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Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated
with a generalized entropy and its application to the self-gravitating system
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Multidimensional nonlinear Fokker-Planck equations of mean-field type are proposed within the framework
of generalized thermostatistics to develop a general formulation of stability analysis of their solutions. Two
types of eigenvalue equations are studied. The nonlinear Fokker-Planck equations are shown to ekhibit an
theorem with a Liapunov functional that takes the form of a free energy involving generalized entropies of
Tsallis. The second-order variation of the Liapunov functional is computed to conduct local stability analysis
and the associated eigenvalue equation is derived for an arbitrary form of mean-field coupling potential.
Assuming quasiequilibrium for the velocity distribution, the reduced eigenvalue equation with space coordi-
nates alone is also obtained. The alternative type of eigenvalue equation based on the linearization of the
nonlinear Fokker-Planck equations is presented. Taking the mean-field coupling potential to be the gravita-
tional one, the nonlinear Fokker-Planck equation in terms of three-dimensional velocity and space coordinates
together with the framework of stability analysis is shown to be applicable to a mean-field model of self-
gravitating system. By solving the eigenvalue equation for the eigenfunction with 0 eigenvalue, the occurrence
of stability change of the equilibrium probability density with spherical symmetry is discussed.
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[. INTRODUCTION which is given by applying the maximum entropy principle
for the generalized entrogy1-43,
Fokker-Planck equatior(&PEs are very useful for study-

ing dynamical as well as equilibrium statistical behaviors of 1
stochastic systems and physical systems in contact with heat = (:I_—Jl— f pidx
reservoirs. They usually take the form of a linear master
equation governing the time evolution of the probability den-
sity of a system with Markovian dynamics. The approach t
the uniquely determined equilibrium or stationary probabilitytr
density is ensured by and theorem[1-6]. TheH functional
or Liapunov functional taking the form of Kullback-Leibler
divergence[8] or relative entropy is closely related to the

concept of free energhf,7]. Such a situation involving aH vergence and stability properties involving &h theorem

theorem makes the FPE a smart mathematical model allon—30 35: an H theorem holds true to ensure uniqueness and
ing for a satisfactory stochastic description of |rrever3|blest(,j1k’)ility of its equilibrium solution and the Liapunov func-

processes of physical systems. : ;
Recently, Fokker-Planck equations that are different frorrﬂ?]?rilpt; klist::ae (;22: C?]I fErZE f)n?(r)gr)yeg:;eg eor;rfgel_?;pnuenrg\lllzed
the standard type are becoming the subject of an imen%nction.al is given by[30] o '
researcH9-35. Among them are nonlinear Fokker-Planck
equations(NFPES, which are classified into the ones asso- D
ciated with nonlinear diffusion36—4Q and those of mean- F=U-— DS:J #p dx— _[1_f pddx
field type. q-1
The NFPEs with a nonlinear diffusion term, which have
been proposed in connection with generalized thermostatissnd according to théd theorem theF monotonically de-
tics developed by Tsallig41—-43, are closely related to the creases with time to approach its equilibrium value
generalized nonextensive entropigkl—43. One of such
NFPEs read$25]

. 1.3

The relationship between such NFREe will call it the

FPE with a generalized entropyand the generalized en-
opy has been studied in detail by several authors
[25,30,35. It has been found that the NFPE with a general-
ized entropy proposed as an extension of the standard FPE
bears close resemblance to the latter with respect to the con-

1.9

1 1
Feq:_Df ngﬁX)dX'i‘ q_—l(E_D) (1.5

= —nd
Feiaite D —pY. (1.1)

ap a( ) )+ 92
ax?

Furthermore, the thermodynamic relations arising from
the Legendre transform structure hold regarding the equilib-

lts equilibrium solution takes the form of Tsallis equilib- UM free energyFeq [31]:
rium distribution of the first choicg41,43,
FedDh)

Pe)=1(DqB)~[1- B(q—1)d(x) I, (1.2 PR (1.8
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dF ¢ D,h) romagnetic coupling. Furthermore, it will also be of value to
T:_<X>pqu—J XPed X;D,h)dx, (1.7)  attempt to find physical systems to which the NFPE or
DNFPEs can be applied to cope with difficulties encountered

where Fo(D,h) is defined for the equilibrium distribution With use of the standard Boltzmann-Gibbs entropy.
(1.2) of NFPE(1.1) with ¢ replaced bys—hx. It should be Thg aim of this paper is tvyofold: one is tq study _mult|d|-
noted that Eqs(1.6) and (1.7) together with Eq(1.4) will m_enS|onaI NF_PES of mean-field type assouate(_:l with gener-
imply that the first choice of generalized thermostatistics of?izéd entropies, for the purpose of developing stability
Tsallis makes sense with playing the role of temperature @nalysis for the case with a general type of mean-field po-
[30]. In other words, it is due to the thermodynamic relationsténtial rather than the ferromagnetic coupling used in Eq.
(1.6) and(1.7) as well as the dynamic level definition Bfof (1.9 Second, | want to apply the results obtained to study a
Eq. (1.4) yielding anH theorem that th& becomes the prop- Mean-field model of a self-gravitating syst¢#a#—-53.

erly defined free energy associated with entrépsg). Then The approach bas.ed.on Tsallis thermostaustlcs to the
the corresponding NFPEL.1), which is specific to the en- problem ofa s.eIf-grawtatmg sys'gem was _flrst made. by Plas-
tropy, makes sense in that the maximal entropy principle fofin® and Plastind48]. They applied Tsallis’s formalism to
determining an equilibrium distribution can be extendedtN® problem of stellar polytropes, which was first studied by
naturally to a dynamic level prescription for obtaining it KelVin [49] and dealt with in detail by Chandrasekh&0],

based on the corresponding generalized canonical ensemtigd discussed the relationship between the inglewd the
consistent with the thermodynamic stability. stellar polytrope index. They noted that the standard treat-

In contrast to the above mentioned type of NFPE, whichMent based on the Boltzmann-Gibbs entropy, in which maxi-
is free from the occurrence of bifurcations in spite of itsMizing the entropy is performed with the constraints im-
nonlinearity, another type of NFPEs that are based on thB0Sed by conservation of mass and energy, breaks down with
nonlinearity arising from mean-field-type feedback effect carflivérgence of mass. _ _ _
exhibit bifurcation phenomena. The simplest one of such QUuite recently, stability analysis required for the maxi-

NFPEs is given by11,12,14,1% mum entropy principle has been conducted within the frame-
work of Tsallis thermostatistics by Taruya and Sakagami
ap d 5 92 [52]. They reported the occurrence of instability for poly-
2t ax || XX +8J xp dx)p +D—-2p, (1.8  trope indexn larger than 5.

Imposing constraints of mass and energy for maximizing
which is derived in the thermodynamic limit for a mean-field & Certain entropy corresponds to taking the microcanonical
coupled Langevin equation system. Such a mean-field typgnsemble approach to the problem of a self-gravitating sys-
of NFPE is quite convenient to observe the effect of noise orl€M, where some spatial confinement of particles is usually
a variety of cooperative phenomena of coupled systemEequired. Then a problem arises of what will happen to the
[9-23 and to systematically study equilibrium as well as case of tak|n.g the canonical ensemble approach. In thlslcase,
nonequilibrium phase transitiofi$8—23. one .deaills with the free energy rather than the entropy itself
The problem of phase transitions within the framework oftY Viewing the parameter playing the role of temperature as
Tsallis thermostatistics is considered to be worth studying. f fixéd control parameter. When taking advantage of Tsallis
have recently proposed a double nonlinear Fokker-PlancRauilibrium distribution(1.2) exhibiting high energy cutoff
equation(DNFPB [31,37 that is obtained by introducing with g>1, it will become possible to investigate the problem

such a mean-field-type nonlinear term as considered in E®Y €mploying the minimum free energy principle under the
(1.8) into the NFPE(1.1), constraint of mass alone without considering any spatial con-

finement.
ap d do 92 To be more precise, the mean-field model for a self-
gt axl\ T ax +8f xp dx|p|+D B pd, (1.9 gravitating system, which will turn out to constitute the prob-

lem of stellar polytropes in the microcanonical and canonical

to study bifurcation phenomena within the context of conver-ensemble approaches, will be formulated within the context
gence to equilibrium solutions involving their global and lo- Of generalized canonical ensemble approach as follows.
cal stability. Consider the energy48]

It was found that whemb(x) is chosen to be a double well
potential ¢(x) = — (x2/2)+ (x*/4), the system characterized 1 1
by a power-law-type equilibrium probability densityt.2) :_f =205 2\ 437 43y _f (i A3 A3
exhibits a pitch-fork bifurcation in a similar manner to the Erot 2) " pLU.x)d7u d™x+ 2 FpAxdadx
case of the standard mean-field model based o{(E®), as (1.10
the control parametdD is varied. Stability analysis was con-
ducted on the basis of calculating the second-order variation
of the free energy functional serving as a Liapunov func- with

tional [31].
It will be of interest to extend the above mentioned (d.2)
: : i a,z
DNFPE to study behaviors of a wide class of DNFPE with a I'(%)=— kJ’ Pﬁ %) 480 dds, (1.1
more general type of mean-field couplif@2] than the fer- |X—7Z]
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wherep(U,x) denotes a probability density alkdhe gravi-  dinates and velocity in the three-dimensional physical space.
tational constant. Taking the total mass to be unity, the probEigenvalue equations corresponding to the second-order
lem is the variational one to minimize the free enefgy variation of the Liapunov functional are derived. In Sec. IV,

=E;x—DS under conservation of probability. we deal with the second-order variation by restricting a per-
In the present study we take the entrd®io be given by turbation of the probability density to the subspace including
Eq. (1.3 for simplicity. the eigenfunction with O eigenvalue, which corresponds to

We show that an appropriately taken multidimensionalconsidering quasiequilibrium for the velocity distribution.
DNFPE with the gravitational potential for the mean-field We present the reduced eigenvalue equation with space co-
coupling turns out to work in consistence with undertakingordinates alone. In Sec. V, taking the mean-field coupling
the study based on the above mentioned approach. The frgg@tential to be the gravitational one we show that the non-
energy, which is claimed to decrease with time in accordancénear Fokker-Planck equation together with the framework
with H theorem, is to be locally minimized for an equilib- of stability analysis in Sec. Il can be applied to a mean-field
rium density to be relevaristable. model of self-gravitating system. We solve the eigenvalue

The paper is organized as follows. In Sec. Il, we presenequation to obtain its eigenfunction with O eigenvalue for the
the simplest model of multidimensional DNFPEs of mean-purpose of investigating the occurrence of stability change of
field type within the context of generalized thermostatisticsthe equilibrium probability density with spherical symmetry.
Linearizing the DNFPE around its equilibrium solution we In Sec. VI, we give a summary and discussion.
obtain an eigenvalue equation to discuss the structure of the
0-eigenvalue functiais). An H theorem is shown to hold by Il. MULTIDIMENSIONAL DOUBLE NONLINEAR

taking the free energy as the Liapunov functional and its  roxkER-PLANCK EQUATION AND H THEOREM
second-order variation is obtained. In Sec. lll, the stability

analysis based on the second-order variation of the Liapunov As the simplest case of multidimensional systems, we first
functional is developed further for a more realistic caseconsider a double nonlinear Fokker-Planck equation of the
where the NFPE has physical variables denoting space cooierm

pt,xy) 9 dp 52
= | = o Ptxy) [ +D - p(txy)°
a 7
———f f—V(y Z2)p(t,x,z)dx dz|p(t,X,y) +D p(txy) (2.1
|
whereg(X,y) represents a general potential functivify, z) Dqﬁpeq(x,y)qfl_
another potential corresponding to a mean-field type cou- QX,Y,Ped )= 1-q)p (2.6)
pling, andD a positive constant.
Defining with B8 denoting some constant, turns out to be an equilib-
rium solution to Eq.2.1) because it yields
(2.2
o) 20 . P . o3 We can formally solve fopeg,
pl=——P—D—p7 : - -
! 2 IX Ped¥)={(DAB) 1= B(a—1)QX,Y,ped - NI}V,
J . D 7 pa 2.4 9
Apl= ay PP oy P 24 where 3 is determined by normalization condition. Sinfe
containspeg, Uniqueness and stability of the,, in general,
we can rewrite Eq(2.1) as cannot be expected1,32.
ap dda[p] dJz[p]
ke ;x + ay ) (2.5 Linear stability analysis

The approach op(t,X,y) to the equilibrium solution can
which implies conservation of probability under the naturalbe examined by the linear stability analysis. We linearize the
boundary condition or an analogous one that ensures vanisBNFPE (2.1) around the equilibrium solutiof2.8) by put-
ing of the probability current on the boundary. A functipg,  ting dp=p—peq. Noting Egs.(2.3), (2.4), and(2.6) we ob-
that satisfies tain
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J .q eigenfunctiofis) with O eigenvalue. Taking the differential of
96 Dq—qu 2 Eq. (2.6) with respect to a change i, we obtain
p 4 X 50l +Dgpi-1s
at - l9X_ q_l p_ q(7X2 peq p 1 1
Dq pdy 2op=— J J V(y,z)8p(x,z)dx dz— =g 5(/—3) .
J
i1
9 Dq é’y peq {92 a1 (211)
Ty q—1 op +an_y2peq op The p satisfying this equation should be the eigenfunc-
i i tion with A = 0. Multiplying both hands of Eq(2.11) by the
d d 5 dx d ) gradient operator, we obtain
W_peqf Ev(y,Z) p(t,x,z)dxdz. (2.9
Rewriting this equation and putting Sp(t,X,y) grad Dq pgg25p+f fV(y,z)&p(x,z)dx dz)=6.
=constXexp(—At)f(x,y), we obtain the eigenvalue equation (2.12

92 2 It is easy to see that this equation implies E2110 with
—M(xy)=Dq Deq(mJr a—yz)[pngf] A=0 for Sp=f. We can recover Eq2.12 conducting an-
other type of stability analysis based on the second-order
92 variation of theH functional in Sec. IlI.
+peq—2f V(y,z)f(x,z)dx dz We note that theSp given by Eq.(2.11) does not always
Iy satisfy the condition

<9peqi q-2 %i q-2
*+Dq X ax(peq P+ ay 0y(peq ) ff op(x,y)dx dy=0, (2.13
J J
;yquf V(y,z)f(x,z)dx dz (2.10  which is necessary for probability conservation. Accordingly,

relevant eigenfunctions witih =0, which is related to the

Stability of the equilibrium solution is ensured by the con- ©ccurrence of bifurcations, have to be given by E412)
dition that all of the eigenvalues be positive. The eigen- Satisfying the conditioni2.13.
valueA=0 is of particular interest, since the occurrence of
stability change of the solutions is inferred from the 0 cross- H theorem

ing of the smallest eigenvalue as a control parameterike  The pehavior of the approach pf{t,%,y) to the equilib-
is changed. The eigenvalue equatithl0, however, has (jym solution can also be examined with the help oftn
always 0 eigenvalue irrespective of values of the parametefreorem as in the case of one-dimensional DNFPEs
as can be seen below. 14,15,31.

The equilibrium densitie$2.8) containing the integration We define the free energy functional as
constantB constitute a family of fixed point solutions of the
DNFPE, unless normalization is considered. This implies F(p(-))=U-DS (2.19
that eigenvalue equatiof2.10 always yields O eigenvalue.
Indeed, according to this observation we can search for theherep(x,y) denotes a probability density and

B 1
U—f f </)(x,y)p(><.y)dxdy+§f fV(y,z)p(xl.y)p(xz,z)dxlddeydz

I

1
sy + [ [ viyapaaxdzpyaxay-5 [ [ vivapie.ypoe 2dxdedy dz (219

qu_il[l—f f pYdx dy|. (2.1

Substituting the solution of Ed2.1) into Eq. (2.14 [i.e., p=p(t,x,y)], we differentiateF with respect tat. Using Egs.
(2.1) and(2.2) we have
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|

dx dy

QuyptD+——ﬁﬂquﬂ@%§£

_jfﬂ+— a-1 i s D& q i 7 D& q)d d 2.1
= x|\ TP Dbp 7y WD @p x dy. (2.17
We defineR,(t,x,y) together withs so as to satisfy the following equations:
DqBRp(tvxay)q_l_
QXxy,p(t, )= , 2.1
(xy.p(t,-)) (1=0)3 (2.18
ff Rp(t,x,y)dx dy=1. (2.19

The unique existence of sughcan be confirmed if thé)(x,y,p(t,-)) as a function ok andy is bounded from below
[30,31.
Performing integration by parts, we rewrite E§.17):

dF(p(t ) _ f f 6X( pq 1)
 (lglae2

2 2
[ ) BE [ (PRI |+ 2 (pat R:;l)] dx dy. 220
|
Accordingly, we have To conduct local stability analys[44,15,31, we expand
F aroundpeg,
dF(P(t,-))<O (2.20
. ' OF=F (Peqt8p) ~ F(Peq = 6 F[8p]+ 6P F[8p, 3p]
where equality sign holds under the condition o (2.23
qul—Rg’lzconst. (2.22 Noting Eq.(2.13 and differentiatingF with respect top

~one has
We note here that Eq$2.20 and(2.21) hold true even in

the case withg>1, where the domain for the integration Dq
involved may happen to be subjected to the so-called high oF = le f (qul—Rg’l)ép dxdy. (2.29
energy cutoff to become time dependent. This is because we q
may safely assume that on the domain boundary the prob-
ability currents(2.3) and(2.4) vanish.

If the free energyF is bounded from below, inequality

Differentiating F twice yields

(2.21) implies that for large timeg(t,X,y) approacheR,, 25(2>|::qu f (p9~28p— R3725Rp)5p dx dy.
because noting Eq2.19 the above condition holds only for
p=R.. (2.29

Hepnce the equilibrium probability densitye(x,y) must
be determined from the self-consistent equati26) as de-
scribed earlier.

It is noted that one can no longer expect uniqueness of the f f V(y,z)p(x,z)dx dz= — Dng*25Rp
equilibrium densityp.{X,y), since the above self-consistent

Since oRp satisfies

equation, in general, admits multisolutions. Which of those 1 §/1
multisolutions is relevant and is approached from an appro- - —(—)
priately given initial condition has to be determined by the 1-adp\p
stability condition. In other words, there may occur bifurca- (2.26
tion phenomena involving stability switches, when control

parameters such 43 are changed. which is obtained by differentiating E§2.18), we have
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2 _2 5 We can also derive the eigenvalue equation associated
20'9F= DQJ f P4 “(op)°dxdy with the second-order variatioi@.29, which will be studied
in the following section.

+ffffV(y,z)ép(x,y)@p(x’,z)dydzdxdf(.

(2.27 IIl. STABILITY ANALYSIS AND EIGENVALUE
EQUATION
Putting p=peq in Egs.(2.24 and(2.27), one obtains
To further develop stability analysis based on the second-
5<1>|:[5p]_ f f (p Rq 1 sp dx dy=0, order variation(2.29 of theH functional for a more realistic
situation, we deal with a higher-dimensional case of the
(2.28 NFPE (2.1) that has physical variables and G denoting,
@F[sp, op] respectively, the space coordinate and velocity in the three-
dimensional physical space. We consider a certain interaction
potentialV that is supposed to act between particles.
_qu J' p “(8p)* dx dy Denoting by p(t,d,Z) the probability density to find a
particle at a state with space coordinatand velocityd in
+f f f f V(y,2)8p(x,y)dp(x’,z)dy dz dx dx. the six-dimensional configurational space at tiimae con-
sider the time evolution of the probability density to be given
(2.29 by the following NFPE:

-

ap(t,d, 3 d d

&Uk

52
+D—p(t,a x)q]
ou?

i g &
(———f —V(X,2)p(t,d z)dudz) p(t,d,%) +Da—p( ,X)4 } (3.0

&Xk 2% Xk

whereV represents an arbitrary function that is chosen de- With the free energy functional constructed in a similar
pending on models one considers and the multiple integral isvay as in Eq(2.14), theH theorem of the preceding section
represented by an abbreviated expression of using the singt®lds also for the NFPE3.1). Then, the second-order varia-
integral. The¢p may express another potential giving rise to tion reads

an external force or some others. An interesting case, how-

ever, will be the one where we ta!<e the potenitab be the 26@F[8p, 6p]

kinetic energy¢(U,X)= 302, In this case the system gov-

erned by Eq(3.1) will turn out to correspond to a mean-field

model with generalized thermostatistics for particles interact-

ing via the interaction potentiaf, which will be studied by

taking V to be the gravitational potential in the later section. with
In what follows in this section, however, we do not assume

any particular form for andV. We see that the variables L . I
andy in Eq. (2.1) of the preceding section are replaced with G(U,X,W,2)=V(X,2)+Dq pgy “(4,X) S(W— 1) 8(Z—X).

J’G a,X,w,Z) 5p(04,X) dp(w,Z)dddwdxdz (3.4

U andX, respectively, in the above DNFPE. (3.5
As in the case of the DNFP&.1), we obtain formally an
equilibrium density We proceed further to develop the local stability analysis

of the NFPE(3.1) on the basis of the above second-order
Pe( 0,X) ={(D0B) " [1—-B(q—1)Q(U,X,peq - NI}~ variation of the free energy functional.
(3.2 Considering the condition fofp
with
f Sp(d,x)ddidx=0, (3.6
Q@A P(L )= $(0+ [ VX 2p(L8.IdTd2
(3.3 we put
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IA(T,R) O dAg. (TR
(ux) 2 3 (u X)_ div A(G,%), (3.7

3
sp(d,x) = Z

whereA;(U,x) (i=1,...,6)denote arbitrary functions that vanish fai{ —c and|X|—< or on the boundary of the domain
one is considering.
Then performing integration by parts we have

3 N 3
JA u,x JA W,Z
f V()?,Z)&p(ﬁ,i)5p(vT/,Z)devT/d>?d2=f xz)(E 3*)‘(( ) (E 3“( )) didwdxdz
- , - iz
3 2 - =
=> fMA (U,%) Az (W, Z)dlidWwdxdz (3.9
_ij 1 (9Xi(92j 3+ilHs 3+] ’ .
and also
3
fDq pggz(a,z)a(W—a)a(z—i)(sp(a,i)ap(vv,z)dadvvdidz:”; qu P+ 1P+ 1+ 1) dbdwdx dz
(3.9
with
[ 2
(1) — i % (GA (.7
Lij uaw, [Py 2(1,%) S(W—0) 8(Z—X)] |A(0,%)A(W,2),
e
|(2)= [p3-2(0G,%) S(W—0) 8(Z—X)] |A(G,X) Az (W, Z)
U laujaz e RIS,
2
(3)_ e e
lij = axaw, [P 2(0,%) 8(W—0) 8(Z— %) ] |Agi(0,X) A (W, 2),
-2
1= ™z [pd, 2(0,%) S(W— 1) 8(Z—X) ]| Agi(0,) Az (W,2). (3.10
Defining Ty, (1=<k,I<6) as
2
Tk,zoqaukawl[pggz(a,z)a(vv—a)a(z—i)], 1=<k,l<3,
2
Tk,=Dqm[pggz(a,i)a(wa)a(z—i)], 1<k=3, 4<I|<6,
52
Tk,=qu[p 2(0,%) 8(W—10)8(Z—X)], 4<k=6, 1<I<3,
62
Ti=———-—[Dg Py 2(0,X) 8(W—0) 8(Z-X) +V(X,2)], 4=<k,I<6, (3.12)
k-3 -3
we have
6
<2>F[5p,5p]:f k:;ﬂ T (G, %,W,2)A(G,X)A(W,Z)dGdwdx dz. (3.12

Accordingly the eigenvalue equation associated with the above quadratic form takes the form
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By performing integration by parts, the above equation can be rewritten as follows:

17
- dq—
07Uk[Dq Peq

q9-20 5 2\ div Al
e s Dq peq “(U,X)divA(U,X) + f

By multiplying both hands of Eq(3.14) and Eq.(3.15 by
obtain

2(G,%)div A(T,X)]=NA(T,X),

6

V<*Z>E

i=a

a,x), k=1,...,6. (3.13
k=1,...,3 (3.149
IA(W,2) R
P ——dwdZ|=\A(0,X), k=4,...,6. (3.15
|,

dlduy and d/ x5, respectively, and summing them up we

A (W2
—Ax[Da pd 2(0,%)divA(d,RX)] - Ag fvoz 2)2 (| )dwdz \ divA(d,%), (3.16
where
P S P FZ
A= + Ag= . Nl
X gl%f kzl 2 o kzlé’_xg 3.19
Putting
div A(U,%)= y(,%) (3.18
|
and noting As an interesting application of the eigenvalue equation,
3 we can consider the case whereis given by the gravita-
A 3(U0,X tional potential
f div A(d.%)diie E k+3( ) di. (319 ional potentia

Eq. (3.16 can be rewritten as

i,%[Dd P 5 2(0,%)¢(0,%)]

—A;f V(%,2) y(W,2)dWdZ=\ y(4,X), (3.20

which should be solved under the condition

f y(0,X)didX=0 (3.2)
to find the eigenvalues.

It is noted that Eq(3.20 must be supplemented by an-
other condition that is required to ensure E(3.14 and
(3.19 on the basis of Eq3.20, because we have taken the
divergence operation in deriving E.16). It will read
2(0,%) (1,%)]

gradgx[Da paq

+grad: f V(%,2)y(W,2)dWdz—0 (3.22

when,X approach the domain boundary whér@i,x) van-
ishes.

—k
V(X,2)= =7 (3.23
with k denoting a positive constant, for which
— k R
Ay =7 =47kS(X—2Z). (3.29

Then Eq.(3.20 takes the form

axlDg p ~2(0,%) (J,)?)]—47ka y(W,X)dw

=\ 9(0,%). (3.29

As in the preceding section, we can obtain a similar ei-
genvalue equation by linearizing the DNFREY) . It will be
straightforward, by noting the counterp&2t10 for the DN-
FPE of the preceding section, to write down the eigenvalue
equation:
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— M (0,X) =D P (.0 Peg F1+ pqu;f V(X,2)f(0,2)dldZ+Daq(gradg z)Peq)

x[grad(g,);)(pgng )1+ (gradipeg) graq;f V(i,Z)f(G,Z)dUdi). (3.26
|
We now have two eigenvalue equatidi3s20 and(3.26 o Lo ) J‘pg;q§I‘()‘(’)dad)‘z
for our DNFPE(3.1), which seem to differ from each other. op(U,X)=—(Dq) “pgq 9 8T(X)— P2 9didx
The eigenfunction with 0 eigenvalue, however, should be the Peq "aUAX
same, because the 0 eigenvalue is related to the fixed point (4.2

solution of the DNFPE as well as the Stab|l|ty switch of the We note that the assumption of Hq__l) may be related to
system. We indeed observe that this is the case. When we piat of quasiequilibrium for the distribution of velocity.

A=0 in the eigenvalue equatiort8.14) and(3.15, we ob- We define the followings:
tain
7\ — -1 20/ G\ AT
arads(p ) =0, 0 p0=000) [ o °@xds, @3
Dq grad;(pggzyngad;J V(X,2)y(U,2)didZ=0. ’MOEJ px)ax, 4.4
2 -
(3.28 M(X)

, . | | {RN=p(R)T ()~ = | wX)T(R)dX. (4.5
Accordingly, combining the above equations and the ei- Mo

genvalue equatiof8.20 with A =0, Substituting Eq.(4.2) into the second-order variation

(3.4), we obtain
AgxlDg pggz(ﬁ,i)y(ﬁ,i)]ﬁ%x'f V(X,Z) y(W,Z)dwdZz

1
26(2)F=f ~ g(i)2d>*<+f V(X,2){(X)((Z)dXdZ.
=0, (3.29 #(X) .6
which originally has been derived from Eg€.27 and It is noted that
(3.28, we can easily see that E.26 with A=0 holds for
y=f. %=
The eigenvalue equation§3.20 and (3.26) are six- J £(X)dx=0. “.7

dimensional integropartial differential equations and hard to

solve, since the standard method of separation of variables R€peating a similar line of reasoning in the derivation of
does not work. Eq. (3.20 for the reduced second-order variati@h6) with

To obtain a more easy-to-solve simplified eigenvalueEq- (4.7), we straightforwardly obtain the following eigen-
equation with a reduced number of variables, for examplevalue equation:
working with space variables alone it will be necessary to
confine ourselves to a certain subspace in which the pertur- —A
bation 5p is considered for the second-order variati@)
of the Liapunov functional.

1
— (X —AfVi,z* Z)dZ=\{(X). (4.8
M(X)é( ) (X,2){(2) {(x). (4.9
The eigenvalue equation with=0 is of particular con-

cern. Putting\ =0 into Eq.(4.8) one obtains
IV. EIGENVALUE EQUATION IN TERMS OF THE SPACE

VARIABLES ~ALST (1= [ VX2
In view of the fact that the equilibrium density takes the

form (3.2), we assume the perturbatidip to be given by 1
X 5F(Z)—M—f u(y)or'(y)dy|dz=0.
~ ~ 0
Peqt 5p:[(Dq,3)_1[1_B(q_ 1){9(61)-(), peq(')) (4.9
< U(q-1)
+oT(X)}] ' 4.0 It is worth noting that the above equation is the same as
what is obtained by substituting E¢4.2) into the original

where B denotes the normalization constant afid(X) an  O-eigenvalue equatio.29. This implies that the eigen-
arbitrary function. Then it follows function with 0 eigenvalue of the original eigenvalue equa-
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tion (3.29 can be given by the perturbati@s.2) and then it  Substitution of Eq(5.2) into Eq. (5.5 gives
suffices to solve Eq4.9). The occurrence of such a situation

can also easily be understood by noting E827). When

A=0, Eq.(3.27) implies thatpggzép is independent of the
velocity variables and hence becomes a function of only the
space coordinates as given by E4.2). with

p(i)=A4wc(q_L1)[B—req(i)]3’2+1’<q1> (5.6)

OF THE SELF-GRAVITATING SYSTEM

o

2 1 \"
V. APPLICATION TO A MEAN-FIELD MODEL C(m):J hz( 1- Ehz) dh (5.7)

To observe effectiveness of the eigenvalue equation O%hich can be defined fam> —1.
tained in Sec. IV for somewhat realistic physical model, we
deal with a mean-field model of the self-gravitating system
whose energy is given by Eq1.10 under the canonical
ensemble approach and apply the formulation of stabilit
analysis of the previous sections. To this end we consfder

to represent the kinetic energy

S(0,%) =02 (5.1) for peq limited to a certain bounded domain of the three-

dimensional space for which thg., is well defined. To be

and V(X,7) the gravitational potential3.23. Then the en- more specific, withg>1 we consider the.(U,X) to be
ergy U in Eq. (2.19 coincides with that of the self- defined for the domain satisfying
gravitating systemU=E,,. Taking S to be the Tsallis en- - . )
tropy of the form(2.16, we now see that finding the local —30°—TeX)+B=0, B<0 (ie, B<0), (5.9
minima of the free energyF=E;;—DS of the self- o ) , .
gravitating system with respect to the dengifg,%) corre- for which integration with rgspec'; tdd dz_ is meant to be
sponds to solving the stable equilibrium solutions to our DN-Performed. Then the domain of integration allowed be-
FPE (3.1), which is associated with that entropy, owing to comes |x|<r with B—Eeq(lxl=fc)=0 if, for simplicity,
the H theorem that ensures monotonic decreasing offthe SPherical symmetry of (X) can be assumed. In other words,
with time. We note that the use of Tsallis entropy makes théVe can say that the bounded domain whegg>0 has been
system polytropid48] and enables one to deal with a self- natur_ally introduced according to our prescription based on
confined state of the system. the high energy cutoff. _ _

We also note that the astrophysical relevance of the DN- 1aking the Laplacian of E(5.4) one obtains the Poisson
FPE (3.1) to the dynamical evolution equation of the self- €quation
gravitating particles is beyond the scope of this paper and
remains a future problem, because the right hand side of Eq. AT ()= kf 4w S(X—7)p(Z)dZ=4mkp(X). (5.9
(3.1) includes the diffusion in position space.

To make the paper self-contained, some of the well . . )
known established results of the equilibrium properties of the When we can assume thi{(x) andp(X) have spherical
polytropes are reproduced before presenting the results G¥MMmetry, Eq(5.9) becomes
application of the stability analysis in the mean-field model, 1 d d
part of which was already reported in R¢&4]. Confining — _<r2_1"eq(r)) =4mkp(r). (5.10
ourselves only to a self-confined state to assumel, we redrl dr
rewrite the equilibrium density3.2) of the DNFPE as

Ped U,X) =A(q,D)[ — 3G%—T o X) +B(q,B) 1",

The reason for assuming™>1 comes from the require-
ment of convergence of integration ofp.(U,X): Since itis
expected from Eq(5.4) thatI¢(X) — 0 as|X| — o, assuming
y0<q<1 in Eq.(3.2) leads to the divergence &fintegration
of peq- On the other hand, choosirgg>1 can avoid such
divergence of thg,, by making the domain af integration

Nl

Substituting Eq(5.6) one obtains

(5.2 — _l 7“’&1 Zi | —
[AMTC(q—l rZar| ar? =4mkp
where 51
a-i 1) e 1 with
A= . B=—, 5.3
(Dq Q1B ®3 .
. Ped02) [ p(2) 0= F0=1 (5.1
Feq(X):—k WdUdZ:—k mdz (5.9

which is a well known equation in the polytrope gas system
with [44,49-52. The w is the inverse of the polytrope index
w=1/n[51,52. The equilibrium density should be given by
solving this second-order differential equation under the
boundary conditions, which read

p(0= [ pefin)du 55
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lution [44,49-52. It is known that for the polytrope index
=0, (5.13  n=1/w<5, the solution rapidly decreases to vanish at a fi-
r=0 nite value of¢, satisfying Eq.(5.22, whereas fom=1/w
w1 >5 the solution decays slowly only to vanish &t oo.
. (5.14) We now turn to study the eigenvalue problem of this sys-
I'e tem. To examine whether there occurs a stability change with
the appearance of O eigenvalue for the equilibrium density
Equation(5.13 arises from the condition that the solution satisfying Eq.(5.11), we solve Eqs(3.27) and(3.28 to find
to Eq. (5.11) must satisfy the hydropressure balance condieigenfunctions. Equatior{3.27) together with EQ.(3.21)
tion for the equilibrium density44,49-52. turns out to be satisfied by solutions of the fo(#n2).
Equation (5.14 follows from the normalization of the Substituting thedp(d,X) in Eqg. (4.2) into the eigenvalue
probability density. We further impose the condition that ourequation(3.28, one obtains the equation féil"(X):
system be subjected to the high energy cutoff-at . based

=—k

1
arP 477AC(q_—1)

r=rg

on the choice of the nonextensive indexgpf 1 for Tsallis s J S s
- +
statistics, gra({ ST (%) VX2)u(2)
= 1
pre)=0, (515 x 5r(2)——f M(V)&F(V)dy)di —0.
which determines the value of . Ho
It is often more convenient to deal with a scaled nondi- (5.23
mensional equation of E¢5.11). Putting as Multiplying Eqg. (5.23 by the divergence operator, one ob-
p(1)=pep(£), T=Tof, (519 @IS
where U . . _f,u()?)&l“()?)d)? _
Axél“(x)+477k,u(x)( o' (X) —f,u(i)di ,
1 e (5.29
2__ w—1
ro——4ﬂ_k[A4ﬂ'C _q—lﬂ ps (5.17

where u(X) defined by Eq(4.3) is explicitly given by
Eqg. (5.11) can be rewritten as

w

pl . (5.25

1 1
1 d 2d~w _ M(X):E[4WAC((4—_1)
# | a7 .
Equation(5.24) coincides with Eq(4.9).

which should be solved under the boundary condition that ~Here we assume a spherical symmetric solutin(x)
=R(r). Then we have from Eq5.24)

d
p0)=1, —p® =0. (5.19 # 24
d 4+
L P Pt R(r)+4mku(r)
In general, they as an integration constant can be deter- re 2
mined by the normalization condition by assuming that the x| R(r)— [om(r)R(r)4mr=dr _
integration of the originalp(r) is limited to the interval f(rf,u(r)477r2dr
[0,7]. Then the condition corresponding to E§.14) reads (5.26
nlv .
ropo fo “amEp(e)de=1 (5.20  Putting
alent _ JEm(r)R(r)4ar2dr
or equivalently R(r)=R(r)— , 5.2
(=R(r) Joem(r)4mr2dr .22
d_
—47TroPo712d—§P“’ =1, (5.2)  Eq.(5.26 can be rewritten as
7ty
which givesp, andr, as a function ofy. In our case we a(fzmﬁ(f)) = —4mkpu(r)r?R(r), (5.28
consider thaty=r.. Hence the . is to be determined from a
special valuet.=r./r satisfying e .
_ J w(NR(r)4ar2dr=0. (5.29
p(&c)=0. (5.22 0
A family of solutionsp® satisfying Eq.(5.18 together Equation(5.28 is a second-order linear differential equa-

with the boundary conditiorf5.19 is called the Emden so- tion forﬁ(r) and has two linearly independent solutions.
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On the other hand, Eq5.23 can be rewritten as If, instead, one imposes a different boundary condition,
say, a rigid boundary condition where the particles are con-
d_— 1 (r — tained in a sphere with radiug to consider the variational
[ _ 2
gy RN =—4mk JO m(ORredr, (530 proplem for the free energf2.14 or (3.4), one would be
able to expect a phase transition to occur. Indeed, the condi-

which is the original 0-eigenvalue equation to be solved untion (5.29 yields
der the condition5.29. Differentiating this equation recov- Lo o 53
ers Eq.(5.28. Hence we obtain the boundary condition that T p(n )=~ a, (5.36

Eq. (5.28 has to satisfy: where we have specifieg dependence op. This implies

that whena>0, namely,; <w<%, no stability change oc-
—-0. (531  curs. On the other hand, when<0 (0<w<3), stability
r=0 change may occur aj= n* satisfying Eq.(5.36). A detailed
analysis of the normalization conditiof®.21) reveals that

Accordingly, one has to solve the second-order linear dif{dr,/d 5| — = as» approaches;* from above and also that a

ferential equation5.28 under the condition of Eq$5.29  pair of equilibrium probability densitiep, -+ (r,7) (7*
and(5.3)) to find O eigenvalue. 0

We can easily find one of the solutions to E§.28 as

4o
' dr (r)

< <) andpro<,3(r,n) (n* <n=<r,) are allowed to exist

for n=n*, whererf=rq(7*). Stability exchange occurs
d 3 ) between two branches gt= 7*. We cannot determine from
= ZarZa(ny | ar AT P11+ adarTp(r) the marginal stability analysis alone stability of the equilib-
rium densities. However, for the case w0 the equilib-
1 —w
A47TC(—q_ 1”

Ry(r)

o T " rium density can be considered to be stable, because the
(@+3)p"+—qrp } second-order variation of the free energy functiofvl6)
evaluated in the neighborhood gf=0 takes positive values
(5.32 (see the Appendixand no stability change occurs. In the
case of a<0, the branch of equilibrium densities
pr0<r3(r,77) containing the self-confined one is expected to

1-3w 39-5 exhibit instability due to the marginal stability at=0 for the

— = : (5.39  case withp=r,.
w—1 q+1

Conclusively, the system wita>0 (i.e., g>3), which

which can be confirmed by a direct substitution into Eq.exNiPits an equilibrium density undergoing the high energy
(5.29. cutoff (i.e., self-confined stalgeis stable irrespective of val-

General solutions to Eq5.28 can easily be obtained by U€S of temperatur® [54]. This result recovers the recent
putting ﬁ(r): T(r)R_l(r) The result is ones obtained by means of different methfs8,57).

=w

with

a=

dr VI. SUMMARY AND DISCUSSION

R - r

R(f)=R1(f)(Cl+szl 2—2) (5.34 We have extended the double nonlinear Fokker-Planck
r“Ry equationgDNFPES$ of the mean-field type, which were pro-

) ) posed previously to study bifurcation phenomena within the
Noting Eq.(5.13, we can easily check that boundary con- framework of Tsallis thermostatistics, to include a multidi-
dition (5.31) implies c,=0. So theRy(r) is the desired so- mensional case with velocity and space coordinates. Taking
lution to the legitimate O-eigenvalue equatith30. Hence  the mean-field coupling kernel to be of a general form, we
it will suffice to consider this solution to see whether theha\/e developed stability analysis to obtain the eigenvalue
normalization conditiori5.29) is satisfied or not. However, it equations based on two different types of approaches_ Our

does not satisfy Eq5.29 for a#0, since noting Eq(5.19  DNFPEs have been shown to exhibitldrtheorem based on

one hag54] the H functional taking the form of free energy. We have
analyzed the second-order variation of tHefunctional to
fo o fo derive one of the eigenvalue equations. Assuming quasiequi-
rRr4r2dr:f 47mrlp(r)dr=a, et genvalue €q ' 949 q
f #(NRy(r)4m 0 admrp(r) “ librium for the velocity distribution, the reduced eigenvalue

(5.35  equation with space coordinates alone is also obtained. An-
other eigenvalue equation has been obtained by the standard

which yields 0 only wherw= 3. This will imply that mar-  method of linearizing the original DNFPEs around the equi-
ginal stability occurs only a&=0 because of the imposing of librium density. As far as the 0 eigenvalue is concerned, we
the condition(5.15 and that there occurs no critical point have shown that the eigenvalue equation associated with the
corresponding to the stability change for the equilibriumsecond-order variation of thie functional implies the one
density with a change in such a control parameteDa¥/e  obtained from linearization of the DNFPEs.
note that the value= 3 is well known in the stability prob- Taking the mean-field coupling kernel and another poten-
lem of the polytrope$55]. tial function involved in the DNFPE to be the gravitational
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potential and the kinetic energy of particles, respectively, westability of the polytropes, which is essentially based on the
have applied the DNFPE having the three-dimensional veeanonical ensemble within the context of Tsallis thermosta-
locity and position space coordinates together with the resulistics. The reason for dealing with the DNFPE is as follows.
of stability analysis to study the mean-field model of theSuch NFPEs as shown by E@d..1) give an equilibrium so-
self-gravitating system. lution that exhibits the usually known thermodynamic rela-
The eigenfunctions with 0 eigenvalue have been found tdion of the Legendre form structure as shown by HGsb)
be exhaustively given by the reduced eigenvalue equation aind (1.7). It is because of such a relation as well as the
position variable. We have examined the marginal stability tadynamical level definitior{1.4) of the free energy that the
obtain the condition for the occurrence of stability change ofdiffusion parameteD may be interpreted as properly defined
the equilibrium density given as the Emden solution. As fartemperature and the definition of tReturns out to be appro-
as the equilibrium density undergoing the high energy cutofpriate in the generalized thermostatistics. Hence several gen-
is concerned, no stability change occurs with changes of theralizations of classical results of statistical mechanics may
coefficient of the nonlinear diffusion term that plays the become possible to make sense. In this respect, NFPEs and
role of temperature. DNFPEs that are derived from the formal extension of FPE
Furthermore, the obtained condition determining stabilityfrom theq=1 case can be compared to the generalization of
change shows the existence of a critical valuevef 3 cor-  entropy proposed by Tsallis. Furthermore, the application of
responding to the marginal stability a&=0 such that forw ~ the DNFPE to the mean-field model of the self-gravitating
>3 no stability change occurs even when the rigid boundarsystem is based on the very fact that stability issues of the
condition is deliberately imposed in which the particles areDNFPE and the self-gravitating particles of canonical en-
contained in a sphere with radiug When, on the other semble approach can be equivalently related with each other
hand,w< 3, at a certain critical value of marginal stability  via the free energy for which thid theorem of the DNFPE
occurs in accordance with the occurrence of a saddle-nodeolds. The equilibrium phase space distribution function of
type bifurcation and the equilibrium densities are allowed tathe self-gravitating system hence coincides with that of the
exist only for above the critical value of radius. By evaluatin@NFPE and its marginal distribution of position variable de-
the second-order variation of the free energy functional invelops polytropic nature.
the small limit of radiuszy, we have found that the equilib- In general, when the equilibrium distribution function of a
rium density with3 <w<$ is stable for anyy that must be  system is given for studying its statistical behavior, it is often
smaller than the automatically introduced cutoff radius basedonvenient to consider a certain dynamical equation of the
on Tsallis themostatistics. In particular, the self-confined sysprobability distribution(a kind of master equatiorwhich
tem with 3 <w<3 (i.e., g>32) is stable irrespective of val- converges to that equilibrium distribution for large times,
ues of temperatur®. particularly in the case of systems exhibiting bifurcation phe-
A few remarks worth noting are in order. Stability issuesnomena. Numerical simulations of the master equation can
of the DNFPEs that exhibit akl theorem may simply be often be used not for examining the temporal behavior but
studied on the basis of the analysis of the second-order varigust simply for observing the equilibrium properties.
tion of theH functional by making full use of thel theorem. When supposing such a situation, it is considered that
Indeed, in the case of the DNFPEs where the mean-fielphysical meaning and astrophysical relevance of the NFPE
coupling kernel is given by the ferromagnetic coupling, weitself does not matter. Studying this sort of thing is beyond
previously showed that just computing the second-ordethe scope of this paper and remains a future problem.
variation of theH functional suffices to observe the occur-  The static problem of the mean-field model of the self-
rence of stability change as well as to determine stability ofyravitating system might be considered on the basis of the
an equilibrium density. There it is not necessary to investifree energy(2.14 alone without introducing the DNFPE,
gate the eigenvalue equation. This situation is in sharp corence the parametdd is viewed as temperature. The advan-
trast to the present system, where the eigenvalue equatidgage of considering the DNFPE will, however, be that the
plays an important role to determine the stability of the equiprinciple of minimizing the free energy can be understood
librium solution. The difference arises from the type of thedynamically as the stability issue of the convergence of the
mean-field coupling kerneV. equilibrium probability density for large times, although the
In the case of the ferromagnetic coupling kerkély,z) microscopic foundation of the DNFPE remains an open
=—Jyz or V(y,2)=(J/2)(y—2z)? diagonalizing the problem[61]. More specifically, one can easily solve the
second-order variation can easily be performed to extract thearginal stability (O-eigenvalue problejnby only dealing
relevant part responsible for the determination of stabilitywith the manifold corresponding to the fixed point solution
[15,31,32. The phase transition point where stability changeof the NFPE. The eigenvalue equation obtained by lineariza-
occurs corresponds to the appearance of 0 eigenvalue. THisn of the DNFPE will also make sense. Furthermore, from
can be easily checked by using one-dimensional version dhe viewpoint of numerical simulations, the equilibrium
Eq. (3.28 [54]. probability density subjected to the high energy cutoff can be
We note here that the 0-eigenvalue equation itself, in genraturally considered as appearing from an initial probability
eral, can be found from the knowledge of the manifold of thedensity that has in general no such high energy cutoff.
stationary probability density without resorting to the eigen- We have taken advantage of incorporating the cutoff ra-
value problem. dius corresponding to the high energy cutoff for the equilib-
We have employed the DNFPE approach in the study ofium probability density withg>1 by employing Tsallis
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thermostatistics of first choice based on the nonextensiv&his has been indeed done in Ref§9,57. Furthermore,
generalized entropy. The, has been shown to be given Chavanis noted, on the basis of the inspection of his own
within the equilibrium theory, which does not require the resultin view of Tsallis entropy, that in spite of the difference
introducing of a rigid boundary condition that is usually between the distribution of velocities of the polytropic gas
taken. To avoid the infinite mass problem that would occurand the equilibrium phase space distribution implied by Tsal-
under the use of Boltzmann entropy, we may employ othetS €ntropy, some connection between the dynamical stability
forms of entropy that bring about a power-law-type equilib-a”d generalized thermodynamic st.ablllty may be expecte_d.
rium density responsible for the high energy cutoff. ThereTNe result of the present paper might partially answer this
exist many such entropies, each of which determines a cofiuestion: The marginal stability of the polytropes can be de-
responding NFPE such that the free energy involving thatérmined by the reduced eigenvalue equation of the position
entropy decreases with tintel theorem [54]. For example, v_arlable, where the information on the distribution of veloci-
we can take a NFPE30] that is obtained from the Sharma fies is masked. . . _ .
and Mittal entropy[58], instead of the Plastino-Plasino-type N Ref.[60] Chavanis, Rosier, and Sire studied the ther-
NFPE[25], to consider a DNFPE leading to a different free Modynamics and the collapse of a self-gravitating gas of
energy for the self-gravitating system. This corresponds t@rovyman particles in the h|gh-fr|ct|on limit to make a _dlrect
the third choice of Tsallis thermostatistieg3]. In this sense, relation between the dynamics and the thermodynamics from
generalized thermostatistics cannot be determined uniquelyin€ viewpoint of the standard statistical mechanics based on
Regarding stability of the equilibrium probability density the Boltzmann-Gibbs entropy. They dealt with the Smolu-
of the Emden-type solutiof5.16) of the self-gravitating sys- Cchowski equation combined with the Poisson equatisR
tem, its global stability will not be ensured, although the System and showed that the SP system satisfies a forir of
theorem given by Eq2.1) holds. This is because the lower theorem and the eigenvalue problem for linear stability of a
boundedness of thi functional is not shown. The free en- Stationary distribution is connected to the eigenvalue prob-
ergy may decrease without bound in order for the system tem fo.r the second—order_var|at|on§ of the thermodynamic
settle into the collapsed state, where the probability is conPotentials taken asi functions. Their case corresponds to
centrated to onécentej point. q= 1 of our system. _Such a system, howeve_r, requires con-
Comparing our result of stability analysis with the Or1ef|nement_ of_ gas particles, where the interesting p.roblem qf
obtained previous|y in the microcanonical ensemble aplhe graVItatlonaI CO”apse -Can-be eXpeCted, to avoid the infi-
proach[52], we note that the condition for stability in terms Nite mass problem and will differ much from the model of
of the free energy minimum is more stringent than that basee present work dealing with the self-confined case.
on the maximum entropy recipe with the energy constraint. !N our approach the canonical ensemble is systematically
This is because the local minimizing of the free energy im-9iven by elucidating the function of the paramefeplaying
plies the local maximizing of the entropy under the con-the r_ole of temperature, which is implied by the thermody-
straint of the energy. The present result shows that the criticd]@Mic relation of the Legendre transform structure and-the
value ofw=1 (inverse of the polytrope indgabove which theorem for'the DNFPE. Furthermore,'the present approach
stability follows without exhibiting stability change is larger taken in deriving the eigenvalue equations from the second-
than that ofw= % for the corresponding phase for the micro- _order variation of the fre(_e energy to |nvest_|ga_te the stability
canonical ensemble approafB2]. This supports the above SSUe of the polytropes is more ;ystemanc in that the full
argument, which implies that the stability region inferred Phase space variables are taken into account and the use of
from the free energy condition should be contained by thath® reduced eigenvalue equation in terms of position vari-
from the entropy condition, if a phase diagram in termsoof ables can bg justified f_or the issue qf_ th_e marginal stability.
and 7 is drawn. Th_e d_etalled_ analysis of the_stab|llty issue of the Emden
After completing the present work the author came tosqlutlon including t_he phase diagram and the comparisons
know some recent works by other researchers on the relateifth other works will be presented elsewhere.
subject of polytrope$56,57,59,6Q Chavanis[56,59, and
Taruya and Sakagarf7] studied the canonical ensemble of APPENDIX
the polytropes independently of our work to obtain the same
eigenvalue equation as the one in the present paper as far asTo observe the behavior of the second-order variation of
the marginal stability of the eigenvalue equation in terms ofthe free energy functiona}.6) in the neighborhood ofy
the position variables is concerned. The result that the poly=0, we first compute Eq(4.6) by assuming that the varia-
tropic gas withw>3 exhibits stability is in agreement with tion /(X) has the rotational symmetry. One can easily obtain
the results of Chavani$6,59 and of Taruya and Sakagami
[57]. Chavanis's method in Ref56] is different from ours
and is based on the dynamical equations involving Euler 25(2)F=f
equation together with the polytropic equation of state. He 0
discussed the difference between the marginal value of
=% obtained dynamically and that ab=% obtained by X
Taruya and Sakaganib2] in the microcanonical ensemble,
and emphasized the need for studying the canonical en-
semble using a properly chosen free energy to compare them. Considering Eq(4.7) we put

g(r)24wr2dr—kfndr4wr2$
0

u(r,m)

r n
fo4w52§(s)ds+rf 4ws§(s)ds). (A1)
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F(r,m) Whena>0 (i.e., :<w<?2), it follows from the normal-
4mr2y(r)= —r (A2)  ization condition for the equilibrium densit{s.20 that in
the limit »—0
where we have explicitly expressed thalependence of the

F such that

n n
f0s0, 10, dwrPo(n,m)=du? ~(_)H3_
F(0,7)=F(7,7)=0. (A3) oo 77, m) =470 pop| e

Then it is straightforward to obtain

1 GF(r\? K Noting the above and substituting E@6) into Eq. (A7)
( ' ) - FF(r’”)Z}dr we obtain in the limitp—0

(Ad)

n
25<2>sz
0

A7r?u(r,n) ar

1 -0l 3 w—1 b2
el 20 e

We note here that in order for the above integral to be 268%F~w q-1 pp e

convergent in the smatl, one can assume that

JF — ikb2 7°. (A9)

—=~r% o>% (A5) 30

ar

Let r and » be small andF be analytic for simplicity. Noting 3 <w<%, we have in the leading order af posi-
Noting Eq.(A3), we expand- as tive sign of 59)F:
F(r,m)=bri(r—m)+:, (A6) —o g -1 p2

whereb is some constant. Using the scaled Emden solution 5(2)':”0’['“47@(—(1_ 1” (E) - n 3t>0.
(5.19 and Eq.(5.25 to rewrite u(r,n), we have (A10)

w—1 1

26PF=w 5 Finally, we note that in the case af<0 one cannot take
4mr the limit »— 0 in Eq.(5.20, which implies that the equilib-
rium density based on the Emden solution does not exist for
dr. (A7) Vvery small  in the case of imposing the rigid boundary

condition.

Ad4mC I “"1J"~r
"a=1)] Ll

aF(r,m)\? 7 1 )
X(T) dr—kJO r—ZF(r,ﬂ)
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