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Recent experimental and model studies have revealed that the domain size may strongly influence the
dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hargbahr{ Phys.
Rev. Lett.76, 1384(1996)], report a frequency increase of spirals in circular domains with diameters substan-
tially smaller than the spiral wavelength in a large domain for the catalytie-iRO reaction on a microstruc-
tured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the
behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals
in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux
conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigen-
vectors very close to those corresponding to infinite medium translational invariance are observed. Upon
decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these
eigenvalues from being neutrally staljleero real pait The latter phenomenon indicates that the translation
symmetry of the spiral solution is appreciably broken due to the interaction witlinihwe nearby wall.
Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves
towards the center of the circular domain corresponding to a negative real part of the “translational” eigen-
values. This effect is noticeable at a domain radiuRefR, ;. The spiral subsequently exhibits an oscillatory
instability: the tip trajectory displays a meandering motion, which may be characterizeniadary-induced
spiral meanderingA systematic study of the spiral rotation as a function of a control parameter and the domain
size reveals that the meandering instability in large domains becomes suppressed, and the spiral rotation
becomes rigid, at a critical radilg;, ,. Boundary-induced meandering arises below a second critical radius

Rcr,2< Rcr,O-
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[. INTRODUCTION towards an exponential decé¥3]. Another important issue

deals with formation of symmetric spiral pairs or spontane-

Rotating spiral waves constitute one of the most commor®us symmetry breaking and decay of one of two spirals in an
spatiotemporal patterns observed in two-dimensional noninteraction event. A related problefthe interaction of spi-

equilibrium systems. They have been observed experimeg)-als with a reflecting mirror wall in a circular geomelryas

. . : - : een studied in reaction-diffusion models for excitable me-
tally in a wide variety of systems including heterogeneou dia, as we will discuss below. Kinematical theory predicts a

catalytic reqctlons (CO®O,/Pt, NO+CO/Pt, etd, l'qu'.d .. 1/r correction to the rotation frequen¢g4], while a differ-
phase reactiongsuch as the famous Belousov-Zhabotinskii ent approach yields a superexponential corredti.
(BZ) reactior], slime mold aggregation, and electrical activ- - Experiments on a catalytic surface in small circular do-
ity on cardiac tissue. Their ubiquitous presence has generateflains and corresponding simulations are documented in Ref.
a widespread interest in the study of their dynamical behavt17]. Additional information is provided by a recent experi-
ior among physicists, biologists, and applied mathematicianmental repor{18]. These studies show a particular strong
[1-7]. effect of the domain size on the spiral’s rotation frequency
The experimental investigations of spiral waves in earliefor weak excitability where the kinematic theory is valid.
years almost exclusively concentrated on the BZ systenpimulations in this regime show arltorrection, see Ref.
[8,9]. The reaction can be carried out easily in a petri dish.17): @s predicted by kinematical argumefits]. The super-
(batch or using a continuous setup. More recently, extensivee.Xpom':‘m""II effects in thg limit of h|gh excitabilifL.5] pre-
interesting observations have been made on the CO oxid dict only weak changes in the rotation frequency. All theo-

. 10l O \vation for th dv of spiral Patical results are based on some oversimplification of
tion system[10]. One motivation for the study of spirals rqjistic models. Numerical simulation can give an approxi-

comes from cardiology; the breakup of isolated spiral wavesnate picture, but more accurate results can be obtained by
of electrical activity in cardiac tissue into disorganized exci-means of numerical stability analysis of spirals as shown
tations is deemed to play an important role in fibrillat{dn. below. In this paper, we focus on qualitative changes of spi-
Particlelike spiral interaction has been studied in the comral wave behavior rather than on quantitative predictions in
plex Ginzburg-Landau equation by various authors. Controthe cited articles. This is achieved by employing numerical
versial ideas about the range of the interaction force haveifurcation and stability analysis rather than with direct
been published. While early work favored ar 1decay simulations(see the Ref[16] for a more detailed presenta-
[11,12, more extensive recent analysis and simulations pointion). In particular, we find that simple rotating spirals are
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destabilized due to boundary effects for small domainsand evolves into a rotating spiral wave. Spirals exist in the
(boundary-induced meanderipgvhile spiral meandering is region bounded byR anddM curves, and are characterized
suppressed at intermediate domain sizes. Before we entby rigid rotation around a fixed point. Tip motions of rigidly
into the topic of numerical stability analysis of spirals in rotating spirals form circles. The radius of the tip path, spiral
small domains, we review briefly the general properties ofperiod, and spiral wavelength all diverge as the bound&y
rotating spirals in Sec. Il and provide a description of theis approached in the parameter space. The célealenotes
methodology in Sec. Ill. In Sec. IV, results on the boundary-the “meandering boundary” and is associated with the tran-
induced meandering at small domain sizes are presentedition from rigidly rotating spirals to meandering motion of
while Sec. V deals with the restabilization of large domainthe spiral core. Using a similar model of excitable media,
meandering spirals at intermediate domain sizes. A brief disBarkley[7] showed thatM is a single smooth locus of Hopf

cussion in the last section concludes the paper. bifurations of rotating spirals. The tip paths of the meander-
ing spirals (more specificallymodulated rotating waves
II. DYNAMICS OF ROTATING SPIRALS form flowerlike patterns characterized by two temporal fre-

quencies. Finally, the region to the right of th€ curve is
Most theoretical studies of spiral waves have centere¢haracterized by dynamics that are more complicated than
around two limiting cases. The free boundary approach wagyo-frequency quasiperiodic, and possibly even chaotic.
first introduced by Fifg5,19) and later extensively investi- These states are termed by Winfree as “hypermeandering.”
gated by others, see Refi5,20-23. A simple kinematic Although accurate time-dependent numerical simulations
theory in terms of motion of curves was first sketched inconstitute a useful tool for analysis, many problems can be

1946 by Wiener and RosenblueitP6] and later carried out tackled more efficiently through detailed linear stability and
by ZkaV and Mikhailov [3,27] Although the analytlcal bifurcation ana|ysisl

work has contributed to a significant advancement in the

under;tandlng of spiral wave behavior, certain aspects of the”l_ COMPUTATIONAL LINEAR STABILITY ANALYSIS

behavior are better understood through computer-assisted OF SPIRALS

analysis. Numerical investigations of the dynamics of spiral

waves have been carried out for a variety of reaction- Spiral waves are solutions to the governing reaction-

diffusion system$28-32. diffusion equations with a rotational symmetry; they appear
It is worthwhile to summarize the essential features of thestationary in a frame rotating with the frequency of the wave

two-parameter bifurcation diagram of spiral wave dynamicsfor a description of the method used here, see also Ref.

in a generic model of excitable media first described by{33]). Consequently, they can be computed as steady states

Zykov [1]. The diagram is “generic” in the sense that most of the following reaction-diffusion equations in polar coordi-

two-parameter investigations of spiral dynamics in other exnates:

citable systems have shown similar states and transitions.

This diagram was obtained by Winfr¢2] in a detailed nu- 0=du=F(u)=f(u) + DV?u+ wd,u, (€
merical study of the FitzHugh-Nagum@HN) equations, T ) )
which read whereu=(u,v)', D=diag(1,0), and(u) represents the ki-
netic terms of a modified Barkley model with delayed inhibi-
u3 tor production[28,31],
du=Vu+u— —=—v, (1)
3 f(u)=(— e tu(u—1)[u—(v+b)/al,u—v)T.
dv=€e(U+B—yv). (2)  The last term on the right-hand side of E8) comes from

_ _ _ _ the rotating frame of references(is the appropriate angular
The parametet was fixed at 0.5 and numerical simulations yelocity). This model is qualitatively similar to the

were conducted to observe types of spiral wave behavior ifitzHugh-Nagumo modelEgs. (1) and (2)], but posesses
the FHN model. The bifurcation or “phase” diagram in the three fixed pointsuy=(Ug,v,)" With f(u)=0. One is the
two control parameterse() is divided into five distinct  stable rest stateug,v,)=(0,0) of the excitable medium,
regions representing different dynamical states, separated yhijle the two other fixed pointéa saddle and a focusre
curves of bifurcation loci. Whep ande are large, no wave unstable and result from the repeated intersection of the
propagation is possible in the FHN system. Here the mediumy|icline curvesu= (v +b)/a andu®=v in theu-v plane.

is not sufficiently excitable to support waves and all initial The boundary conditions on a circular domain of radius
conditions evolve to a spatially uniform state. The cuW®  are taken to be no flux in the radial direction,(|z=0).
denotes the “boundary of propagation”; planar waves existThe system defined by E¢3) has a continuum of solutions
in the system above this curve. The cu@ie denotes the (given by all arbitrary rotations of the spijadnd the addi-
“rotor boundary”; the system supports rotating wave solu-tional unknowne. This indeterminacy is removed and a
tions above this curve. A good representation of the dynamgnique steady solution is picked out by fixing the rotational
ics near the/R boundary is the evolution of a broken wave phase of the spirahere atr =R/2,6= 7). This is done by
segment of a planar wa\&]. In the region betweeaP and  appending an additional pinning condition given by

JdR, broken wave tips retract as they propagate along straight

lines. Above theIR curve, an initial broken segment curls up Agvli—riz.9= =0, (4)
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which allows for determining the unique value of along (@)
with a particular rotation of the spiral shape.

The stability of the steady stateof Eqgs.(3) and(4) with
respect to small perturbations is determined by the following
linearized eigenvalue problem:

DF(u)U=\U, (5)

where

DF(u)=Df(u)+DV2+ wd,, (6)

(© (d)
while N andif are the eigenvalues and the eigenmodes of the
linearized operatoDF(u). The eigenvalues determine the
linear stability of the spiral solution; a bifurcation is indi-
cated when a real eigenvalue or a complex conjugate pair o
imaginary eigenvalues cross into the right half of the com-
plex plane.

Equations(3) are now discretized on a polar grid, where
we can split the Laplace operator in an azimuthal and a radial . .
part Vzu(r,0)=Vr2u(r,0)+V§u(r,0). The radial and azi- _ FIG. 1. Elge_nmode_s due to symmef84]: () v concentration
muthal contributions are then given by field of a rotating spiral wave; the paramet_ers aﬁe0.025,_a

=0.8,b=0.02, R=10, (b) eigenmode resulting from rotational

72 symmetry,(c) and (d) real and imaginary parts of the eigenmodes
V%u(r,&) =——u(r,6), 7) associated to the translational symmetry. The gray_scale value rep-
2 562 resents the variable darker regions correspond to higher values of

u and vice versa.
2

J
Viu(r,0)= T Um0+ —u(r,o). (8)  the branch of spiral wave solution as the parameter values
o are varied. This continuation scheme is robust to the pres-
ence of folds in the spiral branch and traces the solution
hbranch into parameter regions where the solution is unstable.
he stability of the spiral solution is monitored by finding
the leading eigenvalughose with the largest real part, close
to the imaginary axisand corresponding eigenvectors at
each continuation step. The leading eigenpairs are computed
using an iterative Arnoldi method with implicit deflation
[36-38.

At first glance it appears that three of the eigenvalues of
the linearized eigenproblertd) lie on the imaginary axis;
hey are associated with the symmetries in the infinite, un-
here were obtained by taking, =51 radial grid points and oundeq syst_em. Figure 1 shows the spatial pIo.ts of the cor-
30 Fourier modes in the azimuthal direction with,=128 responding elgenmodes. The gray scale value in th¢se plots

represents the variable The eigenvalue at zerbg arises

collocation points. Such a discretization results in a dynamii‘rom the rotational symmetrv of the soiral wave The rota-
cal system of~6000 ODEs. y Y b )

This system of ODEs is stiff and explicit time integration tionally symmetric eigenmode can be shown to be simply the

methods are plagued by stability constraints. We perfornfzimuthal derivative of the concentration fielg=d,u.
transient simulations of the discretized system with the helg-urthermore, a spiral wave in an infinite. medium can be
of the stiff ODE solver ODESSA35], which employs vari- arbitrarily translateq on the plane. In a frame rotating with
able (adaptive step size with up to fifth-order backward dif- the frequencyw, this results in a complex eigenpair &¢
ference formulas. =*iw [7,34]. The real and complex parts of the correspond-
Dynamical systems of this size are prohibitive for the rou-iNg €igenmodes can be shown to be ttendy derivatives of
tine stability and bifurcation algorithms based on direct solv-the concentration field/;=d,u=idyu. This eigenpair is
ers. We employ large scale, iterative methods that have rédescended from” the infinite medium problem, and if the
cently been developed and applied to matrix eigenproblemdistance between spiral core and boundary is large, the “fi-
[36—38. The steady state problem is solved using Newton'snite box” eigenvalues have real part very close to zero.
method which can be accelerated by the use of Krylov-based Indeed, the presence of no-flux boundaries in a finite do-
iterative solution methods for linear systeff8]. Pseudo- main atr =R breaks the translational symmetry of the spiral
arclength continuation techniques are then utilized to followon the plane. However, for a sufficiently large domain size,

The concentration fields andv are then expanded in Fou-
rier modes in the azimuthal direction and discretized wit
second-order finite differences to evaluate the operators i
the radial direction. The boundary conditionsratR are
taken to be no-flux in the radial directianu((r,6)/dr)|, g
=0. The boundary condition at=0 is taken to be zero-flux
as well, while the singularity in the first term in E@®) has
been treated using I'Hmtal's rule. Spatial discretization
yields a set of ordinary differential equatiof®DES de-
scribing the time evolution of coefficients of the discretiza-
tion of the concentration variables. Most results reporte
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the eigenvalues associated with the translational symmetrya)3.5 . .
are numerically very close to their values for an infinitely 210 i T .
extended domain;=0=*iw [7]. The deviation of Rexy) | r/ }
from zero is a measure of how much the boundaries “influ- £ 2.5 Pl ! 1
ence” the spiral core. Thus, the eigenvalugsquantify, ina = 53 |- /l| | } 1
sense, the interaction of the rotating spiral with the boundary. I S:: b :R }R Ip
Since the spiral is centered in the circular domain, any trans- 1.5 o e, "ed L Ll
lation will move it towards the boundary and should probe (b) 5 | ‘ ' ‘ ' ]
the force between the spiral and the zero-flux boundary, I
which can be considered @urved mirror wall. All other g [ ]
eigenvalues have negative real parts in our study; instabilityez 1 - 1
here arises only from the interaction with the boundary ex- |
pressed in . L ‘ . ‘ .
(©) 3+ ‘ 27/T | | | 7
IV. SPIRAL INSTABILITY IN SMALL CIRCULAR I \
DOMAINS 2+
g |
Spirals in spatially extended domains select a unique se | | i
of values for their frequency and spatial wavelengti
depending on the control parametersa, and b in our 0 ; : ‘ '
0.0 1.0 2.0 3.0 4.0 50

model, respectivelye,y, and B in the FHN system. Recent
work has shown that the presence of boundaries can signifi-
cantly affect the behavior of waves in confined geometries. FIG. 2. Bifurcation diagram of a spiral wave in a circular do-
The presence of sharp corners may cause spiral nucleatienain with respect to the domain size. The period plotted as a
from planar wave$40], while existing spirals are predicted function of the radiusk. The parameters, a, andb are the same as
to drift along the boundariggtl]. A number of experiments in Fig. 1. A qualitative sketch of the branch of meandering spirals
probe the dynamics of spirals near a boundary in théelow the Hopf bifurcationH; (as observed in direct numerical
Belousov-Zhabotinsky reactioi#2—44 and find a measur- integrations is given. The bottom two plots show the real and
able force that leads to meandering drift along the boundarymaginary parts of the eigenvalue pair that, in infinte domains, is
The effect of domain size on rotating waves has recently*Ssociated with the translational symmetry.
been studied experimentally by Hartmaeinal. [17] for the  eters were taken in the typical excitable regimeea$.025,
NO-+CO reaction on a microstructured(B@0 surface. The 3-=0.8, b=0.02. Thewavelength of a spiral in a large do-
frequency of rotating waves was observed to increase sulnain for these conditions is about 9.1. Starting from an ini-
stantially for domain sizes below a critical domain sifeat  tial guess of the spiral and its period, steady state continua-
depends on the spiral wavelength in large domaihge to  tion of the spiral solution was performed using the domain
the interaction of the wave tip with the boundary. A linear sizeR as the bifurcation parameter.
increase in the spiral frequency with inverse domain size was The bifurcation diagram of the spiral solution branch is
analytically predicted by Davydov and Zyk¢¥4] and sup- displayed in Fig. £8) where the spiral period is plotted
ported by numerical simulatior47]. Furthermore, close to against the domain size. Figure¢bPand Zc) display the
the onset of appreciable frequency increase, a transition tteal and imaginary parts of the eigenvalue pair that is asso-
quasiperiodic spirals was observed in simulations. After thisiated with the translational symmetry of the spiral in the
transition, the spiral core is observed to drift near the boundunbounded medium. When the domain size is above a criti-
ary; we refer to this phenomenon as boundary-induced mesal valueR,, ,, the spiral frequency remains essentially in-
andering. It is intimately linked to the boundary-induced drift dependent of the domain size. Note tRaf ; is less than half
studied in large domaing42—44. Both phenomena result of the “large domain spiral wavelength,” in line with the
from the breaking of translational symmetry by the presenc®bservations in simulations of the standard Barkley model
of a boundary. reported in Ref[17]. Furthermore, the eigenvalues corre-
The stability analysis performed here is for a spiral thatsponding to thgbroken translational symmetry are indeed
rotates around the center of a circular domain. In this setupgslose to the translational eigenvalues for a spiral in an infi-
small domains result in small distances between the center oiite medium\+=0%i27/T. Therefore, the value dR., ;
rotation and the boundary. If the interaction with the bound-gives a lower bound on the domain size above which the
ary destabilizes the rotation of the spiral, we observe spiraflomain boundaries do not appreciably influence the spiral
tip trajectories that qualitatively closely resemble the onesore.
found in meandering spirals in large domains. Hence, we For R<R( , the spiral period is observed to decrease no-
chose the term boundary-induced meandering instead aébly. AsR decreases further, the eigenvalue pair associated
boundary-induced drift. We used the model introduced in thewvith the broken translational symmetky; is seen to move
preceding section. Time evolution of a suitable initial condi-appreciably into the left half of the complex plane. There
tion was performed to obtain an initial spiral wave for a exists another critical radiuR;, , such that for domain sizes
circular domain of sizeR=5 units. Dimensionless param- in between the two limitsR., ,<R<R,, ;) the eigenvalue

Radius
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pair A1 lies in the stable regiopRe(\ 1) <0]. In this regime, 6.0 ' ' ' ' ' S
spirals that are either perturbed away from the center or ini- I . /ﬁ:
tiated off-center are attracted towards the center of the do Lot T H, "
main. At R=R., ,, the eigenvalues that smoothly descend & 50 v
from the translational symmetry cross the imaginary axis-g I K ,'SN.
into the right half plane indicating a Hopf bifurcation. The % M o
stable solution after this bifurcation is a quasiperiodic spiral.% 4.0 - H 7
This Hopf bifurcation marks the onset of boundary-induced I / m
meandering.

We observed that the quasiperiodic spiral solution persists 3.0 . . :

0.02 0.04 0.06 0.08 0.10

down to a certain cutoff domain si#;, ; below which the
medium does not support any stable rotating waves. The un-
stable spiral branch, when continued further dowRiturns FIG. 3. Bifurcation diagram of a spiral wave solution fBr
around in a saddle-nodéSN) bifurcation atRgy and then =5, a=0.8, b=0.02. The solid and dashed lines indicate stable
proceeds to collide with a spatially uniform steady state.and unstable spirals. The filled circles denote quasiperiodic spirals
namely, the one corresponding to the unstable focus, at sonwhile the unfilled square denotes a spatially uniform state. The sym-
critical domain sizeR, 4, see Fig. 2a). The latter result bolsHy, Hy,,, and SN stand for boundary-Hopf, meandering-Hopf,
implies that for radiiR with Rsy<R<R(, 4, two unstable and saddle-node bifurcations, respectively.

rotating wave solutions coexist. The lower branch separates

the rest state of the medium from the upper spiral branch andoundaries of the domain start eventually to affect the spiral
is reminiscent of the recently observed unstable nucleus of gore. This causes the complex eigenvalue pair associated

€

spiral pair in large domaingi5]. with the broken translational symmetry to mos@ay from
the imaginary axis into the left half plane. At this point,
V. TRANSITION TO MEANDERING SPIRALS spirals that are kicked off the center, or initiated off-center,

are attracted towards the middle of the domain. At the point

We demonstrated in the preceding section that the influmarked asH,, in Fig. 3, the eigenpair associated with the
ence of the boundaries in smaller domains causes a quasiproken translational symmetry crosses the imaginary axis
eriodic instability of the spiral core. The eigenmodes corre-into the unstable right half plane causing the boundary-
sponding to this instability are the ones originating frominduced meandering of the spiral. The unstable spiral branch
breaking the translational symmetry of the spirals in an unwhen continued further up iaturns around in a saddle-node
bounded domain. We refer to this instability as boundary-bifurcation and terminates at a spatially uniform steady state
induced meandering. Spirals in extended domains are knowsf the system at some critical value ef This uniform state
to exhibit another qualitatively different type of transition to
guasiperiodic motion. Barklel7] showed that this “infinite : ' :
domain” meandering transition is caused by a Hopf bifurca-
tion of a set of isolated eigenvaluéhat aredifferentfrom 6.0
the eigenvalues corresponding to the translational invari-
anceg. This instability will be referred to as “regular mean-
dering” or just “meandering.” The eigenvector correspond-
ing to the regular meandering instability was shown to decay
radially outward[7]. The bifurcations that give rise to the
two different instabilities will be termed boundary Hopf
(Hp) and meandering Hopf H,,), respectively. The
meandering-Hopf transition also causes a quasiperiodic mo
tion of the spiral tip which exhibits complex flowerlike mo- 20
tions in the domain.

Figure 3 shows the bifurcation scenario of the spiral so-
lution in a circular domain keepinB=5 constant and using
e as the control parameter. The remaining parameters ar , ) ,
fixed as before aa=0.8, b=0.02. The stable spiral branch "0.02 0.04 0.06 0.08 0.10
has a Hopf bifurcationmarked asH,, in Fig. 3 ase is €
increasgd beyond a critical_value where an isolated complex FIG. 4. Two-parameter numerical bifurcation diagram of rotat-
eigenpair crosses into the right ha_lf plane. A.stable. branch %g spiral waves in finite domains. The curves,, H,, and SN
meandering spirals arises at this Hopf bifurcation. At ayenresent the meandering-Hopf bifurcation, the boundary-induced
slightly higher value ofe, the meandering branch retracts meandering related Hopf bifurcation, and saddle node of spirals,
and disappears via another Hopf bifurcation as the isolategkspectively. TheH,, andH, curves define the critical radRe, o
pair of eigenvalues returns to the left half plane. The spirakndR,, ,. The variously marked regions support stable spirg)s (
solution is then stable for a narrow interval én The spiral  regular meandering spiraléMi1), boundary-induced meandering
period increases monotonically for increasiegand the spirals(M2), and no rotating waves\).

N
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corresponds to an unstable fixed point in the local dynamicsearized around the spiral solution. For large domains, we
Next we free both the parametersand R in the model obtain three eigenvalues with practically zero real part, a real
and study how the two Hopf transitions are organized in theone for rotation symmetry and a complex conjugate pair for
(e,R) parameter space. The two-parameter bifurcation dia¢slightly broken translational symmetry in the plane. For
gram is displayed in Fig. 4, and was assembled by performdecreasing domain size, the real part of the complex conju-
ing several one-parameter continuation runs at both constaghte pair becomes negative, indicating a repulsive interaction
R and constante cuts. The curves corresponding to the with the (mirror) boundary. At even smaller domain sizes,
meandering-Hopf bifurcation, the boundary-Hopf bifurca-the real part starts to grow and finally becomes positive in-
tion, and saddle node of spirals are markedHas H,, and  dicating a boundary-induced meandering instability. Further-
SN, respectively. The regions represent stable rotating spiralsore, it was observed that regular meandering in large do-
(S), regular meandering spirals11), boundary-induced me- mains can be suppressed due to boundary effects. At the
andering spiral{M2), and no rotating wavesN), respec- parameter values bounding their existence, spirals were ob-
tively. These results show that regular meandering is supserved to disappear in saddle-node bifurcations.
pressed by the influence of the boundary conditions upon Numerical stability analysis of spirals in circular domains
decreasing the domain radius. At still smaller domain radiijs useful in quantifying the interaction between a spiral and

boundary-induced meandering appears. the domain boundary. This can lead to a better understanding
of the instabilities and bifurcations of spirals in small do-
VI. DISCUSSION mains. Similar computer-assisted studies might be helpful in

analyzing related problems, such as the interaction of a spiral

We have studied computationally certain features of theyair in a small domairias observed by Hartmaret al. [18]
dynamics of rotating spirals in small two-dimensional do-in a catalytic surface reactipn

mains by numerical bifurcation and stability analysis. Fol-
lowing Barkley’s earlier wor 7], we found that these spirals
rotate around the center of a circular domain and computed
them as steady states of the reaction-diffusion equations in a This work was partially supported by the National Sci-
corotating frame. The stability is inferred from an iterative ence Foundation. I.G.K also wishes to acknowledge a Hum-
determination of the largest eigenvalues of the equations linboldt Foundation Forschungspreis.
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