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Does the transverse electric zero mode contribute to the Casimir effect for a metal?
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The finite-temperature Casimir free energy, entropy, and internal energy are considered anew for a conven-
tional parallel-plate configuration, in the light of current discussions in the literature. In the case of an “ideal”
metal, characterized by a refractive index equal to infinity for all frequencies, we recover, via a somewhat
unconventional method, conventional results for the temperature dependence, meaning that the zero-frequency
transverse electric mode contributes the same as the transverse magnetic mode. For a real metal, however,
approximately obeying the Drude dispersive model at low frequencies, we find that the zero-frequency trans-
verse electric mode does not contribute at all. This would appear to lead to an observable temperature depen-
dence and a violation of the third law of thermodynamics. It had been suggested that the source of the difficulty
was the behavior of the reflection coefficient for perpendicular polarization but we show that this is not the
case. By introducing a simplified model for the Casimir interaction, consisting of two harmonic oscillators
interacting via a third one, we illustrate the behavior of the transverse electric field. Numerical results are
presented based on the refractive index for gold. A linear temperature correction to the Casimir force between
parallel plates is indeed found which should be observable in room-temperature experiments, but this does not
entail any thermodynamic inconsistency.
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[. INTRODUCTION where o, is the plasma frequency andis the relaxation
frequency.(Usually, v is taken to be a constant, equal to its
In spite of the numerous treatises on the Casimir effectoom-temperature valueThe mentioned authors, instead of
during the past decade—for some books and review papethe Drude relation, give preference to the plasma dispersion
see, for instance, Miltohl], Mostepanenko and Trund2],  relation, since no such discontinuity is then encountefied.
Milonni [3], Plunienet al.[4], Bordaget al.[5]—it is some-  Ref.[9], the plasma relation together with the so-called sur-
what surprising that such a basic issue as the temperatuface impedance approach is argued to be the method best
dependence of this effect is still unclear and has recentlguited to describe the thermal Casimir force between real
given rise to a lively discussion. This issue is not restricted tanetals) The plasma relation is
the case of curvilinear geometry, but is present even in the
simplest conventional geometry of two parallel metal plates
separated by a gap of width. Thus Klimchitskaya and i wg
Mostepanenko in their detailed investigatip®], and also 8('5):1+?' (1.2
Bordaget al. [7], and Fischbaclet al.[8], have argued that
the Drude dispersion relation for a frequency-dispersive me-
dium leads to inconsistencies in the sense that the reflectiophe arguments in Ref§6—9] are interesting, since they raise
coefficientr, for perpendicular polarizatiothe TE mod¢  doubts not only about the applicability of the Drude model as
becomes discontinuous as the imaginary frequedey  such, but even more, doubt about the applicability of the
—iw goes to zero. As is well known, the Drude dispersionfundamental Lifshitz formula at low temperaturésee, for

relation reads for imaginary frequencies instance, Ref[10]).
The essence of the problem appears to be the following:
5 For a metal, does the transverse elecffiE) mode contrib-
e(in)=1+ p (1.1) ute to the Casimir effect in the limit of zero frequency, cor-
L(L+v)’ ' responding to Matsubara integer=07 It is precisely for

this mode that the purported discontinuity of the reflection
coefficientr,, mentioned above, can occur. The problem is

*Electronic address: johan.hoye@phys.ntnu.no most acute in the high regime(the m=0 contribution be-
TElectronic address: iver.h.brevik@mtf.ntnu.no comes increasingly important dsincreasep but is present
*Electronic address: jan.b.aarseth@mtf.ntnu.no at moderate and low temperatures as well. The conventional
$Electronic address: milton@nhn.ou.edu recipe for handling the two-limit problem for a meta,
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=\/§—>oo, m— 0, has been to take the limits in the following ergy for a real metal becomes accordingly one-half of the
order: (1) Set firste =9, (2) then take the limim=0. conventional expression. In contradistinction to recent state-
This way of proceeding was advocated in the early papements in the literatur¢6—8| we find that there exists no
of Schwinger, DeRaad, and Miltdii1] (we will call it the  physical difficulty or ambiguity associated with the vanish-
SDM prescription, and was followed also in one of the re- ing coefficientr, at {=0. This is so because goes to zero
cent papers by some of the current autfd@, and in Ref.  smoothly whery—0, as long as the transverse wave vector
[1]. It seems to have escaped recent notice that the physicR| is nonvanishing(If k, is precisely zero, there occurs a
basis for this prescription, namely, the necessity of enforcingingularity in the reflection coefficient, but this has no physi-
the correct electrostatic boundary conditions, was explicitlycal importance since this point is of measure zero in the
stated in Ref[11]. integral overk, .) Our present results are in agreement with
Bostran and Serneliuf13] seem to have been the first to Refs.[14,15, as well as with Bostmm and Serneliug13].
inquire whether this prescription is right: They argued thatin A different view has recently been put forward by Torg-
view of a realistic dispersion relation at low frequencies theerson and Lamoreay86]. They argue that the Drude-model
m=0 TE mode shouldnot contribute. And three of the pehavior does not accurately represent the TE zero mode,
present authors arrived recently at the same conclusion, Which necessarily has a vanishing tangential component of
two papers dealing with the case of two concentric sphericahe electric field at the surface of a perfect conductor. They
surfaceq14,15. point to the necessity of taking the finite thickness of the
The Bostran-Sernelius paper gave rise to a heated debatgetallic coatings into account. Their arguments seem to im-
in the literaturg[7,16—1§ on the role of then=0 TE mode  ply that the conventional temperature dependence is correct.
for a metal. The advent of accurate experiments in recerfiowever, in our opinion electrostatic considerations of this
years, by Lamoreaukl9], Mohideen and co-worker20—  kind do not solve the zero-temperature problem; what is re-
23], Ederth[24], Chanet al.[25], and Bressket al. [26] (cf.  quired to incorporate temperature dependence is an analytic
also the recent review paper of Lambrecht and Reynaudontinuation into imaginary frequencies of Green’s functions
[27]), represents important progress in this field. Especiallyeferring to nonzero wave number.
the experiment of Bresgit al. is of interest in the present Before embarking on the calculations let us emphasize the
context, since it deals directly with the Casimir force be-following point: The occurrence of thex=0 mode only
tween metal surfaces that are parallel, and so avoids use ghce instead of twice is understandable physically. This
complicating factors such as the proximity force theoremmode is precisely the TM static mode, corresponding to the
[28], which nevertheless seems well understood. This experilectric field being perpendicular to the two metal plates. It is
ment is fraught with experimental difficultiegelated to  the natural ground-state mode present wherD. Actually,
keeping the plates sufficiently para)lebo the accuracy is in Sec. Il of Ref.[12] we showed how the uniqueness of the
claimed by the authors to be moderat®%), but it is to be  static mode emerges naturally, using statistical mechanical
hoped that this accuracy will soon be improved. Severatonsiderations.
other related papers have appeared recently, discussing the The outline of our paper is the following. In the following
interpretation of the mentioned experiments as well as morgection we show why the exclusion of the TE zero mode
general aspects of finite temperature Casimir th¢28-35.  seems to lead to an observable temperature correction to the
Our purpose in the present paper is to analyze the Casimiprce between real metal plates, and worse, seems to imply a
temperature problem anew, assuming conventional paralleliolation of the third law of thermodynamics. In Sec. Il we
plate geometry from the outset, therewith avoiding theexpand on the situation of an ideal metal in the sense de-
spherical Bessel functions that become necessary if sphericg¢ribed above, and calculate the Casimir free energy, entropy,
geometry is contemplated. In particular, we will focus atten-and internal energy via a somewhat unconventional route.
tion on them=0 TE mode. Let us summarize our results. Equivalence with earlier results is demonstrated. In Sec. IV
It is useful to distinguish between two different classes ofwe introduce a simplified model to illustrate the Casimir
metals. The first class, which we will call “ideal” metals, is problem, based essentially on statistical mechanics. In this
characterized by a refractive index= e = for all fre-  model the system is replaced by two harmonic oscillators
guencies. It implies that the reflection coefficiant men-  (the two mediathat interact via a third oscillataithe elec-
tioned above is unity for alf. This corresponds to the tra- tromagnetic fieldd Depending upon the form of the interac-
ditional recipe 1 and 2 above when handling the two-limittion we then have two situations. The first is the one where
problem for metals. It means that the=0 TE mode con- the induced interactioffior free energy, which is negative,
tributes to the Casimir force just the same amount as does thecreases linearly in magnitude with temperature in the clas-
transverse magnetidM) mode. sical limit. The other situation, which is more unexpected, is
The obvious drawback of this ideal metal is that it doeswhere the induced interaction vanishes in the classical limit.
not occur in nature. And this brings us to the second classThese two situations can be regarded as analogous to the
which is the one of real metals, in which case we must obbehavior of the TM and TE modes. We also consider a
serve an appropriate dispersion relation, especially at lovgtrongly simplified case of real metals, and show how in such
frequencies. It is most commonly assumed that the most af& case the contribution to the entropy goes to zero smoothly
propriate dispersion wheti—0 is the Drude relation, Eq. asT—0. Arguing on basis of the Euler-Maclaurin formula
(1.1). As we will show, the Drude model implies that the  we find this to be a general propeffgxcept in the idealized
=0 TE mode doewmot contribute. The totam=0 free en- metal limit). We then go on to present numerical results
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based on the dispersion relation for gold, and obtain result®f course, the integral in Eq2.4) is just the inverse of the
qualitatively in accord with our analytical model. In the Ap- finite-temperature prescriptiof2.1b, and gives the zero-
pendixes the smoothness of the reflection coefficignand  temperature result. The only nonzero odd derivative occur-
of the TE Green’s function, in the limif—0 is explicitly  ring is
demonstrated. We also discuss the temperature dependence
of the relaxation frequency(T). We conclude that a linear 1672
temperature dependence should be observable in room- f7(0)=——-, (2.6)
temperature experiments. B

In this paper we use natural units=c=kg=1.

which gives a Stefan’s law type of term, seen in E2}10
below.
The problem is that the EM formula only appliesf{fm)
We begin by reviewing how temperature effects are incoris continuous. If we follow the argument of Refd3-15,
porated into the expression for the force between paralleind take thes; ,— limit at the end €, , are the permittivi-
dielectric(or conducting plates separated by a distarecdo  ties of the two parallel dielectric slahghis is not the case,
obtain the finite-temperature Casimir force from the zero-and for the TE mode
temperature expression, one conventionally makes the fol-

Il. TEMPERATURE EFFECT FOR METAL PLATES

lowing substitution in the imaginary frequency: fo=0, (2.79
2mm
{—lm=—7, (2.19 L(3) 2mam
fn= , 0< <1. (2.7
P " 47 pad B
and replaces the integral over frequencies by a sum,
. Then we have to modify the argument as follows:

f na !l > 2.1b
L 2m B (219

» * -
=X =2 fn= 2 T 5To, 28
This reflects the requirement that thermal Green’s functions m=0 m= m=0
be periodic in imaginary time with perio@ [37]. Suppose -
we write the finite-temperature force per area[fs the  Wheref,, is defined by continuity,

explicit form, see Eq(3.1) below]

fm, m>0
FT=3 ", (2.2 fo=) limfo, oo, 29
m=0 m—0
where the prime on the summation sign means thatnthe Then by using the EM formula,
=0 term is counted with half weight. To get the low-
temperature limit, one can use the Euler-Maclauiii) B 5(3) a2l a\*
FT= —
sum formula f dsf(g)+ 8 pa o5 4518
- = 1 “ B,
fk:ffkkor—fO— —=L£2a-1)(), 2 16/a\* 3
go (0= ], fodier 31O Z(2q)' © - {1+—— —g()T, aT<1.
(2.3 240a* 3\B 8ma®
(2.10

whereB,, is thenth Bernoulli number. This means here, with

half weight for them=0 term, The same result for the low-temperature limit is extracted

% through use of the Poisson sum formula, as, for example,
discussed in Ref.1]. Let us refer to these results, with the
(Zk)' TE zero mode excluded, as the modified ideal metal model.
(2.9 Exclusion of the TE zero mode will reduce the linear
dependence at high temperature by a factor of 2, but this is
not observable by present experiments. The main problem,
owever, is that it adds a linear term at low temperature,
which is given in Eq.(2.10, up to exponentially small cor-
rections[1].
There are apparently two serious problems with result
5w 1 (2.10.
f(x)=—— g2dq ) (2.5 (1) It would seem to be ruled out by experiment. The ratio
B J2axip e?9e—1 of the linear term to th@=0 term is

5 1 1
Fl= fo f(mydm—>f(0)+ Ef(O)—

It is noteworthy that the terms involvinf(0) cancel in Eq.
(2.4). The reason for this is that the EM formula equates a
integral to its trapezoidal-rule approximation plus a series 0
corrections; thus the 1/2 fan=0 in Eq. (2.2) is built-in
automatically. For a perfect conductor,
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30¢(3 q
8= 11, (2.113 s'=e-1+p% p=;, (3.29
m

77_3

or putting in the numbers[300 K=(38.7) teVv, #c  With &(i{y) being the permittivity. Note that wheneveris
=197 MeV fm] constant, theA,, and B, depend onm and g only in the

combinationp,
a

1um

.
A:°-15<—300 K : (2.119 An(@)=A(p), Bn(a)=B(p). 3.3

or as Klimchitskaya observe@®8], there is a 15% effect at (This result may also be found in standard references such as
room temperature at a separation ofuin. One would have Ref.[1].)

expected this to have been seen by Lamorda@ his ex- The free energy- per unit area can be obtained from Eq.
periment was reported to be in agreement with the conven3.1) by integration with respect ta since 7 '= — JF/Ja.
tional theoretical prediction at the level of 5%. We get[12]
(2) Another serious problem is the apparent thermody-
namic inconsistency. A linear term in the force implies a 1 ;[ ™ e
linear term in the free energyer unit arel BF=5— mZo L [IN(L=N"")+In(1—X"5)]q dq,
) (3.4
F=For —2) 1 ate1 (2.12
° 16ma? ' ' where
which implies a nonzero contribution to the entropy per area ANM=A_e 208 \TE=p e 2043 (3.4b

at zero temperature:
(In the notation of Ref[12], A\ ,=A™, A=\TE)

BRan (3) From thermodynamics the entro®/and internal energy
R V_ 16ma? 213 gy (both per unit areaare related td- by F=U—TS, imply-
ing
Taken at face value, this statement appears to be incorrect.
We will discuss this problem more closely in Sec. IV, and S=_ f
will find that although a linear temperature dependence will aT’

occur at room temperature, the entropy will go to zero as the

temperature goes to zero. The point is that the free erfergy and thus

for a finite ¢ always will have a zero slope dt=0, thus

ensuring thaS=0 at T=0. The apparent conflict with Eq. J(BF)

(2.13 or Eq.(2.10 is due to the fact that the curvature of U= B (3.5
F(T) near T=0 becomes infinite wherr—o. So Egs.

(2.12 and(2.13, corresponding to the modified ideal metal As mentioned above the behavior Sfas T—0 has been

model, describe real metals approximately only for low, butdiS uted. especially for metals wharess. We now see the
not zero temperature—see, for example, &qld). P ' €SP y '

mathematical root of the problem: The quantitidg=B,,
—1 in thee— o limit except thatB,=0 for any finitee. So
ll. CASIMIR FREE ENERGY, ENTROPY, the question has been whetligy=0 or B,=1 or something
AND INTERNAL ENERGY in between should be used in this limit as results will differ
The Casimir surface force densit§” between two di- for finite T, producing, as we saw above, a difference in the

electric plates separated by a distaacean be written as fo_rce linear inT. The correqunding difference in entrop_y
will thus be nonzero. Such a difference would lead to a vio-

1 &, (> A_e 203 B._e 203 lation of the third law of thermodynamics, which states that
Fl=—— 2 q?dq i “oan T —aal the entropy of a system with a nondegenerate ground state
B m=o Jy, 1-Ane %@ 1-Bye should be zero af=0. Inclusion of the interaction between

BD  the plates at different separations cannot change this general
property. We will show that this discrepancy vanishes when
o B . the limit e —o is considered carefully, by using the Euler-
ences therein; here we further setc=1.) The relation  y;acia,rin summation formula. Also, we will perform ex-
bet\éveenq and the transverse wave vecter is q°=ki  pjicit analytic evaluation for anyf for metallic plates in the
+ {5, Where{,=2mm/g. Furthermore, case where— for all ¢.

) ) We will consider this latter case first. It is the case of ideal
_|8P~S _ metals mentioned in Sec. | and already considered briefly in
Am— y Bm_ 1 (323
ep+s Sec. Il.

(We follow the conventions of Ref39] and further refer-

S—p
s+p
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A. ldeal metals

With ¢ = we haveA,,=B,,=1 where we now also put

Bo=1, i.e., A\"M=\TE=¢7292 To remove the dependence
in the lower limit of integration in Eq(3.43, it is convenient

to use the quantitp of Eq.(3.2b) as a new variable. Expand-

ing the logarithmic terms in Eq3.43 and keeping only the
leading term, we get the task of calculating

F~-— %u, |152m2=0’§5nf1wpe*27mpdp, (3.6)
where
2ma
ymzagszm. (3.7
Carrying out the integration in E¢3.6), we obtain
Il:(2a)22n12:0/|_m' (3.83
with
L,=(2ym+1)e 2", (3.8h

(It is easy to check that this result is correchat 0, where
p is not defined. We encounter the following sums:

©

So(7)=2 Y, 'e 2"™=cothy, (3.93
m=0

sk<y>=2mE_O<2ym)ke—2m7=<—y>ka—j", (3.9b

so that
Y
S1= , (3.10
Y sinty ?
22 cosh
s,= L > (3.10
sink?y
6+ 4 sintt
s=yp Y (3.100
sintty

The quantityl ; is given by the first two of these sums,

l1i(y)= [S1(¥)+So(¥)]. (3.11

(2a)®

Alternatively, one could just first perform the summation in
Eqg. (3.6) (for m=1) and then integrate. This summation

yields s,(yp). By subsequently integrating, by parts the
quantity (5;+sp) in Eqg. (3.1)) is recoveredadding them
=0 term separately

PHYSICAL REVIEW E 67, 056116 (2003

By further expansion of the logarithm in E¢3.48 one
obtains terms\"/k to be integrated and summed like Eq.
(3.6). Performing the same steps as before, we find that result
(3.11) generalizes to

o

F= 12

- 8mpRaZ k=1

1
E[Sl( YK)+so(yK)],  (3.12

valid for arbitrary temperature.
The surface force per ar€ad.1) can now be obtained via
FT=—9F/da utilizing y><a [Eq. (3.7)]. This yields

o]

T 1 L
FT= — gl F[SZ( ¥K) + 281 (yK) + 255( ¥K) 1.
(3.13

The same result is also obtained by evaluating expression
(3.) (with A,=B,=1) in the same way as expression
(3.43 for F was evaluated above. Using the second method,
mentioned below Eq3.11), one finds that the integration of
s3(yp)/p yields the combination of; present in Eq(3.13.

Considering theT—0 limit, which implies the y—0
limit, one obtains

©

1 16 2
Fl= (

S gmBad it KB K 24

3.14

using the limiting values of expressio(3.93, (3.103, and
(3.10h. This is the well known Casimir result for idealized
metallic plates aff =0, seen in Eq(2.10.

The internal energy is now found from Eqs(3.5), (3.7),
and(3.12 to be

%1

2r?(F/)/) B 1
8mpRa? k=1 k3

dy

U=—y S2(vk), (3.19

and similarly an expression for the entrofyollows from

[

JF U—-F 1 1
S=—-2ra—=—7—=— —
8ma? k=1 k°

dy T
X[s2( k) —s1(vK) = So(7K) ]

with Egs.(3.12 and(3.15 inserted.

Now we can analyze the thermodynamic quantities in the
low-temperature limit using the propertiesspfas defined by
Egs. (3.99—(3.109. We have for low temperatufewhere
fyocT—>O,

(3.1

SV 3.17
1! +1 3 3.17
S1=0 vty T (3.17h

IActually, for a room-temperature experiment, need not be
small. ForT=300 K anda=1 um, y=0.823.
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2 2 The free energy(3.12 can be obtained fromF'=
$2=3, " 157 S+, (3.170  —4F/ga, but this leaves a temperature dependent constant
of integration. So instead we make use of the method above,
6 2 where from Eq.3.12
s3—y 157 - (3.179 . ,
Inserting this into expression®.12), (3.13, or (3.15 one f(x)— $1(X) +So(X) — _} (321

finds that the terms linear i vanish? Thus entropy(3.16)

vanishes, as it should in accordance with the third law of,,4 \where nowf (0)=2/45. With Eq.(3.21) we get a non-
thermodynamics. zero integral

To obtain the leading correction to the=0 result for

finite T one must consider the® term in the power series . .
expansion of the summand in E@.13. However, the sum- C:f f(x) dx= _f 1d lcothx— 11 dx
mation of this term with respect to diverges® because the dx| x 3 X2

expansion ok,(yk) is not valid for largek. For smally one
can instead integrate, without expanding, using the Euler- =1
Maclaurin summation formulé2.3) to obtain a finite correc- = f
tion to the zero-temperature result. Using E2}3) to evalu-
ate expressiofi3.13), the y—0 expressior(3.14) has to be
subtracted to mak&0) finite. Puttingx= yk we have, apart
from a prefactor,

3lx '3

1
+——cothx)dx (3.22
0 X

using partial integration. IntegrgB.22 may be easily evalu-
ated by contour methods. Due to symmetry the integral can
be extended to minus infinity and then the contour of inte-
1 6 gration can be distorted into one that encircles the poles
f(x)=— sz(x)+231(x)+230(x)——}, (3.18  along the positive imaginary axis. Since cathas poles at

x3 X z=im7m with m integer, we gét

with f(0)=—2/45 in view of expansion$3.178—(3.170. 1 o _ 1
Integrating and using expression&.99, (3.103, and C= —2i 2 _ =—(3). (3.23
(3.10b, we obtain 2" mm1 (wim)d a?

In view of this result as well as E{3.14 we obtain for
=0. (319 the free energydk=dx/vy)
0

o 1
J f(x)dx=——2
0 X

2
$1(X) +Sp(X) —;}

Including theT=0 result(3.14, we thus find S LA (E——f(O)”
871'Ba 790
N 1 [6a* 1f(0) . , , ,
=———|-55 510> ™ 2a\%(3) (2a
gwpa’ly 90 2 =— 1+45 —| === |, aT<Ll.
3 B = B
w2 [ 1(2a)4
=———|1+z|—] |, aT<1, (3.2 (3.29
2404 3\ B (3:20

This result, including its exponentially small correction, is
where we have inserted expressi@n) for y and noted that  gjven in Ref.[1] and references therein. The internal energy
there is nok=0 term in Eq.(3.13, i.e., f(0) is to be sub- U, which can most easily be evaluated using B35, can
tracted from expressioﬁZ.B). All the odd derivatives in the also be Computed by the method above, Starting from sum
Euler-Maclaurin formula vanish becauséx) is even. It (3.15. Then
should be noted that the expression #6F is in agreement
with what has been found earligef. Eq. (2.10], via alter-

native methods, by Milton[1], Klimchitskaya and f(x)= i(sz(x)— 3) = t i(sl(XHSo(X)— E)
Mostepanenk®6], Sauef40], Mehra[41], and others, where x3 X x?d X

the exponentially small correction to the above formula is (3.29
also given.

with f(0)= —2/15. Partial integration replaces teof Eq.
(3.22 with —2C, and we obtain

°This is actually stronger than necessary to insure vanishing en-
tropy, since such terms would givié? terms in the energy or free

energy. “This low-temperaturd® dependence iff, which does not con-
3For this reason, the alternate expressi®i35 in Ref.[1] might tribute to the force, is determined by the linear high-temperature
be preferred. See E3.39 below. behavior of FT—see Ref[1], Sec. 3.2.1.
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7T2

7208

1—90(2—5‘)3@+3(§)4 T<1
gl 3 Clel T
(3.26

With Eq. (3.16 the entropy thus becomesecall thatB
=1 is assumed

2
_U-F 33 2 AT as

T 2 45 aT<1.

(3.27

B. Equivalence with earlier results

PHYSICAL REVIEW E 67, 056116 (2003

(3.39

1 i ud _ a1
S0~ mul “2u/| "8/ " 90
which is consistent with the & sum occurring in Eq.
(3.14.

To obtain the free energlf and the forceF" there are
sumsS; and S, that follow from thes; and s, of Egs.
(3.103 and(3.10h. And like Egs.(3.323 the relations be-

tween the various; lead to

Sim=—7v--9g=ugd’, (3.39

Equivalence with previous derivations can be shown for
any y. It is then convenient to utilize the Poisson summationVhereg(u)=Som. Also

formula. Ifc(k) is the Fourier transform af(x), defined by

"c’(k):f dxc(x)e®, (3.29
then
> c(n= >, c2mm). (3.29
n=—ow m=—®
With c(x) =e~ 2" one finds
E(z,ﬂm)z foc e72'y|x|+217mxidx= #
—oo y2+(71'm)2
(3.30
Thus
- y

= > e =cothy, (3.30

n=—oo

m=—= 32+ (7rm)?

the familiar cotangent expansion, which can be verified in

many different waygcf. Ref.[42]).
In Egs. (3.12 and (3.13 one of the sums igsy(x)
= cothx]

o] 1 o) ee)
So=2 Scothiyk)=2> > Somi, (3.323
k=1 k k=1 m=—ox

where with Eq.(3.31)

vk _ 1
K3[(yk)2+ (mm)2] MU

1 1
k* K%+ (u/m)?

Somk=

u=m’m/y. (3.32b

Summation first with respect towhere also resul3.31) is
utilized then gives

m

1 thl
6 2ucouu

Som= kzl SOmk:m_

u

. (3.33

In the limit y—0 only them=0 term remains, and we get

the T=0 result if we use expansiaf3.173 (u—0):

— ! 21
o 2ug’ +u<g”. (3.36

82 — Zi(_ﬂ ’
m=—Y ’)’g

So to obtainF " we need, because

2+4 i 202 ! =q" 3.3
+tau—-+u P EQ(U)—Q (u), (3.37

the combination

% d?

SZm+ 281m+ 280m=6—m ﬁ u—3

1
cothu— —)
u

3 72 1 coshu|\m™0%72 u 3 a1
== R R
(3.39

Altogether, restrictingn to positive values due to symmetry,
expression(3.13 can be reexpressed asi=w’m/y, y
=27alB)

u®  sinkfu

T_ _

. (3.39

“ [ 1 coshu
1+30, (—— )
m=1 u4

u sinkPu

77_2
240a*
which is the desired known expressidiror example, com-

pare Eq.(3.35 of Ref.[1].)
To calculate the free enerd®.12, one likewise needs

(cothu 1”
1-3 - —
u u2

cothu 1 2 l

m d
Sim* Som=5m du

71_2
© 2m

2 3

u usinffu u

m—0 72 1+1 B -
~om| " /Y, 340

Thus the free energy becomes

1+45>

m=1

2

3 4

(cothu 1 2 )

— +
72083 u u?sinifu u

(3.41
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Compared with the small or y expansion3.24) it is clear A= wi2+ P=a+ 2 (4.2b
that the last term of Eq3.41) gives theT*= g~ * term of Eq.

(3.24). The coefficientC can also be identified from Eqg. (For real frequencies =i/, 1/A; determines the response to
(3.41). As cothu—1 wheny—0 we must have, when com- an external oscillating force acting on the oscillator.

paring with Eq.(3.24), Now add interactions, of strength proportional dobe-
. tween the third oscillator and the other two. The usual form
y\*45C 1 vy 1 of this interaction iscx;x;, wherex; andx; are coordinates.
P 724521 5245 ; mzl ﬁ Let this constitute the first model, which is analogous to the
(3.423 TM mode. Then the quantit®) becomes the determinant of
’ the matrix,
or
A; 0 c
1 =10 A, c|=AAA;—C}A+A
C="¢(3), (3.420 Q 2 17273 (A1t Az)
w2 C C A3
which is in agreement with E43.23). — A AAL(L—D(1—-D) 1— DD,
172 3( 1)( 2) (1_D1)(1_D2) ’
IV. FINITE PERMITTIVITY: REAL METALS (4.33
A. Two harmonic oscillator models where
With finite permittivity e the A, andB,,, of Eq. (3.23 will )
vary with p. EspeciallyB,—0 as p—» or {y—0 ({m 5 _1lc i—192 435
=2mm/B). In the high-temperature or classical limit only A A (i=1.2). (4.3

the Matsubara frequenc§=0 (or m=0) can contribute as

B—0. Thus, in the classical limit one has the result that theThe quantum free energy for this system of three coupled
TE mode does not contribute at all. Physically, this mean®scillators is given by summing over the Matsubara frequen-
that the temperature becomes so high that only the staticies, as in Eq(3.4a:

dipole-dipole interaction contributgghe /—0 limit of the N

TM modeé. In our opinion this somewhat unexpected behav- 1 )

ior is related to the peculiar type of interaction that exists BF =5 lim m§=:1 [INQ({m)+3In%7], (4.9
between the canonical momentumnof a particle and the N

electromagnetic vector_potentiAKr,t), which fo_r a particle  \here n=PBIN and ¢? is replaced by Pl—cos¢n)]/7?

of massm and chargey is (p—gA)?/2m. In addition to the (=%+---) in the A;A,A, term of Eq.(4.33. The limiting

standard cross term interactipnA this also implies an in- procedureN—x is required to make the full free energy

teractionA?. _ well defined. This means that the path integral representation
As an illustration of the above we can consider two mod-of 5 harmonic oscillator is discretized by dividing the imagi-

els, in each of which two harmonic oscillators interact via 8nary time of periodicity3 into N pieces each of length as
third one. These oscillators represent a simplified picture ofjgne in Ref[42]. There, in the appendix an explicit evalua-
our polarizable parallel plates interacting via the electromagsion was performed for one single oscillator.
netic field. The classical partition function of a harmonic  The various factors in Eq4.3a can be interpreted as
oscillator with frequencyw is CO”SU(Bw)“ll\/;Z’ which follows: The product\; A,A; corresponds to the noninteract-
gives a free energy- In(w?). Thus for three noninteracting jng system, the next two factors represent the result of inter-
harmonic oscillators the inverse partition function is propor-gction of single oscillators with the third one, while the last
tional to \Q, where one is the contribution from the induced interaction between
the two single oscillators via the third one. The logarithm of
Q=a,a,33, (4.13 the last term is the analog of the Casimir free energy. In this
respect the ternt?/A; represents the induced interaction.
Furthermore the & (i=1,2) represents the “bare” polariz-
a=w? (i=123). (4.1  ability of noninteracting particles, which for nonzefobe-
comes 1A;. Due to interaction with the “radiation” field
(The quantitya; corresponds t&” above) By quantization  this polarizability is modified into LAi(1-D;)] (i=1,2),
using the path integral methdd2,43, the classical system Where D; represents a radiation reaction from the “field”
is split into a set of harmonic oscillator systems described byPon each single oscillator.

with

Matsubara frequencies. Expressi@nla is replaced by The above represents the ordinary situation, analogous to
the TM mode. To model the TE mode, we can consider an
Q=AAA;, (4.2  analogy with the electromagnetic interaction in which the
third oscillator can interact with the momenta of the first two.
where The analogous interaction will bep{—consix x3)2/2m,
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(i=1,2; m; is mas$, including the unperturbep? term. By  field in a continuous medium. The electromagnetic energy-
evaluation of the classical partition function one now findsmomentum tensor that experimentally turns out to be defi-
that the interaction from constx; has no influence(This is  nitely the best alternative when dealing with high-frequency
the analog of classical diamagnetism which is equal to zercgffects is the Minkowski tensdcf., for instance, Refl44]).
as consk xs is seen to have no influence on the result whenThis tensor is, however, nonsymmetric, apparently breaking
p; is integrated firsj. general conservation principles for angular momentum. The
Quantum mechanically, the problem is a bit more com-reason why this peculiar behavior is yet quite legitimate
plex. However, we can now exchange the roles of momentghysically, is that phenomenological electrodynamic theory
and coordinates of the first two oscillators, i.e., we introducdS dealing only with a subsysterthe field itself plus its

a momentum representation. Then the interaction with théteraction with matter and we cannot apply the same for-
third oscillator can be written as £ 1,2) mal restrictions on it as we could if the system were closed.

2
aiXiZ—ZCXiX3+Z—X§ _ B. Real metal
' In the limit of an ideal metal £ —) the traditional
(SDM) prescription, as mentioned in the Introduction, im-
Now the last quadratic term adds to the energy of the thirgplies thatA,,=B,=1 for all m. In addition, as also men-
oscillator alone. Thus, compared to the first model considtioned previously, thermodynamic arguments have been
ered abovea; is changed while the othew; remain un-  given, claiming that the entropy does not become zerd at
changed: =0 in violation of the third law of thermodynamics B,
) 5 =0 is used 35]. However, we do not find this to be the case;
ag—agtc/a;+c/ay. (463 a5 we will show below, the entropy will be zero as required
atT=0, even for a metal that is not idealized and where one
bases the analysis on the valBg=0.
As—Az+ca;+ca,. (4.6b) Let us go back to Eq(3.6). That equation was obtained
by expanding Eq(3.49 to first order in\ under the assump-
The quantityQ can still be written in form(4.3a, but due to  tion that A,,=B,,=1. Doing the same expansion for finite
the change ofa;, the (1A;) (i=1,2) is replaced by A permittivity, we obtain an integrand that contains a term with

c \2
Xj— —Xgz| =cons
q;

consi a;

Likewise in the quantum case,

—1/a;=—¢?/(a;A;) when evaluatind; , i.e., a factorB,, (or A,) that varies withp=q/¢{,, such thatB,
—0 whenp—o. Expanding Eq(3.43 to higher order one
_ & c? obtains likewise powers 0B, which, becausd,,<1, be-
i__m,q_s' 47 come less important as compared to the case of an ideal

metal(whereB,,=1). One can first consider the case where

The inducedanalogous to the Casimifree energy is again ¢ is independent of. Whene is large one can use as a
given by the logarithm of the third term in EG.33. At zero ~ rough approximation

and finite temperatures the latter logarithm is negative, and
the free energy B _ 1, p<ie .9
m :
. 0, p> .
D:D>
= > Inf1-—r (4.9 o _ . _
2 s (1-D1)(1-Dy) This simple expression fdB,, is intended to show essential

features that will be obtained more accurately in a detailed
is negative. Note that here the limiting procedure of @)  numerical calculation. With this, Eq3.9a (neglecting the
is not needed as sums for free energy differences converggfiuence ofA,,) will turn into
without difficulties. In the classical limit, however, the in-
duced free energy becomes equal to zebe—¢0 implies _ _ _
that we get the logarithm of unityWe note the analogy: At So(7)=S0(7) ~So( Ve ) = cothy—cothyc, (4.103
high temperatures the same is true for the TE mode in the '
Casimir effect. There exists thus at least somewhere a finite- . o S o
. . S . with similar modifications fois;(i=1,2,3). Here
temperature interval for which the Casimir free enengy
creaseswith increasing temperature. In turn, this means that
the Casimir entropys= — 9F/JT becomes negative in this Yo=yVe (4.10b
interval.

This is a counterintuitive effect, but is physically due to is an effective sharp cutoff limit for the integral, a crude
the fact that we are dealing with the induced interaction partnodel for what should be a gradual cutoff for the integral of
of the free energy of a composite system. We cannot applinterest.(A gradual cutoff will only modify the last term of
usual thermodynamic restrictions such as positiveness of erfzg. (4.10a into a sum or integral over terms with varying
tropy to a “subsystem” of this sort. There exists actually ay.. Namely, with varyingB=B(p), Eq. (3.6), if we recall
striking analogy with the peculiar formal properties one en-the comment below Ed3.11), changes int¢B(1)~1 for ¢
counters in connection with the theory of the electromagnetitarge]
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From this we havdkeeping in each case only the leading

|l:(2a)2f1m3(p)52(),p)% temperature correction
F(T)
= Gapl S s
1 (= [1—1/(2@)]F,(0)—@(2—8)T3, O<aT<1/e
o ZL [So(yP)+s1(yp)IB'(p)dp, (4.1D) B 4m

(22) F,(0)+K,T/2, e <aT<1

using partial integration. Approximatiofd.9) means that —K,T/2, 1<aT,
B'(p)=—d(p—+e).) (4.1

As we did to obtain Eq(3.27), we carry out the sum over
kin Eqg. (3.16 while assuming: sufficiently large such that
approximation(4.9) can be used. Then as in E¢.109 one
obtains the previous result minus a term with- .. If we
keep only the leading term, E(3.27) is modified into

where the constan€, = £(3)/(8wa?) is the magnitude of the
slope of the linear dependence of the high-temperature result
of the ideal meta[F,(0)=— w2/720a%<0]. Thus for high
temperatures, nonideal or realistic metals yield one-half of
3¢(3) the ideal metal result. The intermediate form, which holds at
STE~ " (1-¢)T% JeaT<l. (4.12  room temperature, is the same as seen in(Ed.2. Again,
4w we see that in the/saT<1 regime, result4.12) for the

entropy holds[Equation (4.14) includes the TM mode as
well.]

Now, ¢ usually depends of. But this will not change our
) < conclusions from Eq(4.12. To see this we can go back to
g|or1,l/823’2aT<1, but that Eq.(4.12 holds for &~ **<aT expressior(3.6) which followed from expansion of the loga-
<e %) rithmic term in the free energyB.4a. In the general case, the

Thus the entropy approaches zero as the temperature gogsetficientsA,, and B,,, which are less than 1, should be
to zero. Ase increases th& dependence becomes more sin-jnq1yded in Eq.(3.6), and powers of them will occur in the
gular, because the region in which Ed.12 is valid be- o\ a1 ation of the terms contributing to the free energy for
comes more and more narrow, but the valuelatO stays |~ 1 These factors will all be smooth functions HExcept
fixed at zero also in the limig —ce. This contrasts with the (o the case of an idealized metal wh&g becomes discon-
ideal metal result2.13 wheres = is used. - __tinuous atZ=0. This smoothness is also valid for the Drude

Again, we note the counterintuitive negative contribution¢y .-\ discussed in Appendix A. With,, andB,., included
from the TE mode. As mentioned earlier, this does ot vioe( (3 45 can be summed with respec?gg,zz;zm/ﬂ and
late the laws of thermodynamics and can be understood ifhe Euler-Maclaurin formula2.3) can again be a’pplied.

terms of the ascillator madel analy;ed in some dgtail in S.eC[Equation(3.6) with B,, included is not applicable in this
IV A. Only the total entropy has to increase with increasinggiy ~tion as we remarked there becatise0 is of relevance

tempgrature. And'this is the case for.the in\{erse partitiprhere] If ¢ stays finite whert— 0, the result clearly will be
function (4.33, which represents three interacting harmonlcthe same as that given above, However. for a real metal

oscillators where th®; are given by Eq(4.7). Although the wheres—o as {0 the situation is more subtle. For the

induced entropy becomes negative at least in some f'mtecfase of an ideal metal considered in Sec. I, the first deriva-

temperature region the total entropy wi]l behave properly, ag e £7(0) was zero whilef” (0) of Eq. (2.6) was nonzero.
the total system can be decomposed into three mdependeg similar application of the Euler-Maclaurin formula to the

harmonic oscillators represented by the eigenvalues of ma; : :
; ) . ee energy(3.4a instead of force(3.1), the same will be
trix (4.39 with A; replaced bya; (i=1,2), and furthermore true. For a real metal obeying the Drude dispersion relation

As; replaced by the right hand side of Ed.63. ; : i ;
With simplification(4.9) for the TE mode, the free energy ile'rl()) évl\:ght(;/ ::lgr)a;gi;gztnggn(\éa:v%‘m(g)gzcor;tér;l;crajir:c(; E)Oe
1 m?

can be easily expressed in terms of the ideal metal case anle:1E4 (A4). Thus, quite generally, we expecTd (or T%) cor-

lyzed in Sec. lll A. Let the ideal metal free energy Be rection to the free energy at sufficiently low temperature
=F,(T). From Eq.(3.7), y«T. Now the magnification ofy gy y P '

to y. as in Eq.(4.10H and insertion of it in Eq(3.12 will
change the corresponding free energy $é+:)F(Ty:/v) C. Gold as a numerical example
=F,(\JeT)/\e. The TM and TE modes both contribute the
same amounts to Ed3.12. Thus with Eq.(4.9) the free
energy will be

(However, to be more accura@,=[(e—1)/(ye+1)]?
for p=1 and thusB,,<1 for p<./e. When this is taken into
account, we find tha8"%« —ag%2T2 in a more narrow re-

Let us go back to Eq3.1) for the surface force density,
making use of the best available experimental results for
e(i¢) as input when calculating the coefficiedts, andB,,.

1 We choose gold as an example. Useful information about the
F=F(T)=F(T)— —=F,(JeT). (4.13  real and imaginary parts’ andn” of the complex permit-
2\e tivity n=n’"+in", versus the real frequenay, is given in

056116-10



DOES THE TRANSVERSE ELECTRIC ZERO MOB. . . PHYSICAL REVIEW E 67, 056116 (2003
10" e ' - - - ' - too low values ofs. Both Drude curves, fomf=10 K and
AN ] T=300 K, are seen to give the same values wiien3
x 10* rad/s.
The structure of Eq(3.1) shows that for numerical inte-
] gration it is advantageous to introduce the nondimensional
quantity

] y=qa (4.17

4 as the integration variable. The force expression then takes
the form

s}

J 1 , (=
Fl=-— °d
y 77,833 mzzo myy Y

Ae Y Bne &

+ .
1-Ae® 1-Bpe ¥
(4.18
10" 10 10

¢ (radss) (This formula holds even when practical units are restored,
o o . ] i when 8= 1/kgT.) Typical magnitudes of the attractive pres-
FIG. 1. Full line: permltt|V|t¥s(|§) as a function of imaginary g e are about one millipascal, for a gap width offn.
frequency{ for gold. The curve is calculated on the basis of experl-(The force between ideal metal plates at zero temperature for
mental data(Reprinted with the courtesy of Astrid Lambrecht and 1-um separation is 1.30 mPa
Serge ReynauflBroken lines:e(i{) versus{ with T as a param- l'Ll'he next task is to .determin.e the valuesgfandB,,, in
m:»

eter, based upon the temperature dependent Drude model; cf. Ap- " "™ . . .
pendix D. The upper curve is foF=10 K; the lower is forT IEE)he limiting case oin—0. This has to be done analytically.

=300 K, which for energies below 1 eV (<80 rad/s) nicely ~Whereas the TM mode leads unambiguouslyAp=1 (&

fits the experimental data. Both curves are below the experimentat’ 1), the TE mode is more delicate. In Appendix A we show
one for¢>2x 10 rad/s. explicitly, by means of a limiting procedure based on the

Drude model, howB,,—0 when {—0, i.e., whenm—D0.

Ref. [45] and similar sources. The range of photon energied "€ M=0 TE mode accordingly does not contribute. To
given in Ref[45] is from 0.1 eV to 16 eV. (The conversion Summarze,

1
10™

1
102

factor Ap=1, Bp=0 forametal[e(0)=x=], (4.193
1 eV=1.519x< 10" rad/s (4.15 o112
Ao= e+l)’
is useful to have in ming.Whenn' andn” are known the
permittivity e(i¢) along the positive imaginary frequency B,=0 for a dielectric medium [£=g(0)]. (4.19D
axis, which is a real quantity, can be calculated by means of
the Kramers-Kronig relations. _ These relations will be assumed in the following.
Figure 1 shows hove(i{) varies with{ over seven de- There are some general properties of expres$ibhg

cades e[ 10™,10'%] rad/s. The curve was given in an ear- that ought to be noticed. First, at the lower limit=my, the
lier paper([30], and is reproduced here for convenience. WecoefficientsA,, andB,, for m=1 become equal,
are grateful to A. Lambrecht and S. Reynaud for having

Je—1

given us the results of their accurate calculations. At low
photon energies, below about 1 eV, the data are well de- An=Bn=
Je+1
This expression is precisely the reflection coefficient for

scribed by the Drude model, E¢l.1), in which the input
parameters have the valug0]
Poynting’s vector, at normal incidence. This special case ob-
0,=9.0 eV, »=35 meV. (4.16  viously corresponds t&, =0. Then the TE and TM modes
are identical to each other. Second, we note that for large

These values refer to room temperature. The curve in Fig. Yalues ofy, the integrand in Eq(4.18 approaches
shows a monotonic decrease &ffi {) with increasingZ, as 2

any permittivity along the positive imaginary axis has to fol- e=e(ilm) (4.21)
low according to thermodynamical requirements. The two ' me '
broken curves in the figure show, for comparison, how
e(iZ,T) varies with frequency if we accept the Drude modelshowing how quickly the contributions from largedie out.
for all frequencies, and include the temperature dependence The full line in Fig. 2 shows how the magnitude &f for
of the relaxation frequency with as a parameter, cf. Appen- gold varies with the dimensionless parameadr, whena
dix D. For T=300 K, the Drude curve is seen to be good for =1 um. The lower limitaT=4.4x 10" corresponds to the
all frequencies up t@~2x 10'° rad/s; for higher it gives  low temperature off =10 K. Terminating they integration

2

, e=¢g(ily). (4.20

e—1ly
8+1§
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a=1um a=4um

-FT(mPa)

\ ' . L \ '
08 07 0 0.1 02 03 04 05 06 07
aT

FIG. 2. Magnitude of surface force dens#yfor gold, in the FIG. 3. Same as Fig. 2, but at a larger spacarg4 um, cor-
temperature interval 10 €KT<1200 K, whena=1 um. The solid  responding to 10 KT=<300 K.

line is the physical result calculated from E@.18 where the . . -
room-temperature data far(iZ) shown in Fig. 1 are used. The Va&rious gap widths, we show in Fig. 4 how the surface force

broken line is calculated from the ideal low-temperature formdenSIty for gold. varies W'th?' atT=.3040 K. We_ have here
(2.10. chosen to muI'upIy_the ordinate with . The_Ilnear slope
seen fora=4 um is nearly that predicted in Eq4.14),

o which gives a slope of 220102 Nm?/ um. The linear re-
at the upper limity,,=30 we found the necessary number gion between 1 and 2m corresponds to that in E¢.10
of terms in them sum to be abouN=450. At room tem-  or Eq.(4.14 (intermediate temperatupeAlso shown is the
perature T=300 K corresponding toaT=0.131 and y  prediction of the temperature dependent Drude maoapt
=0.823, the required number of terms was found to bependix D, whenT=300 K. The differences are seen to be
lower, N=15 (assuming the samg,,,,). In the upper limit, very small. Since the Drude values for the permittivity are
aT=0.52 (T=1200 K), onlyN=4 was required. This prop- lower than the empirical ones at high frequencies, as seen in
erty of only a small number of terms being necessary at higfrig. 1, we expect the predicted Drude forces to be slightly
temperatures is as we would expect. Note, however, that th¢eaker than those based upon the empirical permittivities.
temperature variation of(i ) is not taken into account. The This expectation is borne out in Fig. 4; the differences being

only known empirical data foe(i¢) are referring to room large enough to be slightly visible at short distances,_as we
temperature, and are as given in Fig. 1. would expect since the plasma nature of the material be-

The broken line in the same figure gives the result calcySomes more pronounced for small distances. Note that the

lated from the expression in Eq2.10), which is for the temperature dependence of the permittivity is irrelevant here

modified ideal metal model in which the TE zero mode hasbecause the temperature is fixed, unlike in Figs. 2 and 3.

been removed. The deviations from the full lines are seen tc T= 300K
be quite uniform: 13% at the lower limit, 12% at room tem- ' ' ' ' '
perature, and 18% at the upper limit. This uniformity in the
deviations is somewhat surprising, in view of the fact that
expression(2.10 is a low-temperature expansion which one
would expect to be most accurate whehi— 0. The reason 14
for the deviations must lie in the different ways the two force €
expressions are calculated: Eg8.10 is based upon the ide- e
alized assumption®\,=B,,=1 for all m except thatB, e
=0, whereas Eq4.18 is calculated using the realistic dis-
persive data from Fig. 1, plus E@4.193 in the casem s
=0. 08
Figure 3 shows that the behavior is essentially the same it
the gap is made wideg=4 um. The forces are now only
about 0.4% of those in Fig. 2. The lower limatT=0.017
corresponds td@ =10 K (N=115 terms necessaryand the

16

12F

1

04 1 L « 1 L

upper limitaT=0.523 corresponds td=300 K (y=3.29, 0 1 2 4a(um)5 7 8 9
N=4). The deviations between the full dispersive result and
Eq. (2.10 are now smaller than previously, about 5%. FIG. 4. Surface force density for gold, multiplied b}, versus

As experiments are usually made at room temperature fai whenT=300 K. Input data for (i) are taken from Fig. 1.
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a=1um TABLE I. Some data in the dispersive theory for gold. Hére
R ' ' ' ' ' ' =10 K, y=qgae{1,3. Room-temperature input data fati ) are
’ taken from Fig. 1.
y=1 y=3
m (i) X10° ¢,x10%radls A, B Anm Bm
1 382.0 8.226 0.9998 0.7899 0.9999 0.4944
3 100.4 24.68 0.9990 0.8578 0.9997 0.6317
5 49.76 41.13 0.9975 0.8774 0.9992 0.6759
7 30.28 57.58 0.9956 0.8872 0.9985 0.6985
9 20.52 74.03 0.9931 0.8930 0.9977 0.7124
11 14.87 90.49 0.9902 0.8970 0.9967 0.7219
13 11.30 106.9 0.9867 0.8998 0.9955 0.7288
15 8.891 123.4 0.9827 0.9020 0.9942 0.7341

07

to zero asT—0. For the gold data the initial horizontal slope

FIG. 5. Nondispersive theory: surface force density calculatedS NOt resolvable on the scale of this graph, see the discussion

from Eq. (4.18 for & <{100,1000,10 006;}. The e=c result is  at the end of Sec. IV B. _ _
calculated from Eq(4.22. For low values of T the latter coincides (it) The curves show that the magnitude of the fodte
with expressior(2.10 used in Fig. 2. Also shown for comparison is Minisheswith increasingT (for a fixeda), in a certain tem-
the dispersive result for gold, where experimental input data foperature interval up t@T=0.3. This perhaps counterintui-
(i) are taken from Fig. 1. Gap width &=1 um. The constraint tive effect is thus clear from the nondispersive curves as well
a=1 um applies only to the dispersive case, since otherafsge”  as from the dispersive curves in Figs. 2 and 3.
is a function ofaT only. (iii) It is seen that the curve far=const= 1000 gives a

. . . . . reasonably good approximation to the real dispersive curve
It is of interest to check the magnitude of the d|sper55|vef ¢ gold whena=1 um: the deviations are less than about

effect in these cases. We have therefore made a separ % except for the lowest values aff (aT<0.1). This fact

calculation of expressiof4.18 whene is taken to be con- .
stant. Figure 5 shows how the force varies vafh in cases makes our neglect of the temperature dependenc(ig)

when & € {100,1000,10 008;} are inserted in the expres- aPPear physically reasonable; the various curves turn out to

sions forA,, andB,, in Eq. (3.2a. Note that thes =< curve be rather insensitive with respect to variations in the input
m m . . . .

is obtained easily via the analytic resu.13, with A,  values ofe(if).

=B,,=1 for all m=1. With B,=0, Eq.(3.13 is modified (iv) One notes that the curvetor larges) in Fig. 5 are
into consistent with the free energy.14) using the rough ap-
proximation (4.9) for B,,. Especially one notes the initial
- 1 decrease of the magnitude of the Casimir force for increasing
File==)= 8w pa’ T when ¢ is large. As discussed below, E@.12), this is
again connected with the counterintuitive negative contribu-
1 tion to the entropy.
X 5(3)—;1 E[SZ( ¥K) + 25, (yK) + 255(vK)] 1, (v) Also, it can be remarked th&,=0 is required when

¢ is finite. Otherwise the curves in Fig. 5, and thus the free
(4.22 energy, would have a finite slope at=0, which again
would imply a finite entropy contribution at=0 in viola-
tion with the third law of thermodynamics.
Instead of confining ourselves to a “black box” calcula-
figure that the first three curves asymptotically approach th%qogg the fc_)rce expressiof. 18), it is deS|rabIg to break up
pression somewhat, to see how the various values of

e=o CUrve, given by Eq(4.22 vyhen & INCreases, as We -, ibute. We do this in Tables [-111, for gold. The first two
would expect. Again, we emphasize that the dispersive CUNVE L os refer to the casB=10 K. [Again, the experimental

for gold is calculated using the available room—temperatur(?/alues ofe(i¢) at room temperaure are ustas y is the
data fore (i ¢) from Fig. 1. In the nondispersive case, there is. P y

of course no permittivity temperature problem sinceis important integration parameter in E(1.18, we keepy
b y b P fixed in Table I,y e{1,3. It is seen thaf,, stays close to 1,
taken to be the same for all

There are several points worth noticing from Fig. 5 whereasB,, decreases for in_creasir}gif m is kept constant.
(i) The curves have a horizontal slopeTat 0. For l;ini.te Table Il shows how the various’s contribute to the force.

¢ this property is clearly visible on the curves. This has to beWrItIng the total force as a sum,

so on physical grounds: If the force had a linear dependence o

onT for small T so would the free enerdy, in contradiction FT= 2 j_-;” (4.23
with the requirement that the entro®# — dF/JT has to go m=0

which amounts to adding the last term of Eg.10. [The
sum is alternatively given in Eq(3.39, and the low-
temperature limit is given in Eq2.10.] It is seen from the
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TABLE II. Contribution from the various Matsubara frequencies served Casimir forces were lower than those predicted by the
for gold. What is given is the percer_ltageféf for each mode inthe  traditional (SDM) theory for conducting plates, in cases
regionme[0,7]. The temperature i =10 K. Room-temperature \where the distances were lo@=<0.5 um. This reduction

input data fore (i {) are taken from Fig. 1. effect is apparent also from their Fig. 4. Now, the plates in
this experiment were coated with chromium rather than with
a gold, but we can check that the corrections in that case are of

(um) m=0 m=1 m=2 m=3 m=4 m=5 m=6 M=7 e game magnitude as if the plates were coated with gold.
05 032 098 1.03 105 1.06 1.07 1.08 1.08 Namely, an explicit calculation of the analog of Fig. 5 for the
0.58 198 205 207 208 208 207 2.06 Ccasea= 0.5um (nOt shown herkShOWS that at room tem-
110 4.04 409 407 402 396 388 379 berature for whichaT=0.065, the force becomes F'
163 611 609 598 580 559 536 510 — 15.5mPa. The convention&BDM) theory gives in this
216 818 804 775 737 693 645 595 case the force 1:32%=20.8 mPa. The predicted reduction
269 1024 992 937 869 794 716 6.38 in the force is f[hu_s about 25%, somew_hat more than the
323 1230 1171 1081 975 863 751 6.45 measurements indicate. In any case, thl_s suggests that the
378 1433 1339 1206 1055 902 756 624 reduqed force seen at room temperature in Rad] may be
' ' ' ' ) ) ' " the first actual observation of the temperature effect pre-
dicted theoretically.

At larger distances, however, between 1 angr®, the

T, T C g : situation is no longer so clear-cut, since they observe a Ca-
(Fw/F )X 100, distributed over the regian<[0, 7], when simir force in excess of the theoretically predicted one. The

T=10 K. The distribution from the various's is seen to be reason for this deviation is not known. Of course the force
very broad, as is characteristic for a low-temperature prob; ; ' . .

X L becomes weaker at larger distances, thus being subject to
lem. Table Il shows the same kind of distribution owar

when T=300 K. Already from a gap distance of larger experimental uncertainties. The most natural conclu-

=3-4 um onwards, the distribution is heavil concentratedSion to be drawn at this stage is that we have to wait for a
M y I 'y better precision in this kind of difficult experiment. Ideas for
around lowm, as is characteristic of a high-temperature

problem such an improved experiment, which could descriminate be-
It is in this context instructive as a corollary to go back to tween the different models, have just appear].

the integral ovey in Eq. (4.18. One would expect the main

~NOoO o~ WN P

the columns in the table show the percentage}‘-"(ﬁi, ie.,

contribution to the integral to come from the regips qa ACKNOWLEDGMENTS
_ 2 . .
= Vki+{"a~1. Assuming the most important valueskof K.A.M. is grateful to the U.S. Department of Energy for

to be moderate, this meagsi~1, or m~1/(2waT), since  partial financial support of this research. He would like to
{=2mwmT. WhenT=300 K, we thus expect the dominant thank Peter van Nieuwenhuizen for discussion about the
contribution to come from m1 whena=1 um, and from  syptleties of zero modes. I.B. thanks Astrid Lambrecht and
m=0 whena=3 um. This is seen to agree very well with Serge Reynaud for providing their numerical calculations of
the data in Table llI. Similar considerations apply to the casehe dispersion relation for gold, Roberto Onofrio for infor-
T=10 K, although the contributions from the varionss mation about the experiment of Ref26], Vladimir
are then more smeared out. Mostepanenko for valuable discussions on the relaxation fre-
The important question now is: Have the characteristicquency temperature problem, as well as for information
temperature variations shown in the theoretical figures abovghout numerical data, and Bo Sernelius for discussions about
been verified in practice? Of most interest in this context Iﬁhe resistivity of metals at very low temperatures_
the experiment of Brest al. [26], since it deals with par-
allel plates directly. According to personal information from

Onofrio, one of the members of the Italian group, the ob- APPENDIX A: ON THE SMOOTHNESS OF THE

REFLECTION COEFFICIENT r, AT LOW FREQUENCIES,

TABLE Ill. Same as in Table II, but at temperature 300 K. Data FOR AMETAL
from Fig. 1 are again used. In view of the current discussion in the literature about the
value of the reflection coefficiemt, for a metal in the limit
a of low frequencies, let us consider this point in some detail.

(um) m=0 m=1 m=2 m=3 m=4 m=5 m=6 mM=7  Agmentioned earlier, the problem occurs in connection with
05 1020 3124 2295 1509 9.18 528 291 1.55 use of the Drude formula, Eq1.1). The coefficientr, is
20.07 4937 20.83 6.97 203 054 0.14 0.03 actually the square root of our quantiB, defined in Eq.

1 .
2 4456 49.87 517 037 0.02 (3.29, so that we may write
3 7095 2841 0.63 0.01 2
S—p
4 88.88 11.07 0.05 rgz ) ' (A1)
5 96.58 3.42 s+p
6 99.06 0.94
7 99.76 0.24 Let us keep the transverse wave vedtorfixed, and perform

a power series expansion ofi¢) to the first order inf/v.
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[Any normal metal must have a finite relaxation frequengy
so that in the limit of low frequencieg/v can be regarded as
small. At zero temperature, we are assumir{@=0)+0.]
From Eq.(1.1), we get

2
s(ig)—laﬂ(l—é), (A2)
174 v
which for the Lifshitz variabless and p implies [cf. Eq.
(3.2b]
k w?
s=\e—1+p>——| 1+ pi , (A33)
4 2vk?
K, £k
=— —— —. A3b
P=7 @7 (A3b)
Insertion into Eq(A1) now yields
w? 2 14 2
re—| —% (— A4
Tl ) v (A4)

We thus see that§—>0 smoothly asf—0. Contrary to re-
cent statements in the literatur@—8], we find that there is
no peculiar effect taking place at=0, when the Drude
model is used. Resul{®4) corresponds to a vanishing con-
tribution to the Casimir effect from thea=0 TE mode for a
real metal, in accordance with our treatment in Sec. IV.
The argument above hinged on the assumption khat
#0. One might wonder: What happensif is exactly zero?
Mathematically, it then follows from Eq3.2h thatr3=1.

PHYSICAL REVIEW E 67, 056116 (2003

Now s=\e—1+p?=\e+k?/{? p=0q/i=1+K?IZ?,
and so we get

R™ s—¢gp
W: s+sp:\/Am' (B2a)
Similarly for the TE mode,
RTE s—p
AE Stp VB (B2Db)

Of course, these results are also found in R&8].

APPENDIX C: PARALLEL DIELECTRICS

In Ref.[1] the following result for the TE reduced Green’s
function is given:

1 ) ,
gH(Z,Z’): 2_K2(e*/<2|272 ‘+re7’<2(z+z 72&)), (Cl)

which is valid forz, z’ >a. Here the reflection coefficient is

Ko—Kg 4KyK
R e T (C2a
Kyt K3 K3~ K5
Ka+ + K
— 3_K1 uehga_ 1, (C2b)
K3™ K1 K3™ K2
and
Ki2:k2_ w’e, (C3

This case cannot, however, be of physical importance. The ) .
setk, =0is mathematically of measure zero, and has thus n@"d we have taken a parallel dielectric slab geometry

influence upon real physics.

APPENDIX B: ON THE PHYSICAL IMPORTANCE
OF A,, AND B,,

It is physically instructive to show in some detail how the
coefficientsA,,, and B, relate to the conventional Fresnel
coefficients in optics, at oblique incidence. Consider first th

(medium 1, refractive inder; = \/¢) at a real angle of inci-
denceg; towards the boundary locatedzt 0. The angle of
transmission to the vacuum regia-0 is 6,. For instance
from Ref.[47] we have the following for the ratio between
the reflected wave amplitud®™ and the incident wave am-
plitude A™

R™  cos#;,—n,cosé,
A™  cos#;+n,cosé;’

Since co®=\1-k?/(cw?), cos=\1-K?/w® we get,

when replacings by i¢,

(Bla)

R™  e+k?/P—e1+K21L?

— = . B1b
A™ e +K2 12+ e\ 1+ K21 L2 (B1b)

€1, z<0
G(Z) = €3, 0<z<a (C4)
€y, a<z.

The temperature controversy centers on the zero mode. If

w?e vanishes ato=0 (true for the Drude model, but not the

- lasma m hen the reflection fficient vanishes ther
TM mode, and let a plane wave be incident from the Ieftep asma modg] then the reflection coefficient vanishes there,

r=0, and we have only a free Green'’s functionwat 0, that
is, the boundary becomes transparent. The TM reflection co-
efficient does not have this property.

We have redone the calculation to find the reduced
Green'’s function in the interior region,<0z,z' <a. We find

1 ’ - ’
gH(Z,Z')Z = e—xs\z—z |+Me—K3(Z+Z )
2K3 K3+ K1
’ ’ + ’
+d—1 eK3(Z—Z )+eK3(Z —z)+ K3T Ky eK3(Z+Z)
K3™ K1
+ B gz | (C5)
K3+K1

Again, it is easy to see that we obtain only the free Green’s
function for the zero mode:
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H ’ 1 —k|z—2'|
9"(z,z ;w=0)=ﬂe , (Co)

provided lim _ w®e(w)=0.

A check of this result is that if we substitute E5) into
the expression for the force per ar€al3 of Ref.[1], we
get the following for the TE contribution to the forsee Eq.
(3.10 therd:

fT=i§f
-4

identical to the first term in Eq.3.19 of Ref.[1], and apart

do (dk)
277(27,-)3
do (dk)

oy (ZT)?’(K3_K2+ 2k3d ™),

(62— €3)w?gH(a,a)

(C7)
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from a contact term is the same as the second term in Eq.

(3.1). All of this does not seem to support the claims of

Klimchitskaya and co-worker6—8,3§ that there is some-
thing ill defined about thev=0 limit.

APPENDIX D: TEMPERATURE DEPENDENCE
OF THE RELAXATION FREQUENCY FOR GOLD

To investigate the temperature dependence of the relax-

ation frequencyv(T) in the Drude relation

@
qerv(m]

for gold, it is convenient to make use of the Bloch-@eisen

(i, T)=1+ (D1)

formula for the temperature dependence of the electrical re-

sistivity p [49]:

~<lal
p(T)=C o

It is known that® =175 K for gold. The constan® can be
determined from the knowledge that2.20x 10 80 m at
temperature 295 K50]. We obtainC=5.32x 10 8Q m.

The theoretical relationship betweenand the static re-
sistivity p is

5J®/T x2e* dx ©2)

0o (e8—1)2

foNg€?
v=——"-"p,

m (D3)

FIG. 6. Temperature dependence of the relaxation frequency for
gold.

whereN, is the number density of atomigN, with fy~1 is
the number density of free electrons, amds the effective
electron mass. The simplest way to proceed is to put
Kp with K a constant, and make use of the room-
temperature data of EQq(4.16. We obtain K=1.59
x10° eV Q~tm™1. Altogether,

T\% rem x®e*dx
| (D4)

w(T)= 0.0847( 6) 0 @17

where the unit ofy(T) is eV. The temperature variation is
shown in Fig. 6. For low temperatureg(T) < T°, whereas at
high temperatures;(T)«T. The curve is seen to be similar
to the one given in Fig. 3 of Ref9], in the case of alumi-
num.

An important caveat must be mentioned, however; these
formulas neglect the effect of impurities, which give rise to a
nonzero resistivity at zero temperatigel]. This makes the
use of these ideal resistivity models questionable, and adds
further evidence that the behavior of the entropy discussed in
Sec. IV is correct.
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