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Stochastic resonance in vertical-cavity surface-emitting lasers based
on a multiple time-scale analysis

Bob Nagler,* Michael Peeters, Irina Veretennicoff, and Jan Danckaert
Department of Applied Physics and Photonics (TW-TONA), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium

~Received 21 January 2003; published 19 May 2003!

We provide analytical evidence of stochastic resonance in polarization switching vertical-cavity surface-
emitting lasers~VCSELs!. We describe the VCSEL by a two-mode stochastic rate equation model and apply a
multiple time-scale analysis. We were able to reduce the dynamical description to a single stochastic differen-
tial equation, which is the starting point of the analytical study of stochastic resonance. We confront our results
with numerical simulations on the original rate equations, validating the use of a multiple time-scale analysis
on stochastic equations as an analytical tool.
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I. INTRODUCTION

As early as 1981, Benziet al. @1,2# and Nicolis and Nic-
olis @3# introduced the concept of stochastic resonance
explain the periodicity of ice ages. Due to the modulation
the earth’s eccentricity caused by the planetary gravitatio
pull, the flux of sunlight hitting the earth varies about 0.1
over a period of 105 years. The combination of this wea
variation with the yearly~stochastic! change of the solar ac
tivity can trigger big climate changes. The phenomenon,
the presence of noise can increase the effect of a s
modulation, is called stochastic resonance. Stochastic r
nance has been extensively studied in the adiabatic l
@4–7# and in the linear response limit@4#. Furthermore, it has
triggered a thorough investigation of driven time-depend
stochastic systems in the full nonadiabatic limit and beyo
the linear response treatment@8,9#. It has since been exper
mentally observed in systems as diverse as the mechan
ceptor in the tail fan of crayfish@10# and the dispersion o
particles suspended in time-periodic flows.@11#. It nowadays
plays an important role in biophysical applications@12,13#.
Gammaitoniet al. @14# gave an excellent overview of bot
theoretical and experimental realizations.

Recently, stochastic resonance has also been observ
vertical-cavity surface-emitting semiconductor lase
~VCSELs! @15,16#. VCSELs operating in the fundament
transverse mode usually emit light in one of two spec
orthogonal linear polarizations states@17–21#. In some de-
vices the emitted polarization changes at a specific~switch-
ing! current. Around this switching current there is a sm
region where spontaneous mode hopping is observed
tween the two modes@22–25#. When the current is modu
lated in this region, stochastic resonance can be obse
@15,16#.

In this paper we theoretically investigate stochastic re
nance in VCSELs, analyzing a two-mode rate equat
model that was successfully used to describe polariza
switching in VCSELs@26,27#. Applying a multiple time-
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scale analysis~MTSA!, we reduce the set of stochastic equ
tions to a single stochastic differential equation. Although
MTSA is mostly used to simplify deterministic equation
@28#, it has been successfully used in the past to approxim
stochastic equations@29#. Also stochastic averaging, whic
bears a close relation to MTSA, has been used to simp
stochastic problems@30#. We present the reduction of the s
of stochastic equations in Sec. II, and we compare the th
retically derived switching times with numerical simulation
of the full model in Sec. III. In Sec. IV A we show the
existence of stochastic resonance using a simplified two-s
model introduced by McNamara and Wiesenfeld in Ref.@4#.
In an alternative approach~Sec. IV B!, we analyze the resi-
dence time distribution and show stochastic resonance
the use of an indicator similar to those proposed in Re
@7,15,31#, before we conclude in Sec. V.

II. STOCHASTIC RATE EQUATIONS

We model the polarization behavior of VCSELs with th
following rate equations that describe the evolution of t
carrier density (N) and the photon density in the two pola
ization modes (Py andPx) @26,27#:

dPx

dt8
5@Gxax~N2Nt!~12esxPx2exyPy!2tpx

21#Px

1bsp,xN1F̃x8 , ~1!

dPy

dt8
5@Gyay~N2Nt!~12esyPy2eyxPx!2tpy

21#Py

1bsp,yN1F̃y8 , ~2!

dN

dt8
5

I

qeV
2

N

tc
2ax~N2Nt!~12esxPx2exyPy!Px

2ay~N2Nt!~12esyPy2eyxPx!Py1F̃N8 . ~3!

Hereesy,sx,xy,yx , Gx,y , ax,y , tpx,y , Nt , andbsp,x,y represent
the gain saturation coefficients, confinement factors, the g
coefficients, the photon lifetimes, the transparency car
©2003 The American Physical Society12-1
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density, and the noise strength for each mode. In the ca
equation,I, qe , andV are the injected current, the eleme
tary charge, and the volume of the active region. All t
stochastic equations in this paper have to be interprete
the Stratonovich sense@32#. The autocorrelation of the nois
is given by

^F̃x8~ t8!F̃x8~s8!&54bsp,xNPxd~ t82s8!, ~4!

^F̃y8~ t8!F̃y8~s8!&54bsp,yNPyd~ t82s8!, ~5!

^F̃x8~ t8!F̃y8~s8!&50. ~6!

As the polarization modes in a VCSEL are nearly degene
and have nearly equal parameters, we reduce these equa
taking advantage of the different time scales of the mo
@26,27,33#. We reduce the time with respect to the carr
lifetime, and define a small parameterr,

t5
t8

tc
, r5

tpx

tc
.1023. ~7!

As we are interested in phenomena that occur above thr
old, we reduce the current to its threshold value. As the c
rier density is nearly clamped above threshold, we callrh
the small deviation from this clamped value. This leads t

J5
I

I th
21 with I th5

~11tpxGxaxNt!qeV

tpxGxax
, ~8!

h5r21~tpxGxaxN21!. ~9!

We, furthermore, express the photon densities in the dim
sionless variablespx andpy ,

px,y5tcax,yPx,y , ~10!

and we exploit the fact that the saturation is a small eff
~e.g.,esxPx!1), defining the following dimensionless sat
ration coefficients:

« i j 5r21tc
21aj

21ei j , where i , j P$x,y%. ~11!

Also, the relative gain difference between the two mode
small due to the symmetry of the device, which leads to
definition of the~current dependent! linear dichroismG(J),

G~J!5r21
tpyGyay2tpxGxax

tpxGxax
. ~12!

We suppose the current dependence is as follows:

G~J!5gS 12
J

Js
D , ~13!

which implies that there is polarization switch in the neig
borhood ofJs .

As the carrier density is clamped, the mean of the sp
taneous emission, which is small compared to the stimula
emission, can be taken constant above threshold, leadin
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Rsp5r21
2tc

Gx
~11tpxGxaxNt!bsp , ~14!

where we have takenbsp5bsp,x5bsp,y .
Substituting Eqs.~7!–~14! in Eqs. ~1!–~3!, neglecting

terms inr2 and higher, we find

dpx

dt
5px@h2«sxpx2«xypy#1

1

2
Rsp1F̃x , ~15!

dpy

dt
5py@h1G~J!2«sypy2«yxpx#1

1

2
Rsp1F̃y ,

~16!

dh

dt
5

J2px2py

r
2h2px@h2«sxpx2«xypy#

2py@h2«sypy2«yxpx#1F̃n ~17!

with

^F̃x~ t !F̃x~s!&52Rsppxd~ t2s!, ~18!

^F̃y~ t !F̃y~s!&52Rsppyd~ t2s!, ~19!

^F̃x~ t !F̃y~s!&50. ~20!

We now further reduce Eqs.~15!–~17!, using the same
approach as in Refs.@26,33#. To leading order inr, Eq. ~17!
yields a conservation relation, stating that the total pho
density equals the reduced current above threshold on
time scale of the carrier lifetime,

px1py5J. ~21!

The fluctuation of the photon densities in both modes
hence anticorrelated, as experimentally observed@23,24,34#.
Taking the time derivative of Eq.~21! and substituting Eqs
~15! and ~16! yields an expression for the carrier inversio
for a constant current,

h5
1

J
@22py

2d1~2Jd2G!py1«sxJ
22Rsp2F̃x2F̃y#,

~22!

whered is defined by

d5«xy2«sx5«yx2«sy . ~23!

We assume that«sx5«sy and«xy5«yx , which is reasonable
for VCSELs @26#. Substitution of Eqs.~22! and ~21! in Eq.
~16! yields a single dynamical equation:

ṗy5C~py!1F̃~py! ~24!

with a deterministic drift term

C~py!5py~J2py!S 2d

J
py2d1

G

J D1
Rsp

2J
~J22py!

~25!
2-2
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STOCHASTIC RESONANCE IN VERTICAL-CAVITY . . . PHYSICAL REVIEW E67, 056112 ~2003!
and a multiplicative white Gaussian noise term

F̃~py!5F̃y2
F̃x1F̃y

J
py . ~26!

Equations~24!–~26! are the result of the MTSA approach
and describe the dynamics of the system on the time sca
our reduction~i.e., the carrier lifetime! and slower. Faste
dynamics, such as the relaxation oscillations, are no lon
present in our one-dimensional~1D! reduction. Note that we
neglected the time evolution of the current. This approxim
tion is valid, if we harmonically modulate the current with
pulsation significantly smaller thantc

21 . As we will never
modulate above 10 MHz, we can safely make this appro
mation.

The stationary solutions of Eqs.~15!–~17! and their sta-
bility can be found in Refs.@26,33#. We briefly summarize
the results here. When the spontaneous emission is negle
~i.e.,Rsp50), Eqs.~24! and~25! clearly show that two kinds
of lasing solutions exist: two pure mode solutions (px.0,
py.J and px.J, py.0) and a mixed-mode solution (px
.J/21G/2d, py.J/22G/2d). Linear stability analysis
shows that the stability of the pure mode solutions chan
around the currentJs whereG(Js)50. If

d.0, ~27!

the two pure mode solutions coexist in a bistable reg
aroundJs , and the mixed-mode solution is unstable. It w
shown that both band-scattering effects@35# and spin relax-
ation dynamics@36,37# lead to a dichroism satisfying Eq
~27!.

Figure 1 shows the stable steady state solutions. We
the mode that starts lasing at threshold thepy mode, which
implies thatg is positive. When the current is set atJ5Js ,
spontaneous hopping between the two pure modes oc
~see inset of Fig. 1!. A detailed study of this hopping and

FIG. 1. Numerical solution of Eqs.~15!–~17! with a ramping
current. There is a region of bistability. Parameter values, co
sponding to realistic VCSEL parameters@27#, are «sx5«sy54,
«xy5«yx58, g514, Js50.4, Rsp50.023, andr51023. The inset
is a numerical time trace in the middle of the bistable region aJ
5Js , showing the random hopping between the two polarizat
modes. The black~dashed! curves correspond to thepy mode, and
the gray curves to thepx modes. The bistability is traced on th
dashedpy curve.
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comparison with experiments can be found in Refs.@27,33#.
Stochastic resonance takes place when we harmonic
modulate the current with a periodT ~remember that time is
expressed in units of the carrier lifetime! inside the bistable
region:

J5Js1Jmsin~vt1f! ~28!

with v52p/T. Time traces of one of the polarization mod
can be seen in Fig. 2 for increasing noise strengths. It is c
that in the middle graph the intensity follows the modulati
quite well, while in the upper graph switches are missed a
in the lower graph random hopping masks the modulation
the following section we will derive the switching rates b
tween the two stable modes in the bistable region. Th
switching rates will form the basis of the theoretical a
proach to describe the stochastic resonance.

III. SWITCHING RATES

To obtain the switching rates between the two polarizat
modes, we use the Fokker-Planck equation of the probab
density function ofp[py ,

]P~p,t !

]t
52

]

]p
@A~p!P~p,t !#1

]2

]p2
@D~p!P~p,t !#,

~29!

where

^F̃~p,t1!F̃~p,t2!&52D~p!d~ t12t2! ~30!

with the diffusion coefficientD(p) given by@combining the
two noise terms of Eq.~26!#

D~p!5
Rsp

J
p~J2p! ~31!

and the drift coefficientA(p) @using Eq.~25!#:

-

n

FIG. 2. Time traces of the intensity of thepx mode for different
noise strengths~from top to bottom:Rsp50.015, 0.02, 0.03). Pa
rameter values areg514, «sx5«sy54, «xy5«yx58, J5Js

1Jmsin(vt), Js50.4, Jm50.005,v51026s21 andr51023.
2-3
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A~p!5C~p!1
1

2

dD~p!

dp
~32!

5py~J2py!S 2d

J
py2d1

G

J D1
Rsp

J
~J22py!. ~33!

The stationary solution of Fokker-Planck equation~29! is:

Ps~p!5Qe2U(p) ~34!

with Q a normalization coefficient and the double-well p
tential U(p) defined as

U~p!52E C~p!

D~p!
dp1

1

2
ln@D~p!# ~35!

5
d

Rsp
pS J2p2

G

d D . ~36!

We will call p.J mode the ‘‘1’’ state andp.0 the ‘‘2’’
state. Using the potential solution, the mean residence ti
of the two modes can be derived@38#. As P s

21(p) is sharply
peaked around the maximum of the potential, we can get
following approximate expressions for the residence tim
@39#:

t252D~pmax!
21E

0

pmaxPs~p!dpE
0

pmaxPs~p!21dp,

~37!

t152D~pmax!
21E

pmax

J

Ps~p!dpE
pmax

J

Ps~p!21dp. ~38!

Using Eqs.~34! and ~35!, we get@43#

t65
2Jpd

J2d22G2
erfS G6Jd

2ARspd
D erfiS G6Jd

2ARspd
D . ~39!

In Fig. 3 we compare Eq.~39! with numerical simulations of

FIG. 3. The residence times of thepx ~full line and circles! and
py ~dashed line and diamonds! modes throughout the bistable re
gion. Comparison of Eq.~39! ~lines! with numerical simulation of
Eqs. ~15!–~17! ~circles and diamonds!. For the numerical points
the average is taken over 500 switches. Parameter values ag
514, «sx5«sy54, «xy5«yx58, Rsp50.023, Js50.4, and r
51023.
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Eqs. ~15!–~17!. We see that the residence times scale o
three orders of magnitude with the current. In the who
region the correspondence between the numerical and
analytical approach is quite good. However, for large re
dence times, the analytical predictions are consiste
higher than the numerical simulations. The discrepancy
ways remains smaller than 10%.

This discrepancy is not present when comparing
theory with the 1D simulations on the basis of Eq.~24!,
which match exactly~not shown!. Numerical simulations
have also ruled out the condensation of the noise terms
one in Eq.~26! as a source of error. Also, modified integr
tions of the system with colored noise show that it is not
use of white noise in the MTSA which is flawed. We suspe
that the use of the conservation relation, Eq.~21!, in the
autocorrelation of the combined noise term in Eq.~26! is
causing some unintentional correlation. This hypothesis
consistent with the fact that inserting a minor amount~5%!

of correlation between the two noise sources~i.e., F̃x and
F̃y) in the 3D equations increases the residence times.
needed amount of correlation to match the theory and
numerics seems to be a function of the reduced curren
more detailed analysis of the consequences of applyin
MTSA on stochastic equations remains an open issue,
lies outside the scope of this paper. For the purpose of
work, the obtained agreement between the numerical si
lation of the 3D model and the analytical result based on
reduction is more than sufficient.

IV. ANALYSIS OF THE STOCHASTIC RESONANCE

In this section we will show the presence of stochas
resonance in two ways: we will first use a simplified tw
state model introduced by Ref.@4#, and alternatively use an
indicator based on the distribution of the residence times
the two modes. Both methods take the mean residence
@Eq. ~39!# as a starting point.

A. Two-state model

As the intra-well relaxation time ofp is much shorter than
the residence times, we can make a two-state approxima
we model the continuous system as being in either the
state, or the on state, filtering all the information except
which potential well the particle resides at timet @4#. This
approach only holds in the adiabatic limit when the freque
cies are small@9# ~this is no problem in the context of thi
paper since the MTSA is also only valid for small freque
cies and we never modulate the current with frequenc
larger than 10 MHz!. We definen1(t) and n2(t) as the
probability that the system is in thepy or px state at timet.
We have, of course, the normalization condition

n1~ t !1n2~ t !51. ~40!

These probabilities change according to the following t
master equations@4,14#:

ṅ6~ t !5W6~ t !n7~ t !2W7~ t !n6~ t !. ~41!
2-4
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In Eq. ~41!, W6(t) are the switching rates to the on/off stat
i.e., the inverse of the residence times in Eq.~39!,

W6~ t !5t7~ t !21. ~42!

If we modulate the current, these rates will indeed dep
sinusoidally on the time. Solving Eq.~41! gives @4#

n6~ t !5g~ t !Fn6~ t0!1E
t0

t

W6~t!g21~t!dtG , ~43!

g~ t !5expS 2E
t0

t

@W6~t!1W7~t!#dt D . ~44!

For large t, n6 will become periodic with the same fre
quency as the current modulation@44#.

The average of the intensity of one of the polarizati
modes is approximately~assuming thatp50 in the off state
andp5J in the on state!

^p&5poffn21ponn1.Jsn1 . ~45!

We defineq0 as the first Fourier coefficient of Eq.~45!. The
quantity q0 is essentially identical to the ‘‘spectral amplifi
cation’’ introduced in@8,9# Fig. 4,q0 is plotted as a function
of the noise strength for a constant frequency, and as a f
tion of the frequency for a constant noise strength, show
the typical stochastic resonance. The generic model wi
quartic potential of McNamara and Wiesenfeld@4# predicts
that stochastic resonance occurs at a period of oscilla
twice the value of the residence timet6 in the middle of the
modulation region. This is only true for exceedingly sm

FIG. 4. Parameterq0 as a function ofRsp ~top! andv ~bottom!.
Parameter values ared54, g514, J5Js1Jmsin(vt), Js50.4, Jm

50.005, v5106 s21 in the top graph, andRsp50.023 in the bot-
tom graph. Perfect synchronization would give a value ofq0

52Js /p.
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modulation amplitudes. Indeed, for the parameters of Fig
the generic model would lead to stochastic resonance f
noise strength ofRsp50.0194, whereas Fig. 4 shows that th
actual value is aboutRsp50.023. An in depth treatment o
the influence of the magnitude of the modulation amplitu
on the stochastic resonance peak can be found in R
@9,40#.

B. Residence time distribution

Another way to investigate stochastic resonance is to l
at the statistical properties of the residence tim
@6,31,41,42#. When the potentials are constant, the reside
times have the usual exponential distribution. If the curren
modulated sinusoidally as in Eq.~28!, this distribution has
the form @45#

Pm6
~ t !5t6~J!21expS 2E

0

t ds

t6~J! D . ~46!

Pm6
can be seen in Fig. 5 for increasing noise strengths.

first peak in the distribution functions represent switches t
are synchronized with the modulation signal, whereas
following peaks represent events where the system did
switch for one or more periods. For high noise strengths
peaks disappear and the exponential distribution of the
modulated system appears. It should be noted that this

FIG. 5. Distribution of the residence time for a modulation pu
sation of 106 s21 for various noise strengths~from top to bottom
Rsp50.16, 0.18, 0.22, 0.26, 0.30). Other parameter values ard
54, g514, J5Js1Jmsin(vt), Js50.4, andJm50.005.
2-5
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tribution is not really the distribution of the residence time
It is the distribution of the time you stay in thepy mode if
you are in that mode at timet50. So it is only the residence
time of thepy mode, when the laser switched to that mode
time t50, or in other words, when the phase of the s
modulation equaledf. To get the distribution of the phas
independent residence time,Pr 6

(t), we have to average ove

all possible phases~we write the dependence ofPm6
on f

explicitly!,

Pr 6
~ t !5E Pm6

~ t,f!Pf~f!df, ~47!

wherePf(f) is the probability density that you switched
the py mode at phasef of the current modulation. Unfortu
nately, there is no known method to derive this phase dis
bution Pf , although in some limits self-consistent distrib
tions have been proposed in the literature@5–7,14#.

We now introduce an indicator to show the presence
stochastic resonance, which is based on the indicators
fined in Refs.@7,15,42#. We calculate the area under th
peaks atT/2, 3T/2, etc., after subtraction of the backgroun

I n5E
nT23/4T

nT21/4T

$Pm~J5J01Jmsin@vt# !2Pm~J5J0!%dt.

~48!

In contrast to the indicators in Refs.@7,15,42#, we use the
phase dependent distributionPm6

and takef50, as we
have no analytical expression of the phase independent
tribution Pr 6

. Furthermore,f50 corresponds to the zer
crossing of the current modulation, which is easy to take a
trigger level in experiments. We have a stochastic resona
if the indicatorI 1 attains a maximum, while the others~i.e.,
I 2 , I 3 , . . . ) donot.

In Fig. 6 we plotI 1 , I 2 and I 3 as a function of the fre-
quency~for constant noise strength! and as a function of the
noise strength~for constant frequency!. We see that stochas
tic resonance appears both as a function of the noise stre
and as a function of the frequency~also called bona fide
resonance@42#!.

Note that, similar to Refs.@15,16#, there is a small differ-
ence between the optimal value for resonant behavior oq0
~see Sec. IV A! and the optimal value for resonant behav
of the indicatorI 1.

V. CONCLUSION

In this paper we have theoretically studied stochastic re
nance in VCSELs. Our study was based on an intensity
equation model that has been used in the past to success
model the polarization characteristics in VCSELs.

To get the theoretical results we used a MTSA on
stochastic rate equation model. Although there is no rigor
mathematical justification for applying a MTSA on stocha
tic differential equations, it provides valid results. We we
able to reduce the three rate equations to a single stoch
05611
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differential equation, from which analytical expressions f
the potential and the switching times were derived. We h
checked the analytical results with numerical simulations

Stochastic resonance occurs between two stable pola
tion states. We have analyzed the resonance in two ways
first used a two-state model that only considers in wh
potential minimum~corresponding to either thepx or thepy
polarization state! the system is. Alternatively, we have pro
posed an indicator, similar to the ones previously propose
Refs.@5–7,14#, based on the residence time distribution. T
indicator shows a resonant behavior both as a function of
noise strength and as a function of the frequency, the
called bona fide resonance.
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FIG. 6. IndicatorsI n @see Eq.~48!# of stochastic resonance
based on the integral over half a period of the probability den
function after subtraction of the background noise. The top fig
shows the indicator as a function ofRsp for a constant pulsation
(v5106 s21), the bottom figure shows the indicator as a functi
of the pulsation for a constant noise strength (Rsp50.0175). The
black, dashed, and dotted curves correspond toI 1 , I 2, and I 3. We
see stochastic resonance ofI 1 aroundRsp50.0175 in the top figure,
and aroundv50.9 106 s21 in the bottom figure. Parameter value
ared54, g514, J5Js1Jmsin(vt), Js50.4, andJm50.005.
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