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Critical dynamics of the Gaussian model with multispin transitions
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In this paper, we present a multispin transition mechanism, which is an extension of the Glauber one, to
investigate critical dynamics. By exactly solving the master equation, the influence of the multispin transition
mechanism on the dynamic critical behavior is studied for the Gaussian model with nearest-neighbor interac-
tions ond-dimensional latticesd=1, 2, and 3. The time evolution of magnetization is exactly calculated, and
the exact results of relaxation time and dynamic critical exponent are obtained. Our models are divided into
two kinds: one is the spin-cluster transition and the other is the arbitrary multispin transition. It is found that
there are different relaxation times, but the same dynamical critical exponent for different kinds of multispin
transitions. The results show that the dynamical critical exponents are independent of spatial dimensions and
configurations of transitional spins, and that the dynamical critical exponent is the same as that of the Glauber
dynamics, and thus give a strong support to the simple single-spin-transition dynamics. Finally, we give a brief
discussion on the results.
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I. INTRODUCTION different dynamical exponents, if the flip rates are different

[27].
In the field of the nonequilibrium statistical mechanics  In this paper, we present a multispin transition mechanism
and critical dynamics, as a soluble problem the onelO investigate critical dynamics. This mechanism is more
dimensional kinetic Ising model was originally studied by real, but more complex mathematically. To make the analyti-

Glauber[1] and Kawasaki{2] in 1963 and 1966, respec- 2 solution possible, we employ the Gaussian model. Our
tively. In the pioneering works, they consider that the spinresults show that the dynamical critical exponent is the same

: . S as that of the Glauber dynamics, and thus give a strong sup-
system relaxes by a series of single-spin flips, named thﬁort to the simple single-spin-transition dynamicthe
Glauber mechanism, and by a series of spin-pair exchangegauber dynamids

named the Kawasaki mechanism, respectively. Since then, As is well known, in the study of the dynamic critical
many works in this field have been done and many developphenomena, the main task is to calculate the time evolution
ments have occurref8—12. Among these works, two im- of the local order parameter and critical dynamical exponent,
portant aspects are to investigate the influence of spinand the key step is to determine the transition rate of the
transition mechanism and spin-transition rate on the dynamigpins. In this paper, we assume that the multispin transition
critical properties of a system. For the first aspect, in additiofate is proportional to exf{() under the requirement of the
to the single-spin-flip and spin-pair exchange models, soméetailed balance condition, wheté is the effective Hamil-
works have been done. For example, Felderhof, Suzuki, an"ian related to transitional spins. In this case, we can ex-
. . . . - actly solve the master equation of the Gaussian model. Our
Hilhorst studied particular multiple-spin-flip models for the

di ional Isi ‘ d tv found that th investigation finds that the dynamic critical exponent2
one-dimensional ISing system and exactly found that the SyS; ¢ only for different dimensional lattices but also for differ-

tem has the dynamical exponent 2, if the spin-flip rates is  gnt kinds(see below of multispin transitions, which is in

the same as Glauber’s choifE3]. Recently, Zhu and Yang accord with the result of Ref14], in which only the single-
generalized Glauber’s critical dynamics; they considered &pin transition is considered.

single-spin transition instead of a single-spin flip, so thatitis This paper is organized as follows. In Sec. Il, we give a
appropriate for both discrete and continuous spin modelgeneralized dynamic version of the spin models with multi-
[14,15. In addition, Zhu and Zhu also studied the Kawasakispin transitions. In Sec. Ill, we solve exactly the one-
dynamics with spin-pair exchange for the Gaussian model adimensional kinetic Gaussian model with double-spin transi-
well [16]. For the second aspect, some works show that thHOnS. Section IV is a two-dimensional case, involving five-
choice of the transition rate influences the dynamic criticaSPin transitions and four-spin transitions. Section V gives the
properties. For example, using the renormalization group aF;_esults of_ three-dl_mensmnal_amﬂd|mer_15|ona! lattices, and
proach, Deker and Haake studied a kinetic Ising chain and€c- VI gives a brief c;onclusmn and discussion. Some of 'ghe
found that spin-flip rates different from Glauber’s choice MOre tedlou_s calculations of Secs. Ill, IV, and V are given in
may result in different exponents Haake and Thol also (e Appendixes.
studied double-spin-flip systems and found that they have”_ MASTER EQUATION OF MULTISPIN TRANSITIONS
In the kinetic spin model, originally proposed by Glauber
*Email address: kongxm@gqfnu.edu.cn for the one-dimensional Ising system, the probability distri-
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bution of the spin configuration evolution is described by the W(oe— ¢ )Ped 0)=W(0¢—0¢)Ped 01,..-,0¢,---,0N),

master equatioril], in which only the single-spin flip is ' ' ' ' ' @)
allowed each time while the others remain momentarily

fixed. As we have mentioned above, at present we study Ngpere p (o) =Pofay,....0,....0n) is the equilibrium
generalized case, in which multispin transitions can occur L .

each time and the spin values can be discrete or continuoug0ltzmann d|str|put|on . funct|on_ Ped o)

In our multispin-transition mechanism, the transitional spins_ (}/2)exf—BH(0)], Z is the partition function, anéti(o)

can be concentrated and neighboring each other which the’Ham|Iton|an of the systen=1/(kgT), kg is Boltz-
called a spin cluster, or distributed in spatial distribution. ManN's constant, andis the absolute temperature. The tran-
First, in this section we derive the general form of the mastefition raté can be written as
equation of spin-cluster transitions. The distributed case is L
studied in the Sec. Ill. R

Consider a spin system on a simple cubic lattice with TsW(og—0¢)= _c_eXF{HCi]’ )
sites. There is a spia; on thejth site. Let us label a site '
cluster byc; containingn lattice sites. The corresponding
spin cluster isr, =(ot,07,....0,....07), where superscript
k denotes théth spin in the spin cluster. We assume that all
spins in the cluster can change fromci to &ci simulta- QCiZE equci] (5)
neously, while the others remain momentarily fixed, where e,
{rci=((‘ril,c‘riz,...,&:(,...,c‘r{‘). Similar to the Glauber dynam-
ics, we describe the time-dependent behavior of the nonequis the normalized factor aril; = — BH¢ (6, {0} }) is the
librium probability distributionP(o,t) by means of a master Hamiltonian related to spin clustér. . It is easy to prove

equation. Considering that every spin cluster can change, thfiat expressiort4) satisfies condition§2) and (3).

where

master equation is written as For studying the dynamic critical phenomena, we are in-
q 1 terested in the time evolution of the local magnetization
_ - _ 5 sk(t), which is the ensemble average valueogft), i.e.,
Gt PO =2 & [~ Wlog—e)P(oD
+W(Fe— 0 )P(01,.. 0o )], sit)=>, o P(at). (6)
()

Let o multiply both sides of Eq(1l) and sum over all values

whereW(aci—mci) is the transition rate from spin configu- of the variableo, we get

ration(rE(crl,a'z,...,Uci,...,a'N) to (01,0'2,...,6'Ci,...,0'N),

the summatiorz; is carried out over all possible transitions d 1
; N ; —> oP(ot)==> o > + >
of the spin clustew, andX; goes over all clusters in the dt< Tk n< "k clec)  clfec)
system, the coefficient d/comes from the fact that each spin
belongs ton spin clustergsee Sec. lll A and Figs. 2 and.3 XD [~W(0g — & )P(at)
W(o— &) satisfies the normalized condition o G '
R 1 +W(o,— 0 )P(...,0¢,...,1)],
Z W(U'ci_’o'ci): Iy 2 I I I
()'Ci S

where the summatioECi(kECi) is carried out over the clus-
where 75 defines the unit of time. We assume th&f{o,  ters containing sité and = ) over the others. We first

—0¢) andW(o.— o) satisfy the detailed balance condi- consider the summation foc;(kec;). Because of o
tion [1,14] =(o¢{0j¢c)), we have

Do 2 X [—wwcﬁfrci)P<a,t)+W<acﬁaci>P<...,c‘rci,....t>]={E}ok > 2 [W(og—8c)P(a1)

ci(kecy) ‘}ci Tjeq, ci(keci) T 0,

+W(e,— 0 )P(.. 5. D). )

Note that
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2 W(Ge—00)P(be, )= 2 W(og—56)P(....0c,...1).

I¢; ¢ I¢; ¢

Expression7) is thus equal to zero. Moreover, since there mudifferent clusters;(¢c; Dk), we obtain

> akc(ch) 2 [~ W(oe,—e)P(0,)+ W(Fe— 06 )Pl D]= 2 012 2 [~ W(og—2)P(a,1)
+W(&e— 06 )P(....0 t)]———sk + Zl 2 FW(oe—b)P(at).

Therefore, the differential equation of the local magnetizaBased on Eq(8), we only need to consider two clusters:
tion is written as c1=(k,k+1) andc,=(k—1k). We thus write the differen-
tial equation as

d M 1a - < . R q 1
atW="" R 2 UE T W06 —8e)Plot), qx(0=" s+ 2; 2 6 W(og,— ¢ )P(at)
(8 “
which is our starting point in studying dynamic critical phe- 5 ; UE o \W(oe,— 0, )P(at). 11
€2

nomena. Obviously, the differential equation can be used for
all spin models, in principle. However, because of its com-
plexity it cannot be exactly solved, in general. In this paper, In order to solve Eq(11), V\_/e ought to calculate the sum-
we employ the Gaussian model with nearest-neighipif) ~ mations=;_ 5 W(o¢— ), i=1,2. According to expres-
interactions. Fortunately, the kinetic Gaussian model can bgjon (9), the Hamiltonians related to spin C|uste,§gb
exactly solved.

The Gaussian model was proposed by Berlin and Kac in
1952[18]. The Hamiltonian of a Gaussian spin system can

=(0k,0k11) andac =(oy_1,0%) are written as

be written as He,= = BHk+1(0%. Ok+ 1. {0k k1))
=K(0xok-1+ 0Ty 1+ O+ 10%+2) (12
—BH= KE a0y, )
(i) and
where the Gaussian spin can take any real values in the H. =—BH & 5 Lo
range of(—,), K=J/(kgT), J is the NN exchange inte- ¢ A 11,0 o)1)
gral, and the sunk; ;, runs over all NN spin pairs. The =K(&y_ 10—+ Op_ 10k 0k 1), (13

Gaussian probability distribution far; is [14,1§
respectively. Because the spins are continuous in the Gauss-
b b , ian model, we can change the summatiopn(---) into inte-
f(o))doi=\/5—exp — 507 |do;, (10 Yoo yn £/n N .
2 2 gral [ dof(oy)(--+), wheref(a,) is given by expression
(10). Based on Eqg5) and(12), the normalized factoQ.,

which denotes the probability of finding a given spinbe-  is written as
tweeng; ando;+da;, whereb is the Gaussian distribution

constantp>0. b [t f+= b ., .
Qc,= EJ_M, J_m doydoy. 1 exp He, = 5 (0 + i 1)
l1l. ONE-DIMENSIONAL KINETIC GAUSSIAN MODEL

A. Double-spin-cluster transitions \/ ex;{ b 0'k+2) j doy exp{ K( Ok-1

For explicitness, in this section we study the one-

dimensional kinetic Gaussian system with double-spin tran- b 1— K2 2
sitions. First, we study the case of double-spin-cluster tran- + b k2] 0k 5| 17 52| Ok
sitions. Consider a spin clustefci=(oi,oi+1) that can

change from §;,0i,) to a'ci=(6'i ,0i+1) Simultaneously. In terms of Eqs(4), (14), and the following expression:

(14
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+o0 A\

J xdxexr{ax— —xz)

C 2
—aJMd A2 A>0
=N X ex ax—zx (A>0),

we can obtain

TSE

a,
C1

+ o + oo
a\W(o H&C):TSJ' f o \W(o¢,— 0. )
1 1 S o 1 1

X (i, 0y 1)doy oy g

1 b [< )
= ——€eX
ch 2
+ o
XJ’ &kd&k ex;{K(Ukl

K
1)

+_ R—
~ K(boy-—1+Koys»)

2
K®
%Uk+2

oo

b

b 2 b

0'k+2)0'k_

bZ_K2 (15
For the clusterc,, we can also obtain
. . K(boys1+ Koy »)
72 T W(oe,— b)) = e (16)

a,
C2

Thus, from Eqgs(15), (16), and(11) we obtain the differen-
tial equation ofs,(t) as

K[b(sk-11Sk+1) T K(Sk—2FSk+2)]
2(b2—K2) '

d
reqr (D= =80 +
()

Equation(17) can be exactly solved by defining a generating
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©

sd(t)~e Vs

mn=—o

eX1tx2

VX1X2

si(0)

[

>

n=—o

b2—K?

" KbKt °m

wheres;(0) is the initial value ofs|(t), and 7 is the relax-
ation time given by

si(0)e ", (20)

b—K

b—2K 21)

T= Ts.

From the above expression, we can see that the relaxation
time only depends on the temperature of the system. For the
Gaussian model, we know that the critical point is deter-
mined by

J b

Ke= T, ~ 20"

(22)

whered is the spatial dimensiofl9-21]. So Eq.(21) can be
written as 7/7s=1+TJ/2(T—T.). Thus, near the critical
point one has

o (23

It implies that the system will very slowly approach the equi-
librium state, and thus will exhibit the critical slowing down
phenomenon. Noting that the correlation length exponent is
v=1/2 for the Gaussian mod¢R1]; according to the dy-
namic scaling hypothesis for the relaxation time & and

the scaling behavior of correlation lengtf~|T—T¢ "
(near the critical point result(23) gives the dynamic critical
exponentz equal to 2. The result is the same as that value of
the case of single-spin transition for the Gaussian model with
NN interactiond 14].

function. The detailed process is given in Appendix A. Here,

we give the solution as follows:

©

s)=e"s X 5(0)Im(x)ln(x2), I=k—(m+2n),
(18)

wherel ,(x) is the Bessel function, botim andn are inte-
gers, and

KZ
X=prR2 7

Kb t

X1= 07 —,
1 b2_K2 Ts

(19

We note that solutioil8) is very complex. In order to get
the explicit relation ofs,(t) with time t, we study the
asymptotic behavior o, (t) att—. Using asymptotic ex-

pression of the first kind of imaginary argument Bessel func-

tion [14], we obtain the time evolution of the local magneti-
zation

B. Double-spin-transition model

In this section, we study another case, the double-spin-
transition model, in which the transitional sping and o;
need not be neighbors in spatial distribution, i.e., two spins
(ok,0j) can be arbitrary. Expediently, we still consider the
one-dimensional spin system. In this case, for a givgn
there areN—1 ways to connect with the other spi, so in
the differential equatiori8) one hasn=N-—1. The Hamilto-
nians related to the double spifry,d;) are

= BHyj(0y, 0} {omekj}) =K[OW(0k—1+ 044 1) T Tj(0j -1

top.)] if j#Ek+L, k-1,

—BHj(0y, T} {omek,j}) =K(Okok— 1+ 0Oy 1
+6'k+10k+2) if j:k+1,

and
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= BHj(0, T { Tmzij}) = K(Tk0y 1+ O -1 7 G+ ?
+6'k710'k,2) if J:k_l
aj+1 (+1,j+1D)
Whenk andj are not neighboring, i.ej#k+1 andk—1, by
calculation we can easily obtain - —9
(-1, GJ) (+1j
. o . Klog-1t+ o) i
TSAZ a\W(owoj— 0yTj) = B — (24 —
a'k,a'j
e\ —0

For the caseg=k+ 1 andk—1, we have obtained the sum-
mations as in Eq9.15) and(16), respectively. (a) (b)
From Egs.(8), (15), (16), and(24) one obtains
FIG. 1. The sketches of the cluster in the two-dimensional lat-
d Ts tice: (a) five-spin cluster andb) four-spin cluster.
Tsgt S(t) = —s (1) + 2t [X1(Sk—1+Sk1) T Xa(Sk—2
IV. TWO-DIMENSIONAL CASE

+Sk+2)] (25 . : : : _
In this section, we study the two-dimensional kinetic

Gaussian spin system with spin-cluster transitions. Theoreti-
cally, the shape of cluster can be arbitrarily chosen, but the

) 3 calculation is very complex, in general. In order to study the

X :2(N—2)Kb —2(N-3)K t influence of the different clusters on the dynamic critical
! (N—1)b(b?—K?) Ts' phenomena, we chose two kinds of clusters: the one named

the five-spin cluster is formed from a spin and its NN spins,

2bK2 t which is plotted in Fig. 1a), and the other named the four-
= (N=1)b(b’=K?) T_s (26) spin cluster is formed from four spirisee Fig. 1b)].

with

X2

Comparing Eq(25) with Eqg. (17) we can directly write the A. Five-spin cluster

solution of Eq.(25) as Eq.(18). So we can get the relaxation First, we study the case of five-spin cluster. Consider an

time 7= 75/y, where arbitrary clusterc; composed of sitegi, j), (i+1,), (i
-1j), (i,j+1), and {,j—1) [see Fig. 18)]. The spins of
(b—2K)[(N=1)b—(N—-3)K] the cluster iSU'ci=(0'i,j 1Ti41j,07-1j,00,j+1,0,j-1). Inor-
- (N—1)b(b—K) : der to find out the dynamic critical exponent, we calculate

the time evolution of the local magnetizatisg,(t). Noting

Here, we find that the relaxation time is related to the num-that there are five clusters that contain skel), i.e., site(k,

ber of spins of the system. In the case of the thermodynamiI belongs to five dlﬁgrent_cluste(see F.'g' 2_Accordmg to
limit N—c0, we can obtain that=[b/(b—2K)] . If we .q..(8), one can easily write the following differential equa-
notice Eq.(22) again, one has~ (T—T.) ! near the critical tion:
point. Further, one gets that the dynamical critical exponent d st 1 5
equals 2 as well. — 5 (==L 2SS G W(o,

If we look into such a case, in which there is not only a dt™ Ts S5 i ' '
single-spin transition but also double-spin transitions at one .
time, we can find that the value afdoes not change. It is to _“fci)P("’t)! (27)
say that the admixture of single-spin and double-spin transi-
tions does not change the dynamical critical exponent. where

kJ+1) (k+1,1+1) *-1,1+1) (ki+2) ()]

L) D] (+L) (6D GFLD G2 (2) (L) kD (k-1,1+1>(k,111> (+11+1) <k-1,1-1)<k,f-1> (+11)

*J-1) (+1J-1) *-1,0-1) ) *J-2)
¢ G C; C4 Cs

FIG. 2. For the case of the five-spin cluster in the two-dimensional lattice, there are five different clusters that cortait).site
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0¢, = (011 Ok+1) 1 Tk=11 10k 1 +1: 0k 1~ 1), . A Koy
T2 o W(oe—0¢)= pz—azr 152345, (32

(TCI

Uczz(0k+1,l 1Ok+20 0K k4 1) +1: Ok 11 -1)

e = (Cuest Okl Chnl kots st T 1) where o, is the summation of NN spins of the cluster.
- — il il - 1 - +1» - - ! I
s 110k, / , : Thus, from Eqgs(27), (30), and(32) one has

Uc4:(Uk,l+1:U'k+1,l+lva'k—1,l+1ro'k,l+2a0'k,l)a ) 5

d 1
Tiqr kiD= =S+ 5 gz 2 S (D), (33
e, = (Ok1-1,0k+11-1:0k-11-1, 0k, Tk [-2)- *dt 5 b*—4K= =

Using the same method as in Sec. lll, we can also calcuwith
late the summation§;,0 &kJW(aci—%rci), i=1,2,...,5. For

the clusterc;, according to expressio®) the Hamiltonian ~ Sn, =Sk+2)t Sk—20F Sk1+2F Sk1-2F 2Sk+1)+1F 28141
related to spin clusted is written as
+28-1)41+2Sk-1)-1,
He, =Koy 0r1)H Koy 0y 1)+ Koy, 0y 141

R Sn, = Sk+31 1 Sk—14F Sk 14+27F Sk 1121 28k 2141
+K0'y,0'k'|,l, (28)

_ T 2842)-1F 2814128 -1,
whereoy, , oy, oy, ando,_ are defined as follows:

PN Sn,=Sk-3) T Sk+1) T Sk—1)42FTSk—1)-2T2Sk—2)+1
Ox+ =0y T Oks21t Okr1)+1FH Okr1)—1, N3 ' : ' ’ :

. +28_ )1+ 28y 1+1T 2S¢ -1,
Ox—=0y | T 0kt 0Ok—1)+1Ft Ok-1)-1,
_ A S, =S +S | _1+S + S, + 25
O'y+_Uk,l+Uk,l+2+Uk+l,l+1+0'kfl,l+lv Ny k,1+3 k,I—1 k+2]+1 k—2l+1 k+1]+2

. + 2811228k 1) T 28k
Oy =0yt O 1—2T Okt1)-1T Ok—1)-1-

Based on Eqs(5) and(28), the normalized factor is written Sng=Sk1-3 T Sk1+1F Sk+21-1F Sk—2)-1F2Sk41)-2
as
T28¢_ 112+ 2841+ 28¢-1 -
512 ¢ 4o
Qc,= UE eXF{Hcl] = (Z) f_oc Equation(33) can be exactly solved by defining a generating
e function as well(see Appendix € The solution is
+ o0
o BTN T -

sk,l(t):eitlfS 2 Skfp,lfq(o)lml(x)lm2

{mj=—ocki_112
_ (42 ~2 ~2 A2 ~2
g exp[ 2 (7™ et Tent Ohrea® -2 | X (), () 1, () g (5%) | 1 (5%)
(29 X (3X) ] g (%) g (3%) I
E;om Eqgs.(4), (28), and(29) we can obtainsee Appendix X (3x)1 mll(2X)| m12(2x); (34
K?oy,, where
Tsz o W( Oc,— a'cl) T b2 aK?’ (30

Te, p=3m;+2mz+ mg+ my;+ Mg+ 2mMg— Mg+ My + My,

where

q=3m,+2m,+ mg+ 2m;— mg+ Mg+ Mg+ My;— My,
On, = Okr2)t Ok2) T O 142t Ok 1-2T 20441141

2K? t
+20 1+ 20— +204_1,— 31 = —
ketg-11T 201411 20411 (31 X= 5hP=aK?) 7.
is the summation of the NN spins of the clustgr For other
clustersc; (i=2,3,4,5), we also get Whent— oo, solution(34) is asymptotically written as
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‘k11+1 kl+1' .kl+1 k+11+1‘ d 1
G-LIeD) Gl i) Gl ask,l(t):—zsm(t)

C, C, 1 K(b?=2K?)s, (1) +K?bs, (1) +K3s, (1)
T 2(b%—4bK?) !
‘(k-l.l) (k.l)‘ .(kl) (k+l.1‘ (37
* * o * with
*-1.0) ) &0 k1)
Sn, = Sk—1) T Skt 1) T Sk -1 Sk 1415
C
3 C Sn,=Sk-1J+1FT Sk+1)+1F Ski+2F Sii—2F Sk 1)1
+Sk_11-1TS +Sk—2y,
‘(k-l.l-l) (k.I-l)' .(k‘l-l) (k+1.1—l% k—1)—17T Sk+2| k—2)

FIG. 3. For the case of the four-spin cluster, there are four dif—and

ferent clusters that contain sitk, I). Sn, = Sk )42 Sk 1y +2F Skezie 1 Skeag 1t Sceny—2

6 )

Te s tSk_1y-2FSkr2)-1FSk—2)-1-
S~z s > Sk—p-q(0)e . . _
t6( ) {mi=—c}i—112 Equation(37) can be exactly solved. Following Appendix C,
b?—4K? one gets
N E Ge—t/T ”
t ' sa=es D s 1 g(0)m (X))l (X0)
{mi=—}i-110
wheresy ;| 4(0) is the initial value ofs, | 4(t), and ><|m3(X2)|m4(X2)|m5(Xz)
b?—4K?
= W Ts. (35) X1 mG(XZ)I m7(x3)| mS(XB)I mg(XB)I mlo(x3)’ (38)
with
Noting Eq.(22) andK + K.~ 2K near the critical point, one
then gets p=m;+ mg+my+2mg+m;+2mg—mg+ My,
_ 1+§ TC T~(T_T )71 (36) q:m2+m3+m4+2m6+2m7+m8+mg_m10,
8T—-T. ® “ ) ) )
_ K(b"=2K?) t _ bK t
Therefore, the dynamic critical exponent also equals 2. XITTHITapK? 7 "2 b3 4bK2 7
B. Four-spin transitions K® t

Consider a four-spin- iti 7T 4bK? 7
pin-transition case. We chose the cluster

c¢; with the sites(i, j), (i+1,), (i,j+1), and {+1,j+1)
[see Fig. b)]. The corresponding spin cluster is denoted b
aciz(a”—,aiHJ—,ai,jﬂ,o”l,jﬂ). We also focus on the

Whent—, Eq.(38) is asymptotically expressed ag(t)
Y—e~Y7, in which the relaxation time is given as

differential equation(8). From Fig. 3 we can see that there b—2K 4
are four-spin clusters that contairy | (see Fig. ¥ =gk s (T-To) (39)
06, = (0% 1,0k 111 0k1+1:0k+1)+1), Compare Eqs(39) with (36), although the forms of the two
relaxation times are different, the dynamic critical behavior
0¢,= (01, 0k+1) 0k 1-1,0k+1)- 1), of the two systems is the same near the critical point. Thus,

the value of the dynamic critical exponenequals 2 as well.

0c3:(0k,| 1Ok=1) 1Ok 11, Tk=1]-1)
V. THREE-DIMENSIONAL CASE
0¢,= (011 0k=1) 0k +1,Tk=1)+1)- The three-dimensional kinetic Gaussian model can also be
exactly solved. Considering both the simplification of calcu-
Following the calculation in Sec. Ill, we can get the dif- lation and typicalness of the spin cluster, we study the case
ferential equation aésee Appendix D of the seven-spin cluster transitions, which is similar to the
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whereoy, , oy_, 0y, 0y, 0,,, ando,_ are the sum-
| Gjk+1) [nations 9f the NN sPins 0011y ns {rk,lm, Okl+1n»
! If Okl-1n» Okin+1, @anday n_1, respectively, e.g.,
|
| | G- Ox+ = Ok nT Oks2inT Ok 1)+1nT Oka1i—1nT Tkt 1) n+1
|
_{ / tOk+1),n-1>
— 1 —— — g —— Ly
GJ-LA) | [GJR) | (ig+ LRy .
) Ox—=0inT Ok—2int Ox—1)+1nt Ok—1)-1nT Ok—1)n+1
| (1+i,1,k)
tOok-1)n-1-
/ b
J/ Gjk-1) From Egs.(4), (2), and(41) we can get
Kzanl
FIG. 4. The sketch of the seven-spin cluster in the three- TSZ Uk,l,nW(Ucl—Wcl)zgz_—GKz. (42
dimensional lattice. e,

in which On, is the summation of NN spins of the clustar,

case of the five-spin cluster in Sec. IV. The cluster considgdiven as

ered here contains the sii@ j, k) and its NN sites i(

+1,,k), (i—1,j.,k), (i,j+1k), (i,j—1k), (i,j,k+1), and Un1:Uk+2,I,n+O'kfz,l,n+0'k,l+2,n+Uk,l72,n+0'k,l,n+2
(i,j,k—1) (see Fig. 4 In order to solve the differential
equation of the local magnetizatiosy ,(t), we need to
write the spin clusters that contain spiry,,. There are +20+1 -1t 20¢— 11410t 20¢—1 -1
seven such clusters:

tokin-2T20k1 1)+ 10T 20k 1) 10T 2044 150+ 1

+2011yn+1t 201 n-1FT 20111041

— nn - nn
Ucl_(a'k,l,n la-k,l,n)v 0-02_(0-k+l,|,n 10—k+l,l,n)’ +20k,|+1,n—1+ 20k,|—1,n+1+ 20’k’|_11n_1.
gc3=(gk_l| n ot ), For other clustersc;, the summationsE;,oc“rk,,,nW(crCi
—>?rci) (i=2,...,7) can be obtained as well. Thus, from Egs.
0, =(0%1+10:0k1+10)s  Te.=(Tki-10:Tk1-10) (40) and(42) one has

_ nn d 1 2 !

e, = (0K In+1:0k i n+1) 7oy Seln(D)= =S+ = W; s (1), (43
— nn

e, = (Okln-1:0k 1 n-1): where s, (1)=2,0,P(0,t). This equation contains many

o an _ terms, and its solving process and solution are very complex.
Whereoy | . iy ,n--- denote the sets of the NN spins of it e only regard the relaxation time of the system, we can
Oklns Okedfns---, respectively, e.g. oyl =(dks1n.  focus on the total magnetization
Ok—1),n+0k|+1n+TkI-1n:Tkl,n+1,0k 1 ,n—1). Based on Eq.

(8), the differential equation of the local magnetization
Ski.n(t) is written as m(t):(;l:n) Sict,n(t), (44)

d Sn(t) 1 . where the summatiol | ,) goes over all sites in the sys-
= Skin(t)=— + —E _ E oy, nW(o tem. Performing a summation for sitk,l,n) in Eq. (43) one
dt Ts 7 o i=1 4 ! . . . .

G can easily obtain the magnetization(t) as

—8¢)P(a,t), (40) m(t)=m(0)e Y7, (45)

Using the same method as in Sec. Ill, we can also calculatwherem(0)=X | n)Sk,1,n(0) is the initial value of the total
the summation§;,c ‘}k"W(‘TCi_"}Ci)’ i=1,2,...,7. For the magnetization and the relaxation time is

clusterc;, the Hamiltonian related to spin clustér; is b2— K2
written as T= 5732 s (46)
He,=K(0y1 Tk 100t 0x-0k-11,nF Ty+ 01410 Noting Eqg. (22), we can see that the relaxation time fbr

nearT. will also approache, and that it can be written as
r=(14+ 5T./(T—T.)) 7. Further, this result can give the
(41) same value of the dynamic critical exponent as above.

+0y Owi-1nT 0210k ni1t 02 Okin-1),
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According to result§35) and(46), for the d-dimensional Foundation of Ministry of Education PRC for Training Ph.D.
kinetic Gaussian model, one can obtain the general form o$tudents. X.M.K. thanks Professor J. Y. Zhu, Dr. Z. Gao, and
the relaxation time Dr. J. X. Le for their valuable discussion.

b2—2dK?

= a2k s (47) APPENDIX A: SOLVE EQ. (17)

T

N ) Let us define a generating function
Near the critical point,7~1+[(2d—1)T/4d(T—T.)]7s
~(T—=T) %, thus therez=2. »
FOLD= 2 (). (A1)
VI. CONCLUSION AND DISCUSSION k==

In this paper, we presented a multispin-transition modeBased on Eq(17), we have
and studied the dynamic critical phenomena of the Gaussian
model with NN interactions. The time evolution of the mag- o

o S . IF(N\, 1) d
netizations is investigated and the exact results of the relax-=———" = > \k_g(t)
ation time and the dynamical critical exponent are obtained. 9t K== dt
Our results show that the dynamical critical exponent is in- 1
dependent of the choice of the transitional spins, namely, no =——_1
matter whether the transitional spins are concentrédeds. Ts
A, IV, and V) or distributed (Sec. Il B), no matter
whether the transitional spins have different spatial configuThe solution of the above equation is
rations[Figs. 1a) and(b)], the dynamical critical exponent is
the same. Combining it with Glauber’s single transition Kbt
mechanism, we lead to the following conclusion: the dy- F()\,t)zF()\,O)e_t/TseXF{z(—bz_—Kz—)(?\H\_l)}
namical critical exponent is independent of the transition
mechanism, in general. 2 N

For the above conclusion, we may interpret the following: Xex;{m()\ A )}- (A2)
from the view of renormalization a transitional spin cluster
can be transforr_ned Into a single spin Fhrough a renormahzaNoting the generating function of the Bessel function of
tion transformatior{scaling transformationand thus the be- . .

. ; . . ~imaginary argumenitl],
havior of a spin cluster is essentially equal to that of a single
spin. Therefore, different transition mechanisms give the oo
same value of the dynamical critical exponent. X —1 ) Y

Our results also show that the value of the dynamical exp{z()\ﬂ\ )) =, 2 ML, (A3)
critical exponent is the same for one-, two-, and three-
dimensional Gaussian models with NN interactions. At first, e optain that
sight, it seems to be in conflict with the recent view of uni-

K[b(N+X "D +K(A2+N"?)]
B 2(b?—K?)

}F()\,t).

y=—o

versality class. In fact, it can be regarded as a special acci- o
dental degeneracy phenomena, which is just likel/2 for FOLD=F(\,00e V7 2 A2 () (%),
any dimensional Gaussian modéaD,21]. mn=—c
It is necessary to point out that the spin clusters consid- (Ad)

ered in this paper are all small, nonpercolating ones, and that

the transitions of percolating spin clusters, as in the case ofhere bothx; andx, are determined by Eq19). From Egs.
the Swendsen-Wang or Wolff cluster algorithfi2?,23, are  (Al) and(A4), we get

not considered. Our results only hold for the former. When

transitions of percolating spin clusters are considered, the * * *
results may be changed. > As(t)y=e Vs >
Our method can be generalized for other models, in prin- k== |==c mn=—c
ciple, such as the Ising model in two or three dimensions, but
the calculations will be very complex, so that it is difficult to X s (0)N™T2N (X)) (X5).

obtain the exact analytical results.

Finally, our multispin transition mechanism may include
Kawasaki-like dynamics, if we ask for a conservation of the
total value of all spins in the transitional spin cluster.

Comparing the two sides of the above equation, one obtains
solution (18).
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2 exd He, ]= ( )S/ZJMJ J j f doy, doy1)doy— 1 doy 410y - 1exr{ Uk|>

b b b
N ~2 N "2 ~ ~2 N
Xex[{KUx+0—k+l,l_§Uk+l,l ex KUx—Uk—l,l_EUk—lJ ex K0y+0k,|+1—§<7k,|+1 exp Koy_oy -1
b,
2 Tkl-1

[ b b K?
2 2 2
f d0'k|exp< a'k|) [{Zb(ax++a toy toy)

K2
\ / 2 2
exr{ b(0k+2|+f7k+1|+1+0k+1| 1) +Zb((Tk—z,|+Uk—1,|+1+0k—1,|—1) )

K2
Xexr{zb(gkl+2+ﬂ'k+ll+1+0k 1|+1) +2b(0'k| 2+0-k+1| 1+O'k 1)— 1) )f dg'kl

b 4K\, K*
X ex _E 1_F Uk,l"’?o'nlo'k,l

whereo,, has been given in Ed31). Thus, one has

25 Ok eXH M, ]

TSE oy, W( Oc, ™ a'cl)

oo T exfd He, |
[ [
o b 4K? K2
J TGk, Aoy ex ) 1- 2 Ot b In 7kl KZUnl
o b/ 4K? , KZ | b?—aK”
J1odoy ex ) 1- B2 Ot b Tn 7kl
|
APPENDIX C: THE SOLUTION OF EQ. (33 The solution of Eq(C2) is
Let F(N A2, )=F (N, ,00e " sexgd G(A g, A)t].
FOlpA )= > MAbs (b, (C1)  Noting the generating function of the Bessel functi@8)
kl== ' and
from Eq. (33) we get .
JF(N1 Ao t) FOu 0= 2 MNys(0),
TS%:_F(7\1:>\2,t)+G(7\11>\2)F()\1,7\2,t), Wi T2
(C2)  from Egs.(Cl) and(C3), we can write the following equa-
where tion:
K2 _ _ - —t/7rg -
GO M) = gz pargy LA+ (A2 %)+ (0 kl_Efw Nikbsci(t) =e k,’z_x S 1(0)
FALD)+NEH NS D) +B(A N +5(N - o
1 ) ( 2 2 ) ( 1 1 ) ( 2 % z )\Ii +p)\|2+q|m1(x)
A2 DA NN D) +3(NN; 2 tm=ehimtz
AT 3D+ A G )+ 3 X i, () () T, (X) 1 (5X)
FAT ) F2(N AT I D 200t X g (5X) I (3X) 11 (3X) 1 m (3%)
+A1 )] X, (3, (2X) 1 (2X).
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Further, we can get Eq34).

APPENDIX D: CALCULATION OF EQ. (37)

I . : roe 2a,K?| A,
The Hamiltonian related to the spin clustey, is xf_ dak’,exp{ ay+ bD’ )akJ exp{—zaﬁ, ;
He,= = BHc (0¢, {0 e, }) =K (o)1) F 0k 1-1) T
A . . with
Kokt 1g+2FT Okr2i+1) Tk 1) +1 T KTk + Okr1) 41
~ A ~ 2 4
T ok-1)+1F Ok 1+2) Ok 1T K(Oy + Oy 41 N=Db|1— 2K”_ 4K
R b2 b3b/ '
T Ookr1 -1 Okr2)) Oy - (DY)
Based on Eg.(D1) the normalized factorQ. —and N :Kz(o'k—l,|+1+O'k,l+2+a'k+1,l—1+Uk+2,l)
pIPS c‘rk|W(chl—>€rC1) can be calculated. This process is ! b
Cl ’
complex, so here we only give the main procedure and re- +K(Oks 1112t Tizir1)s
sults.
R K2(ok-1)+1F Ok 42 Ok 1)—1+ O 2))
Qc1:Z qu_BH(Uclx{Ujetcl})] X2= b
(I'C:l

+K(oy-1) T o 1-1),

b 2 fhw + o . . . .
:(E) J_w"'J_w dUk,|d0k+1,|d(Tk,|+1d0k+1,|+1
=K (oy_ 1541+ 0k1+2) T K2 (0 r 1)1+ 0ks2))

b b
XeXF[_,BH(Ucl,{Uj ¢c1})]exr{ - Eaﬁ,l_ §U§+1,|+1 bb’ =b2— 2K2.

~ ~ 1 ~
752 T W(og —c)= o S~ BH e {0)e0))]
C1

a,
C1

_ K(b?=2K?)(oy_15+ 0oy —1) +K?D(oy_ 1)+ 17 O 12T Os1)—1F Okra))

b3—4bK?
2K3(0kg311+j;K0;k+2,|+1) D2)
Also, we can obtain
(}E G W(o —70,) K(bz—ZKz)(ffk1,|+Uk,|+1)+|;§li(:;|<12,|1+ Ok l-2F Okr1)+1T Oks2))
<2
2K3(0'kg§i—42;K0;k+2‘l—1) , 03)
> b W( e, s,) = K(bz_2K2)(0'k+1,l+0'k,l+l)+Ejti(:'kl)(;r(lz,ll+ Ok l-2F Ok—1)+1T Ok-2))
Teg
2K¥( oy 1) 2t 0 21-1) 04)

b®—4bK? ’

and
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K(b?=2K?) (04 1)+ 01— 1) + K20y 1141t 0 r 2t 01y -1+ 04 2))

g ffk,|W(Uc4—>(}c4): b3—4bK?
4
2K3(oy_1)12+ Ok 2)41)

b®—4bK? ©3)
From above, Eq9D2)—(D5), according to Eq(8), one can obtain the differential equation as in E3Y).
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