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We calculate finite-size effects of the Gaussian model in>al %~ box geometry with free boundary
conditions in one direction and periodic boundary conditiond-l directions for 22d<4. We also consider
film geometry { —). Finite-size scaling is found to be valid fd<3 andd>3 but logarithmic deviations
from finite-size scaling are found for the free energy and energy density at the Gaussian upper borderline
dimensiond* =3. The logarithms are related to the vanishing critical exponentrt v=(d—3)/2 of the
Gaussian surface energy density. The latter has a cusplike singuladity3ndimensions. We show that these
properties are the origin of nonscaling finite-size effects in the mean spherical model with free boundary
conditions ind=3 dimensions. At bulkl, in d=3 dimensions we find an unexpectednlogarithmicviola-
tion of finite-size scaling for the susceptibiligy~ L2 of the mean spherical model in film geometry, whereas
only a logarithmic deviatiory~L? In L exists for box geometry. The result for film geometry is explained by
the existence of the lower borderline dimensidp=3, as implied by the Mermin-Wagner theorem, that
coincides with the Gaussian upper borderline dimendioa 3. For 3<d<4 we find a power-law violation of
scalingy~L9"* at bulk T, for box geometry and a nonscaling temperature dependenge,cs~ & of the
surface susceptibility above.. For 2<d<3 dimensions we show the validity of universal finite-size scaling
for the susceptibility of the mean spherical model with free boundary conditions for both box and film
geometry and calculate the corresponding universal scaling functiofsfar, .
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I. INTRODUCTION AND SUMMARY with the bulk critical exponenty/v and theuniversalampli-
tudeB, . For purely periodic boundary conditions and short-
Finite-size effects near phase transitions and the concepange interactions, universal finite-size scaling in the sense of
of finite-size scaling near critical points have been the subggs. (1) and (2) has been largely confirmed, except for the
ject of many studies over the past decafies4]. Consider, nonuniversakexponential behavior in the regidre ¢ which
for example, the susceptibility(t,L) of a ferromagnetic has recently been shoif—8] to depend on the lattice struc-

system at the reduced temperattre(T—T.)/T.=0 near yre for lattice models and on the cutoff procedure for con-
the bulk critical temperatur&. in a cubic geometry with a tinuum models.

linear sizeL below the upper critical dimensiot=4. The Of particular interest are nonperiodic boundary condi-
property of finite-size scaling means that, for sufficiently jons which are relevant for real systems. For example, for
largeL and smalit, x has the asymptotic form the superfluid transition ofHe, Dirichlet boundary condi-
tions of field theories are believed to be fairly realidiéd.
For this system, however, accurate experiments have de-
tected nonscaling finite-size effects on both stgie12] and
dynamic[13,14] properties that are as yet unexplained. Fur-
thermore there exist unexplained finite-size effects inXe
mpdel with nonperiodic boundary conditions as detected by
nte Carlo simulation$15].

On the theoretical side, the true conditions for the validity
of universal finite-size scaling for systems with nonperiodic
oundary conditions are not established. This includes the

portant case of free boundary conditions for lattice models
g . . ) that are believed to be asymptotically equivalent to Dirichlet
the smallx behaviorf(x)=B,x"" for T—T. at fixedL is boundary conditions of continuum models. It is known that
also universal. The specific shape and the amplideof | niyersq] finite-size scaling in the sense of EX. fails for
such scaling functions do, of course, depend on the geometyye mean spherical model in film geometry with free bound-
and the kind of boundary conditions. A central prediction of ry conditions ind=3 andd=4 dimension$2,16—18, and
finite-size scaling is the size dependence at the bulk critic imilarly for the ideal Bose gas with Dirichlet, boundéry con-
temperaturel. ditions for cubic and film geometrie&2,19-21. In these
o . models the bulk correlation length could not be used as the
x(OL)=A& ""B,L” ) only reference length and nonscaling finite-size effects were

x(t,L)=x(t,»)f (L/§), oY)

where x(t,»)=A,t"7 is the bulk susceptibilty andf
=¢ot ™7 is the bulk correlation length. An appealing feature
of finite-size scaling is universality which means that all non-
universal parameters of the confined system can be absorb
entirely in the bulk amplitudé, and in thebulk correlation
length ¢, thus finite-size scaling functions suchfagx) are
expected to be independent of nonuniversal detaileh as
the lattice structure, the lattice spacing and the magnitude q
coupling constanis This implies that the amplitudB, of
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incorporated in nonuniversal shifts of the temperature varithese quantities in the form of a pole tera(d—3)* [36].

able[16-21]. Logarithmic nonscaling finite-size effects that As discussed in Sec. Il H, the dimensidrs=3 can be con-

depend on the lattice spacing exist also in Gaussian interfacgdered as an upper borderline dimensidnof the Gaussian

models[22] as well as in other model[g}]. model with free boundary conditions above which the lattice
On the other hand, universal amplitude ratios have beeand cutoff effects become non-negligible for the surface en-

found for critical systems contained in parallel plates withergy density.

nonperiodic boundary condition3]. Furthermore, field- For d>3 we find that the surface energy density

theoretic renormalization-group calculations have apparenti{surfacdt) Of the Gaussian model with free boundary con-

confirmed the validity of universal finite-size scaling within ditions has a cusplike singularity at bulk; as T is ap-

the ¢* field theory with Dirichlet boundary conditions: Uni- proache~d from above. For the lattice model at finite lattice

versal finite-size amplitude ratid®4] and universal finite- spacinga the height of the cusp is

size contributions to the free energy density and to the criti-

cal Casimir force were calculated both in the Gausgiare- im Usyrfacdt) =Usurtacd 0)=Tc& %@ By (3)

loop) approximation[25—27 as well as in two-loop order =0+

[26]. Universal finite-size scaling functions have also been

predicted for the specific heat and the superfluid density if¥ith

the presence of Dirichlet boundary conditid8s28]. Related

field—theorgtic predictions have also been presented for SUT-Edzlfwdy{[l_’_e*4y_2672y|O(Zy)][e72y|0(2y)]dfl}

face quantitied29,30. In these paper§24-3(Q, however, 8Jo

the method of dimensional regularization was employed

which neglects lattice and cutoff effects. Recent work on >0, )

finite-size effect§5—8,31-3% has demonstrated that general ) )

renormalization-group arguments are not sufficient to provévherelo(2) is the Bessel function of order zero. The tem-

the validity of universal finite-size scaling and that cutoff andPerature dependent part Gty ac{t) has a universal scaling

lattice effects are nonnegligible for confined systems withform ~ &9, but it vanishes aff; and is subleading com-

periodic boundary conditions. Clearly these investigationgared to the nonuniversal finite regular part, ), at T.

need to be extended to the case of nonperiodic boundar{e latter part yields a leading nonscaling contribution

conditions. Usurfacd 0)/L to the total energy density. These results re-
The corresponding analytic calculations, at finite cutoffmain valid also for the Gaussian model in the film geometry

and at finite lattice spacing, become quite difficult within the (L— <) with free boundary conditions.

¢* theory beyond the lowest order. Before embarking on In a second step we analyze the exactly solvable mean

such an ambitious project it is, of course, necessary to firsspherical model with the same boundary conditions. Previ-

examine the lowest-order case under the simplest nontriviausly this model has been studied for the film geometry at

conditions, i.e., with fredor Dirichlet) boundary conditions integer dimensionsl=3,4,5... [16,17. Here we extend

in only one direction. Therefore, as a first step, we considethis analysis tocontinuousdimensions in the range<2d

the exactly solvable Gaussian model with short-range inter<4 and consider both the film and box geometries. This

action on a simple-cubic lattice with a lattice constarior a ~ revealsd=3 as a borderline dimension between a universal

finite rectangulat. x L9~ box geometry with free boundary Sc@ling @<3) and a nonuniversal nonscaling=3) re-

conditions in one direction and periodic boundary conditiongdiMe- In this paper we calculate the nonscaling effects for

in d— 1 directions. Even at the Gaussian level, the analytié=4<4 as well as the analytic form of the universal finite-

calculations at finite lattice spacing in the range@<4  Size scaling functiorf, (L/£), Eq. (1), of the susceptibility

turn out to be nontrivial. for 2<d<3 mgludmg the amplitudeB(s) of the scaling
For the specific heat and the susceptibility of the GaussiaffSult: EQ.(2) with y/v=2,

model we find full agreement with universal finite-size scal- )

ing. With regard to the singular part of the free energy we x(OL)=B(s)L", d<3 ®)

find that the finite-size scaling form is indeed valid for _

<3 and d>3 but logarithmic deviations from finite-size at an arbitrary shape factgse=L/L=0. The amplitudeB(s)

scaling occur atl=3 where the critical exponent-da—»  is shown to diverge fod— 3.

=(d—3)/2 of the surface energy density vanishes. In order The mean spherical model can be considered as a Gauss-

to describe the logarithmid=3 behavior it is necessary to ian model with a constraint where the constraint can be ex-

keep the lattice spacing finite. We find that the same logapressed in terms of the Gaussian energy density. Our results

rithmic deviations from finite-size scaling exist in the con- for the latter quantity explain the origin of logarithmic non-

tinuum version of the Gaussian model with Dirichlet bound-scaling terms in thermodynamic quantities of the mean

ary conditions provided that a finite cutoff is used. Thisspherical model ad=3 and of power-law violations of

implies that the method of dimensional regularization at in-finite-size scaling for 32d<<4. While previous work sug-

finite cutoff is not capable of correctly describing tHe=3  gested the existence of onlpgarithmic deviations from

behavior of the singular part of the free energy density and ofinite-size scaling ind=3 dimensions[2,16—-21 we find,

the energy density since it yields unphysical divergences ofjuite unexpectedly, aonlogarithmicviolation of the scaling
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prediction, Eq.(5), for the size dependence of the suscepti- 2J[ Be.a(*®) = Bea(L)]
bility at bulk T; in d=3 dimensions
~ =4Bja/L—Cqy(a/L)9 2+ 0(a%2L~92) (10
x(0L)=Bgma 'L® (6) 5
with the nonuniversal amplitud8,, Eq. (4), and with a
for film geometry, whereas for box geometry, at a fixed finite ;niversal amplitude Cy>0. Eq. (10) implies T, 4(L)

shape factos=L/L>0, we find the expected logarithmic >T. 4() for large L>a. The leading term~L ! in Eq.

deviation from scaling (10) has a nonscaling dependence whereas the subleading
’ ~ universal term has the scalingdependence-L*".
x(OL)=Bpods)LN(L/a). () In summary, we see that both the anomalous nonscaling

. . - . enhancement of; 4(L), Eg.(10), and the power-law viola-
As will be shown in detail in Sec. IV C, the special result of ¢.d
Eq. (6) for the film geometry atl=3 is due to the simulta- tions, Eqs.(8) and (9), for d>3 can be traced back to the

neous appearance of two logarithmic effectslat3 where —Same amplitudd,, Eq. (4), of the nonscaling cusp of the
two borderline dimensions coincide: it is a combined effectGaussian model. Thus the analysis of the Gaussian model
of the logarithmicsurfaceterm of the Gaussian model at the Provides a better understanding of the origin of the power-

(upped borderline dimension* =3, where the exponent 1 law nonscaling finite-size effects in the mean spherical
— a— v vanishes, and of a logarithmiinite-sizeterm arising ~ Model ford>3, and, for box geometry, of the logarithmic

from the mode continuum of the film system just at thedeviations_ at the Gaussian upper borderlineT dimensl_rbn _
(lower) borderline dimensiod, =3 at which the film critical  —.>- FO fllm geometry, however, the Gaussian logarithmic
temperature vanishes in accordance with the MerminEfféct atd®=3 is enhanced by a second logarithmic effect

Wagner theoren{37]. Most striking is thediscontinuous due to the lower borderline dimensidp=3 (where the film
change of the exponent 2 of the power law,=B(0)L2 critical temperature vanishgswhich then yields the power

law Eq. (6).
for d<3, Eq. (5, to 3 of the power law x¢im . . :
—B,, 3 LS for =3, Eq.(6). We point out that all nonscaling effects are tied to the

The result of Eq(6) is not contained in the work of Bar- finite lattice constana>0, as seen explicitly i_n E_q$3) and
ber and Fishef16] who calculatedy for the film geometry in ~ (6)—(10). We expect that similar effects exist in the ideal
d=3 dimensions only fof =T (L) whereT(L)>T, is some Bose gas with Dirichlet boundary conditiofts9—21]. These
ytofl = o TR c effects are not captured by the standard method of dimen-
temperature that they called “quasicritical.” Odr=3 result

. 1 ; . ; sional regularization. It remains to be seen whether the
for x(t,L) covers the entire critical regioh=Te including  echanism for nonscaling finite-size effects in the mean

the regimeT=T(L). In the latter regime, the explicit form spherical model and the ideal Bose gas is an artifact re-
of our result is at variance with the simpler form of Barber stricted to these models or whether some of these features are

and Fisher. of more general significance. This question is of particular
For box geometry in 3d<4 dimensions we find a jinterest belowT, where an explanation of the pronounced
power-law violation of scaling af nonscaling finite-size effects ifHe remains a challenge for
- future research.
X(0.L)=Bpo(s,d)a’ L4, tS) In Sec. Il we summarize the predictions implied by the

) ) ) _finite-size scaling hypothesis. Section IIl contains the de-
where the amplitud®,,,(s,d) is proportional to the ampli-  t5jled results for the finite-size effects in the Gaussian lattice
tudeBy, Eq.(4), of the cusp of the Gaussian surface energymodel with free boundary conditions and in the Gaussian
density. A nonscaling form is also found for the temperaturecontinuum model with Dirichlet boundary conditions. In Sec.
dependence of the surface susceptibility fer 8<4 above |V we analyze the consequences of our results for the mean
Te, spherical model with free boundary conditions. The deriva-

tion of our results is presented in appendixes.

Xsurface:Asurfac;37d§d~tid/(diz) 9
. _ 1 . II. FINITE-SIZE SCALING PREDICTIONS
with é~t~",v=(d—2)"*, whereas the scaling form, Eq.
(1), would imply xsurface~ O(xpé) ~t~2/@~2) for the mean In the subsequent sections we shall present exact results

spherical model. Again the amplitud®, ,;ace in Eq. (9) is for th_e finite—size effects on the fr.et'e.energy Qensity, energy
proportional toBy . density, spemf@ heat and susceptibility of lattice models in a
For the film geometry ind>3 dimensions we find an Tectangulai.xL¢"* box geometry with free boundary con-
anomalous enhancement of the film critical temperaturdlitions in the direction of size and periodic boundary con-
Tc.q(L) abovethe bulk critical temperatur&, 4(«). A cor-  ditions in thed—1 directions of sizeL. For the sake of
responding shift was first found fad=4 by Barber and clarity, we first summarize the predictions implied by the
Fisher[16]. This enhancement is most naturally expressed ifinite-size scaling hypothesis, which, for this geometry and
terms of the dimensionless parameterJ@4(L)  these boundary conditions, have not yet been formulated ex-
= 2‘J[kBTC,d(L)]7l where J is the nearest-neighbor cou- pllCltly in the literature. We denote the critical temperature of
pling. The result is, fod>3, the d-dimensional bulk {—o,L —=) system byT 4. In
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the limit L—oo at fixedL, the box becomes a film of thick-
ness L, which may have its own critical temperature
Tea(L)#Teg=Tcq(). In general one expect3 4(L)
<T.q but it turns out(see Sec. 1V, see also R¢L6]) that =Adurfacd’ I+ W4(1) 17
for the mean spherical model with>3 the film critical
temperatureT, 4(L) exceeds the bulk critical temperature With a universal amplitudé\,, (... Of the singular part. The
Teq. For simplicity, in this section, we assume a nonsingular surface contributiof,(t) is aregular function
d-dimensional box with dinite shape factor./L>0 and  ©f t. Nonasymptotic Wegnef40] corrections to scaling are
confine ourselves t3=T, 4. neglected in Eqg13), (14), (16), and(17). The phenomeno-
First we consider the’ free energy denstigt,L,T) (in logical finite-size scaling theory does ngt make specific pre-
units of kgT) at the reduced temperature: (T— T q)/T¢ g dictions about the dependence brand L of higher-order

=0 and at vanishing external field. It is expected that, fort€MS in Eq.(15).
smallt, f can be decomposed into a singular and a “nonsin-. Equations(11)—(17) are expected to hold also for con-
gular” part[38,39 tinuum models with Dirichlet boundary conditions in one

direction, with the same universal quantities as for free
~ ~ ~ boundary conditions of lattice systems. As noted in the In-
ftLL)=f4(t,L,L)+frgt,L,L), (1D troduction, however, there existonuniversalexponential

_ terms in the regimé.> £ L> ¢, where the lattice-dependent
where f,((t,L,L) has a regulat dependence. In the bulk and cutoff-dependent exponential correlation ler@t8,41]

fsurfacdt)= lim [f(t-LI) - fb(t)];

L—oo

limit, the corresponding decomposition is becomes the appropriate reference length.
Although the energy densitynternal energy per unit vol-
Fo(t)=F(t,%,20) = fue(t) + fo(t), (12 ume divided bykg
where the regular party(t)=f,(t,0,0) can be identified Ui,LD)=-T2 Jf(t,L,L) (18)
unambiguously. For systems with short-range interactions, Y aT

below the upper critical dimensioti=4 and for largel,L

andé, it is expected that the singular pdg(t,L,L) has the 'S coinplletely determined by the .free -energy density
finite-size scaling fornj1,3g] f(t,L,L), it turns out that a separate discussion of the energy

density is warranted because of its important role played in

~ 4 ~ the mean spherical model in Sec. IV. From E¢El)—(15)
fs(t,L,L)=L""ALIEL/L), (13 one obtains the prediction

where £(t)=¢&,t™" is the (second-momeit correlation U(t,L,L)=Uqt,L,L)+U.qt,L,L0), (19
length of thed-dimensional bulk system. For a given shape

factors=L/L, the scaling functioF(x,s) is expected to be Where the singular part

universal. More specifically, the singular and nonsingular ~ ~

parts of the free energy density are expected to have the Ug(t,L D) =Te&o ML 9y(Lig, LIT)  (20)

asymptotic(smallt, largeL, largeL) form [1,4,38,39 . i )
has the universal scaling function

fo(t,LD)=YE 4+ 2A0 racd™ L1+ LT G(LIELIT) Ux,s)=—vx~ Yo F(x,s)l Ix (21)
(14
= —drY X = 2(d— 1) vAl a1
and
—vxt"aG(x,s)/ ax (22)
frs(t,L, L) =fo(t) +2W (t)/L (19  and where the leading nonsingular part

with a universal bulk amplitud&y and a universal surface Uns(t,L,L)=Ug(t)+2U4(t)/L (23

amplitude A, racer @and with a universal finite-size part
G(L/&,LIT) of the scaling function has a regulat dependence withJ o(t) = — T?9fo(t)/JT and
U(t)=—T?9¥(t)/dT. (24)

FLIELID) =Y (LIE) 4 2A  rracd L1681+ G(LIELIT).
(16)  For the surface energy density, E44) implies asymptoti-

cally
Equations(14)—(16) imply that there exists the surface free

energy Usurfacdt) = _Tzﬁfsurface(t)/érr (25
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PHYSICAL REVIEW E 67, 056127 (2003

according to Eq.(1), where y,(t)=x(t,©)=At" 7 is the
bulk susceptibility. ForL> ¢ L>¢, the scaling function is

In Egs.(20) and(26) we have used the hyperscaling relation expected to have the expansion

dv=2—a. (27

These scaling predictions have been confirmed by sever
of

field-theoretic  renormalization-group  calculations
fo(t,L,%) [26] and ofUg ace[24,36,42,43based on the?*

continuum Hamiltonian with Dirichlet boundary conditions

for the field ¢(x). All calculations, however, were carried

out within the dimensional regularization scheme that ne-

glects cutoff effects. As pointed out by DoH®,36], an un-

f(LIELT)=1+c, &L+O(XL2e 1) (37)

9\|/ith the universal coefficient, . Fort>0, this implies

. ~ L _
Xsurfacd )= lim [X(taL,L)_Xb(t)]E :'A‘)-(*—,surfacet 7s

L—oo

resolved feature of the dimensionally regularized perturba-

tive results forUg race [24,26,36,42,4Bis a pole term
~(d—3) 7! that diverges in three dimensions.
We note that the critical exponent b tacdt)
l-a—v=(d-1)r—1 (28
is positive for ordinary critical points of th@(n) universal-
ity class with d>2 which implies afinite critical value
Usurfacd0)=U4(0). By contrast, for the Gaussian model,
1-a—v=(d—3)/2 is positive only for d>3, thus
Usuriacdt) diverges fort—0 in d<3 dimensiongsee Sec.
n).
We shall also consider the specific h¢divided bykg)

aU(t,L,L)

i =C4(t,L,L)+Cpq(t,L,L).

C(t,L,L)=

(29)
From Egs.(19)—(23) we obtain the predictions
Co(t,L,D)=¢&, 2L e(LI&,LIT) (30)
and
Che(t,L,D)=aUg(t)/at+2L" 19U (t)/at  (31)
with the universal scaling function
C(x,8)= vx Y au(x,s)/ ox. (32)

The scaling structure implies that the surface specific heat

Csurfacdt) = dUgurracdt)/dT has a divergent singular part,

Csurtacd ) =€5 “Ad surtacd” s+ UL (1)/dT (33
with the surface scaling exponent
as=a+v (39
and with a universal amplitude
AL surface= — (1= a=v)(d=1) VA rface: (35

(38)
with the surface scaling exponent
Ys=ytv (39
and with the surface amplitude
A;surface: %Axfocx . (40

ForT—T,q4, the smallL/¢ behavior of the scaling function
is expected to be

f (L/€LIT)~B(L/D)(L/&)Y™ (41)

with a finite universal amplitudBX(L/[)>0, which implies

x(OL,D)=A & "B, (L/IT)LY". (42

In the following, we examine the range of validity of these
predictions for the exactly solvable Gaussian and mean
spherical models in d<4 dimensions.

Ill. GAUSSIAN LATTICE MODEL WITH FREE
BOUNDARY CONDITIONS

A. Lattice Hamiltonian
We considerN continuous scalar variables; , — %< ¢;
<o, on the lattice pointx; of a simple-cubic lattice with a
lattice spacinga in a finite rectangulat X L9~ box of vol-

ume V=LL9 1=Na’. We assume a Gaussian statistical
weight ~exp(—H) with the lattice Hamiltonian

~ r
H=a| 2 S ef+2
i (ij)

J 2
ZTaz(qoi—soj) (43

with a nearest-neighbor couplin>0. The factor kgT) *
is absorbed iH. The dimensionless partition function is

[
j L Zl-de

In the bulk limitL —o,L— o, this model has a critical point
atry=0 for arbitraryd>0. We assume that the temperature

Z= exp —H). (44)

Finally we recall the prediction for the asymptotic scaling T €nters only through

form of the susceptibility

x(t,L,0) = xp(O) (LI£LIT) (36)

T-T

r0=a0_|_—c, ag>0. (45)
Cc
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A serious shortcoming of this model is the fact that it has no

low temperature phase, i.e., no bulk limit exists fg 0.

Nevertheless, there exist nontrivial finite-size effects rigr

=0, as we shall see.
We assume free boundary conditions in ttk (vertica)
direction and periodic boundary conditions in the 1 (hori-

zonta) directions. Thed—1 horizontal coordinates and the

vertical coordinate of the lattice pointg=(y;,z;) are de-
noted byy; andz;, respectively. The “bottom” and “top”

surfaces perpendicular to the vertical direction have the co-

ordinatesz;=a andz;=L, respectively, thus we have/a

layers of fluctuating variables. The variables in the bottom
and top surfaces have only one neighboring layer. This is
equivalent to assuming Dirichlet boundary conditions (
=0) in the(fictitious) layersz;=0 below the bottom surface

andz;=L +7a above the top surface. The variablgscan be
represented as

¢ =L@ +5)*1k2p (Apk’pEX[Xi K-yj) V2 sin Pz)
(46)

with the Fourier amplitudes

erp=a'2 ejex—ik-y)\2sinpz). (47
The sumZ, , runs over (i—1)-dimensionak vectors with
componentsk;=2mm;/L,i=1,... d—1 with integersm;
=0, +1,+2, ..., in therange — w/a<k;</a and over
wave numberp=mn/(L+a), n=1,2, ... L/ain the range
0<p<mla. Equation  (47) follows from
=, 2sin(z) sin(p'z)=(L+a)a '3,,. We see that, fol/a

layers with free boundary conditions, the natural unit wave

number inp space isw/(L+a) rather thanw/L. For each
given p, there are {/a)?"* variablesgy ,. Equation(46)
implies ¢;=0 atz;=0 and;=0 atz;=L+a for arbitrary
yi, thus we have a total number = (L/a)(L/a)?"* vari-

ablesfpk,p. Substituting Eq.(46) into Eq. (43 yields the
diagonalized Hamiltonian

1. - P
H=SL @ O(L+2) 71 (ro+Jdka-1+3p) @k p®—kp
2 kp

(48)
with
4391 3
1723 El [1—cogka)], (49
4] -
JPZ?[l—cos(pa)]. (50

The Jacobian of the linear transformatiq:rﬂﬂ<}>k‘p of Eq.
(46) is

PHYSICAL REVIEW E67, 056127 (2003

99

=[a'Ld Y L+a)] V2
aQDk,p

(51)

Using Egs.(44), (46), (48), and (51), we obtain the free
energy density divided biggT

~ 1. -
f(t,L,L)=—V lnZ=— Eard[m 7+ (L/a)t %n 2]

1. -
+§L’(d’1)L’1E IN[(ro+ Iy g1+ Jp)a2].
k,p

(52

In all calculations of this section, we shall keep the lattice
spacinga finite.

In the following, we shall also consider film geometry
(bulk limit in the d—1 horizontal directions In Eg. (52),
this corresponds to the replacement @~ Yz, 3 [,
where [,=(2m) " 9fd% k with |k|<m/a,i=12,...d
—1; hence

L—d 1 -1
f(t,L,00)=— Ea In 7+ EL

X > fln[(ro+Jk’d_1+Jp)52]. (53
p k

A simplifying (but unrealisti¢ feature of the Gaussian model
is that the critical point of the film system of finite thickness
L is also determined by =0, i.e., it remains unshifted com-
pared to the bulk critical point for adl. This differs from the
case of the spherical model to be discussed in Sec. IV.

B. Bulk properties

First we briefly summarize some of the known bulk prop-
erties. The square of the second-moment bulk correlation
length ¢ aboveT, is defined by

1 % (Xi—Xj)2<<Pi<Pj>

£=lim lim == (54)
e Iz} (®io))
It is given by &2=Jgr,* or
E=¢ét™7, v=1/2 (55
with
&o=(Jolag)'?  Jp=2J. (56)

From Eq.(52) we have the bulk free energy density fgy
=apt=0

1., 1 ~
fp=—za “In7+ Efqln[(ronLJq,d)a 1, (57

2
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where [,=(27) %fd% with |gi|<=/a,i=1, ... d. Equa-
tions (52)—(57) are defined for all integer dimensiorts
=1,2,....They can be extended to continuatdjsas usual,

by means of analytic continuation via Euler's Gamma func-

tion I'. From Eq.(57) one obtains the singular part &f for
0<d<2 and xd<4

fps=YE™® (58)
with the universal bulk amplitude
oo Re" Al (59)
a(l—a)(2—a) d(4—d)’
I'(3—d/2)
d (60)

- 2d_277'd/2(d— 2) '
For 0<d<2 and 2d<4, the regular part of,, reads,

f0=i~i*d[~(‘:1+ro~azE2+rga4E3+O(rgéG)] (61)
with d-dependent constants. The constants;, C,, andcs
diverge ford—0, d—2, andd—4, respectively, wheré,
attains a logarithmic dependence @2 The bulk suscep-
tibility is simply, xp=ro =J0"¢% which implies A,
=a, *. The critical exponents are

7=0, y=2v=1 foralld>0 (62
and
for 0<d=<4

a=(4—-d)/2 (63)

aboveT,, in agreement with the hyperscaling relation Eg.

(27) for d<4. Equationg59) and (63) imply (R, )?=Aq(d
—2)/8 for d<4. The prefactor in Eg.(2) is simply
Axgay“:‘]al'

The second-moment bulk correlation lengthmust be

distinguished from the “exponential” bulk correlation length

& in the direction of the unit vectoe= (x;—x;)/[x;—X;|,

PHYSICAL REVIEW E 67, 056127 (2003

C. Free energy density

In Appendix A we derive from Eq(52) the size dependent
free energy density for box geometry for largéa at fixed
L/é=0 and at fixed /L for d>1

f(t,L,E): fb+2fsurface(t)|—71+g(l—/gll-/ﬂl:)l—id
1. - ~ ~
—Ea‘lLl‘dln 2+0(aL "9 tat L%,
(66)

where

310 e
fauracd )= 5= | “ayly H1+e Y26 g(2y)]

x[e Mlg(2y)]% texp —yrea®dy )} (67)
with the Bessel function of order zero,
1 (=
lo(2)= ;J do exp(zcosb). (68
0

Equation(66) contains the universal finite-size part

4

1 (= di2 1
g(x,s)=§f0 dyyl{(;) —5[sK(s?y) ]

(d—1)/2
e
with

K(z)= 2_ exp(—m?z). (70)

which is defined via the large-distance behavior of the aniso-

tropic bulk correlation functior& (x; — x;) = (¢;¢;) [41]. For
the special case where=(x,0,0, .. .) isdirected along one

of the cubic axes, the correlation function decays exponen-

tially as[7]

a
27X

Z2-d (d-1)/2
C00=25

.r(a)}(ds)/z
Sin g—l

xe PMér1+0(]x|71)] (64)
with the exponential correlation length
3 Zarcsi V( 5) h (65)
=|zarcsinh
Yla 2¢

We shall see that it ig; rather than¢ that determines the
exponential part of the finite-size effects abdlgnot only
for periodic boundary conditiong’] but also for free bound-
ary conditions.

We note thatf g, 14ce depends on the lattice constant un-
like the finite-size parti(x,s). Using K(z)~ (w/z)'? for z
—0, we obtain for film geometryl(— o)

1(= m\ 12 1
ax0)=3 o (]~ 34(3]

(d-1)/2

7T efy><2/4‘rr2

X

(71

The surface part remains, of course, identical with q).
Equationg66)—(71) are applicable td =T, and toT>T, at
fixed L/&. The correct exponential larde¢ behavior of
G(L/£,LIL) at fixed T>T, is not yet included in Eqs(69)
and(71) as it involves the “exponential” correlation length
&1, Eq. (65). For largeL> ¢ at fixed T>T,, Eq. (69 must
be replaced by
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G(LIE LIT)=—2"9[L/ (&))@ Vi2g2Lle
X[1+0(£/L%)]-(d—1)
X(LIT)@ V2L (27¢,)]@ V2 La
X[1+O(&A 2], (72

Correspondingly, Eq(16) must be modified for large> &.
The nonuniversal last term L9 in Eq. (66) contributes to
the regular partf,4(t,L,L) of f, thus Eq.(15) should be

complemented accordingly. In order to clarify to what extent

thea dependent termi,racdt) contains universal contribu-
tions, we need to distinguish the casesd<3, d=3, and

3<d<5. For this purpose it will be useful to express the
regular part linear img in terms of generalized Watson func-

tions defined by 16]

21 2@ deo do
Wa(2)= )dj f (73
z+22 1—cos¥;)
=fwdye’zy[e’2ylo(2y)]d- (74
0

1.1<d<3

For 0<r,a’<1 and 1<d<3 we obtain from Eq(67)

fsurfact.{t): fsurfacéo)'l'A;—urfacegl bdroa3 dJ !
+0(a/éY) (75
with the universal amplitude
T'((3—d)/2)
Asurface - 0 (76)

2d+lﬂ_(d71)/2(d_ 1)

and with the nonuniversal constant
s 1(~ —4y -2y -2y d-1
bd=§ . dyf[1+e " —2e Yly(2y)][e” “Ig(2y)]

_(4,”.y)(l*d)/2}‘ (77)

This constant can be partially expressed in terms of genera

ized Watson function as

1
by= 8[Wd 1(4)—2Wq(0) ]+ 5 fdy[e_zylo(Zy)]d_l

1 (>
+3 f {[e™®1o(2y)1%7 = (4my) =92

A
+2*d*lﬂ_(1*d)/2(d_3)*1A(3*d)/2 (78)

(see Appendix A We note thaby does not depend on the
arbitrary finite constanf>0.

PHYSICAL REVIEW E67, 056127 (2003

The second term in Eq.75) has the expected singular
scaling form~ &9, The first termf s, 12cd0) and the third

term ~by contribute to the regular part2,(t)L~* of

fos(t,L,L). Thus the surface contribution is in accord with
the predicted universal scaling structure of E(s3), (15),

(17), and (18). We expect thaib, depends on the lattice
structure(see also Sec. Il & We note that bot\J,,..and

the coefficientb, diverge ford—3 such that

lim [Ed_A:urfaCPJ :B (79)

d—3-

has a finite limitb (see Appendix A The explicit expression
for the constanb is given in Eqs(81) and(82) below.

2.d=3
For O<rya°<1 we obtain from Eq(67) atd=3
fsurtacd 0) — (16m) ~1¢~2In(¢/2) ~brJy
(80)

fsurface(t) =
+0(algd).

The analytic expression for the nonuniversal consbaist

= 1A
b:§J dy[1+e ¥—2e ¥ig(2y)le Mlo(2y)]?
0

+ %fwdy{[H e V—2e"PIy(2y)]e” M Io(2y)]?
A

—(4mwy) 1 +(32m) " H(1-Cg—1InA), (81)

whereCg=0.577 isEuler’s constant. This constant can be
partially expressed in terms of generalized Watson functions
as

E—1W4 2W. 1fAd ~2)4(2y)]?
—g[ 2(4)— 3(0)]+§ o y[e o(2y)]

+ %fw{[e’zylo(2y)]2—(4wy)’1}+(32w)*1
A

X(1—Cg—InA). (82

Note thatb does not depend on the arbitrary finite constant

>0. We expect thab depends on the lattice structusee
lso Sec. 11 G.

While the first and third terms of Ed80) contribute to
the nonuniversal regular part¥2 (t)L =t of f,(t,L,L), the
second(logarithmig term is clearly a singular contribution
to the free energy density. This implies that, tb+ 3, EQs.
(13) and (16) must be replaced by

fo(t,L,L,a)=L 3FL/¢LIL alg), (83
where

(8m) L(L/€)%n(&la)
(84)

FLIELIL,al&)=F(LIELIL)—
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contains a logarithmic nonscaling term that depends on thate to the regular part'2,(t)L ! of f,(t,L), whereas the

nonuniversal lattice constaat We conjecture, however, that third term has the expected singular scaling forng™~¢.
the coefficient— (877-)_1 is universal, i.e., independent of the Thus the surface contribution is in accord with the prediCted
lattice structurg(see also Sec. Il G The scaling part reads universal scaling structure of Eqd.3), (14), (16), and(17).

_ 3 We expect thaB, depends on the lattice structuigee also

FLIELID)=(127)"XL/I&)3+G(LIELIL), (85  Sub. IllG). We note that Eqs(88) and (89) are the analytic

5 continuations of Eqs(76) and (77), respectively, fromd
where G(L/§,L/L) is given by Eq.(69) for box geometry <3 to d>3 and that bothAJ,,,(,.. and the coefficienBy
and by Eq.(71) for film geometry. Correspondingly, the uni- gjyerge ford—3 such that
versal scaling prediction of Eq14) must be replaced by

- - lim [By— AL, =b 92
fo(t,L,L,3)=Ye 3—[(8m) 1¢ 2n(&/a)IL M [Ba~Asurracel (92
-3 ~ —4 _
FLEGLIELIL) +O(L ), (86) has a finite limitb, Eq. (81) (see Appendix A
with the universal bulk amplitudg= — (127) " but without .
a universal surface amplitudén Sec. Il D we shall see that D. Energy density

this logarithmic behavior is related to the vanishing of the Equationg18) and(52) yield the Gaussian energy density
surface critical exponent of the Gaussian energy density ahivided bykg)

d=3.
~ T2a, -~
3 3<d<5 UtLD=- 5 EroLLa) (93
For 0<a/¢<1 we obtain, from Eq(67), for 3<d<5 with
fsurface(t) = fsurface(o)_Edroas_dJal+A;urfac 1od — ~1_d 12 1
- E(ro,L,L,a)=LY9L"1> (ro+Jdpgq_1+J,) "L (94
+0(3/¢) 87) ° p o O TP
with the universal amplitude In the following, we must distinguish the casés-T. and
T>T.. Using Egs.(18) and (66)—(70) we obtain for T
At r((5—-d)/2) ~0 9 >T, and for largeL/a and largeé/a at fixed L/£>0 and
surface™ 5d 2(d-12(d—1)(d—3) fixed L/L in 2<d<4 dimensions
and with the nonuniversal constant U(t,L,L)=Up(t) + 2Ugyracd )L 72

+Toéo 28(L1ELIT)L2 9+ 0(aLt™9),

’delfwdy{[1+e*4y—2e*2ylo(2y)][e’2ylo(2y)]d’1}
8Jo (95

>0. ~
0 89 where U, (t)=—T?2df,/dT is the bulk part ofU(t,L,L).

This constant can be expressed in terms of generalized waear T¢ the surface energy density is given by
son functions as ~
3—d
C

~ =_° =211
Bd:%[Wdfl(o)+Wd—1(4)_2Wd(0)]- (90) Usurface(t) 8{,:(2) Esurface(roa JO ) (96)

We note thatwW,_,(0) exhibits a pole~(d—3)~* neard with
=3, where it can be represented as

Wy 1(0)=2%" 1= D/2(d—3) " TAR- "2 Esurfacd2)= f dy{[1+e % —2e ¥Io(2y)]
0
A
+ JO dy[e”#1o(2y)]** x[e”Ho(2y)]" eV, (97)
o where ZErOEZJal. Equation (97) can be expressed com-
+ JA dy{[e @I(2y)]9 1= (4my) =972, pletely in terms of generalized Watson functions as

(91 Esurfacd2) =Wq_1(2) + Wy_1(z+4) —2Wy4(2). (99

The right-hand side of Eq91) is independent of the arbi- The universal functionf(x,s)=—3x"9G(x,s)/dx of the
trary constantA>0.The first two terms in Eq87) contrib-  finite-size part reads
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1= ((m\% 1 1 (= [(=\¥ 1
“X'S):Qfody[(v) ‘E[S“SZV”‘”{K(%)*} fd“‘):ﬁfodyuv) ‘E[S“SZWJ‘“{K(%)*”

d-1)/2 (109
1(71')( ) ]eyxzmﬂz

2ly 99 for box geometry and
for box geometry and 1 (= [w\@ D2 7\Y2 1] [y
0= — | “ay| A
1 (= Y21 (y\]fa\@nz 8m“Jo 1Y y
= —| —Zkl ]|l = —yx“/am 106
o=l ol 51 -axEll5 e a0s

(100 for film geometry. By a separate calculationfat T, we find
from Eq. (93),

for film geometry. We note thd,,,, 5. depends on the lat- 5 .
tice constang, unlike the finite-size par€(x,s). Equations U(OL,L)=Uy(0)+Teég [Ea(s)L? 9+ 2bga® 9L 71]
(95—(100 are not applicable td =T, for d<3, where the ~ o v
functionsUsurfacgo)g%dE(0,0) divercge. For 3d<4, Egs. +0(a? YA et (107
(95—(100) are applicable to boti =T, andT>T, at fixed
L/£=0. The correct exponential lardebehavior in terms of A ~ 2
¢ at fixed T>T, is not yet included in Eq(100). It can be  NOt€ thatAg, faces & andby diverge ford— 3.

derived fromg(L/&;,L/L), Eq.(72).

in agreement with the scaling parts, EQE05 and(106). We

2.d=3
In order to see to what extel; ,.. CONtains universal 5
contributions, we need to distinguish the casesd23d For 0<r,/a?<1 and ford=3 we obtain, from Eqg24),
=3, and Xd<4. (80) and (95—(100),
1.2<d<3 U(t,L, L) =Up(t) +[2Ugurracd t) + Te&o 2E(LIE L)LY
For 0<rya’<1 and 2<d<3 we obtain, from Eqs(25) +0O(aL 4 1
and(75), O(aL™") (108

1 with
Usurface(t) = ETC&;Z[ - (d_ 1)A;urfa0£3_d+ 2’53—d’t‘)d] 1
3 Usurtacd 1) = 5 Teéo “[(8m) ~*In(&/a) +2b—(8m) ~*
+0(al/g?™?), (101

- . , +0(alé)], (109
whereby and A <0 are given by Eqs(77) and (76).

surface
Equation(101) implies a divergent surface energy density

Ntlfafv

5 i ; whereb is given by Eq.(81). Thus, as a special property of
N with ~a universal surface amplitude (1 {he Gaussian model, there exists a logarithmically divergent
—d)vAg,rrace> 0 and with the critical exponent surface energy density with an explicit dependence on the

_ lattice spacinga. This could have been anticipated on gen-
l-a—v=(d—3)/2< 102
a—v=(d-3)/2<0, (102 eral grounds because of-la—v=0 for d=3. (This is par-
in accordance with the singular finite-size scaling part of Eq.a”e|dto Iogarithnr:ic I:)ermds flor sydstems with pﬁriodichboundarfy
¥ e . conditions at the borderline dimension where the specific
(26). Thus, for 2<d<3,U(t,L,L) satisfies the scaling pre- . ; .
diction of Egs.(19) and (20) with the critical exponent (1 heat exponend va_nlshes[44].)_Thus, E_q.(_26) IS not appll-
— a)/v=d—2 and with the universal scaling function fer cable and the universal scaling prediction for the singular

>0 partU4(t,L,L), Egs.(20—(22), must be replaced by
UX,5)=—dvYx8 2= 2(d— 1) vA, 1ae® 3+ 20E(X,S), Ug(t,L,La)=Teé L UL/E LT, alg), (110
(103 where

where the universal bulk amplitudé is given by Eq.(58). 5 s B 5

The function&(x,s) diverges as~x%~2 for x—0. This di- ULIELIL,al&)=U(LIELIL)+(87) tIn(&/a)
vergence is canceled by the surface term, which implies the (111
finite limit

with the scaling part
U0,s)=IimU(x,s)=E&y(s), (109
X0 Ux,s)=—dvYx+E&(x,s)— (16m) L. (112

where We identify the nonsingular part as
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Une(t,L, L) =Up(t) = Upg(t) + Te&o “DL "1+ O(al —%).
(113

The function&(x,s) diverges logarithmically fox—0. This
divergence is canceled byg tacdt), Which implies that

Eq. (108 has a finite limit fort—0 at fixedL andL,

UOL,L)=Uy(0)+Tc&o X~ (8m) "L~ Un(a/L) +[b(s)
+2b]L - +0(@YL 32t (114

with the universal constant
_ 1 (= 1
b(s)= —f dy[ (wly)¥?= S[sK(s?y) JP[K(y/4)—1]
872Ja 2

1 (A 1
R 32_ 2 2
+ 8772[0 dy[(w/y) 5[SK(s%y)]

X [K(y/4)—1]— %] +(16m) " UnA—(16m) 1

X[1=Cg+2In(2m)]. (119
Note thath(s) is independent of the arbitrary constantwe
have confirmed the validity of Eq$114) and (115 for d
=3 by calculatingU(0,L,L) directly from Eq.(93) with r
=0. Thus there exists a logarithmic nonscalibgdepen-
dence of the energy density @, with an explicit depen-

dence ona. As noted above, we conjecture, however, that

the coefficients (&) ! and —(8#) ! in Egs. (109 and

(114) are universal, i.e., independent of the lattice structur
(see also Sec IlIG In Sec. IV we shall see that the loga-
rithms in Egs.(109 and (114 are the origin of the loga-

rithms appearing in the three-dimensional mean spheric

model with free boundary conditions.

3. 3<d<4

For 0<roa’<1 and for 3<d<4 we obtain, from Egs.

(25 and(87),

Usurfacét) = Usurfacéo) _chaz(d_ 1)A;—urfac£3_d

+0(ag? 9 (116)
with the finite critical value
Usurfacd 0) = Tc&o 2@ 9B4>0, (117)

whereAJ, race>0 andBy are given by Eqs(88) and (89).

PHYSICAL REVIEW E 67, 056127 (2003

U(t,L,0)=Upg(0L) = Teéo 2(d— 1AL racd® L2

+ T 28(LIELIT)LZ 9+ 0@Lld) (119

have a universal scaling form. The nonuniversal critical
value Ug,12cd0), EQ.(117), increases fod—3. It enters
the finite energy density &ft;

Uns(O.L, L) =Up(0) +2Ugyr1acd 0)/L+O(al ™),
(119

which belongs to the nonuniversal nonsingular part of

U(t,L,L) and which has a nonscalingdependence-L L.
This L dependence is non-negligible. This will have signifi-
cant consequences for the mean spherical model>#8
dimensions to be discussed in Sec. IV.

E. Specific heat

Equationg29) and(93) yield the specific headivided by
Kg)

T?a5
Ct,L)=— L L9 (ro+Jeg-1+3p) 2
2T¢ kp '

Tay .~, 3
-5 L LY (rotdkg-1+Jp) L
c k,p

(120

%rom the first term of Eq(120) we find full agreement with

the finite-size scaling prediction, EG30), in 2<d<4 di-

amensions with 2/=4, a/v=4—d. Specifically we find, for

large L/a and ¢/a at fixedL/¢=0 and fixedL/L, the uni-
versal scaling function fox=0

1
647

Cx,8)= f:dyy[sK(szy)]“‘l[K(%) —1}e-yx2/4w2

(121

for box geometry and

F\@-n2 i
—X“yl4m —n<yl4
yy(—) e VAT e
n=1

1 o0
cx0=— JO dyy|
T
(122

Th((adf,é?/gz;ular second term ¢3¢ yields a divergent slope for film geometry. The evaluation of the second term of Eq.
~t for t—0+, thus Ugyacdt) has a nonuniversal (120) can be taken directly from Sec. llID for the energy

finite cusp at=0 for 3<d<5, in contrast to thel<3 case.

density and yields only subleading corrections to the first

As a consequence, only the temperature dependent contribisrm of Eq.(120). For T>T,, Egs.(121) and (122 can be

tions ~£3"9 and ~&(L/&,L/LL) to the energy density

decomposed as
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1
C(x,8)=— Zd(d_ Z)de_4+Ag,surfaceXd_5

o0 T d/2 1
_ — 2y,\1d-1
. dyy[(y) 5[SK(s%Y)]

3274
1 (d-1)2
e e o

and

1
C(x,0) == 7d(d=2) Y% *+ AL gyraeax”

d / (d—1)/2
R yy(mly)
1/2 y —yx2/an?
X | (mly)~— 5 K 1 e , (124

where the bulk partfirst term) contains the universal bulk

quantity Y, Eqg. (59), and where the surface paisecond
term) has the universal surface amplitude

—27 9 17(=2P((5—-d)/2) (125

ACsurface
:_(d 1)(3- d)Asurface (126

with A, 1ace iven by Eqs(76) or (88), in agreement with
the predicted structure of the surface specific heat, B55.

and(35). Equationg(124)—(126) can be easily confirmed by

calculating the derivativgU/JT from Egs.(95)—(100.

Equations(123) and (124) do not yet include the correct

exponential part of the large- behavior at fixedT>T,
which involves the exponential correlation lengih[7] and
which can be derived from Eq72).

F. Susceptibility

PHYSICAL REVIEW E67, 056127 (2003

x(t,L,D)= % [1—(—1)"]cof(pa/2){@o p¢o,p)

(129

L(L+2a)?

with n=p(L+a)/m=1,2,...L/a. From the Gaussian

Hamiltonian Eg. (48) we have <<p0p(,oop> (L+a)(rg
+Jp) "1, which leads to

- a ,.cof(par2)
LD = s 2 1D o ot
(130
We note that this expression is independent of the dimension
d and ofL which is a special property of the Gaussian model.
In Appendix B we evaluate E130) for largeL/a. For large
&/a at fixed ratiol/£=0, we find the scaling form

X(t,L, D) =xof (L/§) =L D (L/¢) (13D
with y/v=2 and the universal scaling function
4 (= —ylevr2
f (x)=— ] dy(l-e )IK(y) —K(4y)],
72Jo
(132
whereK(z) is given by Eq.(70) and
D (x)=J5 X 2f (%), (133

with x=L/¢. The leading terms of (x) for largex are
f (x)=1-2x"1+0(x"?). (134

Forx—0 we find IimHox‘zfX(x)= 1/12, thus the leading
dependence at=T, is in accord with the scaling prediction
Eq. (42), with A & "=, and

(139

independent of the shape factofL. In the limit L—o at
fixed T>T., EQgs.(131)—(134) are valid only up to a non-

The thermodynamic quantity of primary interest in the Universal exponential contributione™"¢1 in terms ofL/¢,;
mean spherical model in Sec. IV will be the susceptibility. rather than./¢ [7].
Important steps in the calculation of its finite-size properties

can be performed already on the level of the Gaussian model.

For box geometry the susceptibility is defined by

~2d

x(t,L,D)= 2 (¢i@))- (127

Substituting the representation E¢6) into Eq. (127), we
find

atd sin(pa)
1—cogpa)
(128

a
2 ¢j=

7 (L+a)\/—2 @Op[

—(=1)"]

G. Continuum approximation with Dirichlet boundary
conditions

As a first step towards the* field theory with Dirichlet
boundary conditions at finite cutoff in a confined geom-
etry, we briefly consider the continuum version of the Gauss-
ian model. The comparison with the lattice version will serve
to distinguish universal contributions from nonuniversal con-
tributions.

The Gaussian continuum Hamiltonian for the scalar field

o(X)=o¢(y,2) reads

Hiiela= f dx

<P 2+ 5 (V<P) } (136)
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This corresponds to the replacement$—=21 and J,4-, and
_>k2,Jp—>p2 in Egs. (48)—(50), (52), (56), and (57). The

wave numbers of the Fourier components of the fig{a) 2 NN d-1 )

are assumed to have a finite sharp cutbffAlthough there fa(roA 5= 1_2j0 dyeS(y)™ "exp( =yroA )
exists no real system with a sharp cutoff the sharp-cutoff (143
procedure is of significantonceptualrelevance as it may

signal important physical effects in real systems with sub-with

leading long-range interactiong,8,43.

As a consequence of the sharp-cutoff procedure, the bulk _ i . 2
correlation functionG(x)=(¢(x)¢(0)) has an oscillatory S(y)= wa,ldqe)(p( ay). (144
power-law decay abov&.. For the anisotropic cutoffq;|
<A,i=1,...d we find the anisotropic nonexponential For the universal functiog(L/¢) see Eq(71).
large-distance behavior In order to exhibit the universal and nonuniversal contri-

butions to sy 1acdt), We need to distinguish the cases 2

d .
Sin( A x; = i
G(x)=29A92(d+ ¢ 2A %) 1| n(AX;) Lo(e gy, <d<8d=33<d<4. For 2<d<3 we find, from Eg.
i1 AX (142,
(137) ’f _’]é + 17d_6 Ad73
. . . . surface(t)_ surface(o)""Asurfacé d'o
in contrast to the exponential decay of the lattice correlation
function, Eq.(64). Thus the sharp cutoff induces long-range +O(rzA9®) (145
correlations, as expect¢d,8,45. For an isotropic sharp cut-
off |g|<A, see Ref[8]. with the nonuniversal constant
The bulk free energy density aboVeg is for 2<d<4 and 1 (e
for 0<d<2 Bd:§J dy[(l—e_y)S(y)d_l— (Zﬂ_)l—d(ﬂ_/y)(d—l)m].
0
fo fiela= Y& 4+ fofield (138 (146
with the regular part The universal amplitudé\J,,(,.c<0 is given by Eq.(76).

e o 2. —an For d=3, we find a logarithmic nonscaling term similar to
fofiela=A[C1tToA™Cot oA Ca+---1. (139  that of Eq.(80)

The constants;, ¢,, andc; diverge ford—0,d—2 andd Feuracd ) =Fourracd 0) — (16m) " 1&~2n(A &) —bry
—4, respectively, wheré, to ¢ attains a logarithmic depen-
dence orrgA 2. +O(A72E7) (147)

In the following, we assume Ax %97 film geometry, ) ) _ ) .
with Dirichlet boundary conditionsp(y,0)=¢(y,L)=0 at  With the universal prefactor (¥~ and with the nonuni-
the top and bottom surfaces. The continuum version of EqVersal constant
(53 is

b= L+Efxd {(1—e)[S(y)*—(4my) ']}
327 8Jy Y y ™)

1 d 1 -1
ffie|d(t!L):_§A In T+ EL (148)

For 3<d<4, we find
x> fln[(ro+k2+ p2)A~2]. (140
p k - ~ A _ _
fsurface(t)zfsurface(o)_BdrOAd 3+A;urface§1 d
The sum X, runs over wave numbersp==n/L,n 244
=1,2,..., intheaange 6<p<A, and the components are O (149
restricted tgkj|<A,i=1,2,...d—1. For largeL A at fixed

L/é=0, we find, for 2<d~4 with the universal amplitudé,, tace> 0, EQ.(88), and with

the nonuniversal constant

friea(t,L)=Tp rieta+ 2 suracd )L 1+ To(rpA "3 A9 2L 2 . 1Jocd o o .
By== “H(1—-e)>0. 15
+G(LIEL I+ O(A 4L %), (141) 45 ), WYIVT A ) (150
where As expected,fyioq(t,L) and fsyrracdt) contain the same
Al o universal parts as the corresponding functions of the lattice
Feurfacdt) = TJ dyy L(1—e ¥)S(y)d? model. The nonuniversal constafiig, b, andBy, however,
0 differ from the corresponding constarts, b, andB of the
X exp(—yroA~?) (142 lattice model. Fod— 3, by, andBy are divergent.
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As an additional effect of the sharp cutoff, there exists the For completeness, we note that the specific heat and the
nonuniversal contribution. 2 to the free energy in Eq. susceptibility of the Gaussian continuum model with free
(141). Ford>2, this term is non-negligible compared to the boundary conditions are in full agreement with finite-size
universal scaling term~L "9, but it has a regular depen- scaling for 2<d<4, with the same scaling functions as
dence orry~t and therefore can be considered to belong tadhose in Secs. lIE and IlIIF for the lattice model, as ex-
the nonsingular parft,((t,L) of the free energy density. Nev- pected.
ertheless, it yields a leading nonuniversal contribution
~A972L72 to the Casimir force al, similar to that for H. Dimensional regularization
periodic boundary conditions discussed in Ré&i.

We by summarize th resus for he eneray densiy, 1 06 % SImensona eguarzaton e been e
Usieiq(t,L) as derived from Eqs(141)—(150). For 2<d ploy P Y

=3 we obtain surface effects within the* theory with Dirichlet boundary
' conditions. This method neglects the cutoff and lattice ef-
Usiarg(t, L) = Uy riarg(t) + Toéo 2 (1— d)AT 3-d feqts. This is Jgstn‘led provided that the leading terms are

fietd(t,L)=Ub fieta(t) + Tefo L1~ d) Asurracd universal. This is the case, however, only tbrd*, where

+Ad735d]L71+Tc§625(|-/§)|-27d d* is a certainupper borderline dimension. In the present
context of the Gaussian model with Dirichlet boundary con-
+0O(A92L7?), (151 ditions, there exist the following upper borderline dimen-

sions:d* =0 for the bulk free energy densify,, d* =1 for
The singular part is in full agreement with the finite-size the surface free energiy, tace, d* =2 for the bulk energy
scaling structure. Fod=3, the energy density reads for densityU,, d* =3 for the surface energy densitys,sace:
largeL A at fixedt>0, d* =4 for the bulk specific heat, and bulk susceptibility
. xp, andd* =5 for the surface specific he&@ 5. and
Urield(t,L) = Up field(t) +[2Usurracd ) + TE2E(LIE) LY surface susceptibilitysy tace. The method of dimensional
LO(AL"?) (152 regularization correctly accounts for the leading universal
parts only ford<d* (where the cutoff and lattice effects are
negligible correctionsand provides an analytic continuation
to d>d*. It does not correctly describe, however, the cutoff-
and lattice-dependent terms foed*. The upper borderline
dimensiond* =3 for the Gaussian surface energy density

with

Usurfacd ) =3Tc&o 2[(8m) “HIn(A¢)+2b—(87) 1

+O(A Y. (153 will play an important role for the three-dimensional mean
spherical model in Sec. IV.
In the limitt—0, at fixedL, we obtain We begin with the analytic expression for the bulk free
energy density of the Gaussian modetlidimensions within
Urield(O.L) =Up fierg(0) + Teéo 2[(87) 1L tn(AL) the dimensional regularization schefi®s),
+(b+2b)L 1+ O(A"Y2L-32)] (154 foaim()=—2"9"1r"9r(-d/R¢ % (157)

According to Egs.(58)—(60), f g4im(t) indeed agrees with
the singular parf,¢(t) of the bulk free energy, in 2<d

<4 and 0<d<2 dimensions. The neglected terms are just
those of the regular paft,. The latter is ultraviolet divergent

and (114) of the lattice model in Sec. IlID. The prefactors . . .
1. . for d=0 dimensions according to Eg$1) and(139. Near
1
(87)~~in Egs.(153 and(154) are the same as in Eq4.09 d=2, the right-hand side of Eq157 has a pole~(d

2:1?(114) of the lattice model and are expected to be ur"Ve'r'—Z)‘1 and therefore does not capture the logarithmic tem-
' _ L ma g perature dependence f(t) in d=2 dimensions.
For 3<d<4, Eqgs.(116—(119 remain valid ifa> "By is Next we consider the size-dependent free energy density
replaced byA?~3By. Thus the surface energy density is  of the Gaussian modely;(t,L) for film geometry within
R R the dimensional regularization scheme. We find, for general
Usurfacd t) =Usurfacd 0) —chaz(d— 1)A;—urface§3_d d,

+O(A™12Y (155 Faim(t,L)=fo aim() + 2Ad rracd® LT+ G(LIEL T,
(158

with the universal constart, Eqg. (115, and the nonuniver-

sal constanb, Eq.(148). The logarithmic nonscaling behav-
ior in Egs. (153 and (154) is parallel to that in Eqs(109)

with a finite critical value
whereAJ, t.ce aNdG(L/ ) are given by Eqs(76) and(71),
Usurfacd 0)=Teég 2A473B4>0. (1560  respectively. An alternative representation is given in Eg.
(6.3 of Ref.[26]. Equation(158) indeed agrees with the
The singular part~£3~9 is in agreement with finite-size singular partf4(t,L) calculated in Sec. Ill for 2d<3 and
scaling but is subleading compared to the regular part, afor 3<d<4. Ford=3, however, the singular part depends
expected from the lattice model. explicitly on the cutoff or the lattice spacing according to
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Eq. (147 or (86). This is reflected in the dimensionally regu- - o

larized result Eq(158) only as a pole term-(d—3) ! aris- a2 (SH=N=(L/a)(L/a)* ™. (162

ing from A, tacer Thus Eq.(158 does not correctly de- '

scribe the leading singular temperature dependertda t of ~ )

the surface free energy of the Gaussian continuum and lattidg®" =1, Eqs.(161) and (162) yield the standard formula-

model in three dimensions according to E(6) and(147.  tion of the mean spherical modgl6]. Keepinga as an in-
Finally, we consider the dimensionally regularized resultdependent nonuniversal parameter will facilitate the distinc-

for the size-dependent energy density abdye tion between nonuniversal and universal contributions.
In the following, we assume the same boundary condi-
Ugim(t,L) =Up gim(t) + Te€o ZL(1— )AL rrac® 9L 2 tions as for the Gaussian model of Sec. Ill. Thus the spin
variablesS; can be represented as
+&(LI§)L2 9. (159
For T— T, this yields S =I—<d—1>(L+a)—1kZp S pexpik-yj)\2sin(pz),
Ugim(OL) =Teég 2oL >~ (160 (163

as confirmed by a direct calculation &t=T,. We see that and the diagonalized Hamiltonian reads
these expressions fail dt=3 whereAJ, 1... and &y do not 1
exist because of pole terms(d—3) ! as noted already by _ T —(d-1) =\ -1 ~ & &
Dohm[36]. Equation(159 does not capture the logarithmic H=3L (L+a) kz,p (1 F a1 9p)SepS-icp
divergence~Int of the surface energy density for—T. at (164
d=3 according to Eqg109 and(153), and in Eq.(160) the
leading size dependeneel "tInL of U(OL) for L—o at  with the shifted spherical field
d=3 is lacking, compare Eq$114) and(154).

_ Also for d>3,_ Egs.(159 and (160 are not satisfactory ZLZZM_ZJOd'a_Z (165
since they contain only terms that are subleading compared

to the finite energy density at., Eq.(119. The latter term it Jo=2J. ForJ, 4, andJ, see Eqs(49) and (50). The

t(t;gtg)e;%b(ltlsesgr.\onscalmg Ldependence is missing in Eqs. parameteﬁlﬁgT,L,[LE) is determined implicitly as a function
As far as thep” field theory is concerned, it is not clear at ©f & T, L, L, anda through the constraint equatida62),
present whether these shortcomings are only an artifact révhich now reads
stricted to the Gausiian approximatigoorresponding to
one-loop order of the” theory or there exist further short- ~d-271-d; -1 ~ “1_
comings at two-loop order. For this reason we do not con- an Lt kEp (bt Ja-1+3p) "=4. (166
sider universal finite-size scaling to be firmly established for
nonperiodic boundary conditions since the earlier field-The susceptibility folT=T, 4 is
theoretic results of Ref$24—3Q are based on a perturbation
approach using Gaussian propagators within the dimensional 32d
regularization scheme. On the other hand, we note that the X(T,L,[,E):5~d - 2 <33j> (167)
singular parts of both the specific heat and the susceptibility Lo
are correctly described for the Gaussian model #d24
dimensions by means of dimensional regularization. 32 Z ;
'BL(L+5)2 P =00

IV. Mean spherical model with free boundary conditions

Again we consideN scalar spin variable§,,—*<S X cot(par2){So So,p) (168
=<, on the lattice points; of a simple-cubic lattice with a

lattice spacinga in a finite rectangulat. X L¢~* box of vol- a2

~ ~ — —( — n
ume V=LL9 '=Na’. We assume the statistical weight L(L+a) Ep [1=(=1)7
e A1 with B
cot(pa/2
J oty -
H=3 - — > s5+u> S (161) m(TL L2+
i

? (ij)
with n=p(L+a)/7=1,2, ... L/a which is parallel to Egs.
with a nearest-neighbor couplidg>0. The “spherical field”  (127)—(130) for the Gaussian model. A significant difference,
wu(T,L,L,a) is determined as a function @=(kgT) "> and  however, is the dependenceypbnd, T, L, L, anda through

of L,L,a through the constraint w(T,L,La).
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A. Bulk properties

First we recall some of the bulk properties. The bulk sus

ceptibility at finite wave vectoq aboveT, 4 is defined by

~2d
Xb(Q)=1lim Bav > (SSpyelatiTg). (170
V— o0 ]

The Gaussian structure 6f, Eq. (164), implies[32]

Xo(@) 1=+ dgq. (17D
where
b= p(T,%,2,3) = xp(0) 1=xp* (172
is determined implicitly by
5”*25*1f (mp+Iga) 1=1. (173
q

PHYSICAL REVIEW E67, 056127 (2003

We note that these critical exponents can be considered as
the Fisher-renormalizeft7] Gaussian critical exponents

YGauss VGauss

=, =, (180
4 1-agauss 1-agauss
and
~ &Gauss
a=—-, (181
1-agauss

as expected from the general theory of constrained systems
[47], with the Gaussian exponents of Sec. Il

Yoauss= 1, VGauss™ 1/2, aGauss:(4_d)/2- (182
The amplitudes aré, = &5/, and
£0=a[Ay/(Bc,adoe) V2 (183

with e=4—d and the geometrical factdky, Eq. (60). The

Equation(173) is the bulk version of the constraint equation factor Axggy’” in Egs. (2) and (42) becomes simply
(166). The square of the second-moment bulk correlatiomxggvazjgl_

length is determined by the susceptibility according3a]

52: Oi -1 —
Xo( )ﬁqz[Xb(Q) Jg=0=Joxo - (174

Settingxgl=ﬁb= 0 yields the bulk critical temperatuii, 4

1 ~ f
— _[d-2 -1
= =a Jog-
kBTC,d Bc'd q qrd

We note thatT. 4 is nonzero ford>2 and limy ., T¢ 4

175

=0. It is well known that the bulk critical behavior of the

For completeness, we note that at the lower critical di-
mensiond=2, the asymptotic behavior of, and £ for T
—T.,=0 is exponential48] and is derived from Eq4173
and (174 as

é=caexp27BJy), (184
xXo="Cc?a%J; texp(4mBdy) (185

with
c=0.03125. (186)

mean spherical model belongs to the universality class of theys \ajidity of universal finite-size scaling to be derived in
n-vector model in the large-limit [46], thus the vanishing gac v C below for 2 d<3 is expected to hold also fat

of Tcq atd=2 is expected from the Mermin-Wagner theo- _ 5 ~oveT

rem[37].

¢2=0 in terms of the correlation length Eq.

(184).

In order to elucidate the role played by the borderline

dimensiond=3 for the confined system we extend our

analysis tocontinuousdimensions in the range<2d<4.
Equations(173 and (175 can be combined as

a2 Y Bea— B =xp" fq[Jq,d(Jq,dwgl)]—l. (176

This leads to the asymptotic critical behavior abdyg for
2<d<4,

_ _ T_Tc,d
Xo=AL7, =&t t= T , (177
c,d
where
y=2/(d—2), v=(d—2)"1 (178
and
a=2—dv=(d—4)/(d-2). (179

B. Film critical temperature

For film geometry [ —), Eqgs.(166) and (169 are re-
placed by

Ly J (ptda-1tdp) =8 (187
p Jk

and

a2 . cof(pa/2)
L(L+a) Ep: [1-(=1) ]ﬁ(T,L,oc,E)Jer'
(188

Unlike the box geometry, the film geometry introduces a
considerable complication in that fde> 3 the film system of
thicknessL has its own sharp critical temperatuife 4(L)

>0 different from the critical temperatuig, 4=T, 4(°) of

the d-dimensional bulk system. As shown by Barber and

x(T,L,%,a)=
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Fisher[16], T¢ 4(L)>Tc y() for d=4. Here we shall show
that this is true also for d=4. C

PHY/SICAL REVIEW E 67, 056127 (2003
1 7 )\ (d=1)72
L
The condition for criticality of the film system is 8w’ z
x(T,L,%,2)"t=0. This condition is satisfied at a critical

(196)
valuet= <0, wherepu(L) is determined by the vanish- ith €,>0. Thus there are competing effects Bpg(L)

1/2
+ e2/4

ing of the denominator of the lowest-mode=f1) term in
the sum of Eq(188),

o(L)=— (189

ma
(1 coOS——=
L+a

We note thaiu.(L) is independent ofl. The leading largé.
behavior is

ne(L)=—Jym3(L+2) 2+ 0@3(L+a)~%). (190

According to Eq.(187), the corresponding critical value of

Bea(L)=[kgTcq(L)] " is then given by

al—2 -
BeaL)=— 2 | (et Jeg-1+3p) " (199

Separating the lowest-moda£ 1) term we obtain for gen-
erald

~d— 2L/E

Z0-2
Bedll)=—— ijd 1t 2 (Mc+~]kd 1+,

(192

The first integral in Eq(192) is directly related to the critical
temperature of ad—1)-dimensional bulk systerftompare
Eq. (179] and is infrared divergent ford<3; hence
Bea(L) =2 or[16]

Teq(L)=0 for d=3 (193

from the scaling term-L?~9=L'/" and the nonscaling term
~L 1. The leading terms of the fractional shift are

Tc,d( I—) - Tc,d(w)

=agal/L —cy(a/L)d 2+ 0(a¥?L 92

Tc,d(oo)
(197
with the positive amplitudes

~ © -1

ad=4BdH dy[e‘zylo(Zy)]d} , (198
0

~ % -1

Cd:Cd{ fo dy[ezylo(Zy)]d] , (199

where | is given by Eq.(68). The amplitudeay can be
expressed in terms of generalized Watson functions, see Egs.
(90) and (74). For d=4, a, agrees with the corresponding
amplitude of Barber and Fish§t6].

We see that the positive shift df; 4(L) for d>3 is pro-

portional to the same amplitudg,>0 that determines the
finite cusp of the Gaussian surface energy density(Edp).

Thus the nonscaling Gaussian cusp and the nonscaling en-
hancement ofT; 4(L) for film geometry are closely con-
nected. In the following section we shall find that the Gauss-
ian cusp is also responsible for nonscaling finite-size effects
on the susceptibility for both box and film geometry in the
mean spherical model fa>3.

C. Constraint equation and susceptibility

The crucial question is whether and for which dimension

for any finiteL, as expected from the Mermin-Wagner theo-d the susceptibility, Eq(169), attains the universal scaling
rem[37]. We see that for the film system of finite thickness form of Eq.(36) for largeL, L, ¢ at fixeda. This requires one

the dimensiord=3 plays the role of dower critical dimen-
sion d =3 up to whichT, 4(L) vanishes. Thus, dinite tem-

to first analyze the size dependence wofimplied by Eq.
(166). Up to a constant factor, the left-hand side of Ef6)

perature and in d<3 dimensions, there exists only one has the same form as the right-hand side of @4) for the

type of critical behavior for large. near the bulk critical
temperatureT, >0 for the d-dimensional film system of
finite thickness.

An analysis of Eq(191) for d>3 is presented in Appen-

dix B. We find thatT. 4(L) is enhanced aboveé, 4(>) for

Gaussian energy density, thus the constraint equati66)
can be rewritten as

E(u,L,L,a)=pa%"9 (200

d>3 for sufficiently largeL>a. This enhancement is most whereE(ro,LI,E) is defined by Eq(94). Itis clear that any
naturally expressed in terms of the dimensionless paramet@onscaling L dependence of the Gaussian function

AB=Io[ Be,d(®) = Be,a(L)]. (199
For largeL>4a the result is
AB=4Bja/L—Cy(a/L)9 2+ 0(a¥L~92) (195

with the nonuniversal amplitudB,>0, Eq. (89), and the
universal amplitude

E(u,L,L,a) will cause a nonscaling form of the depen-

dence ofu, which, through Eq(169), will in turn cause a
corresponding nonscalingdependence of the susceptibility.
This mechanism explains the existence of a borderline di-
mensiond=3 between a scalingd3) and a nonscaling
(d=3) regime in the mean spherical model as a consequence
of the size dependence of the energy density of the Gaussian
model, for both box and film geometry. More specifically, we
can anticipate nonscaling power laws fibr-3 arising from
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the nonscaling size dependence of the finite cusp ofersal scaling form fo uL2. According to Eq.(202), this

Usurface™ Esurface according to Eqs(116—(119).

It turns out that the most natural parameter is pobut
rather the shifted parameter

Ap=35" = (L)1, (201)

whereu(L) is given by Eq(189. We note that\ >0 for
box geometry for any finit&. In Appendix B we derive the
following expression for the largk-behavior of the suscep-
tibility, Eq. (169, at fixedA uL?>0,

L? md
J07T J<0 y
X[K(y)=K(4y)],

whereK(z) is defined by Eq(70). Equation(202) is valid
for generald.
In Appendix D we analyze Eq200) for largeL/a at fixed

shape factos= (L +a)/L>0 near the bulk critical tempera-
ture. For smalt=(T—T.4)/T. 4=0, we find for 2<d<4

1—exd — (AuL?—7?)ylm?]
Aul?— 72

X: 2

(202

(ApL?)@=D2=t(L/£5) 2~ g(2Aq) " Y(L/a)*"3
X Esurface(A/U:éz)
+28A 4 ((Ap) YL S), (203

whereEg,racd 2) is given by the Gaussian surface function,
Eq. (97). The universal finite-size part reads for box geom-

etry
x5 de [(,n.)(d—l)IZ 2<7T)d/2
X,8)= — 2| —
‘ 1672J0 Y y
y ~ o~ Y
y/4 ) 2., 1d—1 yx2/ 4
+e K(4) 1{[sK(s%y)] ]e .

(209
We note that the termK(y/4)—1=23_, exp(—ny/4)

would then imply a universal scaling form for the suscepti-
bility. From the analysis of the Gaussian model in Sec. Il
we know, however, that different scaling and nonscaling
terms arise fronEg,;tace depending on whether<2d<3,d
=3, or 3<d<4.

1. Finite-size scaling in2<d<3 dimensions

The asymptotic form oE,tacd Apa?) for small A pa?
reads for 2d<3,

+
surfac

Esurface(AMaz): —4(d—1)A e(A,U«n‘az)(d73)/2+ SBd

+O((Apa?) -2/, (206)

compare Eq(101). Substituting Eq(206) into Eq.(203) we
see that the dependence @is canceled. This implies, for a

given shape facts=L/L, thatA u has the universal scaling
form

Au=L"2My(L/&s), (207

where the scaling functioM y(x,s) is determined implicitly
by

M= P=yd=24 2 AT TE (M Y2 5)+2€(d—1)

In+ (d-3)2.

X Ag surfac d (208)

Substituting Eq(207) into Eq. (202 confirms the finite-size
scaling prediction, Eq(36), with the bulk susceptibilityy,
=J,1¢? and the universal finite-size scaling function for 2
<d<3

2

4xe (=
fX(X,S): ?J'O dy

X[K(y)—K(4y)].

At T=T, 4 this yields the power-law Eq42) with y/v=2

1—exp{—[My(x,s)— 7w2]y/ w2}
Md(X,S) - 7T2

(209

comes from the modes with the free boundary conditions

(the z direction, whereas the ternsK (s?y)=s="___exp

(—s*mPy) comes from the modes with the periodic boundary

conditions @—1 horizontal directions For film geometry
(s=0) the latter term is reduced ter(y)*? and the univer-
sal finite-size part becomes
7\ (d-1)72 1/2
1-2

J,ol5
o

Equations(203—(205 determineAu implicitly near T q
for largeL as a function of,L,L anda. In the absence of the
a dependent term-Egyface; EQ. (203 would yield a uni-

o

&4(x,0)= y

1672

+evM

(205

] e*yX2/4ﬂ'2

and with the universal amplitude
1—exp{—[My(0,8)— 2]yl m?}

4 )

_2f dy 2
meJo My(0,8)—
X[K(y)—=K(4y)].

B,(s)

(210

The scaling results of Eq$209 and (210 are applicable
also to film geometry §=0) wheref,(x,0) andB,(0) are
finite quantities ford<3. We note, however, that boB, (s)
andB, (0) diverge ford— 3. Specifically, ford— 3 we find
from Eq. (210 for box geometry at fixed>0

BX(s)~2w’3s’2(3—d)*1, (211
whereas for film geometry
B, (0)~27 4(3/2)2C~9, (212

056127-18



SCALING AND NONSCALING FINITE-SIZE EFFECS. .. PHYSICAL REVIEW E 67, 056127 (2003

The different types of divergences are the consequence of a (a) Box geometryor fixeds>0, we find from Eq(204)
mode continuum for film geometry and signal differentthe smallx behavior
forms of violations of finite-size scaling dt=3 for the box
and film geometry, as will be confirmed in Sec. IV C 2 below. ~ 1, ., 1

At fixed t>0 we find from Eqs(207)—(209) the leading 3(X,8)= 58% “— o—Inx+0O(1). (219
largeL behavior for both box and film geometry,

Here the first term~x~2 is the contribution due to th&

=0,p==/(L+a) mode that is the lowest mode of the dis-
+0(&%/L%)], (213 crete mode spectrum for box geometry. Equati(2i8) and
(219 yield the leading- dependence a&k=T, 3

wP=312e 14 2e(d—1)(d—2) *A7 PAL facd/L

surfac

and

x=xpl1-[4e(d—1)(d—2) A AL, facet 21€/L Ap=47s’L~In(L/a)]~*

surface

1+0

&
In(L/a)
+0(&2/L2)}, (214 (220

where Al 1ace<0 is given by Eq.(76). Equation (214)  Substituting Eq(220) into Eq.(202) leads to the susceptibil-
yields the surface susceptibility, E(38), with the scaling ity atT=T.3
surface exponent

=27 33y s 2L2n(L/a)+ O(L?). 221
Y= ’)’+V:3/(d_2) (215) X ™ 0 ( ) ( ) ( )
and the surface amplitude At fixed t>0 we find from Eq.(218 the leading largé-
behavior
A;,surface: - %36158[48((:1_ 1)(d— 2)71AJ lA;urface+ 2]. ~ 12 AU2e—1 ~ ~
(216) pe=35¢" H{1—[In(éla)+8mb—2]¢/L
2. Violation of finite-size scaling in &3 dimensions +0([In(&/a)]2£24/L2)}. (222

We recall that ad=3 there exists no sharp transition in
box geometry and in film geometry of finite thickness other
than the bulk transition fok — o at T 3>0; thus there is no ~ ~
compelling reason to introduce a shifted reference tempera- x=xp{1+[2In(é/a)+16mb—6]¢/L
ture or to introduce a physical length scale other thandthe ~
=3 bulk correlation length. Ad=3, the Gaussian surface +O([In(&/a)]%¢*/L™)}, (223
function read§compare Eq(109]

For the susceptibility, Eq202), this implies

which corresponds to the surface susceptibilityd at3,
Eurracd Apd?) = —(4m) (A ua®) +8[b—(16m) ']

1 ~ -
+O(AYZ). (217) Xsurtacd 1) = 530 "€°[2In(é/2) + 167D —6]. (224

Substituting Eq(217) into Eq. (203 yields The logarithms in Eqs(221)—(224) constitute logarithmic
deviations from universal finite-size scaling, with an explicit

dependence on the nonuniversal lattice constanfThus
there exists no universal scaling form for box geometry at
d=3 in the sense of Eq36). This is the consequence of the
H H H * —
with 53(x,s) given bZ Eq.(204). Here we have replacedby ggﬁ;rtybg]{?ﬁgIgzud;g;aelgsrfgdel'3 for the surface energy
s=L/L for large L/a>1. Substituting Eq(218) into Eq. (b) Film geometryA separate analysis is necessary for
(202 yields the susceptibility. As a consequence of the logafiim geometry ind=3 dimensions since Eqg220 and
rithmic term of Egyface in EQ. (217) we now have a loga-  (221) do not have finite limits fos— 0. The susceptibility is
rithmic dependence om in Eq. (218 that cannot be ne- again given by Eq(202, where nowAuL? is determined
glected. One expects that this causes onljogarithmic  implicitly by
deviation from finite-size scaling. This will be confirmed for

AptL=tL/&y+In(ApY%a) + 1/2— 87b+87Es(A L ,s)

+0(Aua) (218

box geometry but not for film geometry where we shall find ApY =tL/ &g+ In(A uY%) + 12— 8wb

a power-law violation of finite-size scaling. The origin of this

unexpected geometry effectédt 3 comes from the different +8mE(Aut?L,0) (225
smallx behavior of the finite-size paft;(x,s) for s>0 and

for s=0. with
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~ 1 [~ 1 | 12
83()(’0):@ 0 dyy 1-2 y

+evM K(% —1“eyx2’4’f2. (226)
We find from Eq.(226) the smallx behavior
~ 3 ~
Sg(x,O)z—QInx+E3+O(x2Inx), (227
where
- 3 (A ARG
E3—E —CE+In +EJO dyy 1—2(y)
y 1 Jw - T 1/2
y/4 7 . 1) _ (=
+e K(4) 1 +87r Adyy [ (y)
+> e(nzl)yM} (228
n=2

is independent of the arbitrary constakt-0. The absence

of a term~x"
for film geometry there exists a modentinuum without a

discrete lowest mode. At the bulk critical temperattre

PHYSICAL REVIEW E67, 056127 (2003

which constitutes a strong power-law violation of the scaling
prediction y~L?, Eq. (42), in contrast with the logarithmic
deviation in Eq.(221) for box geometry. The same violation
persists in the critical regiodL=1. The unexpected differ-
ence between EQq$233 and (221) results from the differ-
ence between the discrete mode spectrum for box geometry
and the mode continuum for film geometry at the lower bor-
derline dimensiord,=3 above which the film critical tem-
perature becomes finite. We emphasize that the existence of
this borderline dimensiom, =3, which causes the second
logarithmic term in the constraint equatio®29), is not re-
stricted to the spherical model. It remains to be seen whether
similar geometry-dependent effects exist &3 also in
other models ofO(n) symmetric systems witih=2 and

with free (or Dirichlet) boundary conditions.

At fixed T>T.3, for film geometry, we find the same
leading large= behavior as already given in Eq&22—
(224 for box geometry, with a logarithmidrather than
power-law violation of finite-size scaling. In summary, it is
not possible to writey in a universal finite-size scaling form,
in the sense of Eq$l) and(2), in the regionT=T, 3 for film
geometry ad=3.

(c) Comparison with Barber and FisheFhe susceptibil-
ity of the mean spherical model in film geometry with free

Zin Eq. (227 is a consequence of the fact that boundary conditions was calculated by Barber and Fisher

[16] using a different mathematical technique. Eer 3 they
introduced a “quasicritical temperature shift” and found that,

=Tcz3, Egs.(225 and(227) yield the constraint equation in o |arge n=L/a, there exists a scaling representation in

the form
ApYL=In(ApY%)+1/2+8mw(Ez—b)—3 In(AxY2L)
+O(AuL2n(AplL?)). (229

We recall that the first logarithmic term in E(R29) is the
signature of the(uppe) borderline dimensiond* =3 at

which the critical exponent 4 «— v of the Gaussian surface
energy density vanishes, whereas the second logarithmic

term in Eq.(229 is the signature of th€lower) borderline
dimension d,=

rem[37]. Both logarithmic terms can be combined as

In(Au*%a)—3 In(ApY2L)=In(a/L)—In(AuL?)
(230

and, after substituting into E§229), yield the solution with
a power-law(rather than logarithmjcL dependence

Ap=AaL ¥[1+0(a¥L 1] (231)
with the nonuniversal amplitude
A, =exp(1/2+8m(Es—D)}. (232

ThusA u has a nonscaling size dependencé&afT, 3. Sub-

stituting Eq.(231) into Eq.(202) leads to the susceptibility at

TC,3

x=(JoA,a) L1+ 0(a¥L 17, (233

3 at which the film critical temperature
T¢3(L) vanishes, in accord with the Mermin-Wagner theo-

terms of a scaled temperature variahleK
n2

XBF= ZJX(nAK) (239

with a shifted inverse temperature deviation from the3
bulk critical temperaturd 3

. J J

AK:m_kB_T_8 Inn+CB,:/n (235)
~ 1 1 7In2
Car=75| W3(0) =5 Wa(4) = 75— (236)

The scaling function was represented parametrically via
y~?[1—(2ky)tanhy/2)], (237

(239

X(z)=

8mz=In[(sinhy)/y]

and was plotted foz>0 in Fig. 4 of Ref.[16]. For finite
L/a>1 and atAK=0, Eq. (235 defines a “quasicritical”
[16] temperaturdl (L)>T,. 5, where

+CprallL.

J J a ( L
In (239

keT(L) KkeTca 87l

We note that all thermodynamic quantities are smooth func-
tions of T nearT(L) and that there exists nehysicalcrite-
rion for definingT(L). The analysis of the susceptibility in
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terms of AK in Ref. [16] was restricted taAK=0 and did
not include the regio, s=<T<T(L), &L>1 which is of

PHYSICAL REVIEW E 67, 056127 (2003

3. Violation of finite-size scaling inl3<d<4 dimensions
From Egs.(96), (116), and (117) we have the Gaussian

principal interest for testing the scaling predictions of Eqgs.surface function fod>3,

(1) and(2).
Our dimensionless susceptibility/a?> corresponds to

xse. Our explicit result fory/a?, however, is at variance
with that of Barber and Fisher since Eq202), (225, and
(226) cannot be reduced to the simple form of E(&34)—
(239. Our result differs from that of Ref.16] both in the

regionT,s<T<T(L) and in the regiom=T(L). A unique
analytic comparison betweep'a? and ygr can be made in

the regionL/¢>1 at fixed T aboveT(L). Substituting into
xer the largez representation according to E§.17) of Ref.
[16]

X(z)=(8mz) 2—2(87z) 3In(16me2)+O(z %Inz)
(240

and rewriting the resulting expression in terms of the bul

susceptibility x5&'* and the asymptotic bulk correlation

length[compare our Eq9177), (183)]

a kBTC,3 -1
we find
2
XBF=Xg“F'k[1+ 2|n§ +Cgr §+o %)] (242

with
3 1 1
Cgr=—2+ Eln 2+ 167{2\/\/2(4)_ §W3(O)}. (243

While the leading logarithmic term-[In(&/a)]&/L of Eq.
(242 agrees with ours in Eq223), the leading correction
term ~ £/L differs from ours. We note that our constamt
Eqg. (82), does contain the last two terms 6, but the
additional integral expressions in E¢2) are missing in

Cgr, EQ.(243. Our integral expressions come from the fi-

nite part ofWy_4(0) for d—3, after subtracting the pole
term~(d—3) "1, see Eq(91). We believe that our result for

Esurtacd Apa®)=8a> By—4(d—1)
X 'A‘;rurface(A:U:é2)((173)/2
_'_O((AMEZ)(de)/Z)’ (244)

whereA, r.cc>0 andBy are given by Eqs(88) and (89).
Substituting Eq(244) into Eq. (203 yields

(ApuL?)@=22=1(L/£,)9 2+ 2e(d— 1)
XAJ lA;rurface(AMLz)(dia)lz
—4sA 'By(L/a)43

+28 A5 e (AL, S). (245

kWe see that the finite value &, ;,.d0)~By>0 causes a

non-negligible term-(L/2)%~2 in Eq. (245 that depends on
the lattice spacing. This will imply power-law violations of
finite-size scaling for box geometry.

At fixed s=L/L>0, Eq.(245) yields theL dependence at
T=T.q, for 3<d<4,

Ap=3a% B st 1L 1+ 0% L3 )], (246
For the susceptibility al =T, 4, this implies
x=4J; % 9Byt L4 1+0(ad 337 Y)], (247
in contrast to the scaling prediction~ L2, Eq. (42).
At fixed T>T, 4 we find from Eq.(245) the leading large-

L behavior

M= 357 L my(éla) ¢+ O((éla)"3¢IL?)]

(248
with the nonuniversal function for3d<4
my(é/a)=2¢e(d—2) "Aq'[2Bg(&/a)"®
—(d=DAJyrracd- (249

Substituting Eqs(248 and (249 into Eq. (202 yields the
susceptibility

b is correct since it has been obtained both by a calculation y= y,{1+[2my(&/a) — 2]&/L+O((&/a)d3£%/L2)}.

directly atd=3 and by a calculation ai# 3, taking the
limits d—3+ andd—3—. A further analytic comparison

between oury/a® and ygr can be made directly al
=T(L), where ygr is simply given byyge=(n%/2J)X(0)
with X(0)=1/12 according to Eq(9.18 of Ref.[16]. Our
result atT=T(L) depends o and differs from the simple

result for yge. Thus we doubt the correctness of the previ-

ous result[16] for ygr for free boundary conditions at
=3.

(250)

The corresponding surface susceptibility is, £&ra and for
3<d<4,

Xsurface™ %Jal[zﬁ]d( 5/3) — 2]§3~ §d~t*d/(d*2)'
(251

This is in contrast to the scaling prediCtiofnyrface™ Xbé
~t~3d-2) Egs.(37) and (39).
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We see that the amplitudes of the leading nonscaling

terms are proportional tEd, both for the size dependence at
Tc.q, EQ.(247), and for the temperature dependence above
Teq, Egs.(250 and(251). Thus it is the cusp of the Gauss- m
ian surface energy density that is the origin of the nonscaling S(,y) = (277)71[ dxexd —2y(1—cosx)], (A6)
effects in the mean spherical model fox8<4 rather than o
an enhanced transition temperature that does not exist for
box geometry. Sp(L/a,y)=(a/L)>, exd —2y(1—cosp)]. (A7)
For film geometry in 32d<4 dimensions a new analysis P
of our solution would be necessary since there exists a sha
critical temperatureT, 4(L)>T. 4(*). Here we only note ~ o~ ~
that the leading size dependence at fiXed T, 4(L) for film N _the range —m<k=2mam/L<z and O<p=man/(L
geometry is the same as given in E(@48—(251) for box +a)<w with integers m=0,=1,+2,... and n
geometry. It is expected that a full description of the cross=1,2,...L/a, as is appropriate for periodic and free
over from the L-dependent film critical behavior near boundary conditions, respectively. In determining the large-
Tca(L) to the d-dimensional bulk critical behavior near | /3 and Jargel /a behavior ofAf at fixed finite ratioL/L, it

T¢,q(>) would involvetwo different correlation lengths. Our g important to distinguish the regimessy =<y, andy=y,
solution for y does provide the basis for such an analysis ofiiy

a dimensional crossover, which, however, is beyond the
scope of our present paper. L+a

Yo=—= (A8)
a

S(L/ay)= (E/I); exg —2y(1—cosk)],  (A5)

[Phe sumsXy and X, run over dimensionless wave numbers
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APPENDIX A: GAUSSIAN FREE ENERGY DENSITY o 7 — o~
Af,= | dyy le "od(L/a,Lla,y). (A11)
Yo

In this appendix we derive the asymptotic form, E86),
for the free energy density of the Gaussian lattice model for_ ) o~ -~
box geometry. We start from E¢52). Using the representa- First we derive the leading/a and L/a dependences of

tion Af,. Since cok is a periodic function, the sur(L/a,y)
satisfies the Poisson identif9]
Inz= J'wdyyfl(efy—efzy), (A1) s ” - .
0 SLia,y)= > (2w)*1f dkgkNUa
we rewrite theL-dependent part Xexd —2y(1—cosk)] (A12)
Af(t,L.La=f(tL,.La)—-f,t)+3a %L/a)' 9n2 - .
(A2) =S(w,y)+2e"¥ >, F(NL/a,y) (A13)
N=1
f the f density in the f
of the free energy density in the form with
Af(t Lta)—la—d “dyy e Tova(L/a LA ) T kd
(tL.La)=3 o Y (L/a,L/ay F(M,y)z(zw)*lf dkeé*Mexp(2y cosk)=1y(2y),
(A3) (A14)
with To=rya%/(2J) and S(0,y)=e"Yy(2y), (A15)
d(L/a,L/ay)=[S(».y)]"~[S(L/a,y)]* tsp(L/a,y), where
(Ad) 1 [
IM(z)z—f dge?c°*s%cog M ) (A16)
where TJo
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are the Bessel functions of integer ordér(see, e.g., 9.6.19

of Ref.[50], see also Eq93.6)—(3.10 of Ref.[7]). Fory
<yj at fixedL/L, the largeE/a behavior ofF (NL/a,y) for
N=1 is F(NL/a,y)~O(e “?); thus

S(L/a,y)=S(x,y)+0(e"1/3), (A17)

In order to determine the leadiga dependence of the sum
Sp(L/a,y) for y<y,, we first derive a representation of the

one-dimensional integral

I(a,b)=jbf(x)dx (A18)

PHYSICAL REVIEW E 67, 056127 (2003

o

K{(a,b)=f(b)—f(a)— >,

n=1

wKﬂ””(a,b),

(n+1)!
(A24)

which can be substituted into the=1 term of Eq.(A22).
Successive application of this procedure permits one to ex-
press the difference

b N—1 5
[Tto0ax=3, 100, pax=FRytab)  (a2s)
a i=0
in terms of the differences of the derivativesaaandb,

AfR=f®(p)— W (a). (A26)

in terms of summations. The derivation is similar to that in Note that~RN(a b) differs from Ry(a,b) of Ref. [32]. The
Egs. (A.21)—(A.30) of Ref. [32]. We assume the arbitrary ,oq it is ’ ’

real functionf (x) of the real variablex to be well behaved in
the intervalas<x=<b; in particular, we assume th&{x) has
a convergent Taylor expansion around any this interval.
We split the intervala<x=<b into N subintervals of length
Ax=(b—a)/N>0 between the pointsx;=a+iAx, i
=0,1,... N, with xy=a,Xxy=Db. The integrall can be rep-
resented as

N-1
I(a,b)=i:20 L.' f(x)dx. (A19)

For each interval we exparfdx) into a Taylor series around

Xi; 1 (rather than around; as in Ref.[32])

Xj+1 Xj+1
f f(x)dx:f
X X

o1
foxien)+ 2 P00

X (X—Xj;1)" [dX (A20)
o (—1)"
=0 Axt 2 s 0 0)
X(AX)"L, (A21)

wheref(M(x)=d"f(x)/dx". Thus we obtain

N—-1 E3

b (—1"Aax)"
Lf(x)dx= 20 f(le)Ax+n§=‘,lm—1)!K<N>(a,b),
(A22)
where
N—1
K{M(a,b)= ZO fM(x; 1) AX. (A23)

Sincef(x) is an arbitrary function, we may also apply Eg.

(A22) to the functionf’(x) instead off(x). This yields an
expression foK {(a,b) in terms of higher derivatives,

(Ax)?

(1) 4
T3 AP0,

(A27)

- AX
Rn(a,b)=— 7[f(b)—f(a)]—

The coefficient of the®((Ax)3) term vanishes. Sincéx
~O(N™Y) this representation is expected to converge rap-
idly for largeN if Af® remains sufficiently well behaved for
large k. Equation(A27) differs from Eq.(A30) of Ref.[32]
by a minus sign in the first term.

We apply Eqs(A25)—(A27) to the integral

1 (=
s=y)=— [ “dp exii—2y(1-cosp)],  (A28)
0

where the integration variable plays the role ofx in the
integral of Eq.(A25). The sum on the left-hand side of Eq.
(A25) now corresponds to

N
1 ~
— 2 Ap exp{~2y[1-cosnap)}=Tn(y) (A29)
with Ap==/N. SettingN=L/a, we see that

- L+a -
lLaly)= TSD(L/a,w. (A30)

We note that the derivative of the integrand of E428)
with respect top vanishes atp=0 and p=. Equations

(A25)—(A30) yield the leading largé-/a behavior, fory
<(L+a)/a,

~ a
Sp(L/a,y)=S(=y) ~5-[1+e ¥ =2e"HIq(2y)]

+0(a%/L%). (A31)

In order to ensure that the discretization intervijsbecome

sufficiently small for largel/a, the restrictiony<O(L/a)
was necessary. For this reason, E&31) is applicable only
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to Af;, Eqg. (A10), but not toAf,, Eq. (All). Using Eq.
(A17) and substituting EqA31) into Egs.(A4) and (A10),
we arrive at

5 Yo ~
aty=o [ Payly e sy 1

X[1+e ¥—2S(x,y) 1+ O(3%L4 e L3,
(A32)

This can be combined withf, in the form

Afy+Af= | dyfy~te T d-1
1+ AT=5r o Yy “e "[S(*,y)]

X[1+e Y—2S(=,y)]}+Afy(L/a,L/a)
+0(a%/L% e La), (A33)

Afg= f:dyy‘le*oy[[S(oo,y>]d(1+"é/L>
0

~[STAY I So(LAY) 5 IS y)1
(A34)

The integral term in Eq(A33) represents the surface contri-
bution of O(L™1) to Af, whereasAf; will yield the finite-
size part ofO(L ~9). Sincey>y, in Eq. (A34) is sufficiently
large it suffices to use the smal approximation—2y(1
—cosk)~—k? in Eq. (A5), and similarly in Eqs(A6) and
(A7),

sC/ay~@0)3 e ¥

=(@/MD)K(47%2L"2y)+O(e" ™), (A35)
S(ee,y) =7t J;dke*k%<2w>*1<7r/y)1’2
+0(e™™), (A36)
SD(L/E,y)w(E/L)Ep: e Py (A37)
=%(5/L>[K<W%Z(L+E>‘2y>— 1]
+0(e™™), (A38)

whereK(y) is given by Eq.70). Furthermore, it is useful to
turn to the integration variable
z=47m%a%/(L+a)> (A39)

Instead ofy,, we then have the lower integration lin
=47%al(L+a)—0 for largeL/a. This leads to

PHYSICAL REVIEW E67, 056127 (2003

of (2

1. (d-1)/2
—E[SK(SZ)] [K(z/4)—1]—§<g) ]

dL?

Af =TJW
* (L+a)9-to

ro(L+a)? -
exg — oA, [1+0(3%L2)]  (A40)
8Jm?
with the shape factor
-~ L+a
= (A41)

For L>a, we finally obtain Eqs(66)—(69).

The surface free energy, E7), can be expressed in
terms of the generalized Watson function, EqS8) and(74),
as follows:

al—d s
fsurfacdt) = 8 f~2 ,le[Wdfl(Z)+Wd—1(Z+4)
rod@ JO

—2Wy(2)]. (A42)

It can be shown that fod# 3 there exists the following
common representation of the coefficiebts Eq.(77), and
By, Eq.(89), of the regular term of ¢ race linear inr:

~ 1
ba=By=g[Wau-1(4)—2Wy(0)]

1A 1(~
+ §fo dy[e PIy(2y)]¢ 1+ ng {[e #Ig2y)]9 7t

— (47Ty)(l*d)/2}+ 2*d*1ﬂ_(l*d)/2(d_ 3)71A(37d)/2.
(A43)

This expression is independent of the arbitrary consfant
>0. Ford—3+ andd—3—, the first two terms have a
finite limit [W,(4)—2Wj5(0)]/8, whereas the last term ex-
hibits a divergence ~(d—3)~ ! that originates from
W,_4(0)/8 for d—3+ according to Eq.(91). The same

divergence is contained i, ..., S€€ EQqs(79) and(92).

APPENDIX B: SUSCEPTIBILITY
We rewrite Eq.(130) as

a2 cot(pa/2)

ro+Jp

X= > {2-[1+(-1)"]}

L(L+a) P e
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2 1+cosp
JoL(L+3a) P (1—cosp)[fo+2(1—cosp)]

2a* 1+cosq
JoL(L+3) ‘@ (1—cosq)[ry+2(1—cosq)]
(B2)

with To=r4a%/Jo. The sumsS, and2,, run over dimension-
less wave numbersp=man/(L+a) with integers n
=1,2,...L/a and q=2mam/(L+a) with integers m

=1,2,...L/(2a) where we have assumed thafa is an
even integer. Using the decomposition

1+ cosx
(1—cosx)[To+2(1—cosx)]

1 4

= + =
rot+2(1—cosx) ryg

1
2(1—cosx)

1

————— (B3)
ro+2(1—cosx)

and applying the representation EG.2), we obtain

—ifwd i(l—e?oy)—e?oyl\P(LIE )
X +a o YT, i
(B4)
with
¥(L/a,y)=Sp(L/a,y)—3Sp(L/ayy), (B5)

whereSy(L/a,y) is given by Eq.(A7) and
. 2a
Sp(L/a,y)= T % exd —2y(1-cosq)]. (B6)

We distinguish the regions Qy=<y,=(L+a)/a and y
=y,. The largek behavior ofSy(L/a,y) in the former re-
gion is given by Eq(A31); the corresponding behavior of

Sp is
Sp(L/a,y)=(1+alL)S(e,y)— 7 al(L+a)+0(a%/L?),
(B7)
which follows from the Poisson identitisee, e.g., EQ(3.6)

of Ref.[7]). In the regiony=y, we may use approximation
(A37) and

oo

Sp(Lia,y)~(2a/L) Y, exq —4n%a2yn?/(L+a)?]
n=1

+0(e™ ™). (B9)

While the contributions of regiop=<y, are important for the
large L behavior ofy at fixed T>T., the contributions of
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regiony =y, yield the finite-size scaling behavior gfin the
critical regionL/a>1, ¢&/a>1 at fixed ratiox=L/£=0, in-
cluding the leading terms of the scaling function for laxge
as given by Eqgs(131)—(139 for the Gaussian model.

The derivation ofy from Eg. (169 is parallel to that

given above, except that, is to be replaced by
wldo=Ap—m2l(L+2)%+0(a2L %), (B9)

where Au is defined by Eq.(201). At fixed M=Apu(L
+72)2>0, this leads to the largke-behavior

_4(L+a)®

J0’772L

fw |1—exp[—(M—w2)y/w2]
d Y 2
0 — T

32
SR TRl —ﬁy/ﬁ] [K(y)—K(4y)],

(B10)

whereK(z) is given by Eq.(70). For L>a this yields Eq.
(202).

APPENDIX C: FILM CRITICAL TEMPERATURE
FOR D>3

In the following, we consider Eq191) for d>3. Sub-
tracting

Beal)=a"? f i fkuk,d_ﬁ Jp) (CY
and using the representation
1 (™ 2y
E_ fo dye (CZ)
for z>0, we obtain
23[Bea(*)~ Bea(L)]= fo dyd(L/ay), (C3
<T>(x,y)=[S(°°,y)]d1[S(°°,y)—SD(x,y)
o
X exp 2y 1—cosl+—x , (C9

whereS(x,y) andSy(L/a,y) are defined by EqgA6) and
(A7) [see also Eq(A15)]. It is important to distinguish re-
gimes O<y=<y, andy=y, with y, given by Eq.(A8). Ac-
cordingly, we split

f “dyd(x,y) = f “ayB(x,y) +

f dy®(x,y)=A;+A,.
0 0 Yo

(CH
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In A, we use Eq(A31). A treatment similar to that in Egs. Bea—B=M1+M,, (D2)
(A32)—(A39) leads to _ o
M;=B(Ap)—ad 2Lt 9t

a ~
1+ |+ O(a¥?L~9?)

(C6)

~ a -
A1+A2:4BdE_C

L+a ><k2 (JoAp+pc+dgat+dy) L, (DI
P

with the nonuniversal amplitudBy, Eq.(89), and the uni- Mz:’éd*ZAMJ J' (JOAILL+\]kd71+\]p)*1(\]k d71+\]p)7l-
kJp ' '

versal amplitude
(D4)
L d K| Z] -1
Co=y ) 02 12| 2)-
(€7 JM= fo dyd(L/a,L/3,y)exp — Aualy), (D5)

with C4>0. The first term~L ! in Eq. (C6) has a nonscal- L
ing L dependence, whereas the second terh? ¢ has the  where®(L/a,L/a,y) is given by Eq.(A4). Again we split

scalingL dependence-L'”. Equations(C3)—(C7) lead to  the integral in Eq.(D5) as fngéojuf;’ =1;+1, with y,
Eqg. (195. Rewriting 0

1/2
+ ez/4

o\ [d=1)2 ) . .
H_) Using the representation EGC2) we obtain
z

=(L+a)/a. For largeL/a andL/a, we find
1+e ¥—2e Yly(2y)=2e ?Y[cosh2y)—14(2y)]
(Cy)

5 Yo
= | dyi1 e Y- 2(my) IS ) 10
and using(see 9.6.39 of Ref50]) 0

=2 —L/a Zdizy —di2
cosiz)—1o(2) =21 5(2) + 21 4s(z)+ - - -=0,  (C9) Xexp—Apa‘y)+0(e”-%a%L"%),  (D6)
- ~ ~\ 3-d
we see thaBy is Bositiveand finite ford>3; thusT, 4(L) I2=E< Lja) 12 dz[ 4 (z |k et
>T. q() for L>a. Using the representation L\ a 8w 4
- 7\ @-1)72 dr2 B
208, 4(=)= | “ayis= ) (10 I 2 Z] [ roga - ©7)
0

we obtain the fractional shift of the film critical temperature With zo=47%a/(L+a) and’s=(L+a)/L, whereK(z) is
as given in Eqs(197)—(199. We have verified thaa,, Eq.  given by Eq.(70). For largeL/a we can letz,—0 in Eq.
(198, agrees with the corresponding amplitude of BarberD7). Evaluating the integral in E¢D4) for smallA « yields
and Fishef16] atd=4, which was expressed in terms of the for 2<d<4,

generalized Watson function, Eq8.3) and(74). The ampli- _ _

tude ag=4B4/Wy(0), Eqg. (198, diverges forszS. This JoMy=e " 'Aq(Aua®) " P2+ 0(Aua?).  (D8)
divergence is canceled by the next termQiffL<" ") in Egs. : _

(C6) and (197, Equations(D2)—(D8) lead to

Jo(Be,a— B)=¢ _1Ad(AM52)(d_2)/2_ Esurface(AMaz)

APPENDIX D: CONSTRAINT EQUATION 5 5 o
X(al2L)+2&,(Ap)Y(L+a),s)

We start from the constraint equati¢t66) for box geom-
etry where we decompose=JyAu+ (L) and subtract x[(L+a)/a]?~ 9, (D9)
Be.q in the form of Eq.(C1). Furthermore we add and sub- -
tract where E;1acd2) and &y(x,s) are given by Eqs(97) and

(204). Multiplying Eq. (D9) by £A;*(L/a)9~2 and using
Bow =32 [ Gudutdigatan L @ 6As 3o Be— B)=t(£o/B)? 9+O(t), (D10

This yields we obtain Eq(203 for L>a.
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