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Critical dynamics of the Gaussian model with multispin transitions
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In this paper, we present a multispin transition mechanism, which is an extension of the Glauber one, to
investigate critical dynamics. By exactly solving the master equation, the influence of the multispin transition
mechanism on the dynamic critical behavior is studied for the Gaussian model with nearest-neighbor interac-
tions ond-dimensional lattices (d51, 2, and 3!. The time evolution of magnetization is exactly calculated, and
the exact results of relaxation time and dynamic critical exponent are obtained. Our models are divided into
two kinds: one is the spin-cluster transition and the other is the arbitrary multispin transition. It is found that
there are different relaxation times, but the same dynamical critical exponent for different kinds of multispin
transitions. The results show that the dynamical critical exponents are independent of spatial dimensions and
configurations of transitional spins, and that the dynamical critical exponent is the same as that of the Glauber
dynamics, and thus give a strong support to the simple single-spin-transition dynamics. Finally, we give a brief
discussion on the results.

DOI: 10.1103/PhysRevE.67.056121 PACS number~s!: 64.60.Ht
cs
ne
by
-

pin
th
g
he
lo
-
pi
m
io
m
a
e

sy

d
t i
e

ak
l
th
ca
a
an
ce

av

nt

ism
re

yti-
ur

me
up-

l
tion
nt,
the
tion
e

ex-
Our

r-

a
lti-
e-
si-
e-
the

the
in

er
tri-
I. INTRODUCTION

In the field of the nonequilibrium statistical mechani
and critical dynamics, as a soluble problem the o
dimensional kinetic Ising model was originally studied
Glauber @1# and Kawasaki@2# in 1963 and 1966, respec
tively. In the pioneering works, they consider that the s
system relaxes by a series of single-spin flips, named
Glauber mechanism, and by a series of spin-pair exchan
named the Kawasaki mechanism, respectively. Since t
many works in this field have been done and many deve
ments have occurred@3–12#. Among these works, two im
portant aspects are to investigate the influence of s
transition mechanism and spin-transition rate on the dyna
critical properties of a system. For the first aspect, in addit
to the single-spin-flip and spin-pair exchange models, so
works have been done. For example, Felderhof, Suzuki,
Hilhorst studied particular multiple-spin-flip models for th
one-dimensional Ising system and exactly found that the
tem has the dynamical exponentz52, if the spin-flip rates is
the same as Glauber’s choice@13#. Recently, Zhu and Yang
generalized Glauber’s critical dynamics; they considere
single-spin transition instead of a single-spin flip, so that i
appropriate for both discrete and continuous spin mod
@14,15#. In addition, Zhu and Zhu also studied the Kawas
dynamics with spin-pair exchange for the Gaussian mode
well @16#. For the second aspect, some works show that
choice of the transition rate influences the dynamic criti
properties. For example, using the renormalization group
proach, Deker and Haake studied a kinetic Ising chain
found that spin-flip rates different from Glauber’s choi
may result in different exponentsz. Haake and Thol also
studied double-spin-flip systems and found that they h

*Email address: kongxm@qfnu.edu.cn
1063-651X/2003/67~5!/056121~12!/$20.00 67 0561
-

e
es,
n,

p-

n-
ic
n
e

nd

s-

a
s
ls
i
as
e
l
p-
d

e

different dynamical exponents, if the flip rates are differe
@17#.

In this paper, we present a multispin transition mechan
to investigate critical dynamics. This mechanism is mo
real, but more complex mathematically. To make the anal
cal solution possible, we employ the Gaussian model. O
results show that the dynamical critical exponent is the sa
as that of the Glauber dynamics, and thus give a strong s
port to the simple single-spin-transition dynamics~the
Glauber dynamics!.

As is well known, in the study of the dynamic critica
phenomena, the main task is to calculate the time evolu
of the local order parameter and critical dynamical expone
and the key step is to determine the transition rate of
spins. In this paper, we assume that the multispin transi
rate is proportional to exp(H) under the requirement of th
detailed balance condition, whereH is the effective Hamil-
tonian related to transitional spins. In this case, we can
actly solve the master equation of the Gaussian model.
investigation finds that the dynamic critical exponentz52
not only for different dimensional lattices but also for diffe
ent kinds~see below! of multispin transitions, which is in
accord with the result of Ref.@14#, in which only the single-
spin transition is considered.

This paper is organized as follows. In Sec. II, we give
generalized dynamic version of the spin models with mu
spin transitions. In Sec. III, we solve exactly the on
dimensional kinetic Gaussian model with double-spin tran
tions. Section IV is a two-dimensional case, involving fiv
spin transitions and four-spin transitions. Section V gives
results of three-dimensional andd-dimensional lattices, and
Sec. VI gives a brief conclusion and discussion. Some of
more tedious calculations of Secs. III, IV, and V are given
the Appendixes.

II. MASTER EQUATION OF MULTISPIN TRANSITIONS

In the kinetic spin model, originally proposed by Glaub
for the one-dimensional Ising system, the probability dis
©2003 The American Physical Society21-1
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bution of the spin configuration evolution is described by
master equation@1#, in which only the single-spin flip is
allowed each time while the others remain momenta
fixed. As we have mentioned above, at present we study
generalized case, in which multispin transitions can oc
each time and the spin values can be discrete or continu
In our multispin-transition mechanism, the transitional sp
can be concentrated and neighboring each other whic
called a spin cluster, or distributed in spatial distributio
First, in this section we derive the general form of the mas
equation of spin-cluster transitions. The distributed cas
studied in the Sec. III.

Consider a spin system on a simple cubic lattice withN
sites. There is a spins j on the j th site. Let us label a site
cluster byci containingn lattice sites. The correspondin
spin cluster issci

[(s i
1,s i

2,...,s i
k ,...,s i

n), where superscrip

k denotes thekth spin in the spin cluster. We assume that
spins in the cluster can change fromsci

to ŝci
simulta-

neously, while the others remain momentarily fixed, wh
ŝci

5(ŝ i
1,ŝ i

2,...,ŝ i
k ,...,ŝ i

n). Similar to the Glauber dynam
ics, we describe the time-dependent behavior of the none
librium probability distributionP(s,t) by means of a maste
equation. Considering that every spin cluster can change
master equation is written as

d

dt
P~s,t !5

1

n (
ci

(
ŝci

@2W~sci
→ŝci

!P~s,t !

1W~ ŝci
→sci

!P~s1 ,...,ŝci
,...,sN ,t !#,

~1!

whereW(sci
→ŝci

) is the transition rate from spin configu

rations[(s1 ,s2 ,...,sci
,...,sN) to (s1 ,s2 ,...,ŝci

,...,sN),

the summation(ŝci
is carried out over all possible transition

of the spin clustersci
, and(ci

goes over all clusters in th

system, the coefficient 1/n comes from the fact that each sp
belongs ton spin clusters~see Sec. III A and Figs. 2 and 3!.
W(sci

→ŝci
) satisfies the normalized condition

(
ŝci

W~sci
→ŝci

!5
1

ts
, ~2!

where ts defines the unit of time. We assume thatW(sci

→ŝci
) andW(ŝci

→sci
) satisfy the detailed balance cond

tion @1,14#
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W~sci
→ŝci

!Peq~s!5W~ ŝci
→sci

!Peq~s1 ,...,ŝci
,...,sN!,

~3!

where Peq(s)[Peq(s1 ,...,sci
,...,sN) is the equilibrium

Boltzmann distribution function Peq(s)
5(1/Z)exp@2bH(s)#, Z is the partition function, andH(s)
is the Hamiltonian of the system.b51/(kBT), kB is Boltz-
mann’s constant, andT is the absolute temperature. The tra
sition rate can be written as

tsW~sci
→ŝci

!5
1

Qci

exp@Hci
#, ~4!

where

Qci
5(

ŝci

exp@Hci
# ~5!

is the normalized factor andHci
52bHci

(ŝci
,$s j ¹ci

%) is the

Hamiltonian related to spin clusterŝci
. It is easy to prove

that expression~4! satisfies conditions~2! and ~3!.
For studying the dynamic critical phenomena, we are

terested in the time evolution of the local magnetizati
sk(t), which is the ensemble average value ofsk(t), i.e.,

sk~ t !5(
s

skP~s,t !. ~6!

Let sk multiply both sides of Eq.~1! and sum over all values
of the variables, we get

d

dt (s skP~s,t !5
1

n (
s

skS (
ci ~k¹ci !

1 (
ci ~kPci !

D
3(

ŝci

@2W~sci
→ŝci

!P~s,t !

1W~ ŝci
→sci

!P~ ...,ŝci
,...,t !#,

where the summation(ci (kPci )
is carried out over the clus

ters containing sitek and (ci (k¹ci )
over the others. We firs

consider the summation forci(k¹ci). Because of s
5(sci

,$s j ¹ci
%), we have
(
s

sk (
ci ~k¹ci !

(
ŝci

@2W~sci
→ŝci

!P~s,t !1W~ ŝci
→sci

!P~ ...,ŝci
,...,t !#5 (

$s j ¹ci
%

sk (
ci ~k¹ci !

(
sci

,ŝci

@2W~sci
→ŝci

!P~s,t !

1W~ ŝci
→sci

!P~ ...,ŝci
,...,t !#. ~7!

Note that
1-2
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(
sci

,ŝci

W~ ŝci
→sci

!P~ ...,ŝci
,...,t !5 (

sci
,ŝci

W~sci
→ŝci

!P~ ...,sci
,...,t !.

Expression~7! is thus equal to zero. Moreover, since there aren different clustersci(ci.k), we obtain

(
s

sk (
ci ~kPci !

(
ŝci

@2W~sci
→ŝci

!P~s,t !1W~ ŝci
→sci

!P~ ...,ŝci
,...,t !#5(

s
sk(

i 51

n

(
ŝci

@2W~sci
→ŝci

!P~s,t !

1W~ ŝci
→sci

!P~ ...,ŝci
,...,t !#52

n

ts
sk1(

s
(
i 51

n

(
ŝci

ŝkW~sci
→ŝci

!P~s,t !.
za
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Therefore, the differential equation of the local magneti
tion is written as

d

dt
sk~ t !52

sk~ t !

ts
1

1

n (
s

(
i 51

n

(
ŝci

ŝkW~sci
→ŝci

!P~s,t !,

~8!

which is our starting point in studying dynamic critical ph
nomena. Obviously, the differential equation can be used
all spin models, in principle. However, because of its co
plexity it cannot be exactly solved, in general. In this pap
we employ the Gaussian model with nearest-neighbor~NN!
interactions. Fortunately, the kinetic Gaussian model can
exactly solved.

The Gaussian model was proposed by Berlin and Ka
1952 @18#. The Hamiltonian of a Gaussian spin system c
be written as

2bH5K(̂
i j &

s is j , ~9!

where the Gaussian spins i can take any real values in th
range of~2`,`!, K5J/(kBT), J is the NN exchange inte
gral, and the sum(^ i , j & runs over all NN spin pairs. The
Gaussian probability distribution fors i is @14,18#

f ~s i !ds i5A b

2p
expS 2

b

2
s i

2Dds i , ~10!

which denotes the probability of finding a given spins i be-
tweens i ands i1ds i , whereb is the Gaussian distribution
constant,b.0.

III. ONE-DIMENSIONAL KINETIC GAUSSIAN MODEL

A. Double-spin-cluster transitions

For explicitness, in this section we study the on
dimensional kinetic Gaussian system with double-spin tr
sitions. First, we study the case of double-spin-cluster tr
sitions. Consider a spin clustersci

5(s i ,s i 11) that can

change from (s i ,s i 11) to ŝci
5(ŝ i ,ŝ i 11) simultaneously.
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Based on Eq.~8!, we only need to consider two cluster
c15(k,k11) andc25(k21,k). We thus write the differen-
tial equation as

d

dt
sk~ t !52

1

ts
sk~ t !1

1

2 (
s

(
ŝc1

ŝkW~sc1
→ŝc1

!P~s,t !

1
1

2 (
s

(
ŝc2

ŝkW~sc2
→ŝc2

!P~s,t !. ~11!

In order to solve Eq.~11!, we ought to calculate the sum
mations (ŝci

ŝkW(sci
→ŝci

), i 51,2. According to expres-

sion ~9!, the Hamiltonians related to spin clusterssc1

5(sk ,sk11) andsc2
5(sk21 ,sk) are written as

Hc1
52bHk,k11~ ŝk ,ŝk11 ,$s j Þk,k11%!

5K~ ŝksk211ŝkŝk111ŝk11sk12! ~12!

and

Hc2
52bHk21,k~ ŝk21 ,ŝk ,$s j Þk21,k%!

5K~ ŝk21sk221ŝk21ŝk1ŝksk11!, ~13!

respectively. Because the spins are continuous in the Ga
ian model, we can change the summation(ŝk

(¯) into inte-

gral *2`
1`dŝkf (ŝk)(¯), wheref (ŝk) is given by expression

~10!. Based on Eqs.~5! and ~12!, the normalized factorQc1

is written as

Qc1
5

b

2p E
2`

1`E
2`

1`

dŝkdŝk11 expFHc1
2

b

2
~ ŝk

21ŝk11
2 !G

5A b

2p
expS K2

2b
sk12

2 D E
2`

1`

dŝk expFKS sk21

1
K

b
sk12D ŝk2

b

2 S 12
K2

b2 D ŝk
2G . ~14!

In terms of Eqs.~4!, ~14!, and the following expression:
1-3
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E
2`

1`

x dxexpS ax2
l

2
x2D

5
a

l E
2`

1`

dx expS ax2
l

2
x2D ~l.0!,

we can obtain

ts(
ŝc1

ŝkW~sc1
→ŝc1

!5tsE
2`

1`E
2`

1`

ŝkW~sc1
→ŝc1

!

3 f ~ ŝk ,ŝk11!dŝkdŝk11

5
1

Qc1

A b

2p
expS K2

2b
sk12

2 D
3E

2`

1`

ŝkdŝk expFKS sk21

1
K

b
sk12D ŝk2

b

2 S 12
K2

b2 D ŝk
2G

5
K~bsk211Ksk12!

b22K2 . ~15!

For the clusterc2 , we can also obtain

ts(
ŝc2

ŝkW~sc2
→ŝc2

!5
K~bsk111Ksk22!

b22K2 . ~16!

Thus, from Eqs.~15!, ~16!, and~11! we obtain the differen-
tial equation ofsk(t) as

ts

d

dt
sk~ t !52sk~ t !1

K@b~sk211sk11!1K~sk221sk12!#

2~b22K2!
.

~17!

Equation~17! can be exactly solved by defining a generati
function. The detailed process is given in Appendix A. He
we give the solution as follows:

sk~ t !5e2t/ts (
m,n52`

`

sl~0!I m~x1!I n~x2!, l 5k2~m12n!,

~18!

where I m(x) is the Bessel function, bothm and n are inte-
gers, and

x15
Kb

b22K2

t

ts
, x25

K2

b22K2

t

ts
. ~19!

We note that solution~18! is very complex. In order to ge
the explicit relation ofsk(t) with time t, we study the
asymptotic behavior ofsk(t) at t→`. Using asymptotic ex-
pression of the first kind of imaginary argument Bessel fu
tion @14#, we obtain the time evolution of the local magne
zation
05612
,

-

sk~ t !;e2t/ts (
m,n52`

`

sl~0!
ex11x2

Ax1x2

5
b22K2

KAbKt
ts (

m,n52`

`

sl~0!e2t/t, ~20!

wheresl(0) is the initial value ofsl(t), andt is the relax-
ation time given by

t5
b2K

b22K
ts . ~21!

From the above expression, we can see that the relaxa
time only depends on the temperature of the system. For
Gaussian model, we know that the critical point is det
mined by

Kc5
J

kBTc
5

b

2d
, ~22!

whered is the spatial dimension@19–21#. So Eq.~21! can be
written as t/ts511Tc/2(T2Tc). Thus, near the critica
point one has

t;
1

T2Tc
. ~23!

It implies that the system will very slowly approach the eq
librium state, and thus will exhibit the critical slowing dow
phenomenon. Noting that the correlation length exponen
n51/2 for the Gaussian model@21#; according to the dy-
namic scaling hypothesis for the relaxation timet;jz and
the scaling behavior of correlation lengthj;uT2Tcu2n

~near the critical point!, result~23! gives the dynamic critical
exponentz equal to 2. The result is the same as that value
the case of single-spin transition for the Gaussian model w
NN interactions@14#.

B. Double-spin-transition model

In this section, we study another case, the double-s
transition model, in which the transitional spinssk and s j
need not be neighbors in spatial distribution, i.e., two sp
(sk ,s j ) can be arbitrary. Expediently, we still consider th
one-dimensional spin system. In this case, for a givensk ,
there areN21 ways to connect with the other spins j , so in
the differential equation~8! one hasn5N21. The Hamilto-
nians related to the double spin (ŝk ,ŝ j ) are

2bHk j~ ŝk ,ŝ j ,$smÞk, j%!5K@ŝk~sk211sk11!1ŝ j~s j 21

1s j 11!# if j Þk11, k21,

2bHk j~ ŝk ,ŝ j ,$smÞk, j%!5K~ ŝksk211ŝkŝk11

1ŝk11sk12! if j 5k11,

and
1-4
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2bHk j~ ŝk ,ŝ j ,$smÞk, j%!5K~ ŝksk111ŝkŝk21

1ŝk21sk22! if j 5k21.

Whenk andj are not neighboring, i.e.,j Þk11 andk21, by
calculation we can easily obtain

ts (
ŝk ,ŝ j

ŝkW~sks j→ŝkŝ j !5
K~sk211sk11!

b
. ~24!

For the casesj 5k11 andk21, we have obtained the sum
mations as in Eqs.~15! and ~16!, respectively.

From Eqs.~8!, ~15!, ~16!, and~24! one obtains

ts

d

dt
sk~ t !52sk~ t !1

ts

2t
@x1~sk211sk11!1x2~sk22

1sk12!# ~25!

with

x15
2~N22!Kb222~N23!K3

~N21!b~b22K2!

t

ts
,

x25
2bK2

~N21!b~b22K2!

t

ts
. ~26!

Comparing Eq.~25! with Eq. ~17! we can directly write the
solution of Eq.~25! as Eq.~18!. So we can get the relaxatio
time t5ts /g, where

g5
~b22K !@~N21!b2~N23!K#

~N21!b~b2K !
.

Here, we find that the relaxation time is related to the nu
ber of spins of the system. In the case of the thermodyna
limit N→`, we can obtain thatt5@b/(b22K)#ts . If we
notice Eq.~22! again, one hast;(T2Tc)

21 near the critical
point. Further, one gets that the dynamical critical expon
equals 2 as well.

If we look into such a case, in which there is not only
single-spin transition but also double-spin transitions at
time, we can find that the value ofz does not change. It is to
say that the admixture of single-spin and double-spin tra
tions does not change the dynamical critical exponent.
05612
-
ic

t

e
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IV. TWO-DIMENSIONAL CASE

In this section, we study the two-dimensional kine
Gaussian spin system with spin-cluster transitions. Theor
cally, the shape of cluster can be arbitrarily chosen, but
calculation is very complex, in general. In order to study t
influence of the different clusters on the dynamic critic
phenomena, we chose two kinds of clusters: the one na
the five-spin cluster is formed from a spin and its NN spin
which is plotted in Fig. 1~a!, and the other named the fou
spin cluster is formed from four spins@see Fig. 1~b!#.

A. Five-spin cluster

First, we study the case of five-spin cluster. Consider
arbitrary clusterci composed of sites~i, j!, (i 11,j ), (i
21,j ), (i , j 11), and (i , j 21) @see Fig. 1~a!#. The spins of
the cluster issci

5(s i , j ,s i 11,j ,s i 21,j ,s i , j 11 ,s i , j 21). In or-
der to find out the dynamic critical exponent, we calcula
the time evolution of the local magnetizationsk,l(t). Noting
that there are five clusters that contain site~k, l!, i.e., site~k,
l! belongs to five different clusters~see Fig. 2!. According to
Eq. ~8!, one can easily write the following differential equa
tion:

d

dt
sk,l~ t !52

sk,l~ t !

ts
1

1

5 (
s

(
i 51

5

(
ŝci

ŝk,lW~sci

→ŝci
!P~s,t !, ~27!

where

FIG. 1. The sketches of the cluster in the two-dimensional
tice: ~a! five-spin cluster and~b! four-spin cluster.
FIG. 2. For the case of the five-spin cluster in the two-dimensional lattice, there are five different clusters that contain site~k, l!.
1-5
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sc1
5~sk,l ,sk11,l ,sk21,l ,sk,l 11 ,sk,l 21!,

sc2
5~sk11,l ,sk12,l ,sk,l ,sk11,l 11 ,sk11,l 21!,

sc3
5~sk21,l ,sk,l ,sk22,l ,sk21,l 11 ,sk21,l 21!,

sc4
5~sk,l 11 ,sk11,l 11 ,sk21,l 11 ,sk,l 12 ,sk,l !,

sc5
5~sk,l 21 ,sk11,l 21 ,sk21,l 21 ,sk,l ,sk,l 22!.

Using the same method as in Sec. III, we can also ca
late the summations(ŝci

ŝk,lW(sci
→ŝci

), i 51,2,...,5. For

the clusterc1 , according to expression~9! the Hamiltonian
related to spin clusterŝc1

is written as

Hc1
5Ksx1ŝk11,l1Ksx2ŝk21,l1Ksy1ŝk,l 11

1Ksy2ŝk,l 21 , ~28!

wheresx1 , sx2 , sy1 , andsy2 are defined as follows:

sx15ŝk,l1sk12,l1sk11,l 111sk11,l 21 ,

sx25ŝk,l1sk22,l1sk21,l 111sk21,l 21 ,

sy15ŝk,l1sk,l 121sk11,l 111sk21,l 11 ,

sy25ŝk,l1sk,l 221sk11,l 211sk21,l 21 .

Based on Eqs.~5! and ~28!, the normalized factor is written
as

Qc1
5(

ŝc1

exp@Hc1
#5S b

2p D 5/2E
2`

1`

¯

3E
2`

1`

dŝk,ldŝk11,ldŝk21,ldŝk,l 11dŝk,l 21 exp@Hc1
#

3expF2
b

2
~sk,l

2 1ŝk11,l
2 1ŝk21,l

2 1ŝk,l 11
2 1ŝk,l 21

2 !G .
~29!

From Eqs.~4!, ~28!, and ~29! we can obtain~see Appendix
B!

ts(
ŝc1

ŝk,lW~sc1
→ŝc1

!5
K2sn1

b224K2 , ~30!

where

sn1
5sk12,l1sk22,l1sk,l 121sk,l 2212sk11,l 11

12sk11,l 2112sk21,l 1112sk21,l 21 ~31!

is the summation of the NN spins of the clusterc1 . For other
clustersci ( i 52,3,4,5), we also get
05612
u-

ts(
ŝci

ŝk,lW~sci
→ŝci

!5
K2sni

b224K2 , i 52,3,4,5, ~32!

wheresni
is the summation of NN spins of the clusterci .

Thus, from Eqs.~27!, ~30!, and~32! one has

ts

d

dt
sk,l~ t !52sk,l~ t !1

1

5

K2

b224K2 (
i 51

5

sni
~ t !, ~33!

with

sn1
5sk12,l1sk22,l1sk,l 121sk,l 2212sk11,l 1112sk11,l 21

12sk21,l 1112sk21,l 21 ,

sn2
5sk13,l1sk21,l1sk11,l 121sk11,l 2212sk12,l 11

12sk12,l 2112sk,l 1112sk,l 21 ,

sn3
5sk23,l1sk11,l1sk21,l 121sk21,l 2212sk22,l 11

12sk22,l 2112sk,l 1112sk,l 21 ,

sn4
5sk,l 131sk,l 211sk12,l 111sk22,l 1112sk11,l 12

12sk21,l 1212sk11,l12sk21,l ,

sn5
5sk,l 231sk,l 111sk12,l 211sk22,l 2112sk11,l 22

12sk21,l 2212sk11,l12sk21,l .

Equation~33! can be exactly solved by defining a generati
function as well~see Appendix C!. The solution is

sk,l~ t !5e2t/ts (
$mi52`% i 51,12

`

sk2p,l 2q~0!I m1
~x!I m2

3~x!I m3
~x!I m4

~x!I m5
~5x!I m6

~5x!

3I m7
~3x!I m8

~3x!I m9
~3x!I m10

3~3x!I m11
~2x!I m12

~2x!; ~34!

where

p53m112m31m51m71m812m92m101m111m12,

q53m212m41m612m72m81m91m101m112m12,

x5
2K2

5~b224K2!

t

ts
.

When t→`, solution~34! is asymptotically written as
1-6
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sk,l~ t !;
ts

6

t6S K2

b224K2D 6 (
$mi52`% i 51,12

`

sk2p,l 2q~0!e2t/t

;S ts

t D 6

e2t/t,

wheresk2p,l 2q(0) is the initial value ofsk2p,l 2q(t), and

t5
b224K2

b2216K2 ts . ~35!

Noting Eq.~22! andK1Kc'2Kc near the critical point, one
then gets

t5S 11
3

8

Tc

T2Tc
D ts;~T2Tc!

21. ~36!

Therefore, the dynamic critical exponent also equals 2.

B. Four-spin transitions

Consider a four-spin-transition case. We chose the clu
ci with the sites~i, j!, (i 11,j ), (i , j 11), and (i 11,j 11)
@see Fig. 1~b!#. The corresponding spin cluster is denoted
sci

5(s i , j ,s i 11,j ,s i , j 11 ,s i 11,j 11). We also focus on the
differential equation~8!. From Fig. 3 we can see that the
are four-spin clusters that containsk,l ~see Fig. 3!:

sc1
5~sk,l ,sk11,l ,sk,l 11 ,sk11,l 11!,

sc2
5~sk,l ,sk11,l ,sk,l 21 ,sk11,l 21!,

sc3
5~sk,l ,sk21,l ,sk,l 21 ,sk21,l 21!,

sc4
5~sk,l ,sk21,l ,sk,l 11 ,sk21,l 11!.

Following the calculation in Sec. III, we can get the d
ferential equation as~see Appendix D!

FIG. 3. For the case of the four-spin cluster, there are four
ferent clusters that contain site~k, l!.
05612
er

y

d

dt
sk,l~ t !52

1

ts
sk,l~ t !

1
1

ts

K~b222K2!sn1
~ t !1K2bsn2

~ t !1K3sn3
~ t !

2~b324bK2!
,

~37!

with

sn1
5sk21,l1sk11,l1sk,l 211sk,l 11 ,

sn2
5sk21,l 111sk11,l 111sk,l 121sk,l 221sk11,l 21

1sk21,l 211sk12,l1sk22,l ,

and

sn3
5sk11,l 121sk21,l 121sk12,l 111sk22,l 111sk11,l 22

1sk21,l 221sk12,l 211sk22,l 21 .

Equation~37! can be exactly solved. Following Appendix C
one gets

sk,l~ t !5e2t/ts (
$mi52`% i 51.10

`

sk2p,l 2q~0!I m1
~x1!I m2

~x1!

3I m3
~x2!I m4

~x2!I m5
~x2!

3I m6
~x2!I m7

~x3!I m8
~x3!I m9

~x3!I m10
~x3!, ~38!

with

p5m11m31m412m51m712m82m91m10,

q5m21m31m412m612m71m81m92m10,

x15
K~b222K2!

b324bK2

t

ts
, x25

bK2

b324bK2

t

ts
,

x35
K3

b324bK2

t

ts
.

When t→`, Eq. ~38! is asymptotically expressed assk,l(t)
;e2t/t, in which the relaxation time is given as

t5
b22K

b24K
ts;~T2Tc!

21. ~39!

Compare Eqs.~39! with ~36!, although the forms of the two
relaxation times are different, the dynamic critical behav
of the two systems is the same near the critical point. Th
the value of the dynamic critical exponentz equals 2 as well.

V. THREE-DIMENSIONAL CASE

The three-dimensional kinetic Gaussian model can also
exactly solved. Considering both the simplification of calc
lation and typicalness of the spin cluster, we study the c
of the seven-spin cluster transitions, which is similar to t

-

1-7
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case of the five-spin cluster in Sec. IV. The cluster cons
ered here contains the site~i, j, k! and its NN sites (i
11,j ,k), (i 21,j ,k), (i , j 11,k), (i , j 21,k), (i , j ,k11), and
( i , j ,k21) ~see Fig. 4!. In order to solve the differentia
equation of the local magnetizationsk,l ,n(t), we need to
write the spin clusters that contain spinsk,l ,n . There are
seven such clusters:

sc1
5~sk,l ,n ,sk,l ,n

nn !, sc2
5~sk11,l ,n ,sk11,l ,n

nn !,

sc3
5~sk21,l ,n ,sk21,l ,n

nn !,

sc4
5~sk,l 11,n ,sk,l 11,n

nn !, sc5
5~sk,l 21,n ,sk,l 21,n

nn !,

sc6
5~sk,l ,n11 ,sk,l ,n11

nn !,

sc7
5~sk,l ,n21 ,sk,l ,n21

nn !,

wheresk,l ,n
nn , sk11,l ,n

nn ,... denote the sets of the NN spins
sk,l ,n , sk11,l ,n ,..., respectively, e.g.,sk,l ,n

nn 5(sk11,l ,n ,
sk21,l ,n ,sk,l 11,n ,sk,l 21,n ,sk,l ,n11 ,sk,l ,n21). Based on Eq.
~8!, the differential equation of the local magnetizatio
sk,l ,n(t) is written as

d

dt
sk,l ,n~ t !52

sk,l ,n~ t !

ts
1

1

7 (
s

(
i 51

7

(
ŝci

ŝk,l ,nW~sci

→ŝci
!P~s,t !. ~40!

Using the same method as in Sec. III, we can also calcu
the summations(ŝci

ŝk,lW(sci
→ŝci

), i 51,2,...,7. For the

cluster c1 , the Hamiltonian related to spin clusterŝc1
is

written as

Hc1
5K~sx1ŝk11,l ,n1sx2ŝk21,l ,n1sy1ŝk,l 11,n

1sy2ŝk,l 21,n1sz1ŝk,l ,n111sz2ŝk,l ,n21!,

~41!

FIG. 4. The sketch of the seven-spin cluster in the thr
dimensional lattice.
05612
-

te

wheresx1 , sx2 , sy1 , sy2 , sz1 , andsz2 are the sum-
mations of the NN spins ofŝk11,l ,n , ŝk21,l ,n , ŝk,l 11,n ,
ŝk,l 21,n , ŝk,l ,n11 , andŝk,l ,n21 , respectively, e.g.,

sx15ŝk,l ,n1sk12,l ,n1sk11,l 11,n1sk11,l 21,n1sk11,l ,n11

1sk11,l ,n21 ,

sx25ŝk,l ,n1sk22,l ,n1sk21,l 11,n1sk21,l 21,n1sk21,l ,n11

1sk21,l ,n21 .

From Eqs.~4!, ~2!, and~41! we can get

ts(
ŝc1

ŝk,l ,nW~sc1
→ŝc1

!5
K2sn1

b226K2 , ~42!

in which sn1
is the summation of NN spins of the clusterc1 ,

given as

sn1
5sk12,l ,n1sk22,l ,n1sk,l 12,n1sk,l 22,n1sk,l ,n12

1sk,l ,n2212sk11,l 11,n12sk11,l 21,n12sk11,l ,n11

12sk11,l ,n2112sk21,l 11,n12sk21,l 21,n

12sk21,l ,n1112sk21,l ,n2112sk,l 11,n11

12sk,l 11,n2112sk,l 21,n1112sk,l 21,n21 .

For other clustersci , the summations(ŝci
ŝk,l ,nW(sci

→ŝci
) ( i 52,...,7) can be obtained as well. Thus, from Eq

~40! and ~42! one has

ts

d

dt
sk,l ,n~ t !52sk,l ,n~ t !1

1

7

K2

b226K2 (
i 51

7

sni
~ t !, ~43!

where sni
(t)5(ssni

P(s,t). This equation contains man
terms, and its solving process and solution are very comp
If we only regard the relaxation time of the system, we c
focus on the total magnetization

m~ t !5 (
~k,l ,n!

sk,l ,n~ t !, ~44!

where the summation( (k,l ,n) goes over all sites in the sys
tem. Performing a summation for site~k,l,n! in Eq. ~43! one
can easily obtain the magnetizationm(t) as

m~ t !5m~0!e2t/t, ~45!

wherem(0)5( (k,l ,n)sk,l ,n(0) is the initial value of the total
magnetization and the relaxation time is

t5
b226K2

b2236K2 ts . ~46!

Noting Eq. ~22!, we can see that the relaxation time forT
nearTc will also approach̀ , and that it can be written a
t5(11 5

12 Tc /(T2Tc))ts . Further, this result can give th
same value of the dynamic critical exponent as above.

-

1-8
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According to results~35! and ~46!, for thed-dimensional
kinetic Gaussian model, one can obtain the general form
the relaxation time

t5
b222dK2

b224d2K2 ts . ~47!

Near the critical point,t'11@(2d21)Tc/4d(T2Tc)#ts
;(T2Tc)

21, thus therez52.

VI. CONCLUSION AND DISCUSSION

In this paper, we presented a multispin-transition mo
and studied the dynamic critical phenomena of the Gaus
model with NN interactions. The time evolution of the ma
netizations is investigated and the exact results of the re
ation time and the dynamical critical exponent are obtain
Our results show that the dynamical critical exponent is
dependent of the choice of the transitional spins, namely
matter whether the transitional spins are concentrated~Secs.
III A, IV, and V ! or distributed ~Sec. III B!, no matter
whether the transitional spins have different spatial confi
rations@Figs. 1~a! and~b!#, the dynamical critical exponent i
the same. Combining it with Glauber’s single transiti
mechanism, we lead to the following conclusion: the d
namical critical exponent is independent of the transit
mechanism, in general.

For the above conclusion, we may interpret the followin
from the view of renormalization a transitional spin clus
can be transformed into a single spin through a renormal
tion transformation~scaling transformation!, and thus the be-
havior of a spin cluster is essentially equal to that of a sin
spin. Therefore, different transition mechanisms give
same value of the dynamical critical exponent.

Our results also show that the value of the dynami
critical exponent is the same for one-, two-, and thr
dimensional Gaussian models with NN interactions. At fi
sight, it seems to be in conflict with the recent view of un
versality class. In fact, it can be regarded as a special a
dental degeneracy phenomena, which is just liken51/2 for
any dimensional Gaussian model@20,21#.

It is necessary to point out that the spin clusters con
ered in this paper are all small, nonpercolating ones, and
the transitions of percolating spin clusters, as in the cas
the Swendsen-Wang or Wolff cluster algorithms@22,23#, are
not considered. Our results only hold for the former. Wh
transitions of percolating spin clusters are considered,
results may be changed.

Our method can be generalized for other models, in p
ciple, such as the Ising model in two or three dimensions,
the calculations will be very complex, so that it is difficult
obtain the exact analytical results.

Finally, our multispin transition mechanism may includ
Kawasaki-like dynamics, if we ask for a conservation of t
total value of all spins in the transitional spin cluster.
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APPENDIX A: SOLVE EQ. „17…

Let us define a generating function

F~l,t !5 (
k52`

`

lksk~ t !. ~A1!

Based on Eq.~17!, we have

]F~l,t !

]t
5 (

k52`

`

lk
d

dt
sk~ t !

52
1

ts
F12

K@b~l1l21!1K~l21l22!#

2~b22K2! GF~l,t !.

The solution of the above equation is

F~l,t !5F~l,0!e2t/ts expF Kbt

2~b22K2!
~l1l21!G

3expF K2t

2~b22K2!
~l21l22!G . ~A2!

Noting the generating function of the Bessel function
imaginary argument@1#,

expS x

2
~l1l21! D5 (

n52`

1`

lnI n~x!, ~A3!

we obtain that

F~l,t !5F~l,0!e2t/ts (
m,n52`

`

lm12nI m~x1!I n~x2!,

~A4!

where bothx1 andx2 are determined by Eq.~19!. From Eqs.
~A1! and ~A4!, we get

(
k52`

`

lksk~ t !5e2t/ts (
l 52`

`

(
m,n52`

`

3 sl~0!lm12n1 l I m~x1!I n~x2!.

Comparing the two sides of the above equation, one obt
solution ~18!.

APPENDIX B: CALCULATION OF EXPRESSION „30…

For the two-dimensional Gaussian system, from Eqs.~28!
and ~29! we have
1-9
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Qc1
5(

ŝc1

exp@Hc1
#5S b

2p D 5/2E
2`

1`E
2`

1`E
2`

1`E
2`

1`E
2`

1`

dŝk,ldŝk11,ldŝk21,ldsk,l 11dŝk,l 21 expS 2
b

2
sk,l

2 D
3expFKsx1ŝk11,l2

b

2
ŝk11,l

2 GexpFKsx2ŝk21,l2
b

2
ŝk21,l

2 GexpFKsy1ŝk,l 112
b

2
ŝk,l 11

2 GexpFKsy2ŝk,l 21

2
b

2
ŝk,l 21

2 G
5A b

2p E
2`

1`

dŝk,l expS 2
b

2
ŝk,l

2 DexpFK2

2b
~sx1

2 1sx2
2 1sy1

2 1sy2
2 !G

5A b

2p
expS K2

2b
~sk12,l1sk11,l 111sk11,l 21!21

K2

2b
~sk22,l1sk21,l 111sk21,l 21!2D

3expS K2

2b
~sk,l 121sk11,l 111sk21,l 11!21

K2

2b
~sk,l 221sk11,l 211sk21,l 21!2D E

2`

1`

dŝk,l

3expF2
b

2 S 12
4K2

b2 D ŝk,l
2 1

K2

b
sn1

ŝk,l G ,
wheresn1

has been given in Eq.~31!. Thus, one has

ts(
ŝc1

ŝk,lW~sc1
→ŝc1

!5

(ŝc1
ŝk,l exp@Hc1

#

(ŝc1
exp@Hc1

#

5

*2`
1`ŝk,ldŝk,l expF2

b

2 S 12
4K2

b2 D ŝk,l
2 1

K2

b
sn1

ŝk,l G
*2`

1`dŝk,l expF2
b

2 S 12
4K2

b2 D ŝk,l
2 1

K2

b
sn1

ŝk,l G 5
K2sn1

b224K2 .
-

APPENDIX C: THE SOLUTION OF EQ. „33…

Let

F~l1 ,l2 ,t !5 (
k,l 52`

`

l1
kl2

l sk,l~ t !, ~C1!

from Eq. ~33! we get

ts

]F~l1 ,l2 ,t !

]t
52F~l1 ,l2 ,t !1G~l1 ,l2!F~l1 ,l2 ,t !,

~C2!

where

G~l1 ,l2!5
K2

5~b222dK2!
@~l1

31l1
23!1~l2

31l2
23!1~l1

2

1l1
22!1~l2

21l2
22!15~l11l1

21!15~l2

1l2
21!13~~l1l2

2!1l1
21l2

22!13~l1l2
22

1l1
21l2

2!13„~l1
2l21l1

22l2
21!…13~l1

2l2
21

1l1
22l2!12~l1l21l1

21l2
21!12~l1l2

21

1l1
21l2!#.
05612
The solution of Eq.~C2! is

F~l1 ,l2 ,t !5F~l1 ,l2,0!e2t/ts exp@G~l1 ,l2!t#.
~C3!

Noting the generating function of the Bessel function~A3!
and

F~l1 ,l2,0!5 (
k8,l 852`

`

l1
k8l2

l 8sk,l~0!,

from Eqs.~C1! and ~C3!, we can write the following equa
tion:

(
k,l 52`

`

l1
kl2

l sk,l~ t !5e2t/ts (
k8,l 852`

`

sk8,l 8~0!

3 (
$mi52`% i 51,12

`

l1
k81pl2

l 81qI m1
~x!

3I m2
~x!I m3

~x!I m4
~x!I m5

~5x!

3I m6
~5x!I m7

~3x!I m8
~3x!I m9

~3x!

3I m10
~3x!I m11

~2x!I m12
~2x!.
1-10
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Further, we can get Eq.~34!.

APPENDIX D: CALCULATION OF EQ. „37…

The Hamiltonian related to the spin clusterŝc1
is

Hc1
52bHc1

~ ŝc1
,$s j ¹c1

%!5K~sk21,l1sk,l 21!ŝk,l

1K~sk11,l 121sk12,l 11!ŝk11,l 111K~ ŝk,l1ŝk11,l 11

1sk21,l 111sk,l 12!ŝk,l 111K~ ŝk,l1ŝk11,l 11

1sk11,l 211sk12,l !ŝk11,l . ~D1!

Based on Eq. ~D1! the normalized factorQc1
and

Sŝc1
ŝk,lW(sc1

→ŝc1
) can be calculated. This process

complex, so here we only give the main procedure and
sults.

Qc1
5(

ŝc1

exp@2bH~ ŝc1
,$s j ¹c1

%!#

5S b

2p D 2E
2`

1`

¯E
2`

1`

dŝk,ldŝk11,ldŝk,l 11dŝk11,l 11

3exp@2bH~ ŝc1
,$s j ¹c1

%!#expF2
b

2
ŝk,l

2 2
b

2
ŝk11,l 11

2

05612
e-

2
b

2
ŝk11,l

2 2
b

2
ŝk11,l

2 G5
b

2p
expS a1

2

2b8
1

d

2bD
3E

2`

1`

dŝk,lexpF S a21
2a1K2

bb8 D ŝk,l GexpF2
l

2
ŝk,l

2 G ;
with

l5bS 12
2K2

b2 2
4K4

b3b8D ,

a15
K2~sk21,l 111sk,l 121sk11,l 211sk12,l !

b

1K~sk11,l 121sk12,l 11!,

a25
K2~sk21,l 111sk,l 121sk11,l 211sk12,l !

b

1K~sk21,l1sk,l 21!,

d5K2~sk21,l 111sk,l 12!21K2~sk11,l 211sk12,l !
2,

bb85b222K2.
ts(
ŝc1

ŝk,lW~sc1
→ŝc1

!5
1

Qc1

exp@2bH~ ŝc1
,$s j ¹c1

%!#

5
K~b222K2!~sk21,l1sk,l 21!1K2b~sk21,l 111sk,l 121sk11,l 211sk12,l !

b324bK2

1
2K3~sk11,l 121sk12,l 11!

b324bK2 . ~D2!

Also, we can obtain

(
ŝc2

ŝk,lW~sc2
→ŝc2

!5
K~b222K2!~sk21,l1sk,l 11!1K2b~sk21,l 211sk,l 221sk11,l 111sk12,l !

b324bK2

1
2K3~sk11,l 221sk12,l 21!

b324bK2 , ~D3!

(
ŝc3

ŝk,lW~sc3
→ŝc3

!5
K~b222K2!~sk11,l1sk,l 11!1K2b~sk11,l 211sk,l 221sk21,l 111sk22,l !

b324bK2

1
2K3~sk21,l 221sk22,l 21!

b324bK2 , ~D4!

and
1-11
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(
ŝc4

ŝk,lW~sc4
→ŝc4

!5
K~b222K2!~sk11,l1sk,l 21!1K2b~sk11,l 111sk,l 121sk21,l 211sk22,l !

b324bK2

1
2K3~sk21,l 121sk22,l 11!

b324bK2 . ~D5!

From above, Eqs.~D2!–~D5!, according to Eq.~8!, one can obtain the differential equation as in Eq.~37!.
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