluctuations are decreased due to the presence
rium case, the analysis of the Toeplitz matrices in theof the flux. Driven diffusive systemgl] provide other ex-
asymptotic limit ofr—o, and h—1 with r(h—1) kept amples[34] where the fluctuations decrease while the fluxes
fixed, yieldsCE%(r)~r ~Y4F(r(h—1)). A similar asymptotic  induce power-law correlations. Thus we should conclude
analysis in the current-carrying phase, using the scaling limithat, in general, the power-law correlations generated by glo-
r—, andk~(A—\)¥2—0 with «r kept finite, results in  bal fluxes cannot be the source of possible universality of
Eq. (40). The derivation is rather technical and we shallnonequilibrium distribution functions. It remains, however,
present it, together with the analysis of other scaling limits,an intriguing question whether the weak long-range interac-
in a separate publicatidrs3]. tions supported by global fluxes can underlie a kind of

Once the correlations are known, the fluctuations can beweak” universality classification of distributions in NESS.
calculated from

(MO=N

+
1+2> Cx(r)}och drC,(r), (41 ACKNOWLEDGMENTS
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