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Stochastic resonance in vertical-cavity surface-emitting lasers based
on a multiple time-scale analysis
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We provide analytical evidence of stochastic resonance in polarization switching vertical-cavity surface-
emitting lasergVCSELS. We describe the VCSEL by a two-mode stochastic rate equation model and apply a
multiple time-scale analysis. We were able to reduce the dynamical description to a single stochastic differen-
tial equation, which is the starting point of the analytical study of stochastic resonance. We confront our results
with numerical simulations on the original rate equations, validating the use of a multiple time-scale analysis
on stochastic equations as an analytical tool.
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[. INTRODUCTION scale analysiSMTSA), we reduce the set of stochastic equa-
tions to a single stochastic differential equation. Although a
As early as 1981, Benat al.[1,2] and Nicolis and Nic- MTSA is mostly used to simplify deterministic equations
olis [3] introduced the concept of stochastic resonance t928], it has been successfully used in the past to approximate
explain the periodicity of ice ages. Due to the modulation ofStochastic equation29]. Also stochastic averaging, which
the earth’s eccentricity caused by the planetary gravitationdears a close relation to MTSA, has been used to simplify
pull, the flux of sunlight hitting the earth varies about 0.1% Stochastic problemig30]. We present the reduction of the set
over a period of 19 years. The combination of this weak Of Stochastic equations in Sec. II, and we compare the theo-
variation with the yearly(stochastit change of the solar ac- retically derived switching times with numerical simulations

tivity can trigger big climate changes. The phenomenon, tha?f.the full model in .Sec. lll. In Seg. vV A. we__show the
the presence of noise can increase the effect of a Sm(,}{ﬁXlstence of stochastic resonance using a simplified two-state

i ) . ! model introduced by McNamara and Wiesenfeld in Ré&f.
modulation, is called stochastic resonance. Stochastic resp- 1 alternative approadisec. IV B, we analyze the resi-

n:m;e hgs_ kt)ﬁerr_ extensively Stll_J d':d Fm ttrr: € ad'ab‘_it'r:: IIm'&ence time distribution and show stochastic resonance with
[._ land in the Inear response ini]. urth€rmore, 1thas yne yse of an indicator similar to those proposed in Refs.
triggered a thorough investigation of driven time-dependen 7,15,31, before we conclude in Sec. V.

stochastic systems in the full nonadiabatic limit and beyon
the linear response treatmd®t9]. It has since been experi-
mentally observed in systems as diverse as the mechanore-
ceptor in the tail fan of crayfishl0] and the dispersion of We model the polarization behavior of VCSELs with the
particles suspended in time-periodic flow&l]. It nowadays following rate equations that describe the evolution of the
plays an important role in biophysical applicatioi®,13.  carrier density N) and the photon density in the two polar-
Gammaitoniet al. [14] gave an excellent overview of both ization modes R, andP,) [26,27:
theoretical and experimental realizations. ap

Recently, stochastic resonance has also been observed in x 1
vertical-cavity  surface-emitting semiconductor lasers W_[anx('\'— Np) (1~ esxPx—exyPy) — 755 1P
(VCSELs [15,16. VCSELs operating in the fundamental
transverse mode usually emit light in one of two specific +/3’sp,xN+|~:>'<, (1)
orthogonal linear polarizations statgs7—21]. In some de-
vices the emitted polarization changes at a spe¢sfiatch- dP
ing) current. Around this switching current there is a small —y=[Fyay(N— N (1—esyPy—eyPy) — T’;yl] Py
region where spontaneous mode hopping is observed be- dt’
tween the two modef22-25. When the current is modu-

II. STOCHASTIC RATE EQUATIONS

lated in this region, stochastic resonance can be observed +Bspny+F>’w @)
[15,16].
In this paper we theoretically investigate stochastic reso- dN 1 N

- 7__ - ax( N— Nt)( 1- esxPx_ exyPy) Px

nance in VCSELs, analyzing a two-mode rate equation gy Qv 7.

model that was successfully used to describe polarization

switching in VCSELSs[26,27]. Applying a multiple time- —ay(N—Nt)(l—esyPy—enyx)Perﬁ&- 3
Heree§y,sxyxy,yx,_l“x,y, Ay,ys Tpxy Nt,.and,[)’sp,x,y represent .
*Electronic address: Bob.Nagler@vub.ac.be; the gain saturation coefficients, confinement factors, the gain
URL: http://www.tona.vub.ac.be coefficients, the photon lifetimes, the transparency carrier
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density, and the noise strength for each mode. In the carrier 27,

equation,!, g., andV are the injected current, the elemen- Rsp:p_lr_(1+ Tpxd x@xNt) Bsp, (14)
tary charge, and the volume of the active region. All the X

stochastic equations in this paper have to be interpreted Wyhere we have takeBsp= Bspx=Bspy -

the Stratonovich seng@2]. The autocorrelation of the noise  sypstituting Egs.(7)—(14) in Egs. (1)=(3), neglecting

is given by terms inp? and higher, we find
(Fr(t)F (")) =4BspxNP (L' —s'), (4 dp 1 -
g " d_;(:px[n_ssxpx_sxypy]"'ERsp+ Fys (15
(Fy(t")Fy(s"))=4Bsp NP, S(t" —s'), (5)
dpy 1 ~
(Fut)Fy(s)=0. (®) Tt PG T eapy T eybult 5 ReptFy
— . (16)
As the polarization modes in a VCSEL are nearly degenerate
and have nearly equal parameters, we reduce these equations dyp  J—px—py
taking advantage of the different time scales of the model at - I 7= Pxl 71— &sxPx— ExyPy]
[26,27,33. We reduce the time with respect to the carrier
lifetime, and define a small parameter —py[ 77_Ssypy_‘gyxpx]jﬁﬁn (17)
t’ T i
t=—, p=-2=1073 (7) ~With
Tc Tc . -
. . <Fx(t)Fx(S)>:2Rsppx5(t_s)y (18)
As we are interested in phenomena that occur above thresh-
qld, we r(_edu_ce the current to its threshold value. As the car- <|~:y(t)|~:y(3)>= 2Rqppy8(t—S5), (19)
rier density is nearly clamped above threshold, we pajl
the small deviation from this clamped value. This leads to (lN:x(t)T:y(S)>=0. (20)
J= I__l with |th:(1+TPXrXath)qu, (8) We now further reduce Eq€15)—(17), using the same
Ith Toxl x8x approach as in Ref§26,33. To leading order irp, Eq.(17)
. yields a conservation relation, stating that the total photon
n=p (Tpxl@N=1). ©) density equals the reduced current above threshold on the
We, furthermore, express the photon densities in the dimer;[lme scale of the carrier lifetime,
sionless variablep, andpy, Pxt py=1J. (22)
Px,y= Tclx,yPx.y (10 The fluctuation of the photon densities in both modes are

. o ence anticorrelated, as experimentally obsef@3424,34.
and we exploit the _fapt that the sa}turat!on IS a small ef-fecqaking the time derivative of Eq21) and substituting Egs.
(e.g.,es,P,<<1), defining the following dimensionless satu-

i iciants: (15 and (16) yields an expression for the carrier inversion
ration coetlicients: for a constant current,

eij=p ;. 'a; ‘e, wherei,je{x,y}. (11) 1 o
n==[—2p55+(236—G)py+esJ>—Rsp— F—Fyl,
Also, the relative gain difference between the two modes is J Y e o
small due to the symmetry of the device, which leads to the (22

definition of the(current dependentinear dichroismG(J), where s is defined by

1 Toyl'yay — Tpxl xax

G(J):p (12) 5:8Xy_SSX:8yX_85y. (23)

7'pxl—‘xax L
We assume thats,= &5, ande,,=e,, Which is reasonable

We suppose the current dependence is as follows: for VCSELs[26]. Substitution of Egs(22) and (21) in Eq.

(16) yields a single dynamical equation:
: 13

J
GJ)=g|1-— : -
) g( % b,=Clpy) +E(py) (24
which implies that there is polarization switch in the neigh-with a deterministic drift term
borhood ofJs. 0s Gl R
As the carrier density is clamped, the mean of the spon- _ _ 0 o 2| Rspo
taneous emission, which is small compared to the stimulated Clpy)=py(I=py) J Py ot J * 2] (J=2py)
emission, can be taken constant above threshold, leading to (25
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FIG. 1. Numerical solution of Eqg15)—(17) with a ramping 0 1 2 3 4 “"‘ 7 9 0
current. There is a region of bistability. Parameter values, corre- t/T
sponding to realistic VCSEL parametef87], are eq,=es,=4,
exy=&yx=8, =14, J;=0.4, R;,=0.023, ancp=10">. The inset FIG. 2. Time traces of the intensity of tipg mode for different

is a numerical time trace in the middle of the bistable regiod at noise strengthgfrom top to bottom:R,,=0.015, 0.02, 0.03). Pa-
=Jg, showing the random hopping between the two polarizationrameter values areg=14, Esx=Esy=4, £x=8yx=8, J=Jg
modes. The blackdashed curves correspond to thg, mode, and  +J, sin(wt), J;=0.4, J,=0.005, =10 %s ! andp=10"3.

the gray curves to th@, modes. The bistability is traced on the

dashedp, curve. comparison with experiments can be found in RE23,33.
o _ _ ) Stochastic resonance takes place when we harmonically
and a multiplicative white Gaussian noise term modulate the current with a peridd(remember that time is
- - expressed in units of the carrier lifetimmside the bistable
E(po)=F Fyt pr 26) region:
y) = Fy 3 Py
J=J+I,sin(wt+ ¢) (29)

Equationg24)—(26) are the result of the MTSA approach,
and describe the dynamics of the system on the time scale #fith «=27/T. Time traces of one of the polarization modes
our reduction(i.e., the carrier lifetime and slower. Faster can be seen in Fig. 2 for increasing noise strengths. It is clear
dynamics, such as the relaxation oscillations, are no longdhat in the middle graph the intensity follows the modulation
present in our one-dimensiondlD) reduction. Note that we quite well, while in the upper graph switches are missed and
neglected the time evolution of the current. This approximadin the lower graph random hopping masks the modulation. In
tion is valid, if we harmonically modulate the current with a the following section we will derive the switching rates be-
pulsation significantly smaller than,*. As we will never tween the two stable modes in the bistable region. These

modulate above 10 MHZ, we can Safe|y make this approxiSWitChing rates will form the basis of the theoretical ap-

mation. proach to describe the stochastic resonance.
The stationary solutions of Eq§15)—(17) and their sta-
bility can be found in Refs[26,33. We briefly summarize lll. SWITCHING RATES

the results here. When the spontaneous emission is neglected
(i.e.,Rsp=0), Egs.(24) and(25) clearly show that two kinds
of lasing solutions exist: two pure mode solutions €0,
py=J and p,=J, p,=0) and a mixed-mode solutiorp{
=JI2+G/25, py=JI2—G/25). Linear stability analysis

To obtain the switching rates between the two polarization
modes, we use the Fokker-Planck equation of the probability
density function ofp=p,,

shows that the stability of the pure mode solutions changes M: —i[A(p)P(p t)]+ iZ[D(p)p(p t)]
around the currenls whereG(Jg)=0. If at ap ’ ap? Y
(29)
6>0, (27
where
the two pure mode solutions coexist in a bistable region
aroundJs, and the mixed-mode solution is unstable. It was (F(p,t)F(p,ty))=2D(p)8(t;—ty) (30)

shown that both band-scattering effef3§] and spin relax-
ation dynamicg 36,37 lead to a dichroism satisfying Eq. with the diffusion coefficienD(p) given by[combining the
(27). two noise terms of Eq(26)]
Figure 1 shows the stable steady state solutions. We call
the mode that starts lasing at threshold ghyemode, which _Rep _
implies thatg is positive. When the current is set &t Jg, D(p)= Tp(‘] P)
spontaneous hopping between the two pure modes occurs
(see inset of Fig. )1 A detailed study of this hopping and a and the drift coefficienA(p) [using Eq.(25)]:

(31)
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Egs. (15—(17). We see that the residence times scale over
three orders of magnitude with the current. In the whole
region the correspondence between the numerical and the
analytical approach is quite good. However, for large resi-
dence times, the analytical predictions are consistently
higher than the numerical simulations. The discrepancy al-
ways remains smaller than 10%.
This discrepancy is not present when comparing the
theory with the 1D simulations on the basis of HG4),
o053 559 o o oiz which match exactly(not shown. Numerical si_mulations_
’ ’ T ’ ’ have also ruled out the condensation of the noise terms into
] . ) . one in Eq.(26) as a source of error. Also, modified integra-
FIG. 3. The residence times of tipg (full line and circles and  ions of the system with colored noise show that it is not the
p, (dashed line and diamondenodes throughout the bistable re- use of white noise in the MTSA which is flawed. We suspect
gion. Comparison of Eq39) (lines) with numerical simulation of that the use of the conservation relation, E2L), in the
Egs. (15)_(17). (circles and diamoncj!s For the numerical points, 5 +,cqrrelation of the combined noise te}m in ,EaG) is
tji 4av§rages 'S:t:ke: O:Vir iog s;/zvutc:hgso.zgar\]an;%tir v::::jeg arecausing some unintentional correlation. This hypothesis is
1 SXT TSy T Sxy T Syx O MepT MAMES HsT P~ consistent with the fact that inserting a minor amo(5%6)

=103, o
of correlation between the two noise sourdées., F, and

1 dD(p) |~:y) in the 3D equations increases the residence times. The

A(p)=C(p)+ 3 “dp (32 needed amount of correlation to match the theory and the

numerics seems to be a function of the reduced current. A

25 G| R, more detailed analysis of the consequences of applying a

=py(J—py)(pr—6+ j) + T’)(J—Zpy). (33 MTSA on stochastic equations remains an open issue, but

lies outside the scope of this paper. For the purpose of this

work, the obtained agreement between the numerical simu-

lation of the 3D model and the analytical result based on the
Pe(p)=Qe UM (34)  reduction is more than sufficient.

10000

100

residence times (ns)

The stationary solution of Fokker-Planck equati@8) is:

with Q a normalization coefficient and the double-well po- |\, ANALYSIS OF THE STOCHASTIC RESONANCE
tential U(p) defined as
In this section we will show the presence of stochastic
C(p) 1 resonance in two ways: we will first use a simplified two-
Uip)= _f D(p) dp-+3In[D(p)] (39 state model introduced by Rd#], and alternatively use an
indicator based on the distribution of the residence times of

) G the two modes. Both methods take the mean residence time
“R_PlI-P~—5] (36)  [Eq.(39)] as a starting point.
sp
We will call p=J mode the “+” state andp=0 the “—" A. Two-state model

state. Using the potential solution, the mean residence times

. 71 .
of the two modes can be derivesB]. As P (p) is sharply the residence times, we can make a two-state approximation:

Foellil\(/a(rj] argung;?riaq]:xéyﬂgsgrggse Fo?tigga:’eggecr?cnegt?r;télﬁle model the continuous system as being in either the off
9 app P %tate, or the on state, filtering all the information except in

[39F: which potential well the particle resides at timé4]. This
P P approach only holds in the adiabatic limit when the frequen-
t,=2D(pmaX)*1[ Ps(p)d pf Py(p) ldp, cies are smal[9] (this is no problem in the context of this
0 0 paper since the MTSA is also only valid for small frequen-
(37) cies and we never modulate the current with frequencies
larger than 10 MHz We definen, (t) and n_(t) as the

t+=2D(pmax)’lfJ Py(p)d pr Py(p) ‘dp. (38  Probability that the system is in th®, or py state at time.
Pmax Pmax We have, of course, the normalization condition

As the intra-well relaxation time gf is much shorter than

Using Eqs.(34) and(35), we get[43] n (t)+n_(t)=1. (40)
2w ~ G=*Js [ GxJo6 These probabilities change according to the following two
ti_Jzéz_Gzcrf 2JR.5 erfi 2 R0 (39 master equationgt, 14;
sp sp
In Fig. 3 we compare Eq39) with numerical simulations of N. (1) =W, (t)n(t)—W=(t)n.(t). (41
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FIG. 4. Parameten), as a function oR, (top) andw (bottom). Pn [ ]

Parameter values a@=4, g=14, J=J+J,sin(wt), Js=0.4, J, 021 =

=0.005, w=10° s~ ! in the top graph, antks,=0.023 in the bot- 0 L , I . I . I . .
tom graph. Perfect synchronization would give a value ggf 0 5 1o 1.5 20

=2,/ time ()

FIG. 5. Distribution of the residence time for a modulation pul-
sation of 16 s~ for various noise strengthdrom top to bottom
Rsp=0.16, 0.18, 0.22, 0.26, 0.30). Other parameter valuessare
W (t)=t-(t) L. (42) =4, g=14,J=J+Jsin(wt), Js=0.4, andJ,,=0.005.

In Eqg. (41), W_(t) are the switching rates to the on/off state,
i.e., the inverse of the residence times in E2f),

If we modulate the current, these rates will indeed dependnodulation amplitudes. Indeed, for the parameters of Fig. 4,
sinusoidally on the time. Solving E¢41) gives[4] the generic model would lead to stochastic resonance for a
noise strength oRs,=0.0194, whereas Fig. 4 shows that the
actual value is abouRs,=0.023. An in depth treatment of
the influence of the magnitude of the modulation amplitude
on the stochastic resonance peak can be found in Refs.
[9,40].

n.(t)=g(t) , (43

t
nt(to>+ft W.(9g X(r)dr
0

t

g(t)=EXp( —J [W+(T)+W+(T)]dr>- (44)
t
0 B. Residence time distribution

For larget, n. will become periodic with the same fre-  Apqther way to investigate stochastic resonance is to look
quency as the current modulatip4]. _ . at the statistical properties of the residence times

The average of the intensity of one of the polarization;g 31 41 42 When the potentials are constant, the residence
modes is approximatelfassuming thap=0 in the off state  jmes have the usual exponential distribution. If the current is

andp=J in the on statg modulated sinusoidally as in E¢8), this distribution has
the form[45
<p>:poﬁn—+ponn+:‘]sn+ . (45) [45]
t ds
We defineqq as the first Fourier coefficient of E¢45). The Pm+(t):t+(J)‘1exp< —J —) (46)
quantity g is essentially identical to the “spectral amplifi- - ot=(J)

cation” introduced in[8,9] Fig. 4,q is plotted as a function

of the noise strength for a constant frequency, and as a fun&m, can be seen in Fig. 5 for increasing noise strengths. The
tion of the frequency for a constant noise strength, showindirst peak in the distribution functions represent switches that
the typical stochastic resonance. The generic model with are synchronized with the modulation signal, whereas the
quartic potential of McNamara and Wiesenf¢#] predicts  following peaks represent events where the system did not
that stochastic resonance occurs at a period of oscillatioswitch for one or more periods. For high noise strengths the
twice the value of the residence tirhe in the middle of the peaks disappear and the exponential distribution of the un-
modulation region. This is only true for exceedingly small modulated system appears. It should be noted that this dis-
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tribution is not really the distribution of the residence times. I
It is the distribution of the time you stay in thg, mode if

you are in that mode at time=0. So it is only the residence 0.4
time of thep, mode, when the laser switched to that mode at
time t=0, or in other words, when the phase of the sine
modulation equaledb. To get the distribution of the phase
independent residence tint, (t), we have to average over

all possible phase@ve write the dependence @fmt on ¢
explicityy, |7

0.2

R
001 0012 0014 0016 0018 002
P, ()= f P, (1.d)P4(4)do, (47) L
0.6
whereP ,(¢) is the probability density that you switched to
the p, mode at phase of the current modulation. Unfortu- 04
nately, there is no known method to derive this phase distri- '
bution P, although in some limits self-consistent distribu-
tions have been proposed in the literat[e-7,14. 0.2
We now introduce an indicator to show the presence of JUBEEEETEES
stochastic resonance, which is based on the indicators de- I S — p
fined in Refs.[7,15,42. We calculate the area under the 0.10° oo S 3 15‘6’(5 )

peaks afl/2, 3T/2, etc., after subtraction of the background:
FIG. 6. Indicatorsl, [see EQ.(48)] of stochastic resonance,
| = JmT_lMT P (J=J.+J_si th=P.(J=J.)\dt based on the integral over half a period of the probability density
n nT,3/4T{ m(J=JoF Insirlwt]) = Prm(J=Jo)}dt. function after subtraction of the background noise. The top figure
(49 shows the indicator as a function &, for a constant pulsation
(0=10° s71), the bottom figure shows the indicator as a function
In contrast to the indicators in Reff7,15,42, we use the of the pulsation for a constant noise strengRy=0.0175). The
phase dependent distributidp,, and take¢=0, as we black, dashed, and dotted curves corresponid id ,, andls. We
have no analytical expression of the phase independent dig§ee stochastic resonancel plaroundR,=0.0175 in the top figure,
tribution P, . Furthermore,=0 corresponds to the zero and around»=0.9 1¢ s * in_ the bottom figure. Parameter values
crossing of the current modulation, which is easy to take as & © 0=4, 9=14, J=Js+ Insin(wt), J;=0.4, andJy,=0.005.
trigger level in experiments. We have a stochastic resonan
if the indicatorl; attains a maximum, while the othefise.,
l5, I3, ...) donot.

ifferential equation, from which analytical expressions for
the potential and the switching times were derived. We have
: ; hecked the analytical results with numerical simulations.
In Fig. 6 we plotl,, I, andl; as a function of the fre- © ; .
g piotl, "2 3 Stochastic resonance occurs between two stable polariza-

guency(for constant noise strengthnd as a function of the i tates. We h vzed th int Wi
noise strengthfor constant frequengyWe see that stochas- lon states. YWe have analyzed the résonance In two ways. vve
fﬂ[lst used a two-state model that only considers in which

tic resonance appears both as a function of the noise stren ) - . .
PP gpotent|al minimum(corresponding to either the, or thep,

?;sdor?asngézuzr}; tion of the frequendglso called bona fide polarizatiqn s_tat)ethe_sy_stem is. Alternativel_y, we have pro--
Note that, similar to Refd.15,16], there is a small differ- posed an indicator, similar to thg ones prewoqsly_ pro_posed In

ence between the optimal value for resonant behaviay,of _Refs.[5—7,14, based on the reS|d¢nce time d|str|but!on. The
(see Sec. IV Aand the optimal value for resonant behaviormd.'cator shows a resonant beh{;\wor both as a function of the
noise strength and as a function of the frequency, the so

of the indicatorl ;. called bona fide resonance.

V. CONCLUSION
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