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Minimal renormalization without & expansion: Four-loop free energy in three dimensions
for general n above and belowT
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We present an analytic four-loop calculation of the free energy in three dimensions with( tesym-
metric ¢* theory at infinite cutoff for general above and belowW . It is shown that Goldstone singularities
arising at intermediate stages of the calculation cancel among themselves. The correlation lengih abdve
an appropriately defined pseudocorrelation length bdlgare calculated analytically up to four-loop order for
generaln. The method of minimal renormalization at fixed dimensiba3 is used to determine the analytic
expressions for the four-loop series of the amplitude functions of the free energy, correlation length, and
specific heat above and beldly in terms of the renormalized coupling. These expressions provide the basis
for future accurate Borel resummations of universal amplitude ratios characterizing the asymptotic critical
behavior and of crossover functions describing the nonasymptotic critical behavior. A brief application is given
by a variational calculation of the universal specific-heat amplitude ratidA~ andP=a (1—-A*/A7)
and of the universal quantitR; = &5 (A™)™ for generaln.
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I. INTRODUCTION and the “nonsingular part”
One of the important achievements of the renormal- fo(t)=fo+ fit— B2+ O(t3). 3

ization-group(RG) theory is the identification of universality
classes for the critical behavior of thermodynamic system . . .
[1,2]. Critical exponents, ratios of asymptotic amplitudes,?n Eq. (2) we have included the_ 'ead'T‘Q Wegner _correctlons
and scaling functions of thermodynamic quantities are pre'EO sc_a_llng[G]. NearTc_, the Ieadm_g _cntlcal behawor (_)f the
dicted to depend only on the dimensidrof the system and SPECific heat per unit volume, divided B, is obtained
the numbem of components of the order parameter. from f=(t) as

This unifying feature of bulk universality holds not only
for ideal systems with purely short-range interactions but 92f .
also for real systems with subleading long-range interactions, Co(1)=——5=C5 () +Cpy(1), 4
such as fluids with van der Waals interactions. Universality is Jt
not generally valid, however, for the sizedependent part of
the scaling functions of confined fluidi3]. Even for systems where
with purely short-range interactions, universality is not valid
for the exponential large-distance behavior of the bulk order- A~
parameter correlation function in the asymptotic critical re- C. ()= 7|t|*cv[1+;,\ci|t|A+ - (5)
gion aboveT, [4].

Of fundamental interest is the critical behavior of the free
energy densityf and the specific heaf. The goal of the Chs(t)=B+0(1). (6)
present paper is to present field-theoretical results for the

amplitudes of these quantities above and belqwor gen- The specific heat is the most favorable candidate for a quan-

era'?‘ in d=3 dimensions, which pr.owde thg t.)aS'S for im- titative test of the predictions of the RG theory. These pre-
proving the accuracy of the theoretical predictions for mea-

I . ) . o
surable universal amplitude ratios and crossover functions.d'f/tlo_ni |rlclluge Et)h7e L_Jrnr:yer_sall]tcy oft_thel ra_tu:!a / At fant?]
We consider the Gibbs free enerfjy(t) per unit volume, a;/a; =as /a; [5,7). This is of particular interest for the

divided by kT, at zero-ordering field and at the reduced =3 N=2 universality class, where detailed experimental
temperaturet=(1T—T )/T, above (+) and below ) T. tests of universality have been performed in the p&kand
It is expected that fE)r s?naltl the free energy can bec de- where new high-precision estimates are available from recent

experiments in spacg,10] and from numerical investiga-
composed ag5] tions[11]. Additional experimental tests of universality along

FE(t) = F2 (1) + Fogt), (1)  the\ line of “He are planned for future researt?].
Equations(3) and(6) imply that, for negativer, the spe-
with the “singular part” cific heat iscontinuousat T with a finite nonuniversal value,
* (e — - 2ar g4 atltld s lim C*()= lim C~()=C,(0)=B>0.  (7)
CO=" i az=m il Trarltte 1 @ o o "
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To the best of our knowledge, however, there exists no gendous Goldstone divergences at intermediate stages of the
eral proof in the literature on the continuity 6f(t) for « perturbation theory unless an external ordering field is kept
<0. On the contrary, on the basis of a field-theoretic RGfinite until the end of the calculation$4,36. Even forn

analysis the possibility has been suggedtE®] that, fora =1 the amplitude of the correlation length beldwrequires
<0, lim_q,C*(t)=B"#B"=lim;_,_C™(t) correspond- nontrivial calculations at finite wave vector, which have so
ing to a discontinuity of the specific heat Bf. far been carried out only up to three-loop orfi25,26|.

The nonuniversal amplitudes\()' have the dimension | the present paper we perform the next substantial step
of inverse lengths. Abov&,, an additional length scale is py deriving the analytic perturbative expressions for the
provided by the(second-momeitcorrelation length Gibbs free energy ~(t) and the specific heat () below

£ =gt ®) T. up tofour-loop order for generah within the O(n) sym-
oS metric ¢* theory. The starting point is the perturbative four-

In accord with the hypothesis of two-scale factor universalityloop expression of the bare Helmholtz free energy derived
or “hyperuniversality’[14], however, RG theorjj7,15] pre-  recently[41]. The desired information is the four-loop con-
dicts a universal relation between the Iengt5$ and tribution to the amplitude functions ¢f" andC™ in terms of
(A")~ ¥ such that the renormalized coupling. We employ the method of com-
bining 29,30 the minimal subtraction scheme with the mas-
R{ =& (AT)Y (9 sive field theory at fixed dimensioti=3, involving an ap-
. . . . . propriately defined pseudocorrelation length [31]. Our
Itisoﬁ [ulnlz\]/ersal quantity. Together with the hyperscaling reI""}:\pproach has the advantage of being applicable both above
' and belowT. with the same multiplicative and additive
dv=2—a, (10) renormalizations, unlikel=3 RG theories using renormal-
ization conditions. At the two-, three-, and four-loop level,
this implies that the singular part of the free energy in thethis implies substantial simplifications in the analytic calcu-

correlation volume )¢ lation of universal combinations of amplitude functions
R above and below . .
lim £ (1)(&,)9=— (R¢ (12) As a by-product we also obta@nalytic perturbative ex-

t—0 a(l-—a)(2-a)’ pressions forf " (t), £,.(t), anng atd=3 for generah up

. . . ) ) to four-loop order, whereas the previous higher-loop results
is universal. There exists also a corresponding universal rat'EQZ,27,28,32,35,4]0aboveTc were restricted to=1,2,3 in
below T, [.5'7]' . . : . numerical form. Our results abovk, provide the basis for

In the field-theoretic RG calculations of universal ampli- - + . including the approach to the
tude ratios, two different approaches have been usgthe predicting R, for arblltra}ryn inciuding PP
¢=4—d expansior] 16], (ii) calculations at fixed dimension €Xacty known[5,42] limit n— . , _
d=3 [17]. Within these two approaches one can further dis- _Furthermore, we take up the question regarding the con-
tinguish between two types of renormalizati¢a) the use of ~ tnuity of C= atT, for a<0. lNe show thaC™ is continuous
renormalization conditiongL8] and (b) the minimal subtrac- @t T for a<<O within the ¢ theory at infinite cutoff in 2
tion schemd19]. Part of the results for universal amplitude <d<4 dimensions. This is at variance with FigbBof Ref.
ratios have been obtained within theexpansiorf20,2f] and ~ [13]. We note, however, that a more complete proof is re-
within the d=3 approach using renormalization conditions quired involving a RG treatment dinite cutoff, since the
[22-28. As an alternative approach, a combination of thecritical valueB of C* is nonuniversal and depends on the
minimal subtraction scheme with tide= 3 approach, without cutoff procedure.

an ¢ expansion, was propos¢d9—31] and applied to vari- Our analytic four-loop results fof“(t), £.(t), and
ous universal amplitude ratios and amplitude functi@®&-  C*(t) are not restricted to the asymptotic critical region but
37]. contain sufficient information to derive the nonasymptotic

While the field-theoretic calculations have been per-contributions of the Wegner expansidat infinite cutoff.
formed for critical exponents partially up to seven-loop orderThis information can also be used for quantitative studies of
[28,38,39 and for amplitudesabove T up to five-loop  nonasymptotic critical behavior and of the crossover between
[27,32,39, six-loop[22] and partially seven-loof®28,4Q or-  critical and noncritical behavior by means of a nonlinear RG
der, considerably less is known for amplitudedow T.. In analysis[43,44).
this case, five-loop[23,27,33 and partially seven-loop Since the loop expansions of the theory are not con-
[28,4( results are available only far=1 on the basis of the vergent it is necessary to use resummation techniques. For
five-loop expression for the=1 free energy[23]. For the recent reviews see Refgl5,46. Two methods are available:
important case=2 there exist field-theoretic results only up (i) Borel resummation$22,23,27,28,32,47and (ii) order-
to two-loop[20,21,31,34and three-loof36,37] order. This  dependent mapping and variational approf¢8—55. An
is due to the fact that analytic calculations beldwfor n  application of these methods to our four-loop results includ-
>1 are significantly more difficult than for=1 because of ing a careful determination of error bars is the next important
the existence of both longitudinal and transverse fluctuationstep, which is beyond the scope of the present work and will
of the order parameter. These difficulties are related to spysartially be performed in a separate pap&r].

056115-2



MINIMAL RENORMALIZATION WITHOUT & EXPANSION: ... PHYSICAL REVIEW E67, 056115 (2003

Here we confine ourselves to a brief application of the fo=Hg/V="FfE+f2t—L1Cxt?+0O(t3) (15)
variational approach to estimaf=a"(1—A*/A7) and

R for generaln, without an estimate of error bars. Our g F,. Additional fluctuation-induced regular terms are con-
variational four-loop results are close to the experimentatained inF, as will be discussed below. We shall always
[9,10] and numerical resultsl1] and Borel resummations consider the bulk limitv—c. The Helmholtz free energy
[22,23,27,32,33,35-37 4 7The Borel-resummed result &  per unit volumel, is obtained fromF, via the Legendre
for n=2 of the most recent worfd7] is based on the four- transformation

loop series of the present paper and is more accurate than the

most recent numerical estimate fé& within the three- To(rg,Ug,Mg,A)=Fo(rg,Ug,hg,A)+hoMg, (16)
dimensionalXY model[11], the high-precision experimental

result forP near the superfluid transition dHe [9,10], and  \yhere Mo(ro,Ug,hg,A)=(@o)=—3dFo/dhy is the order
the Borel-resummed values based on earlier three-loop seriggrameter(magnetization The perturbative expression of
[35,37. Our four-loop variational estimates also improve ther, is given by the mean-field term minus the sum of the
corresponding variational estimatéb] based on our earlier gne-particle irreducible vacuum diagrams. The structure of
three-loop result$36]. the analytic expression i@part from an unimportant addi-

The outline of our paper is as follows. In Sec. Il We e constant that can be absorbed ilﬁg()
present the analytic four-loop expression of the bare Helm-

holtz free energy of th©(n) symmetrice? theory for gen- To(ro,Ug,Mg,A)

eraln in three dimensions near the coexistence curve below 01 0x 700

T.. Section Il serves to provide the analytic perturbative 5 . 1A — )
relations between the bare correlation lengths and the tem- = 5ToMg+UoMo+ EJ In(ro.+p°)
perature variable above and bel@wy up to four-loop order. P

The bare Gibbs free energy in the limit of vanishing ordering

field is calculated up to four-loop order in Sec. IV. The renor- +
malized version of the theory is presented in Sec. V, where

N -

A
(n—l)fp In(ror+p?)

the power series of the amplitude functions of the specific 4

heat and the correlation lengths are given up to four-loop + > uS IXP)(rg,uq,Mg,A)+O(ug),
order. In Sec. VI the results of Sec. V are applied to the b=2

asymptotic critical region. A variational calculation of uni- (17)

versal amplitude ratios for generalin three dimensions is
presented in Sec. VII. The Appendixes contain importan'wherefgs(2W)*deddp means integration up tp|=A.

complementary information. The terms u§ *X{’(rq,uq,Mo,A) represent the two-,
three-, and four-loop contributions with longitudinal and
Il. BARE HELMHOLTZ FREE ENERGY transverse propagator§, (p)=(ro.+p?) ! and Gq(p)
We consider the standard Landau-Ginzburg-Wilson func-= ("ot P?) ", where
g-Wilson func
tional _ _
r0|_=r0+ 12UOMg, r0T=r0+4qug. (18)
d 1 2 1 2 2\2
H= fvd X 5Topot 5 EI (V@oi) "+ Uo(@p)"—ho- o, The two- and three-loop diagramsX§’ andX{®) have been

presented in Fig. 1 of Ref36]. The topology of the various
(12 \acuum diagrams of the four-loop contributiz® is shown
_ —(T_ in Fig. 1. There ardi) 12 types of diagramsa-l) that are
fo=TocTaot, t=(T—Tc)/Tc (13 multiplicatively constructed from one-, two-, and three-loop
diagrams and(ii) 14 topologically true four-loop vacuum
diagrams A—N). The specification of the propagatofesi-
ther longitudinal or transvergén A-N leads to 92 diagrams
of the type(ii).

for a d-dimensional system of volumeV with an
n-component fieldpy(X) = (¢g1(X), - . . ,@on(X)) in the pres-
ence of the homogeneous external fialg=(hg,0, . . .,0).
The spatial fluctuations apy(x) are restricted to wave num-
bers less than a cutoff. A factor 1kgT is absorbed irf.
The Gibbs free energy per unit volunigivided bykgT) is A. Mass shift and overall subtraction

We are primarily interested in the universal amplitude ra-
tios A*/A~ and Rg . They are independent o¥, therefore
we aim at a calculation oF o(rg,Uq,Mg,®) in the limit A
—o using the prescriptions of dimensional regularization.
For a comparison with experiments, a “background” Hamil- Accordingly we use the critical parametey; in the dimen-
tonianHg(T) must be added to E¢12), which describes the sionally regularized fornj57]
effect of degrees of freedom other thag(x) and contrib- ”
utes an additive regular part Foc(Ug,&)=Ug S(e), (19

Fo(ro,uO,ho,A):_V_lan D(DoeXF(_H). (14)
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where the functiors(e) is finite fore=4—d>0 except for
(simple poles atd,=4—2/, 1=2,3,....Neard=d,, the
@ Q@@ structure ofr g is

a b c e CI(N)

Foc(Ug,€)=U3" —op FS(en) |, (20)
where§ (g,n) has a finite limit fore—2/. The pole atd
=3 has the coefficieni34]

n+2

Co(n)= — (21
a

d e f
We do not use, however, the mass shift-rq. with rq. in
the form of EQs.(19)—(21). As explained in earlier work
[23,34], we use, nead=3, the simpler mass shift
g h i

1

ro(Ug,&)=ro—dro(Ug,e), (22
Ca(N)

o0 0D OB e
j k 1

Here the functionS,(e,n) has been replaced by the

! d-independent constant

n+2 4
C(n)= 5 1—y+ln?—2In24, (24

ar
(i) - i
wherey is Euler’'s constant. The parametér, contains the

d=3 pole ofry. but not the poles of o at d,#3. For the
choice of C(n) we refer to Ref.[34]. [The description in
terms ofr is only an intermediate step. The final results for

A B C D
the amplitude functions and amplitude ratios do not depend
on the particular choice ofry and of C(n) [30], since the
perturbation series will be expressed in terms of the correla-

tion length] Correspondingly, instead of, andr oy, we use
the longitudinal and transverse parameters

E F G H
@ @ @ @ I’OLII‘(’)-F 12LIOM3, I‘OT=|’6+4UOM(2). (25)
We are primarily interested in the singular part of the tem-
I

perature dependence of the free energg-aB. Therefore it

J K L is justified to subtract fronT'y, regular contributions that
consist of a term independent of and a term linear i
—roc- In the limit A—oo these terms are divergent folr
>2. In addition,I"; contains a cutoff-dependent contribution
proportional to (,—rq.)?. We denote this fluctuation-
M N induced regular contribution by

_%Bcr(A)tz- (26)

FIG. 1. Topology of vacuum diagrams in four-loop order deter- The coefficientB.,(A) has a finite(nonuniversal value
mining the contributionX§" to the Helmholtz free energy,, Eq.
(17). (i) Four-loop graphs constructed from multiplication of lower- B. =B () (27
order diagramsii) topologically true four-loop graphs. After speci-
fication of the propagatordongitudinal or transvergeone obtains  in the limit A —<c for d<<4. (This value will be given in Sec.
the following numbers of different diagrams:(8), 5 (B), 6 (C), 8 VI C.) All regular subtractions froni’y that have a power-
(D), 8(E), 10(F), 3(G), 6 (H), 7(1), 7(9), 5(K), 9(L), 6(M), 6  law dependence on are ignored within dimensional regu-
(N), thus a total number of 92 four-loop diagrams of the tyipe  larization. As far as the term linear i—r g is concerned,
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this is equivalent to settingf;=f> in Eq. (3). The The contributions inb-loop order withb=1,2,3,4 have the
ro-independent part of', corresponding tof, in Eq. (3)  form

contains a contribution in four-loop ordg22,23 that has a 11

logarithmically dive_rgent cqtoff dgpendencechfs,_ which Z 2 1)ko=1- kaIk(W n)(24ug)® '(Mo)l
appears as a pole in the dimensional-regularization scheme. =0 k=0

This four-loop pole contributionP,(uy,d) to I'y (which

(4—b—21)/2 k
comes from diagrams of typ® in Fig. 1) reads % oL (In oL ) (36)
2 2| -
,N(N+2)(n+8) (24u0) (24uo)
Py(Ug,d)=ug——F———7—. (28) - . o :
1927%(d—3) The crucial information is contained in the analytic expres-

. N . sion of the coefficientska(W,n) in b-loop order, which
There exist no contributions tfy, with d=3 pole terms be- depend on the parameter

yond four-loop order, as can be seen from dimensional argu-
ments. After substitutingo=r+ 8ro(ug,e) into I'y, we de- — ot ro+ 4u0M(2)
fine the dimensionally regularized Helmholtz free energy as W(ro,Uo, 0)_r / 2"
: , oL rot+12ugMg
a function ofrj, ug, andMgy atd=3 by

(37)

For our purpose of deriving the bare Gibbs free end&gc.
IV) athy=0 aboveT; and near the coexistence curve below

(299 T, it is not necessary to calculate the complﬁ@lepen-
dence of all coeff|C|ent§b|k(w n). Above T, athy=0 we
haveM2=0 andw=1. Because oM3=0 there are no con-

n(n+2)(n+8) tributions tol” with 1>0. Thus, abovd ., we need only the

19272 coefficientsFoo and Fp; with =0 atw=1. Up to three-
loop order p=1,2,3) these coefficients are given in Egs.
(11)—(16) of Ref.[36]. In four- Ioop order, the new coeffi-
C|entst|k(w n) with =0 read, atw=1 for generaln in
analytic form

['(rg,Ug,Mo)=lim[To(rg+ 8rg,Ug,Mo,) — 8T o(Uo,d)],
d—3

where the overall subtraction

ST o(Ug,d)=P4(Ug,d)+

3 21
Xug| 1—y+In7—2In24— —25(3)
T

(30)
4m)~* o1 4
contains thed=3 pole term (28) and an additional Faod1n)= n(n+2)% z(n+2)+4In3|,
. ! 1728 3 3
d-independent constant. Here we have chosen this constant (39)

so as to conform with the corresponding choice in the four-

loop free energy of Ref§23,33 for the special casa=1. (4m)~ 4 w?
This is equivalent to setting,(0)="f,=f5 in Eq. (3). In F401(1’”):W”(”’Lz)(E(”’LS)_Z”_“)'
summary we have the following identifications: (39
lim 10“(r(’),uo,Mo)=fsi(t)—%Bcrt2 (3D For the special case=1, these analytic expressions agree
ho—0 with the numerical values given in Table 2 of R¢R3],
and Table 1 of Ref[33], and Table A.1 of Ref[27].

Below T, the parametew becomes a small quantity near
92 the coexistence curve wherg; becomes small. If we em-

h”To_ ?F(r(’, Uo,Mo)=Cs (1) +Ber, (32 ploy an expansion ofv with respect tai, at fixedr ;<0 and
0 at fixed smallhy [compare Eqs(82)—(86) of Sec. Ill], we
Chs(0)=B=Cg+By;, (33)  obtain to leading order
apart from cutoff-dependent contributions. W(rd g M) = = ; 5 ho 3 lug(— 2r0) 12
r
B. Result in four-loop order °
+0(uj, ug(hg/M)*. (40)

Our four-loop result can be written as

4 Thus, near the coexistence curve at firlg below T, w

F(r(’),uo,M0)=FMF(r{),u0,MO)+bgl I'y(rg,Uo,Mo) can be considered as a small parameter and it suffices to
(34)  calculate only the leading/ dependence of,(w,n). The
coefficients up to three-loop ordeb€1,2,3) are given in

with the mean-field term Egs.(11)—(20) of Ref. [36]. The new four-loop coefficients
. , , near the coexistence curve beldwread in analytic form for
Tye(rg,Ug,Mo) = 3roMg+UgMg. (35  generaln and for smaliw
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— (4m 4 W‘W 2 1
Fiodw,n)= 18+72Inz +(n—1)| — 4(n+1)|n(4w)+8(n+2)|n—+n +2n+7 |= +4(n+1)
3456 3 3 wY
- et s 2 8N +151n2-71n3) + 2 1202+ 1o+ S
X| n+ —E(n+ ) nw+T n(n+ )n§+ n2-—7In +?+ n-+ +§
+7(n?+11In+13)£(3) —8(n?+3n+5)In 3+8(2n%+5n+6)In 2+ O(WH2 wan w) } (41)
— (4m)~ 4 ) 4(n+2) ) w2 —1
Fa01(w,n)= 1728 97°—36—(n—1) —+4(n +3n+5)—(n +11n+27)—+O(W W Inw) , (42
W
— (4m)~ % 1 n?°-n+11-8(n—1)In3 ? —
F410(W,n)=—ﬁ Ai(n)+(n—=1) W_3/2_ 72 +(n+1) 4(n+2)—7(n+7) Inw
+O(w¥2 wi2n w) ] (43)
3\? _ 1\ 2\ 1\] 81 L
A1(n)=36+360In5-72In3-576In2-81) In;| —163Li,| — 7| +Lis| —3|+Lis —3 —?772+324c4+648](1'1)

51 11
w2+ - {(3)—27+56 In2—36In3— —7?In3—77%In 2

10
+648£1+(n—1)[(3—7rzln3+16In2)n2+(— 5

3

82 m? 167 1
N+ =+ 5 —102In3+240In 2+ —-{(3)+38Liy| — 3

1
+ polylog( 3, 3 373 3

+1|332 lyl 31
g(n)—poyo 3

(1 ) 5 40 3. 37 , ) 1
+34Li, 3 —451In2)°+33(In3)°+22(In2) (In3)+ g(ln3) + — m°In 3—327°In 2— 106 polylo 3,§

3
1 (0)
+26 polylog 3,— 3|+ 1440120+ X1 (44)
=1(12.989 945:1°— 143.974 71+ 986.035 481 — 556.259 06, (45)
w (4m) " 1 L2 L2
Fap(w,n)=— 9+(n—1)| 2(n+2)=—=—-3(n+1)+O(w*2wnw) |}, (46)
648 w2
_ (4m)~ 4 3 2n 2
Fiodw,nN)= ——— 1944 As(n)—(n—1) 3/2 W1/2 (n+1)|nw+?—34—4nln2+6In3
2 — _— . — —
—(n+1)|n+5- 7-(n+7) Inw+Oow2wanw) | {, (47
27 567 4 2673 [ 1 L m?
Ay(n)= 7 — g m+243Ing — ——Lip| — 3 — 243+ 486c,+ 1944 |+ 972A, + 1944181 — (n—1) - ~1-4In2
T sl | o2 33100 o ezt 6 i3 o atin g 16yt 19 Lin2— "M 4 polylog 32
+7n n+m7T ﬁ g( ) n2+6iIn ——7T n3+ 3+ 2 —T—Fpoyog ,§
1 viod 3 1 +1379+ 883 , 433 31100131 2773I 5 o0l 1 647L_ 1
aPollog 3. 3] )" 5o T 7™ g {37 1003 n 273/ a3

871 121 62 1 1
- ?(In 3)2+192(In2) (In3) +447%In2— Twz In3— E(ln 3)3—43polylod 3,— 3| +167 polylo 33
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+7Cy+ 1605 21630+ ID) — X400 (48)
=1(—16.464 9N+ 80.616 3th?— 125.3736 + 256.6283, (49)
Egmm= D 11 1)l 54|26|21 D1-T 7
23 W,n)=— 1458 Az(n)+(n—1) 3/2 (n+ )nw+n+ +4nin2+ n§ ol +(n+1) ——(n+ )
X Inw+ O(w2wn w) J (50)
4 27 , 1053 1 L LA &
A3(n)=81ln§—7ﬂ'2— — L2l -3 +243c,+ 729053+ 1458, + 162G, + 972H, + (n—1)| — 16+—In3
23 59 4|239935 |3313|2419|31 lyl 05||
+ 3 7—277+ n +a (3) c3+ (n )°— —m“In +E27r n —poyog gpoyog
o3 1 643 817 2, 3489 3 493I ) 65I 3 26L, 1 1183L_ ( 1 465I 5
T3 " as T aa™ s (@t g2 53 Flip| m 5 5ol g (In3)
15|2|361|3312852|3552|22 5 543||31
+—(n )(In3)+ (In )+mw n 37 n2—2c,+ 03+§poyog 3
1101 1
polylog( + 162.]2 2+ X430 (51
=1(-6.082n%+30.39n%+20.87n—1.4655. (52)

The numerical values of\;(n)—A3(n) in Egs. (44), (48)  ous that at this stage o of the perturbation theory it is not
and(51) have been obtained using Eq8.1)—(A48) of Ap-  possible to seh,=0 in w, Eq. (40), since this would yield

pendix A. nonanalytic dependencesu, *?,u,? of the coefficients

_ All other coefficientsF 4 vanish. The analytic exgakges- Fui. The nonanalytiov dependence will lead to perturba-
sions for the constants;—c,, Aj—H1, X410-Xa30, andJy,

and the definitions of the functiong(n), Liy(x), and
polylog(n,x) are given in Appendix A.

tive contributions oﬂc“4 to the Gibbs free energy, which di-

verge when the coexistence curve is approached T,

' 2 - . ho—0). This is again the effect of the Goldstone modes that
A dgtalled derivation of thg .four-loqp coeff!merifﬁ,k IS W?’;\s found previously in twoF34] and three-loop ord€i36].

given in Ref.[41]. T_he coeff_|C|ents withk=1 in Eq. (_36) For O(n) symmetric quantities, however, such divergences

correspond to logarithms with respect to the coupling  ghould cancel among themselvEsS]. This is indeed the

which, fore—1, arise from the nonanalytig, dependence case, at least up to four-loop order, for thempletepertur-

of &ro, Eq.(23), as expected. Equationt84)—(52) are the  pative results of the Gibbs free energy and the specific heat
starting point of the present paper. They provide the basis foss we shall see in Sec. V.

deriving the analytic form of the amplitude functions of the
Gibbs free energy and the specific heat for generabove

and belowT.. _ Ill. CORRELATION LENGTHS
For the special case=1 there is no dependence Bf,

onw. For this case, Eq$41)—(52) agree with the numerical

values given in Table 2 of Reff23], Table 1 of Ref[33], and expected[22,23,30, because of the nonanalytig, depen-

Table A.1 of Ref[27]. The terms proportional to— 1 due to dence ofdr, Eq.(23). In order to obtain Borel-resummable

the transverse order-parameter quctuations depend nonana:- .
2 1 Sy series, we shall rewrite the free energy as a function of ap-
IytlcaIIy on rot throughw ,

woh w M nw, w2 and  propriately defined correlation lengths. and & [30,31]
Inw. [Higher orders inw SUCh aSO(Wllz) and Q(W”Z'n W)  that absorb the logarithmic terms, except for one special
that yield a vanishing contribution in the limit—0 have four-loop term to be discussed later. For this purpose we
been neglected in Eq$41)—(50) because they do not con- calculate the relation betweerj and £. up to four-loop
tribute to the specific heat fdr;—0 belowT,.] It is obvi-  order in analytic form.

The bare perturbative expressidf36) contains terms
(with k=1) that have a logarithmic dependence @y} as

056115-7
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A. Above T,

Above T, the square of thésecond momeiicorrelation
length is defined via
& =x+(0)ax+(a) Y3940, (53)
where y., (a) "t=TL?2(q.ro,up) is the inverse susceptibil-
ity at finite wave numbenq. The two-point vertex function
T'§2(q.rq,Uo) is given by

PHYSICAL REVIEW E67, 056115 (2003

shall present their analytic form for generalip tom=4. In
order to subtract thd=3 pole in Eq.(55), we consider, for
ro>0,

lim[rO(ng1u01d)_5r0(u0!8)]5r6(§+!UO)v (57)

d—3

where 6ry(ug,¢) is defined in Eq(23). From Appendix B
we obtain the functiomg(&. ,up)>0 up to four-loop order,

n-+ 2
’ _ e 2
IP2(0,r0,Ug) =10+ 02 =20(0,r g, Ug), (54 Fo(€+ ,Uo) =& |1+ o Uoé+ + —— (Uoé 1)
where 2(q,rg,Up) is the self-energy. The diagrammatic 1
contributions toX, up to two- and three-loop order have 27+2 IN(24upé. ) | —2bg(ugé,)®
been given in Refd.34,36], respectively. The diagrammatic
four-loop contributions are given in Appendix B. This deter-
hminei§+=§+(ro,u%[,g())]up to O(ug). The inverse function —by(upé, )4+ O(ugfi)], (58)
as the power seri
ro(€4 ,Uo d)=§IZRo+(Uo§i £) with the three-loop coefficier36]
I § bm(d) / b:E)\_i_l_l (59)
=& 1 me/a Uogs/e)” T 5 M2 1)
9 A 43th182| 3+4( +8)| Li ( L + i (60)
whereb,(d) are the expansion coefficients of the function ¥ 54 2 3/ 12
arg and the new four-loop coefficient
Pi(upés d)= ( ) Z bm(d)(upé?)™. (56)
9EL? Wy ™ n+2 2n* 1268 1672
b4: — )\44‘7 Wgn+7—29 ) (61)
The coefficientd,,(d) are finite ford=3. They are known i
up tom=6 in numerical form forn=1,2,3[32]. Here we  with
|
16 o Lo, @, 3. 1., ) 1 1y 2y 1] 3)\?
)\4=§(5n+22) ‘]1,1_ §J2’1+J3‘1+ ZEl—ZE1+E1 —2—7(173'14‘178) L|2 —Z +LI2 —§ +E InZ
15 22L'1L'11I2 4(n?+6n+20 2|4 41232L' L) )ne
+§( n+22)|Li, 5 Iy g E(n ) +4(n“+6n+20)c,+ >7 § 216 3 Iy § n
70 5 404I 3 797I 5 740L_ 1 275 ) 104I 3 257I 5 1864L_ 1 62
@™ Tt e 7t T3 e ™ e gt e g 7 e T3 (62
|
For n=1,2,3 the numerical values df, agree with those ° _ _
given in Table 2 of Ref[32]. The analytic expressions for h(&; ,up,d)=ro(& ,Ug,d)+ dro(Ug,e) rOc(“Oas)-( )
64

the constant&; andE] are given in Appendix A.
We shall also need the functigB0]

R(&, U, d)=To(&; Ug,d)—Toe(Ug,8), (63

which differs fromr (&, ,uq,d) only by a¢. independent
constant,

For d—3 the functionFm reads

R(&, Ug,3)=T{(£, Ug)+UZ[C(N)=Sx(1N)], (65)

wherer (&, ,Up) is given by Eqs(58)—(62) andS,(1,n) is
defined in Eq(20).
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B. Below T,

Below T, we need to express,<0 in terms of the
pseudocorrelation length_ as defined in Ref.31]. For the
procedure of obtaining the functiard(£_ ,uq,d)<0 below
T, from the known functiorRg, (ugé’; &) aboveT, see also
Appendix A of Ref.[33] and Appendix A of Ref[34]. This
yields the following analytic four-loop result farg<<O in
three dimensions,

. _2 n+2 n+2 )
~2rg(€-,Up) =& ") 1+ ——Uof- — ———(Upé-)
™

1385
Toa T4 |n(24uof—)} —2a,3(Ugé-)°

*| 108
= 284(Ugé- )+ O<u3§5)] (66)
with the three-loop coefficier836]
n+2 73 4349
argz_?[Z)\g‘f‘l_zn‘f' 7} (67)

and the new four-loop coefficient

16374535 38265055

93312 " 16656

n+2
77_4

NPECEL:M
at G2 ™"

Ars=

77_4

3
+ E(3n2+ 50n+244)¢(3) + %(5n+22) . (69

The numerical values dd,, for n=1, 2, 3 are

a,,=34.5540703 (n=1), (69)
a,,=54.9501255 (n=2), (70)
a,,=80.5039152 (n=3). (71)

Forn=1, the numerical value i, , agrees with that given
in Table 2 of Ref[33].

Equations(58)—(62) and (66)—(68) will be needed to ex-
press the free energy in termséf and£_ in Sec. IV and to
define Borel-resummable amplitude functions in Sec. V.

IV. BARE GIBBS FREE ENERGY

In order to calculate the specific heat we first need to

derive the Gibbs free energy. According to Etp), the bare

Gibbs free energwo-" is determined by the bare Helmholtz

free energyf and the order paramet&t, as

f(fé,Uo,ho):f(ré,uo,Mo(ré,Uo,ho))_hoMo(l’é,Uo,ho)-
(72)

PHYSICAL REVIEW E67, 056115 (2003

Above T, athy=0 it is straightforward to derive the pertur-

bative expression 0157)-'+ from Eq. (34) for My=0 up to
four-loop order as

Fi(rhue)=1(r§,up,0)

n n(n+2)

__" 2n(n+2)

(4m)°

= o 0 (477)2 Uglg—

X ur o3

3 0
n—-6—-8In-+41In
4 (24u)?

+8n(n+2) 3
(4m* °

(n+2)2
3

+4(n+2)

| 4+(2 +4 772( +8))I "o
n— n ——(Nn n
3 6 (24ug)?

+0(ug,ugln ug) (73)

for r(>0. To obtain theD(u3) term we have used the new
four-loop coefficients, Eq938) and (39). The terms up to
O(ué) are identical with the previougorrected three-loop

result for]o-‘+ [36].
Below T, one expects on general groundss] that the

Gibbs free energﬁ-‘ should be free of Goldstone singulari-
ties and that a finite limit

F_(r),up)= lim F(r{,ug,ho)
hp—0

(74)

should exist for ;<<0 and for generah. Because of spurious
Goldstone singularities appearing in the four-loop t(fhgbf

the Helmholtz free energf?(r(’),uo,Mo), some care is nec-
essary in deriving the correct perturbative expression of

]o-l(r(’),uo) up to four-loop order corresponding to
O(u3,udIn up). The second term on the right-hand sides)
of Eqg. (72) does not contribute in the limi,—0 at fixed

ro<<0. In the first terrrf(r(),uo,MO), it is necessary to sub-
stitute Mo(r¢,Uqg,hg) in an appropriate perturbative form.

In the following, we distinguish two types of
O(u3,udlnuy) contributions to the Gibbs free energgi)
those that are obtained from the known Helmholtz free en-
ergy up to three-loop orddi36] by substitutingM, up to
sufficiently high order(ii) those that come directly from the
new four-loop termf4(r6,u0,M0) of the Helmholtz free
energy withM g replaced by its lowest-order form.

A. Contributions of O(u3) from T up to three-loop order
As far as stefdi) is concerned we first consider the mean-
field partf“MF and the one-loop paﬁl of f, Eqgs.(34)—(36),
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I've(ro,Ug,Mg)+1'1(rg,uq,Mg)

(ro+12u0M§) 2

1 IM2+ M4_
loMlgTUpMg 12m

2
(ry+4ugM3)3?

—(n—1) 1o :

(79

where we have use# oo(w,n) given in Eq.(11) of Ref.
[36]. We shall show that in the perturbative formMﬁ to be
substituted into Eq.75), it suffices to keep the terms only up
to two-looporder in order to obtain the contributions of Eq.

(75 to F. up to four-loop order.
Unlike the last term on the right-hand side of Eg5), the

square of the order parameter in the first three terms can bg

substituted directly ahy=0, whereMq(r{,uy,0)? has the
expansion

3
+ 7 (—2rp) "+ AME.

(76)

(—2rp)
8ug

Mo(rg,Up,0)?=
Here the leading contribution tAMS is the two-loop term
[34]

(—2rg)1”2
24u,

Up

AM§=—U—°2(n+2)|n 5
2 8w
X[10—n+4(n—1)In3]+0O(uZ,udln uy).
(77)

Substituting Eq(76) into the first three terms on the right-
hand side of Eq475) we get

(rp)? 1 [3
Y 2_ Y _ 1\1/2 2
2r0M0 _8u0 2rO —477( 2rp) "+ AMg|, (78
(rp)?2 1 [ 3 9u,
4_ _ T _ \1/2 2 _ ’
ugMy 160, 570 —477( 2rg) 7+ AMg +1 5(—2rp)

3u
+2—7:(—2r6)1’2AM§+u0(AM§)2, (79

' 2\3/2 32
_w:_i _2r’+%(_2r')1/2
127 127 o 0
3 ’ 9U0 ) 1/2
~ 5o —2r0+7(—2r0)1/2}
X AM3+O(u3[AM3]?). (80)

In the sum of Eqs(78)—(80), the terms ofO(AMS) and
O(up,AM32) cancel out, but the terms @(uo[AM3]?) and
O(u3AM2) contribute to the four-loop term aF_(r,uo),
which is of O(u3,u3In ug). This implies that in the sum

PHYSICAL REVIEW E67, 056115 (2003

1, (ro+12ugM2)3%72

ErOMS+u°Mé_—127T
(—2rp)? 1 o ,
_—TAUO—E( 2r0) — 67T2U0(_2r0)

243
53 U0(—2ro) Y = Ut uo(AM)®

27
—FuéAMSJrO(ué,uSAMg,ué[AMg]z),
7T

(81)

the two-loop part of the termM32, Eq. (77), contributes to

F_ in four-loop order, but not the three-loop term @Mé.
The last term on the right-hand side of E@5) must not
be treated directly ahy=0 but requires an expansion of
(ro+4ugM3)2 in powers ofu, at finite hy. The starting

point is the expansion

—ritysl 3
/ 2 _TOTXT S o a%-11p
Mo(rg,Ug,ho) —4u0 "‘477( 2ro+3x717)
n—1.
X Y2+ AM2(hy), (82
AMg(ho)zi (n—1)| 6w+
82 1+ 2wl
W1/2
—4In———|+10-n+9w
u (—2rp+3x7 HY2
= (420 AT
22 24u,
+0(u3,uzinug), (83
w=x7(—2rp+3x7H 7L (84)
xt=Mo/hg, (85

as given in Eqs(34)—(36) of Ref. [34]. Note that this ex-
panded form oiMS is still an implicit equation foM, as a
function of ry and hy. Here the leading contribution to
AMZ(ho), Eq.(83), is of two-loop order. EquatiofB2) im-
plies

o 3 o 1
Fo+AUgMg=xr ' +4uo| 7—(—2rg+3x7 )+ —

41

x(n—l)S’(T1’2+AMg(h0)+. (86)

Substituting Eq(86) into the last term of Eq(75) and ex-
panding up taO(u3) yields
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2

n—1 n—-1|, 3Uge °
— A3(—2rg+3x7 HY2+(n—1)x 1’2]+8W2X$’2[3(—2r5+3x;1)1’2

3Ugo
> (r()+4quS)3’2=— —3/2, °70° —1/
T

127 XT 277

3
Up
+(n—1)x7 ¥32- 167T3XT2[3( 2rg+3x7 HY% (n—1) x7 Y213+ 6uoxs Y2AME(ho)

3 2
+—x%’2[3< 2r5+3x7 H Y%+ (n— 1) x7 YAME(ho) | +O(ud,udAM2(ho), U3 AME(ho) 1.

87

From the termuo)(T l’ZAMO(hO) we see that, for finithy  diverges for;(T—wc in addition to other divergent terms

corresponding to flnlte)(T Y2 the three-loop term of )(B/Zand xllzln Eq.(87). These d|vergences are canceled

AM3(hy) contributes to the four-loop free energy by the higher-order contributionE,, I's, and ', of the

F (rb,Uo,hg). In the limit hy—0, however, the term Helmholtz free energy, after substitutiiMy, in two-, one-, or
070 zero-loop order, respectively. Here we skip the detalls of

I
UoxT “2AM3(h) vanishes. In the last term on the right-hand these lengthy calculations. In summary, inserting EBP)

side of Eq.(87), which is proportional toe¥u3AM3(ho), it into I, Eq.(34), up to three-loop order corresponding to step
suffices to substltutAMo(ho) in two-loop order. This term (i), leads to the contribution at small finitg) below T, :

!

Pupt T+ T+ = F_ (1), ug)threetoon; o |( - )ﬁ—— n2+ 41+ 4(n+2)ln 2l —8(n—1)|n3)l
(4 ) 3/2 Wl/2 (24Uo)2
8n* 8n° , 25048 6928 ) 5
-+ — —45M%+ n— —— +(15n%+63n+111) 72+ 1296, — 48(n—1)c,

3 3 15

_ 1 (1 -2r} 2r}
+2268L|2(—§)—324(n—1)L|2(§)—16(n+2)|n(24u )2 (n+2)|n(24u )2—4(n—1)ln3
0 0

144
+n(n—1) —(64n2+34n—98)(ln3)2+16(2n3—4n2+2n+135)ln3+?(37n—187)ln2]
+Oo(w2wHnw,ug,ugInup), (89
where
j’_— (ri,u )three-loop:_ 1 (_Zr’)Z_i(_zr’):”/z ——(—2ry)|6+2(n=1)In3—(n+2)In B
S 6dp. T 12m T (4 )2 ’ (24u5)?
z 8
an )3( 2r )Y (11n+7)—21601—8(n—1)c2+5(31n+95)|n2—8(4n+17)|n3—21(n—1)
x| 2Li (1 +(In3)2 +7T2(3 24+11n 5)+54L'< 1)+16( +2)l ~2r (89
I = n —(an - bl — = n n
23 2 2l 3 (24u,)?

is identical with the previous three-loop result, E82) of Ref.[36], where it was written in a slightly different form, see our
Egs.(A54) and(A55). In theO(u3) contribution of Eq(88), there are terms-w~*? andw 2 that would diverge in the limit
ho— 0 at fixedr (<0, sincew~O(hy) according to Eq(84). These Goldstone divergences, however, are canceled exactly by

the four-loop terrnI°“4 of the Helmholtz free energﬁ obtained within stedii) of our calculation in the following section.
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B. Contribution of O(u?) from T,

Substituting the zeroth-order terM(2)=(4u0)‘1(—r(’)+;({ Y into f4(r6 ,Ug,Mg) we obtain the four-loop contribution at
smallw

3 ’
o u 4 —2r
[y=—2 4{ K(n)+(n+2)( 16n2— 480+ 128 §n(n+8)7-r2)ln S +1897°— 108~ 1008 In 3+ 7776 In 2- 972Li,
(4) (24uo)
x 1) 3888, + ( 1)( 0 2 41— 8(n—1)In 3+ 4(n+ 2)In— 0 |, 8 gonzins
- |- n—1)| ——;+—|n —8(n—1)In n n =n°— n
3 1 wi2 w2 (24uy)?| 3
aso. 3 2, gppal, 44684 3436 , 28688 o, 16412 (1)
37 N5 "9 """ 5 " 8In3)"+ —5—Liz| 3] 48,
+O(W2wAnw,ug,ug Inug), (90)

wherew is defined in Eq(84) and

1 2
xk(n)= 144[ —20In5+ 9Li2( -2 +216057 - 16215 - 18c, — 363"} + 1084, — 324D, — 36E,

+9Li 2+9I 3
2| ~3)* 23

8
+(n—1)[(28§(3)—2ﬂ-2+ 3 In2

3 (In3)° lylog| 3 ! 2 polyl 31
+ 6 + polylog ,—§— polylo ,§

165 53 536 1
——-(n 3)3— ng In3+ — 7?In2— 63 polylod 3,— 3

+216F,—36G;—216H; n’+

O (3)- 96ca— w3+ 2w In2
2 {379 indt g in

4608
3 In2In3

633 1
)n— —~{(3)+32961In3+360(In 2)2—

3

1
+558 polylog{ 3,§) — 11520+ 3456 3%+ I)

—8(64815%+52c5+ X410~ 2X 420t 4x430)J . (92)

We see that the same termsv~ %2 andw ™2 appear in Eq(90) as in Eq.(88), but with an opposite sign. The sum of Egs.
(88) and (90) yields the Gibbs free energy fof<0 up to four-loop order fod=3

3 ’ ’
o o u —2r —2r
F_(r!ug)=F_(ri ugthreedoon 9 LA (n)—16(n+2)In % | (n+2)In % +2n-8-4(n-1)In3
(rg,Uo) (ro,Uo) (4m) a( & ) (24092 ( ) (2000 ( )
m° 4 4

+73N(n+8) | [ +O(ug, ugnup), (92)

1 14

A4(N) = k(n)+ 648+ 37872+ 1152 In 24+ 1296L|2( - §) — 2592, +(n— 1)“8— 5 +641-In3)in3|n
2024 2734 ) 15440 (1 )
—4672IN2+ — — e Li,| =| +324QIn 3)2— 96c, (93)
9 9 3 3
=32.16n%+205.9n°+404.9n+673.5. (94)
|
The terms ofo(w?) andO(w*2nw) in Egs.(88) and(90) It is straightforward to derive from the Gibbs free energy

do not contribute to the free energgy_(r(),uo) and to the Jo:i(fé,uo) the bare vertex functions lo“(il’o)(rc’),uo)

specific heatr92]°-‘,(r{),uo)/(o'?.r(’))z_on the pogxistence curve, Zﬁ.%i(l’é,uo)/ﬁl’é and f'(f'o)(fé.uo)=r725’°:¢(r6.uo)/((9r6)2-
because these terms vanish in the limg—0 (w—0). ) 20y

Therefore it was sufficient to evaluate most of the diagramd N€ bare perturbation series Bf2(r5,u) up to four-loop
in Fig. 1 directly atror=0 (w=0). order is given in Appendix C.
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C. 5’-‘1 as a function of the correlation lengths o n(n+2) 11 o 72 ! 1
Equations(73) and (88)—(92) contain logarithms of the ara=— 37t 16 24 —(n+ ) + 2 3
couplingu, as expected because of the nonanalytjode- )
pendence ofr,, Eq.(23). Apart from one special four-loop 43n+ 182 4 m
logarithmic term in Eq.(92) to be discussed below, these 72 In§ ﬁ(n+8)ln 24, (100

logarithms can be absorbed by expressifign terms of the . _

correlation lengths, and&_ for ry>0 andr}<O0, respec- Equations(96)—(99) agree with the corrected form of the
tively [30,31]. Substituting Eqs(58)—(62) and (66)—(68)  previous three-loop result faF, (ro(£. ,Ug),Ug) [36]. Be-
into Egs.(73) and (92) yields the Gibbs free energy up to low T., the analytic result is

four-loop order as a function af. in d=3 dimensions

1
N_ _
° alll=——, 101,
Fulri(£s Ug),Up) =54 (109
4
n(n+2)(n+8) 1
—¢3 ) m-1y PO (N _
- ay (Ugé+ + -
£x mE:O O (ugé=) oo al)=- 5e—(3n+19, (102
X (Up€+)®IN(Ugé.) +O(ugél) | . (95) all)=— [54n%— 73— 394+ 432An—1)In 3],
34562
1
Above T., the analytic result is (103
) — 1
a6=0, 98  4m)= [ 1702 — 38751~ 10 626- 116 64, — 1134
345673
n
all=——, (97) 1
127 X(n=1)| 2Li| 3 +(In3)%+ +57C2 +16(43n?
alt)—— "N+2) @9 +547n+1219In2—8 (97 + 538 +1174n 3
2 b
16m +(33n%—1831—903) 72— 36(16n°+ 160"
) n(n+2)|53 4 ) 1
ayz= Py 27 2Ing, (99 +175Li| — 3] |, (104
with the four-loop coefficient for general with the four-loop coefficient for general
|
)= ,[32772763 645 o, 81 .f 2673 - 301I 4 179I 5 2811 1 . 9 21124 (In2
a- 331776 256" T 12807 25643 24 N3+ 1953~ Tgg Lzl ~3)* 35 ™ IN24-(N2)°
2Li ! +2Li ! +21 Li 2 +Li +1 | 3)° +27J(1>+1083(1>+27J( 7293(” 243
26 T2 ) | T T T T s M) |7 g~ LT 21T el g 16 °
+81 +81 3A,—9D,+6F,;—G;—6H 27E’+27E” +n_1 >129 151 24 37 3)+ 25|
g Cat 7 [3A1 9D+ 6F = Gy BHy J= B 278 1+ | | 15507 Bo12™ 2565 %)t 12d"3
7L_ 1 +772| - Ca| o, 9366787 323 2, 971 (3 +89 - 665I - 797I .
1852l 73/t 964t 7" | 2 og5084 86a™ T 256 512° T 2 1728"°" 576
169 (1) 563 [ 1 173L_ 2+L_ 1 5L_ 1| 2123 32 |22+1 n3
576-23) " 108-'2| 73] " a3z t2l T3) TH2| T 3)| " 1ad2l 5] " 3asel"®) 864“‘ )t 513
><|2+1|33+61 |3+11|2+3 Iyl 1 —2polyl 1 ! 3+9
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The coefficient101)—(104) agree with the previous three-

loop result forﬁ-‘_(r(')(f_ ,Ug),Ug) in Egs.(35)—(39) of Ref.
[36], wherea'") was given in a slightly different form, see
our Egs.(A54) and (A55). In numerical form, Eq.(105
reads(up to five digitg

a")=0.006 209 &%+ 0.099 061n>+ 0.490 0% + 0.650 73.
(106

The numerical value c&"') for n=1 agrees with that given
in Table 2 of Ref[33] for the first five digits. The remaining
logarithmic four-loop contribution 0 (u3 In(ueé-)) in Eq.
(95 corresponds to that in Eq3.15 of Ref. [33] for n
=1. This logarithm is not caused by the mass sbif but it
originates from those diagramef type B in Fig. 1) that
yield the additived=3 pole termP,, Eq.(28). For the spe-
cial casen=1, the numerical value of this logarithmic term
in Eq. (95) agrees with the coefficier&") in Eq. (3.15 of
Ref. [33].

It is straightforward to derive the vertex functions
AT (£ ug),up) and TEO(r!(£. ,ug),ug) from F. .
The perturbation series of the vertex function
T@Or (£ ,ug),up) up to four-loop order is given in Ap-
pendix C.

V. RENORMALIZATION AND AMPLITUDE FUNCTIONS

The shift of the temperature variahlg by éry, Eq. (23),
and the subtractiodly, Eq. (30), are sufficient to make the
Gibbs free energf—}(ré(gt ,Ug),Ug), EQ.(95), and the ver-

tex functionsi™CO(r 5(£- ,ug), Uo) finite in three dimensions
at infinite cutoff as long ag- is finite. In the critical limit
¢ —oo at fixedug, however, the bare perturbative form of

5—}, Eqg. (95), is formally divergent. In order to make this
perturbation series applicable negy two steps need to be

performedii) the series has to be mapped from the critical to

the noncritical region(ii) the mapped series has to be re-
summed. Stefdi) is achieved by turning to the renormalized

theory as defined below and by introducing the renormaliza-

tion scaleu that can be varied via the renormalization-group
equation(RGE) [18,56. Step(ii) will be performed in Sec.
VI by means of a variational approach.

g st g Cam 3_2X410+ EX420+ 3 X430) .

PHYSICAL REVIEW E67, 056115 (2003

g 1 ¥ 2 5675L_ 1 37L_ 1
‘2| =7) TH2 T3] " 2882 3) T 1242l ®
165 s, 379 5 87 , 279 o (1
512N3)7F 1537 N3+ 5™ N2+ Togpolylog 35

37 27
I+ o[4957 - 2080+ 4350+ 3B, — E{ +4E] - ¢

(105

In the following, we define renormalized vertex functions
in 2<d<4 dimensions and calculate their amplitude func-
tions in d=3 dimensions up to four-loop order. Our ap-
proach is a combination of the minimal subtraction scheme
[19] and of massive field theory at fixed dimensidtv] d
<4, without using thee=4—d expansion, as introduced in
Refs.[29-31] and further discussed in Ref84,36. A sig-
nificant advantage of this approach is the fact that the addi-
tive renormalizatioA(u,&) and the multiplicative renormal-
izationsZ,(u,e),Z,(u,e), andZ,(u,e) are the same above
and belowT..

The bare Gibbs free energy as a function of the correla-
tion lengthsé, and &é_ in d dimensions will be denoted by

Fe(€+,Up,d) d=3 with
5—}(%(5i ,Ug),Ug) of Eq. (95). Correspondingly we use the

notationlo“(i"'o)(gi ,Ug,d) for the bare vertex functions id
dimensions as functions of, and ¢ . The renormalized
quantities are introduced as

which for is identical

r=Z; ' (ro—roo), (107
u=pu *AgZ, *Z2uo, (108
=2, (109
Fulbo Uop,d)=Fulés ,u2,Z, %A 'u,d)
1
- g,u‘srzAdA(u,e), (110

P& u,u,d)=Z TN e, 12,2, %A0 u,d)

1
K TAGA(UE), (111

r@O¢, u,um,d)=220 e, uo2,2, %A u,d)
1
— ZHAAUE), (112

where
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T'(3-di2)

= 113
2d_27Td/2(d—2) ( )

d

is an appropriate geometric facf®9,30. The analytic form
of the renormalization constant<Z,(u,e), Z,(u,e),

Z,(u,e), andA(u,e) is given in Egs(2.13, (2.16—(2.19),

and (B1)—(B18) of Ref. [35] for generaln up to five-loop
order.

A. Amplitude functions in 2 <d<4 dimensions

Dimensionless amplitude functions of the renormalized

guantities can be defined fod<4 as

f(ii)YO)(lu‘gi!u!d):lu'idA(;l]:i(gtvuwu‘vd)v (114)

FEOué. ud)=—2u? A TE £ U, p,d),
(115

Fo(pée ,u,d)=—4p°A TENEL u,pu,d), (116

Qi (mé, u,d)=r/p?=p 22 (¢, 12,2, Ag tu,d),
(117
Py (pés u,d)=(ar/dg %)y,

=7 'P (2,2, %A tu,d).
(118

These functions remain finite also in the lirdit=4 (at finite

£.) [30,31. We recall that the amplitude functions depend

on the choice of the geometric factdy;. Our choice, Eq.

(113, minimizes the explicit dimensional dependence of the

PHYSICAL REVIEW E67, 056115 (2003

thereby simplifies their analytic form at low ord&9-31]. It
is expected that the convergence properties of the perturba-
tion series of the amplitude functions is significantly affected
by the choice ofA; as will be discussed elsewhere.

From theu independence of the bare quantities we derive
the RGEs for the amplitude functiod&?, {9 andF.

0=(p d,+Budy+ DO uéL u,d)

+%qi(lu'§i ,U,d)zA(U,S)], (119)
0= (9t Budyt+d =2+ {)[FE né. u,d)
_%qi(lu‘gi ,U,d)A(U,S)], (120)
4B(u):(M&M+Bu&u+2§r_8)|:t(ﬂ§t ,u,d),
(121
whereB(u) is defined by
JA(U,e)
4B(u)=[24,—e]A(Ue) + By(u,e) — . (122

The expansion coefficients of the standard field-theoretic
functionsg,(u,¢),{,(u), andB(u) can be obtained from the
renormalization constants in Rg85] up to five-loop order.

To simplify the notation, we have used the functions
q.(mé, u,d)=r/u? for r>0 and q_(ué_ ,u,d)=r/u?

for r<0, which are related to the amplitude functia@s of
Refs.[30,31] according to

lowest-order coefficients of the amplitude functions andintegration of the RGE yields

O e ,u,d>=[f§"°>(1,u(lt>,d)+ %qiu,u(lt>,d)2f'i8(u<l'>>
1

fEO pé. ,u,d>={ f&l*”)(l,u(li),d)—zqi(l,uugﬂ)ffB(u(l'))

| n

|i dl/”
Xex;;( (§,+d—2)—),
1

[
Fa(uts ,u,d>=[F+<1,u<|+>,d>—4flB(u(l )

with | .= (ué+) "1, where the effective coupling(l..) sat-
isfies

| du(l.)
= odl.

=Bu(u(l.),e). (129

Q+(/~L§+auad):Q+(M§+vad)v (123)
q—(lu’g—!uld):_% —(Mg—’uld)' (124)
L di"\ [d']
exP(L(Zg'_S)lTHl_’]li’ (129

I dli”y |dl’
o JL s 7]
(126)

' di”\ |dl’ I+ dl”
exp( fll (2§r—8)|7)]|—,]exp( L (2§r—8)|7), (127)

Furthermore, we havis0,31]

I dl’
Qs (pés ,U,d)=Q¢(1,U(|¢),d)eXP( L (2—§r)|_,) :
(129
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1dl and
P (ut- ,u,d>=P+<1,u<l+>,d>eXp(f gr—,>. )
e | 130 C*(1)=Cqtp "AgZ,(U,8) K. (u(l.),e)
At pwé. =1 these functions are related by XeXp( J"i[zgr(u“/))_g]d_ll ' (134)
1 |’
q_(l,u,d)=q+(1,u,d)—%, (131)
with
P_(Lu,d)=—2[2—/,(u)]+P.(1u,d). (132
K.(u,e)=F.(1,u,d)—A(u,e). (135

Substituting Eqgs.(125 and (127) into Egs. (110), (112),
(114), and(116), respectively, and using Eq&C1) and(C2) o
of Appendix C, we arrive at the following representation of From Eas.(12—(16), (31) and(72)—(74) it is clear that the

the free energy and of the specific heat quantity]o-'i , Eg. (133, is to be identified with the singular
part of the free energy of Sec. | including the regular term

- %Bcrtzv

Foléa Ug,d)=Ag €24 1001 u(l.),d)

. | FoEa®uo,d)=fS(0-5Bt? (136
+ Eqi(liu(l i)vd)zjliB(u(l ’))

’ dl"
exp( fl' <2§r—e>|7)

apart from cutoff dependent contributions. Equatidh33)
) and(134) will be evaluated asymptoticallyé(.— ) in Sec.
]dl ] VI and Appendix E.

X JR—
K Equationg125—(130) provide the mapping of the ampli-
. tude functions from the critical regiopé.>1 to the non-
< e 2 critical valueué..=1. At this value the amplitude functions
* 8Ad’M Alu,e)r (133 are related by the differential equations

-1 ﬁq+(1,u,d)
4 (Lu,d)=[2=£ (W] 2P (Lu,d) — By(u,8)————|, (137
fEO1u,d)=-P.(1u,d)* d+ﬂu(u,s)%)f(f’o)(l,u,d)+%qt(l,u,d)zB(u), (138
Fi(l,u,d)=Pi(l,u,d)‘l{(d—2+§,(u)+,8u(u,s)%)f(il'o)(l,u,d)—th(l,u,d)B(u) (139
d 1
=P+(l,u,d)1(d—2+§r(u)+,8u(u,s)%Mf&w)(l,u,d)—§q+(l,u,d)A(u,s) +A(U,e). (140

Unlike the functions” .. (1,u,d) andF .. (1,u,d), which have u 2P, (u") v 2—(u")
expansions in integer powers ofi, the functions q+(1,u,d)=f du'———— f du”—r/, ,
ut o By(u’e) u Bu(u”,e)

q-(1u,d),f%91u,d), and f*9(1,u,d) are not expand-

able in integer powers df, which is a consequence of the (141
nonanalyticu, dependence of5.(Ug,&), Eq. (20) [30,31]. U P (UVE. (U +2a.(1u’ .d)B(u’
Therefore, the perturbative expansions of these functions alféj'o)(l,u,d)zf SCRLECH ,qi( LB

not Borel resummable. They can be expressed, however, in u* Bu(u',e)

terms of the Borel-resummable function®.(1,u,d) d "n_p
=P_.(u) andF.(1,u,d)=F_.(u) via the integral represen- x| ex f“ 4 — du’| [du’, (142
tations u o By(u’e) ’
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du’(

P.(u)fOu’,d)

BU(U',S)
) qi<1,u',d>28<u'>)
2B4(U’ &)

IR
X ex f du'——|.
u BU(U”,S)

Equations (141)—(143 follow directly from Egs. (137)—
(139, as can be verified by differentiating the former equa-
tions. Note that the right-hand sides of Edq$41)—(143
have finite limits foru—u*, see Eqs(169—(171) below.

u

tOO(Lu,d)= f

u

(143

B. Four-loop amplitude functions in three dimensions

In three dimensions we have from Eqd10), (114),
(117), (123, and(124),

fON LU, =dmp 3F.(n L 4muz,2,%,3)

1
—gqi(l,u,B)ZA(u,l). (144

The four-loop expressions of the functiogs(1,u,3) follow

from the four-loop result fonﬁ(§+ ,Ug,3) and are given in
Appendix B. These expressions contain logarithmaepen-
dences. Substituting Eq&5)—(105 into Eq. (144) and us-
ing Eq. (138, we obtain the four-loop expressions of
£O9(1,u,3) andf>9(1,u,3). They are given in Appendix
D. Because of the functiors.. in Egs. (138 and(144) the
four-loop expansions of the functions®%(1,u,3) and
19(1,u,3) contain logarithmic terms. In additiofi®® has

a special logarithmic four-loop term arising from the dia-
grams that cause that=3 pole term, Eq(28).

The amplitude function§ . can be derived fronf(:?
according to Eq(140). Unlike % andf?, the functions
F.(1,u,3) anduF_(1,u,3) can be expanded aroundg-=0
in integer powers of, i.e., they do not contain logarithmic
dependences, sindé'?—1q.A is free of logarithms(see
Appendix D. In three dimensions, we obtain the power se-
ries

Fo(W=F.(1u3=2> ciu™ L
m=0

(1495

The coefficients read up to four-loop order
Cro=0, (146)
CEy=—n, (147)
Crr=—2n(n+2), (148

. 7 4
Cey=—4n(n+2) n—2—7+4ln§}, (149

PHYSICAL REVIEW E67, 056115 (2003

. , 233 1888 2m”
C,:4=8n(n+2) —n +?n+7+(n+8) —
32L' ! 4{(3 5 89n+ 5501 >
+gLia| =3 —44(3) |+ 55(85n+550)Ing
(150
and
1
Cro=7> (151
cr=—4, (152
Cr,=8(10—n), (153

1
Cra=— 57(108M?+34641+31 120 — 128(5n+22){(3)

d

3

—864c;—32(n—1)c,+(6n+22n— 10) 72

3

—84(n—1)[2u2 +(In3)2 +216Li2(

32
—324n+17)In3+ 5 (31 +95)In 2, (154)

1
Cra=— 2—7(734m3+ 124 431%—108517—1 008512

64
- 1—5(n+5)(5n+22)7-r4— 128n3—5n?
—1681—692)¢(3)+12802n+ 550+ 186)(5)

—8(5n+34)§ 216c; +8(n—1)c,+21(n—1)

X

3

5

3

16
2Lyl =| +(In3)2 } - 3(1281% 875n—706)

2

) 4
X Li, + T(87”3+ 8052+ 109 — 3578

64
- 2—7(280’12+ 660M+17926In3

64
+ 2—7(173912+ 159051 +31982In 2 (155

above and below ., respectively. The terms up to=3 are
identical with the previous three-loop result36], except
that here we have writtet-; in a more compact form using
the relationgA54) and (A55) of Appendix A.
Equations(145—(155 are the basis for future Borel re-
summations and for the variational calculations in Sec. VII.
These calculations can be performed for genearald (not
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only at the fixed point*), which is of relevance for a non- Cpo=1, (157
linear RG analysis of the nonasymptotic critical behavior
[43,44. Cp1=—2(N+2), (158

In order to check the correctness of Egs14)—(155), we
present in Appendix C an alternative procedure for deriving
F.(1,u,3) by starting directly from the perturbation series

of I'?9(r! ,ug). The resulting coefficients;,, agree with
Egs. (146—(155). Cps=—(N+2)

The amplitude function P, (ué, ,u,d)=2, *(ar}/
&f;z)uo above T, can be derived from Eq$56)—(61) for

Cp2:4(n+2), (159)

4576 ,
56n+ —5——64mNs|, (160

4
— 1 H — o
d=3. The resulting series at¢, =1, Cps=32(n+2) 1—5(5n+22)+3(n2—10n—36)§(3)
P.(1u3)= > cpnu™ (156) 4117 , 535967 1441439
m=0 232" Sg3o " 5916 +7(n)|. (162
is free of logarithms. The coefficients read in analytic form
for generaln up to four-loop order with \5 given by Eq.(60) and
|
32 W03 234 |2 1o aen| L 8
7(n)= 5 (5n+22)| =430+ 23504350+ 5| Lia| 5| —Lio| 3/ +5(In2)%| —3E;+E]—4E] |+ 55 (17 +17§)
2 2 2 32
X|={In=| +Li,| —=]|+Li,| —=||—-32(n>+6n+20)c +W—(89nz+1472h+5324)+—(42n2+527n
2\ 4 2l 4 2l 3 427 27
. 1 1 3 2 5
+2050Li,| — 3|+ 2—7(60m2+ 20081+8528n7 — 5 (797 +1542In7. (162

The numerical values of these coefficientsrier1,2,3 agree  Equations(156)—(168) are the basis for future Borel resum-
with those given in Table 4 of Reff32]. Below T, we have mations and variational calculations of the functions
P.(1,u,3) for generah.
3 4 Once the resummed functiofs. (1,u,3) andP-(1,u,3)
P_(Lu3)=P.(1u3)+ z[{(w)-2]= > Cppu™ are known, they can be used to calcul&t&”(1,u,3) and
m=0 f19(1,u,3) via the integral representations, E¢&42) and

(163 (143, for generalu>0. This is of relevance for an analysis
Equations(157—(163) yield in the nonasymptotic region.
_ 1 VI. ASYMPTOTIC AMPLITUDES
Cro= "5 (164

In the following, we derive the perturbative four-loop ex-
pressions for the asymptotic quantities(t), f.«(t), A~,
Cp=(N+2), (165 &, , and Rg defined in the Introduction by applying the re-
sults of the preceding sections to the asymptotic critical re-
Cpy=—26(N+2), (166  9ion &.>u~ 1 corresponding to the limit . —0, u(l)
—u(0)=u*. Although the amplitude functions
fO01u,d), f91u,d), andqg.(1,u,d) do not have an
643\ 5+ 1240 + ilz} (167) expansion aroundi=0 in integer powers ofi, there exist
9 important simplifications for the structure of these amplitude
functions near the fixed point, where they have a convergent
27t 2045 824537 expansion in integer powers of—u*. In particular, at the
5 (5n+22)+ n?+ fixed pointu=u*, whereg,(u*,&)=0 the differential equa-
tions (137)—(139 are reduced to the exact relations

Cpz=(N+2)

Cpg=—32N+2) 216 1458 "

1775531
+ S

=59 +6(n%+10n+52)¢(3)—7(n)|. (168

Q. (1u*,d)=2vP, (1u*,d), (169
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P%
fOO1u*,d)=— T‘[f(jo)(l,u* .d)+202PEB(u*)],
(170)
*

1-«a

FEOLu* d)=———[F.(1u*,d)+4vB(u*)]

(171
with P¥=P_(1,u*,d). Equations(169—(171) can also be
derived from Eqs(141)—(143 after substituting8,(u’,e)

=w(u’'—u*)+0O([u’—u*]?). The critical exponenta and
v are determined by the fixed-point value §{u),

v=[2-¢ )], 172
a=2—dv= ir(U) 173
2_§r(U*)
In addition, we have from Eq$131) and(132),
g_(1u*,d)y=2vP_(1u*,d), (174
P_(1u*,d)=— Ev_l-i- P.(1u*,d). (175

4

This implies that f®O%1u*,d), f&O1u* ,d), and

g-(1u*,d) can be expressed byP.(1,u*,d) and

F.(1,u*,d) which have an expansion in integer powers ofg
u* and are Borel resummable. As an important consequen
the various asymptotic amplitudes defined in the Introductio

have perturbative expansions in integer powens*othat are
Borel resummable.

We point out that, within a perturbative treatment, it

PHYSICAL REVIEW E67, 056115 (2003

the square of the nonuniversal amplitudg is given (at
infinite cutoff) as a function ofu, u*, anda, for 2<d<4
by [30,31]

(£5)?=2Z,(u,e)ay 22vP, (1,u*,d)C (179
with
C:eXp( v Mdu’), (180
u Bu(u’,e)

where we have used EL69. The asymptotic amplitude of
the pseudocorrelation length. below T, reads[31]

R A R A
gO_(ZQi) g"_( qt ) 50_( p* ) fo

(182)

with PL=P.(1u*,d), gi=q.(1u*,d) where we have
used Eqs(123), (124), (131, (132, (169, and (174). We
note that the ratio

éa_( 2vP% )

82
&\ (312—2vP% (182

is not a universal quantity, since the pseudocorrelation length

_ is not a physical correlation length beloly.. In three

r%imensions, the power series fér.(1,u,3) are given in

gs.(156—(168 up to four-loop order.

B. Singular part of the free energy

Evaluating Eq(133 asymptotically(see Appendix Ewe

would be an inappropriate procedure to derive the fixedfind the singular part of the free energy for bath-0 and
point values ofq, , f©%, andf®? by first expanding the <0,

right-hand side of Eqs(137)—(140) with respect tou at u
#u* and then by substituting théapproximate Borel-

resummed fixed-point valug* . The reason is that the terms

proportional toB,(u,e) in Egs. (137)—(140) must vanish
exactlyatu=u* becauses (u*,e)=0. This property would
be destroyed in a truncated perturbative treatment.

A. Correlation length

The relation betweed..(t) and the reduced temperature

is determined implicitly by{30,31,34

: IR
r=at=¢£.°q.(Lu(l.),d)ex | g“,(u(l’))l—’ ,

(176)

f;(t>=Ad[§+<t>]d{ 0010, d)— 5—B(u")

X[Zth(l,U*,d)]z], (183

where we have used Eq4.36), (169), and(174). Equations
(183, (170, and(171) yield

f;(t):Ad[§+(t)]d[ - VZPi(JHU* ld)z

wherea=Z,(u,e) a,. The asymptotic form of the correla- Defining

tion lengths follows from Eqs(172) and(176) as
E-(D)=E& It 7" (177

After the choice

pt=¢&, 178

4vB(u*)+aF . (1u*,d)
a(l—a)(2—a) (184
(Ry)=—a(l-a)(2—a) (&), (185

we obtain

(Ry)4=Agr?P.(1u*,d)[4vB(u*) +aF . (1u*,d)],
(186)
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A :(R:é:/ga:)d’ (187 C. Regular part of the free energy

The regular partf,4(t), Eqg. (3), contains contributions
from both the background Hamiltonian, E@.5), and from
fluctuation-induced regular terms of the Gibbs free energy
Fo, EQ. (14). The latter terms depend on the cutoff. From

@ . . dimensional arguments, one finds ttigtand f, diverge as
AvB(UT) taF (1u7,d) (189 A%andA% 2 for A, whereasB,(A) has a finite limit
4vB(u*)+aF _(1u*,d) B () for d<4. Within the dimensional-regularization
scheme, the cutoff dependence is ignored. After the subtrac-
tion of 61" in Eq. (29), there is only the cutoff-independent
Only R; and A"/A™ are universal. The quantiyR,  part — 1B, ()t? of the regular term—3Bt? that is still

=(A"IA") (& 1£9)R; is nonuniversal sinceég/éy  contained inf'(r),up,d), Eq. (29), and inF. (£~ (t),ug,d),
=¢. /& is nonuniversal [see Eq. (182]. Equations gq (133. The corresponding analytic expression for the
(186) and (188) have expansions in integer powerswf,  fiyctuation-induced coefficierB,, has been calculated pre-
since the functions=.(1u*,d), P.(1u*,d), B(u*), »  viously within the minimal subtraction scheme at fixdd
=[2-¢(u*)]7%, and a=2-d[2-{,(u*)]"" have such <4 in Ref.[31] for @<0 and by Dohm and Schloms for
expansions. These expansions, however, are not convergeat-0 as quoted in Ref59]. Since no derivation was given
and need to be resummed. In three dimensions, the powé Refs.[31,59 and since different resultB*+#B~ were
series forF.(1,u,3) are given in Eqs(145—(155 up to  obtained in Ref[13], we derive the coefficienB., in Ap-
four-loop order. pendix E. The results read, At=cc [31,59

and

A+
A

P
—p*

+ B(u’ w24 (U")—
B§r=B;=—(§§)SAda2f &{exp(f de’) du’  (a<0), (189

0 By(u'e) u o Bu(ue)

VJU* 2B(u')[gr(u')—g:]+/3u(u',s)a8(u')/au'[exp< fu’Zgr(u")—edu")

B =B_. =—(&;)°Aqa%— du’  (a>0),
cr cr (50 d alo ﬂu(UI,S) " BU(U”,S) (
(190
|

with a=2Z,(u,e) ao. The quantities3;, are defined by vided that the limitA — o is taken.(This is consistent with
. . the values forXg in Tables | and Il of Ref[40].) This ex-

B.,= lim [C™(t)—C{ (t)—Cg], (19))  pectation appears to be at variance with Figp) Df Ref.

=0+ [13], where an apparent discontinuity |im, C*(t)

L _ _ >lim;_o_C™ (t) of the specific heat at. is shown fora

Bcr_tl"g‘i[c (= Cs ()= Cel, (192 <0 on the basis of Ref60], where thee* field theory is

treated atA =<0, after additive renormalizations of the free
whereCZ (t) is the singular part of the specific he@f (t) energy. Unlike pur_renormalization scheme, however, t_he ad-
andCj is the background contribution from degrees of free-ditive renormalizations of Ref60] are regular subtractions
dom other thang,(x). Equations(189 and (190 are valid at finite cutoff, which are defined by.the bare free energy at
for the ¢* field theory in 2<d<4 dimensions within the t=1 andt=—1, t_hus these su_btractlons are qn‘ferent above
minimal subtraction scheme at=%. The continuity of and belowT.. This asymmetric renormalization procedure

C™(t) atT, for a<0 follows from the fact that, according to intro_duc_es differenlt_—i_n_dependent contrit_)utionsAf/aqé
Eq. (189, B;,=B_,=B,, is entirely determined by the field- — A"/« into the definition of theenormalizedspecific heat
theoretic functions B,(u,¢),{,(u), and B(u) and by . .
Z.(u,¢), which are identical above and beldw within the CR:A;|t|_a_ A; (193
minimal subtraction scheme. b @
Our results, however, do not yet exclude the possibility
that B, (A) # B, (A) within the ¢* theory at finite cutoff  of Eq. (4.14) of Ref. [60].
We do not know of a general thermodynamic argument in  The total physicalspecific heatC*(t), however, that is
support of or against the continuity of the specific healat plotted in Fig. 3b) of Ref.[13] should includeall subtracted
for a<0 in real systems with short-rangand possibly sub- parts~t? of the total bare free energy above and belbw
leading long-rangeinteractions. These parts that are cutoff dependent may well cancel the
One expects that the resud,(«)=B_(«) should be asymmetry of tha-independent parts of E¢193. Our re-
obtained also within other renormalization schemes, prosult, Eq.(189), indeed suggests that the different constants
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—A"/a and—A"/a of Eq. (193 are only a spurious effect tional terms would of course exist in the! field theory at
of the renormalization procedure of Refd3,60. No ex- finite cutoff and in thep? lattice theory at finite lattice spac-
plicit analytic expressions were given fBi" andB~ in Ref.  ing as well as in theories including®,¢®, . .. terms in the
[13] and no complete analysis of the problem of the possiblédamiltonian) The effective couplingi(l.) is a function of
discontinuity atT, was performed. A conclusive answer to u,&5 as determined by the implicit equation

this problem would require a calculation of the specific heat,

at least of the fluctuation-induced teréB. (A)t2, within u(l)=Uof5 AgZy(u(l+),e) "1Z (u(l+),e)% (199
the ¢* field theory at finite cutoff. Furthermore, the effect of

subleading long-range interactiofihat do not change the Thus the physical critical limi€.—c at fixed u, can for-
universal bulk critical behavigishould be investigated, since Mally be considered as a strong-coupling limg— at
it is not cleara priori whether such interactions affect the fixed £.. Correspondingly, the Wegner expansion of Egs.
nonuniversal height of the finite cusp of the specific heat fof195-(198), if expressed in terms af,¢% , can be consid-

a<0. ered as a convergent strong-coupling expansion. This is seen
explicitly by expressing Eq195) in terms of the dimension-
VII. VARIATIONAL CALCULATION less bare coupling
The perturbative results of the preceding sections need to UB= UoéZAy. (200

be resummed. In a subsequent pd@é we shall report on
corresponding Borel resummations. Here we confine ourUsing Egs.(196), (199, andl.=(ué.) ' we obtain Eq.
selves to a brief application of the variational approach. (195 in the form of a strong-coupling expansion

wle T 2wle
A. Wegner expansion and strong-coupling limit P.(u(l.))=P.(u*)+cy UB +0(ug“”*) (201
The expansion of the various amplitude functions, such agith the Wegner amplitudes

* * * —_p! (1* =2, 1wle
(u) P (1“ d — 2: ; ) (194) CO(uiu ld) Pi(u )au[zu(uas)z(p(uls) u] (202)
is a weak-coupling expansion that is known to be divergengPove and belowT.. On the other hand, Eq$199 and
for anyu#0. We are primarily interested in the approach of (200 can be inverted to expresgl .) in powers ofug as
the effective couplingu(l.) to the fixed pointu(l.)
—u(0)=u* corresponding to the critical IimT—T;, rg
—Tge—0, &x—, orl;t=pué,. —o at fixed bare coupling
ug. Near the fixed point, the amplitude functions are regular
with a convergent expansion in integer powersuefu*.  The coefficients,,, are the same above and beldw. Us-
This yleldS a fundamenta”y different expansion |ng the expansiom194) with u replaced bw(' i) and sub-

. stituting Eq. (203 yields P.(u(l.)) in the form of the
Po(u(l))=P.(u*)+PL(u")[u(l.)—u*] weak-coupling expansion
+O([u(l2)—u*1?), (195

u(li>=mE:l AUy (203

P.(u(l. ))—Z £(P) um (204)

whereu(l-) can be further expanded according to the Weg-
ner expansion6]
The expansions of the tyg201) and(204) are crucial ingre-

u(l)=u*+a,l¢+0(1%*) (196 dients of the order-dependent mapping and variational ap-
. proach of previous work46,48—-55 in the context of thep*
with the Wegner exponeit] theory. Corresponding divergent weak-coupling and conver-
gent strong-coupling expansions have been known for a long
0= éz iﬂ(u &) yey (197) time in the context of the anharmonic oscillafdB8—55,61—
v du o 63]. A basic problem is to derivéapproximate expressions
) ) for the strong-coupling coefficients of E(R0J) in terms of
and the Wegner correction amplitufiel] the weak-coupling coefficients of ER04).
An important ingredient in the systematic solution of this
= (U—u*)ex fU* 1 . w du’ problem is the introduction of a variational parameter, such
u lu'—u* Buu’e) as a shifted reference frequenQyin the case of the anhar-

(199 monic oscillatof48—54,62 or a shifted scale parametiérin
the case of thep* theory [46,54,53 corresponding to a
Unlike the weak-coupling expansidi94) in powers ofu, shifted Gaussian part of the* Hamiltonian. This permits
the expansion of Eqg195—(199 constitutes a convergent one to set up a strong-coupling expansion of the type of Eq.
expansion ofP.(u(l.)) in integer powers of % . (Addi- (201) by reexpanding the weak-coupling expansi@d4),
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where the coefficients of the strong-coupling expansion can In the following we extend these calculations up to four-
be calculated from the coefficients of the weak-coupling exdoop order. Up td. =4, the expression on the right-hand side
pansion. For the case of th¢ theory, the coefficients of the (rhs) of Eq. (206) reads explicitly

strong-coupling expansion depend krand on the Wegner L—m

exponentw. TheK dependence can be absorbed by express- 2 f(P) a mslw)(_ 1)l
ing the strong-coupling coefficients in terms of the scaled m=0
bare coupling constant f(P)
_ *+1 ~ ~
. Ug =1+ ?p(p+l)(p+2)us+p(2p—1)f(f2)u§
UB: 2ele” (203
K o) 4 £ (P
+(3p—2)fY uB+f 4Ug (208

In an exact theory with a strong-coupling expansion up to

infinite order, the expanded quantity must be independent odith

the dummy paramete and the appearance &fin the ex- p=1+¢lw. (209
pansion parameters must sum up to a vanishing net effect. In

a truncated series up to a finite ordetowever, there exists In order to avoid repetitions of formulas of the ty(®98 we
a spurious dependence Bror onug. Specifically, the lead- shall use the abbreviation

ing term P_.(u*) of the strong-coupling expansig201) is . X, ) .
expressed in terms of the weak-coupling coefficiefﬁ_f% of D, ({Xm} Ug)=Xo+ Ep(p-i— L(p+2)ugtp(2p— l)xzué
Eqg. (204) up to orderL as[46,54,55

L L-—m (_mS/(D> ]:| +(3p—2)X3ag+X4aé (210)
. -1)
Equation(210 can be used for the various amplitude func-

(206)  tions simply by replacing, with the corresponding weak-
coupling coefficients.

An analogous formula was derived in the context of the an-

harmonic oscillatof50]. An optimal order-dependent value

K. is then determined by a variational procedure with re-

spect toug to minimize the error of the truncated strong-  In a first step, the Wegner exponentitself must be de-

coupling series. In the following, the corresponding termined by the variational procedufg5] up to four-loop

(L-dependentoptimal value ofuB will be denoted by order. Smceu(l ) approaches the finite fixed-point valué
in the limit ug—~ we have

(207 d u(l.)
lim —| =—1. (211
dinug uB

B. Wegner exponentw

r=_8_
B 2elw”
KL

This approach has been used recently to calculate critical o
exponent$38,54). Very recently, this approach has been ap-From Eq.(199 and from theZ factors of Ref[35] we obtain
plied also to calculate universal amplitude rati68] on the  the weak-coupling expansions up to four-loop order in three

basis of three-loop resul{86]. dimensions
|
u(l.) — 5 , 9178 26000 —
—— =1-4(n+8)ug+8[2n?+41In+170]uz— 8| 8n3+29M + 3N+ —3—+32(3)(5n+22) |ug+| 256/(5)
Ug
44956
X (2n%+55n+186) + 128/(3)(203%+ 250t + 7260 + 256n* + n3+27385%+1 862 117
12081440 6474
3 ~ 5 (n+8)(5n+22 ug+0(ug) (212
[
and with the coefficients
_ d_ ud.) ¢ fo=0, (214
W,(ug)= = 2, T+ O(up), 0
dln UB UB m=0
(213 f,=—4(n+8), (215
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f,=16(n%+25n+ 106), (216)
9178
f3=—8[32g(3)(5n+22)+8n3+299r12+Tn
. 2600 o1
—3 | (217
¢ _1d 16t 4063 3, 91048 2, 681352 . 1601680
4= 3 "o " 3 " 3
+640/(5)(2n%+55n+ 186) + 32/(3)(163n+ 200
1674
+5852 — —(n+8)(5n+22)|. (218

Rewriting the function(213 in the form of aK- and

w-dependent strong-coupling expansion and using Egs.

(206), and (208 we obtain in the limitug— o,

Wi() = 0pty, [ D4({fm},Ug)]. (219
For a givenp, the optimal valueﬁg(p) is determined by the
condition

o(m) (220

Me =i

for an extremum of the rhs of E¢219) with respect talg,
ie.,

f, ..
0=5Plp+1)(p+2)+2p(2p—1)f5ug

+3(3p—2)f5(Up)*+4f4(UF)*. (221)
Substituting the solutiorﬁxg(p) of EqQ. (220 into the rhs of
Eqg. (219 and requiring the conditiof211) in the form
W, ()= —1 yields

®,4({frh,Us(p))=—1. (222
Equations(220 and (222 determinep and w=(p—1)"1
implicitly. They can be solved numerically for arbitrary
For example, fon=0,1,2,3 we find

p=2.38679, w=0.721090 (n=0), (223
p=237807, w=0.725653 (n=1), (224
p=236772, w=0.731144 (n=2), (225
p=2.35629, w=0.737305 (n=3). (226

PHYSICAL REVIEW E67, 056115 (2003

C. Universal amplitude ratios A*/A~
and P=a (A*/AT—-1)

We rewrite Eq.(188) for d=3 in the form[35]

A* “

A_*_

2vP%
(3/2)—2vP%

N F_(u")—F.(u")

4vB(U*)+aF _(u*)]

(227)

Sincea, v, P%, andB(u*) are already known with high
accuracy| 36], we consider only a variational calculation of
F..(u*) on the basis of our four-loop results.

The weak-coupling expansion Bf_(u) has been given in
Egs. (145 and(151)—(155. Using Eq.(212), we obtain the
weak-coupling expansion in terms of :

4
Ul F )= X fug,

(228
with the coefficients up to four-loop order,
1
£ =5, (229
f=—4, (230
fF=8(n+26), (231
&)= —4803n+22) +cp5, (232
) 3 ) 422720 1730560
fi/=—12&°+611h“+ 3 n-+ 3

+10245n+22){(3)—12(N+8)Cp3+Cry.
(233
Application of the variational strong-coupling expansion

yields

u*F_(u*) =opt, [ D4({f},Ug)]. (234

For 0<n=53.5 the functiond ,({f{"},Ug) is convex with
only one minimum in the range < ug<oo, thus the opti-
mal value Gg in this range is uniquely determined by

a0 ,({f{V,u8)/9U5=0, and the fixed-point value
u*F_(u*) is given by
UtF(u*)=d,({f}.u5) (235)
=0.372144 forn=2. (236

Our four-loop variational result fou*F_(u*) in the range
0=n=10 is compared in Fig. 2 with the previous three-loop
variational result{55] as well as with very recent Borel-
resummed values based on our four-loop resultsnfer2
[47] and with earlier Borel-resummed five-loop results for

These values are close to those obtained in three-loop order=1 [35]. We see that the four-loop variational result agrees

[55]. In the following we considep as a known parameter.

with the Borel-resummed values within their error bars and
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constitutes a significant improvement over the three-loop«*F_(u*) ; ; ;
variational result. SincE _(u*) entersA*/A™ in the form of
aF _(u*), however, this improvement has only a small ef-
fect onAT/A™.

The same procedure can be applied to the difference
u[F_(u)—F,(u)]. It has the weak-coupling expansion up 041 f
to four-loop order

0.43 |

0.39

4
Ul )LF- ()= F ()] = 3 1P,
(237)

0.37

where the coefficients(>") are obtained from Eqg145—
(155 and (212 as

0.35
0

1 n
f(AF) =5, (239

FIG. 2. Four-loop variational resulsolid line) for the amplitude
function u*F* as a function ofn. The dashed line represents the
f(lAF): n—4, (239 three-loop variational result of Ref55]. Also shown are the four-
loop Borel-resummation result for=2 (open circle, Refl47]) and
f(zAF): 22— 20n+ 208, (240) Egg];fve—loop Borel-resummation result far=1 (open circle, Ref.
f{*F=168n2—336n— 10560+ cr3—Ci5,  (241)  which is not sensitive to the precise value @f This is
particularly important for the case=2 because of the un-
21680 , 250648 1730560 resolved discrepancy between the numeiji¢d] and experi-
3 n<+ 3 n+ 3 mental[9,10] values ofa.
Our variational calculation d? starts from Eq(227) with
— 256((3)(5n%—2n+88)+ 12(n+8)(Cfs— Cry) [9,100 a«=-0.01056 and v=(2—a)/3. For B(u*),
P, (u*), andu* we use the Borel-resummed values of Ref.
+Crs—Cpy. (242  [35]. F_(u*) and F_(u*)—F,(u*) are taken from Egs.
(236) and(244). The result according to E@245) is

f{AF) =32n%—504n°—

For 0<n=2.75, the functionb,({f*},ug) is convex with
only one minimum in the range- o <Ug<o, thus ﬁ’g is
uniquely determined by® ,({f%P},0%)/905=0. For 2.75  This is to be compared with the numerical value for ¥
<n=23.66, one of the two turning points has to be choserfodel[11]
for reasons of continuity, and for 23.86 <, the function
@ ,({f*P)},Ug) has a global maximum that determings.

In all cases, the fixed-point valug[F_(u*)—F.(u*)] is  and with the experimental value fdHe [10,65,
given by

Pua=4.344. (246

ny:43i 02, (247}

Peyp=4.19+0.25. (248

U F_(u*) = F . (u*)]=D,({fP} up) (243 Our variational result Eq(246) is in agreement with the
numerical estimate Eq(247 and with the experimental
=0.460535 forn=2. (244  value Eq.(248) within the error bars. An estimate of error

bars for the variational result is planned for future research.

A comparison analogous to that in Fig. 2 is shown in Fig. 3, Finally we note that new Borel resummationshave

There is only a small difference between the four-loop and?€€n Performed in a separate papéf] on the basis of the
three-loop variational results far[F _(u*)—F , (u*)]. Ac- four-loop series of the present paper. For2, the Borel-

cording to Eq.(227) this implies only a small difference "€Summed valug47]

between the corresponding value o /A™. _

The structure of Eq(227) shows that there exists a close Prore=4.43320.077 (249
correlation between the value afand of 1I-A*/A~. Ithas  has smaller error bars than thoseRyfy and P, and than
therefore been proposg@4] to study the universal combi- that of the previous Borel-resummed value based on the
nation three-loop serie$37]. Our variational result, Eq(246), is

slightly outside the error bar of the Borel-resummed value,
P=a Y1-A"/A"), (245  Eq.(249.
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D. Universal ratio R} 0.55

For the purpose of calculatinag, Eq. (186), in three  wF_-F*
dimensions, we first define the function

R (U)= (47) 1(0)?P.. ()2 4v(W)B(u) + a(u)F- (u)], |

(250
whereP ,(u)=P,(1,u,3) and 045 |
v(u)=[2—¢(u)] ™4, (251
a(u)=2-3v(u). (252 04r

Using the four-loop expansions of Eq456)—(161), (145—

(150), and ofZ,(u) andB(u) [35] we get 035 | : . : )
47R, (u) 1 371 7\, "
n =gt (n+2)u+(n+2) InE_ 54 TN FIG. 3. Four-loop variational resulsolid line) for the difference

of the amplitude functionsi*(F* —F7) as a function ofn. The
Lon2+ 7549 244n+1736 dashed line represents the three-loop variational result of{ RS
2_7"'+ 27 + 9 Also shown are the four-loop Borel-resummation result fiet 2

(open circle, Ref[47]) and the five-loop Borel-resummation result

+(n+2)

3 ’ ] for n=1 (open circle, Ref[35]).
XInZ+2(n+8) 6£(3)+ m=+ 16 Li,
1 R/ =0.366, n=2, (258
x| — 5) ud+0(u?). (253
Together with Eq.(212), this yields the weak-coupling ex- R/ =0.441, n=3. (259
pansion in powers ofig,
3 o o They are close to earlier Borel-resummed values in Table IV
47R, (u(l,))= ZO fRul+0o(ud) (254  of Ref.[22].
m= ~
Forn=67, the functionb4({f(f31},u3) has a maximum, a
n o 2099 turning point, and a minimum. For reasons of continuity, the
=g tn(n+2)ug—n(n+2)| 5+ —- optimal valueuy is uniquely determined by the maximum,
since the resulting value cﬂg correctly approaches the ex-
o Inf WRn(n+2)| — 20+ 4333n actly known limitn— o, where[5,42]
3B 27
Jr56141Jr 10(h+584I 3+2 g . . . : , ; , .
27 g INztan+® ®) ot
2 - IV [ I
X m°+6¢(3)+16 Li, —3/(|Us ]
+0(ug). (255 i
a4 .
For u(l,)—u* we obtainR, (u*)=(R;)>. Application of i
the variational strong-coupling expansion yields
2 .
(R{)3=(4m) topt [P,({fF}.up)]. (256 !
R 0 . 1 . L . L . 1 .
For 0<n<66 the function<D4({f{fm}},uB) has one turning 0 2 o ® 5 10
F_)Oim that determines . The numerical values of our varia- FIG. 4. Four-loop variational resulsolid line) for the universal
tional results fom=1,2,3 are quantity R;)* defined by Eq(9) as a function ofi. For largen, the
N solid line approaches the dashed linem)4'n representing the
R, =0.273, n=1, (257 exact largen limit of (RY)3.
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:4i for d=3 (261) APPENDIX A: ANALYTIC DEFINITION OF CONSTANTS
a

Here we present the analytic definition and numerical val-
with A4 given by EQ.(113. In Fig. 4 the four-loop varia- ues of the following constants appearing in our four-loop

tional result for R;)3 is plotted for 0=n=<100. results:
|
J |3+| 3tx X I3+X+ X I2+X =0.0217375763 Al
m” Mx 2|3 T2 || ! A
X In(1+x
\/—f N ( )
‘/1+X? l+x X
—2[ +L|2(1 V2) 4+ Lin(242—2) + Lio(— v2) +In(y2— 1)In(4— 2[)} 0.973771427, (A2)
—JW/Z—dG In| t o In(tan#)=0.516 197 144 A3
= | _.coso—sing| "\ A5 n(tanf)=0. : (A3)
(arctarx
Cs= f =0.129 107 460, (A%)
2 1/4+ x?
2571 e 14 (p+r r\k dpdr
J0 = - f In (p )arctang arctani P (A5)
Togktllo 1+ (p-r)? (1+p?)™(1+r2)"

The numerical values aJ$, are J%=0.219 999 124,){°)=0.068 113 807 4,35} = 0.048 385 460 5,)5")= 0.019 466 092 0,
Jf1=0.107 718 159,381 =0.019 475 195 7 3§} = 0.007 985 463 86,)5")= 0.005 045 077 68. We define the following func-
tions:

f1(p,r,@)=+p2+r2+2prcose, (AB)
f,(p,r,@)=+\p>+r2+2prcose+4 sirfe, (A7)
fa(pre)= 8+2p24rrf;$:,2(f))r cosg’ (A9
f4(p,r,@)=+/1—2pr cose+ p?r?, (A9)
fs(p,r,@)=(1+pd)r2+(1+r?)p+2pr(1+p?)(1+r?)cose, (A10)
fo(p,r,@)=2+r2+p2 (A11)

In the following we drop the arguments of these functions and use the abbreviation

fzf dpf drfwdcpsincp (A12)
0 0 0

__f (arctanf )2
C w2 B+ pda+rd)

for the integrals

=0.004 969 806 804, (A13)
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-l

Vi+2pr(1+r2)cose+r3(2+pZ+r?)\?
arctan

2

arctan— =0.126 7050385, (A14)

(1+p?)~t

=0.503 109 256,

A= [
377_2

p 1+2pr(1+r?)cose+r2(2+p%+r?)
(A15)
r2 fa fs
== j —_— arctan_| arctan—=0.107 0299, (A16)
w2 ff,fs(1412) f1 fe
arctanf 5
§=— f 5-=0.0430327476, (A17)
fof (1+p2)(1+r?)
(arctanf ) arctarip/2)
- f —~0.002 366 233 043, (A18)
fo(1+D)(1+pH2A(1+1?)
1 r arctanf
== f . =0.009399 72817, (A19)
fo(1+f5)(1+p?)2(1+r2)
arctanjf1/2) fg
3=— f rctan_ = 0.052 030 993 8, (A20)
f f5(1+fl)2 fe
(2+13) f, fq
:__f —s arctan-— | arctan— = — 0.496 521 821, (A21)
fa(1+f2) f1 2
arctarp 1 fg
Sz_f 5 . - arctan_ = —0.051 652 015 8, (A22)
m) f5(1+f3)\ p p fe
arctarp 1 fy
Dez—f > arctan— = —0.272 886 3, (A23)
m?) fif 1+ p® p? fi
2 [ (arctanfs)?
1=— | —5 -, =0.077537256112, (A24)
w2 f5(1+p9)
(arctanf 3)?
=—f =0.014449573 28, (A25)
f2(1+p?)?
(arctanf3)2
=— f =0.005958 062 001, (A26)
f2(1+p 2)3
1 r arctanfg
== f - 5-=0.124104 75, (A27)
fo(1+f)(1+r7)
2 1 fi fg
Es=— f o arctan—arctanf— 0.350599 930, (A28)
5 6
2 r2 in fs
E4=—2 f arctan— | arctan> = 0.491 503 45, (A29)
72 fif.fs f, fe
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arctarf
== f s _0.249720955, (A30)

f1f,(1+p?)

Vi+2pr(1+r2)cose+r3(2+pZ+r?)\? r2(1+p?1!

arctan

=0.853709 186,

Eo=s |
677_2

p 1+2pr(1+r?)cose+r2(2+p%+r?)
(A31)
r (arctanfs) arctarip/2
:_f ( 3 p/2) —0.007 861 658 73, (A32)
fo(1+f2)(1+p?)(1+r?)
r arctanfy
i f ~0.0213809000, (A33)
fo(1+f2)(1+p?)(1+r?)
arctamf1/2) fg
3=— f a tanf— 0.096 345 8009, (A34)
6
2 arctanp fg
Fa=— f — arctan—>=0.177 2714217, (A35)
72 ) f5(1+f)p fe
2 arctanp fu
e=— f —Zarctanf— 0.874 8194, (A36)
ar f1f4(1+f1)p 1
F 2 f ! t L t & 0.390967 182, (A37)
= — — arcan— arcan———
) e fy 2
47)% 1
G1=( ) jd3pj d3qJ d3rfd3s
(2m)*? (14+p?)(1+g%)(1+r?)(1+5?)
1
X . . . 5 5-=0.0007653, (A38)
(1+[p+al>)(L+[g+r[*)(1+[r+8°)(1+[s+p|*)(1+|p+q+r+5?)
4)* 29721 257 2(1+|p+g+r+g?) 1t
e R P PUoees e e e B
(2m) (1+[p+qgl>)(L+[g+r[*)(1+]|r+9°)(1+]|s+p|*)
A7)? p2q % p+r+s 3 q+r+g 2 1
Gi= ( W)lzj d3 fdsqf d3r jds P 5|2 9 5|2 2—1>=—0.1695, (A40)
(2m) r2s?(1+[p—ql®)(1+|g+r[?) \ 1+|q+s
(arctarf3)?
- f —0.000913 765 362, (A41)
2(L+f2)(1+p?)(1+r?)
fg|2
2= J 5| arctan—| =0.058 898 731410, (A42)
1 arctarf,
_t f ° _ —=0.0171011875, (A43)
fifo(1+f)(1+p9)(1+r9)
f, fa fs
= f — arctan-— | arctan— = — 0.138 602 907 09, (A44)
w2 ) f,f5(1+12) f1 fe
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2

f
arctan—| =—0.4182192620. (A45)

f1

Hs=— 32 f %
T f2(1+17)
Several of the integralfA13)—(A45) are combined to define the quantities
Xa10= 72E,+ 48E 5+ 32E ,+ 96E 5+ 8Eg, (A46)
Xap0= 24E ¢+ 12A,+ 16A;+ 48A,+ 1447+ 216F , + 144F 3+ 96F 4+ 32F 5+ 24F ¢, (A47)
X 430= 24A3+ 162D ,+ 108D 3+ 18D 4+ 24D s+ 8D g+ 18E ¢+ 18G,+ 4G5+ 36H,+ 72H3+ 24H,,+ 4Hs,  (A48)

which are used in Eqg43)—(52). For x>0, Liy(x) satisfies the relations
Finally we give the definition of several functions whose

numerical values are listed in the standard literature. The ) ) 1\ 5
function polylogf,x) is defined as Lip(1=x)+Lip| 1=~ J+3(Inx)7=0,  (AS4)
polylog(n,x)= >, — (A49) 1) 1 w2
k=0 K" Lio(=X)+Lio| =~ |+ 5(IN0)?+==0.  (ASH)

It is also given recursively by

xpolylog(n—1t)
polylog(n,x)= f — it (A50) APPENDIX B: CORRELATION LENGTH IN FOUR-LOOP
0 t ORDER
with In this appendix we sketch the derivation of E¢fl) and
polylog(1x)= —In(1—x). (A51) (68) and present the analytic four-loop expression for the

amplitude functionQ, (1,u,3). Theself-energy abové,

Equations(A49)—(A51) also yield definitions for the diloga-

rithmic function EO(q’rO’UO):mE:l (—up) ™= (q,ry), (B1)

. oIn(1—1t)
L|2(x)EponIog(2,x)=f n dt (A52)
X
) i in Eq. (54) is the sum of all one-particle irreducibte-loop
and the Riemang function diagrams with twoamputateylexternal legs. In Appendix B
1 of Ref.[36] the diagrammatic contributions &, are given
Z(n)=polylog(n,1)= 2 iy (A53) in thg thrge—loop approximation. The diagrammatic four-loop
k=0 k" contributions are given by

(g, o) = 256(n+2)4[§ 42 ﬁ + %) + C&D ]

3é+2@©+@]+1536<n+2>3{%+%+g]

@+®-] (82)

+512(n +2)3

+512(n 4 2)%(n +8)

+ 512(n 4+ 2)(n? + 6n + 20) + 1024(n + 2)(5n + 22)
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For q=0, the lines denote the standard propagatge-(p?) ~* aboveT.. From Eq.(B2) we get&284’/(9q2|qzo in order to
derive ¢, (rq,uUq,d) up to four-loop order. We inverf, (rq,Uq,d), which yields

ro(é4 ,uo,d>:§12m§0 al g, dyug. (B3)

The four-loop coefficient of EqB3) can be obtained from E@B2),
e ll 8-0(-&) L] e ((0-2) 6]

3@ -@} <1————){1024(n+2 (5n + 22) @ @]
+ 3072(n + 2)? @ + 512(n + 2)(n? + 6n + 20) 4@—}} ) (B4)
g=0

The masses in the propagators of H84) are £, rather tharr,. In evaluating Eq(B4) for d— 3, the contributions

—@ and (BS)

are somewhat problematic as they are plagued by pole terfds- 3) 1. These poles, which cancel each other at the end of
the calculation, yield finite contributions fat— 3 that can easily be overlooked. Therefore we explicitly presendth8
result of the following combinations of diagrams:

3072(n + 2)° l«@» 3~ @]

= (n+2) §+ {4 3m? +81n3-|-401n—

4
3\? . .
- 9<lnz) ~18[L12(—}-1)+L12(*§)]}y (B6)
2 9 o
1024(n + 2) !‘@*5&56’ ”38_4""@»}
q=0
2(n +2)? 5 3 17 B7)
S & (371 24 -—3).

Together with the previous two-lodB4] and three-loop36] calculations, this leads to the four-loop results for the functions
r(£. ,Ug)>0, rh(£- ,Ug) <0, andh(£, ,ug,3), with the new coefficients Eqg61) and (69).

From the four-loop expression 8(§+ ,Ug,3), Eq.(65), we obtain the amplitude functio@ , (&, ,u,3) according to Eq.
(117). At ué, =1 it has the expansion

Q.(1u3=1+ m}i‘,o ComuU™ 2+ 32(n+ 2)In(967ru)mzio Comu™ 2+ 0(u%,uInu) (B8)

with
Coo=1, (B9)
Co1=4(n+14), (B10)
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Coo=4(4n%+ 69 +458), (B11)
16
Co=(N+2)| 68+ +16m2[C(n)—S,(1.n)], (B12)

16 4 -
Co1=27(N+2) +4(43n+182)Inz +64m*(n+ 14 C(n) ~SH(1n)],

1
24+ 3905 288(n+8)Li2( - —) —24(n+8) m?

4
(B13)
B 32 (1) o (D)t 40 , (1 [ 1) (In2)?
Co2=32(n+2) 3(5n+22) 4371—23,1+4J351+3E,—E; +4E] +1—60+ 7 Li, 3 —Li, 373
17n+178 ! | > 2+L' ! +Li ! +32(n?+6n+20 772 1372+ 238+ 954 +2
~57( )| 5| Ing 2| =3+l 3 (n"+6n+20)c,— o= ( 9+yg
5 1
><(797n+1542)In§—2—7(60nz+8691+3634)L|2 -3 +647%(4n%+69n+458[C(n)—S,(1,n)]
+3(n2+50n+244)£(3)+ ! 944n?+ 12 03+ 33 796 4+4001 2+3489713 +950509 B14
(n L)+ 57 8N+ 124" 5832 " 2016 (814
|
The logarithmic terms in EqB8) arise fromry.(ug,¢), EQ. 3 uz
(20, for 1=2 in the limite— 1. TEOrg,ug)=— =15 "2+ n(n+2) ——r; =32
167 (4m)3
APPENDIX C: BARE SPECIFIC HEAT ABOVE n 3 r,
AND BELOW T, % E_3 4|nZ+2|n 1
The singular parC; (t) and the cutoff-independent term (24u0)*
B., of the specific heat in three dimensions are determined g 2
o l -2
by the bare Gibbs free enerdy. (r},uo) according to + 16n(n+2)(4w) { (n+8)
CE(t)+Bg = — a2l @91/ uy), C1
s (D +Ber=—al %o, o) € —(n+2) [+0(ug,ugInug) (C3
2
POy, ug) =——F. (1§, Uo), (€2
(aro)
wherea, is defined in Eq(13). Above T, we obtain from
Eq. (73 for r;>0. Below T, we obtain from Eq(92)

2

1 1 8
NGRS o)== go=— 7= (=2ry)” w2y, 0 (n+2)( 2ry) - 3(1In+7)-216c;,-8(n—1)c,

_ 1\ —3/2
8ug 472 (477)3( 2ro)

w? . 1
+7(3n2+11n—5)—21(n—1) 2Li, -3 +(In3)?

8 1
—8(4n+17)In3+ §(31n+95)|n 2+54 Li2<§)

+32(n+2) ug
(—2r)? (4m)*

16(n+2)l ~2M 6+2(n—1)In3 772( 8)—(n+2)l ~ 20
+ n+ n + n— no— n(n+ n+ n
(24u)? (24u)?

+0(ud,ugin ug) (C4)

for ry<<0. The three-loop parts of EqEC3) and (C4) agree with theslightly different form of the results of Ref[36] [see
our Egs.(A54) and(A55)]. In order to absorb the logarithmig, dependence of Eq$C3) and (C4), we express, in terms
of the correlation lengthg.. according to Eqs(58) and(66). This leads to the bare vertex functions up to four-loop order
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4

D@ (&2 ,u0) u)= ¢, ug,3)=£.1 2 alugé.)™ 1+O(uged) (CH
m=0
with the coefficients
a®9=o0, (C6)
n
a(f'lo):—ﬁ, (C7
n(n+2)
(2,00
aZl=— - c8
+2 32772 ( )
n(n+2) 160 3
20_ _ it
a e n-+ 57 +4Inz}, (C9
2o N+2)[ 224 440 4m’ 3 64 1
ay, :—W 2n +?n+?—T(n+8)+—(19n 1O)In———(n+8)L|2 3 (C10
aboveT;, and
1
a20= — =3 (C11)
1
a0— — (C12
4’
20_ 3
ax’, :—2(n+2), (C13
8
20— ooz 2038 8420 o e —aun- 2, - M+ nay2] - 2160+ ™ (anzt 11—
-3 ( 7T)3 27 n 27 (n )CZ 1(n ) |2 3 (n ) 1 2( n )
(1) 8
+54 Li, 3 +§(31n+95)ln2—8(4n+17)ln3 , (C19
4 1
‘,24")—(4 )4{27(567n3+1648h2+731541+84920 12(n—1)(n+2)| 4c,+42 Li, )+21(In3) —1296n+2)c,
ar

2

T 1 16
+ —(12913+ 106h?%+ 250t +1778 + = (12812+ 152N+ 2534 Li 2( §) + 2—7(493ﬁ2+ 209, +2218In2

16
— 2—7(584n2+ 11351+ 868)In3 (C15

below T.. The coefficients up to three-loop orden€ 3) agree with theslightly different form of the coefficients of Ref.
[36] [see our Eqs(A54) and(A55)]. For the special case=1, Eqs.(C11)—(C14) agree with the numerical values aﬁir,)n in
Table 2 of Ref[33].

Substituting Eqs(C5)—(C15) into the right-hand side of Eq112) for d=3, and using Eq(116) at ¢£. =~ * for d=3 we
obtain the power series fét. (1,u,3), Eq.(145), up to four-loop order. The resulting coefficierts,, agree with those given
in Egs.(146)—(155.
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APPENDIX D: AMPLITUDE FUNCTIONS @9 AND {9
Equations(144), (95)—(105 , and (138 lead to

0014 3= — 2n— _4
f(1,u,3) n—n(n+2)u 27n(n+2)

3 54n2+ 2151 — 938+ (604n

8
27n+110+108 Ing) us— 2—7n(n+ 2)

+4184)In£—1—24(n+8) u3+O(u4)—£Q (1,u,3)%A(u,1)
3 gt i

3

1
w2+ 12Li2( — —) } —9(n+8)m?In(967u)

(B1)

2492 3256 4
16024+ —n+ —— + 16(n+2)|n—

3 2
>7 57 216n°+ 200+ 6826+ 7348

., 8
27"

f1O(1u,3)=n+4n(n+2)u+n

4 1
+8(n+2)(89n+550)|n§—(n+2)(n+8) u+0o(ut+ §Q+(1,u,3)A(u,l),

1
1572+ 288L|2( - §)

(D2)

n112247 3708 ST 1
Sz Nt o7+ (n—=1)In u-7

, 1909 , 2309 7676 (2416,
A g g Nt 7

27 Nt o7

14656 1187 1376 , 17504 3900
-| =7 n+ 57 N+ —7—|IN2—(80n+352{(3) +84(n—1)

1 1
- 5(2212— 122n—602) 7%+ §(12£n2+ 128+ 1400 Li, 3

+(In3)? +864c,

(1
X 2LI2(§

+32(n—1)c,|u?—

+ 2 — 5|5 n3+
4n* 3 In2

TV R Y 27

3968 5035 44 256.( 1) 2752
I2

N
1536L|2( - 5)

4

1856 568 1 P
—1272-——--21 12|n2+—|n3+16£{2u2 +(In3) }—?+86§(3)+805(5)+64c2 n

27 3

[23 4173 1052 119360 67 504

1 1
2__ N 2 .
st a3 5 In2+— In3+7760L|2( 3)+1032§(3)+117E{(In3) +2L|2(3”

+1728&, + 448,

62 4+220Q(5) [In+
B @(5)n

— ]
57 + 57 In 57 In2+ 9 e+ 3 Li,

727721 263392 3 624128 9632 , 22400_( 1)
3

(1
—1344{(In 3)2+2L|2(§

176 8
) } — g 7'+ 13824, ~ 51X, +3256/(3) + 744Q(5) ~ zn(n+2)

(n+8)mIn(4mu)— (4m)*al)  ud+0(u%) - %Q_(l,u,:%)zA(u,l) , (D3)

with a") given in Eq.(105), and

1810 256 (1| 2752 4832
uts 27 "3 H2| T3ty e 7N

10 ,| , (13772 25856I 3 26080I ) 442 320¢(3 2560L 1 _ad oL 1
— 7N+ 27—27n+27n—7w+ 0(3)— 2| =3 I2| 3

3448 ( 1
3

2n’— —n+—=+8(n—1)In3

n 247 586
27 27

—16n3+ (

+(In3)?

50565 9056 1114 (1
—32c, | n— 240+ In2— In3— w2+ 84 (In3)%+2Li, 3/~

—Li,| — =

3 +1408(3)

27 27 9

11008 12416 8009 o1
——1In2— In3— —367%—1024Lj, ~3

i+ 9 9 18

—864c,+32C,

> +24§(3))n3—64n4
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515264I ) 401344I 2 392458 8108 300, 840 (In 3124 2L 1\151200 1
27 MET T o7 MeT T T g T 2 (In3)%+ 213/ 73 "2l T3
028(3) 4 8 12801(5) | 121 253241&‘1 ) 1465216I a 2998732 247472 1
&(3)+8m &(5)n 27 " 27 " 27 3 U~ 3
52460 (1 416 5481 052
—— 7 2-1376@(3)—3520Q(5)— 4872 (In 3)%+2Li, 3 —8640.’:1—1856:24-?774 n-——-—
372416({ ) 1498624 s 283616 1 5719 (In 3124 2L 1\] 88040 , 48197(3
+ 27 nZzZ— 27 n 3 |_|2 3 + (n ) + |2 § - 9 m — Z( )
1056 1 1
+?w —11904Q(5)—58752,+ 2176, + = (417)4ar4 u3+0(u4)—ZQ,(l,u,s)A(u,l). (D4)

It is understood that in the last terms(QiA and~Q_A of B o B(u’) o 20U —e
Egs. (D1)—(D4), the functions Q.(1,u,3) and A(u,l) A(u*,u)=4f du’—/exp( f du”—").
should be inserted in theperturbativefour-loop form. 0 Bu(U’,e) u Bu(u”,e)

We see thaf > and {19 contain logarithmic terms due (E4)
to the logarithmic terms of the functioii. (1,u,3) as given  gjng
by Egs.(B8), (124), and(131). Furthermoref®? and {9
contain logarithmic terms-ulnu arising from those parts
of the four-loop diagrams of typB in Fig. 1 that yield the
d=3 pole term, Eq(28). Since such terms are not tempera-
ture dependent they are not presentfih®, therefore the we obtain from Eq(E3) the leading critical behavior, apart
functionsf+9(1,u,3)— 1. (1,u,3)A(u,1) are free of loga- from Wegner corrections,
rithms, as seen explicitly in Eq$D2) and (D4).

. _ o
24 (u )—e——;, (E5)

Au(l i),U)="A(u*,u)—4£B(u*)6—2|;alv+o(|§—a/,,),

APPENDIX E: ASYMPTOTIC CRITICAL BEHAVIOR (E6)

In order to evaluate the expression for the specific heat, 5
Egs. (134 and (135, asymptotically fl.=&.*—0), we whereC is given by Eq.(180). This leads to the expression

need to determine the asymptotic behavior of for B;: B, Eq. (189, for a<0.
(1+) 2Z.(u") For >0, the quantityA diverges foru(l.)—u*. In or-
ull= u)—e . )
AQu(l.),u)=Au(+),s) f r—)d w (g1 derto extract the divergent part, we rewrite E§3) as
(u',e

~ u(ls). ~
for u(l.)—u*. Substituting the integral representati@®1] A(U,(|i),u)=4f0 f(u’,u)G(u",u)du’, (E7)

B(U) v 20U e with
A 4| du’ du/——
(We)= f Bu(U’ s)exp( f ! ﬂu(u",s))

(E2) T(u’,u)=B(u’)exp< ju, 2§r(; )(—"2§;(u )du”),
u J(u”,
into Eq. (E1), we obtain ° (E8)
5 W B(U) 1 v a
A(u(ls),u)y=4 du——— IO e
) Bulu' ) ey ﬂu<u',s>exp( ) { vﬁu<u",s>]du )
p( o 2§,(u”)—s> €9
X ex j du'—————|. (EJ
u Bu(u”,e) 0~
=—g(u’,u), (E10

In the following it is necessary to distinguish the cases
2¢,(u*)—e>0 and Z,(u*)—&<0 corresponding to the
casesa<0 anda>0, respectively. (u u)———exp(

For <0, the quantityA has a finite limit,

u’ o
Fle
u vBy(U”,e)
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Partial integration of Eq(E7) yields The first term on the right-hand side of H&17) yields
~ v uls) 2¢,(u")—e | 1 d7 0
A(U(|+),U)——4;B(U(|+))exl{ Ju mdu ) 98 ex;{ fuzngI_)H L B(u(l"))
R B RN Ry , di”\ |ar’
_4J'0 {Ef(u ,u)lg(u ,mdu’, (E12 % exp( ﬂ (Zgr_g)lT) I_’]
where we have used =p %q.(Lu(l.),d)"2r?
lim f(u’,u) g(u’,u)=0. (E13 0
oo x{ ["Bwary
1

The latter property follows from the fact that

T(u’,u)g(u’,u) is proportional to "

I dl”|dl’
eprl (24—8)—]—}, (E18

IH |/

A
—————du’ |, (E14)
u Bu(u’,e) where we have used EL76); thus this term yields only a
regular contribution~1t? to the free energy. Substituting Egs.

which vanishes foru’ =0 because 0f{,(0)=0 and (g17) and(E18) into Eq(133 we obtain Eq(136), with the
Bu(u’,e)=—¢eu'+0(u’?) . From Eq.(E12 we obtain as- singular part

ymptotically for >0,

1
~ _ _ * — —d) £(0,0) - 2
A(u(lt)’u):_4£B(u*)c—2|;a/V+B+O(|L§—a/V) fs (t) Adgt fj (1!u(|i)!d)+zqi(llu(li)ld)
(19 I , I dli"y |dI’
with the finite constant XL B(u(l"))| ex fl+(2§f_8)|7 Tl
§:_4£Ju* ZB(U’)[§r(U’)—§F]+aB(U’) (E19
aJo Bu(U’,e) au’
For|..—0 the integral in Eq(E19 yields
w2 (U")—¢
X| ex —————du" | |du’. (E16 I, | di”\ |dl’
u By(u”e) lim f B(u(l"))| ex f (2gr—s)|— T
.0 0 I, 4 ’
This leads to the expression f8(,=B_,, Eq. (190, for
>0. — gyl
In order to derive the singular part of the free energy, Eq. =-B(u )a' (E20

(183, we formally split the integral in the second term of Eq.
(133 as follows This leads to the asymptotic expression fg(t), Eq.(183).

i\ dre For an appropriate representation of the regular contribution,
|/
ex J(ZG—S) -
I III Ir 1 , 1 -
_EBcrt :gAdM °r
I dl”\ |dl’
ex f(2§r_8)7 -
I | | K di”\ |dl’
x| ex f(zg,—s)l— —, (E2)
1 n

K di”\ [dI’ I’
ex f (2§,—s)7 -
'+ I | it is necessary to distinguish the cases0 anda>0, see
(E1?  Egs.(ED)—(E16) above.

(.
f;dfl’Bw(l'))

1
A(u,s)—4f0 B(u(l"))

0
=§;"fl B(u(l"))

-
+§;df0’8<u<l'>>
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