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Distribution and density of the partition function zeros for the diamond-decorated Ising model
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Exact renormalization map of temperature between two successive decorated lattices is given, and the
distribution of the partition function zeros in the complex temperature plane is obtained for any decoration
level. The rule governing the variation of the distribution pattern as the decoration level changes is given. The
densities of the zeros for the first two decoration levels are calculated explicitly, and the qualitative features
about the densities of higher decoration levels are given by conjecture. The Julia set associated with the
renormalization map is contained in the distribution of the zeros in the limit of infinite decoration level, and the
formation of the Julia set in the course of increasing the decoration level is given in terms of the variations of
the zero density.
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I. INTRODUCTION classic planar latticef23]. In principle, by knowing the ze-
ros of the partition function and the corresponding densities,
About one and half decades ago, spin models defined owe may deduce all the thermodynamic characteristics of a
hierarchical lattices received much attention in the literaturesystem. For example, the density of the zeros near the critical
[1-9]. In general, to construct a hierarchical lattice we firstpoint can be used to extract the critical expondi2,21],
start with a unit, which may be a bond or a cell, and thenand the logarithmic singularity of the specific heat for the
proceed a given type of bond or cell decoration iteratively totwo-dimensional zero-field Ising model is the result of the
the infinite limit. Thus, a hierarchical lattice has fractal struc-linearly vanishing density of the zeros near the real axis
ture, and the thermodynamic limit for a physical system de{18,23.
fined on a hierarchical lattice is well defined. Hierarchical In this paper we study the distributions and the densities
spin models attract researchers’ interest mainly due to twof the Fisher zeros of the zero-field Ising model on square
reasons. First, these models are exactly solvable in the cofattices with diamond-type bond decorations, referred as
text of the Migdal-Kadanoff renormalization schefd®,11.  diamond-decorated Ising mod@&DIM). The lattices used in
Second, owing to the inhomogeneity in the coordinationthe model are constructed by starting with a simple square
number of lattice sites some particular properties revealethttice, and then by implementing diamond-type bond deco-
from the models may provide insights to inhomogeneousations to each bond iteratively to any desired degree. For
systems such as random magnets, polymers, and percolati@DIM, there exists a well-defined thermodynamic limit for
clusters[12]. any finite degree of decorations, and each primary bond be-
Q-state Potts model defined on a diamond hierarchicatomes a diamond-hierarchical lattice used in the diamond-
lattice is one example. Starting with a bond, a diamond hihierarchical spin model for the limit of infinite decorations.
erarchical lattice is obtained by replacing bonds by diamond# our previous work, the properties of ferromagnetic phase
iteratively to the infinite limit. There exists a remarkable transitions of DDIM have been investigated extensively for
richness of phenomena for the model in the absence of exmite as well as infinite decoration level24]. Here we con-
ternal fields. In particular, the limiting set of the partition centrate on the distribution and the density of the Fisher
function zeros in the complex temperature plane, also rezeros.
ferred as the Fisher zeros, are essentially the Julia sets asso-Similar analyses on the distribution of the Fisher zeros
ciated with the rational map defined by renormalizationhave been carried out for triangular type Ising lattices with
transformatior(6,7], and the Julia set possesses multifractalcell decorationg25]. These lattices possess the Siesgin
structure forQ>0 [13-15. gasket as the inherent structure for a primary triangle in the
The interest about the loci of partition function zeroes hadimit of infinite decoration level. The results indicate that the
been raised after the classical works of Yang and Lee owlistribution of zeros for the infinite decorated lattices coin-
regular lattice$16,17). After the remarkable Lee-Yang circle cides with those for the model defined on the Sieskimas-
theorem, Fisher studied partition function zeros in the comket, and the distribution of zeros appears to be an union of
plex temperature plane and showed that the distribution is mfinite scattered points and a Julia set called the Jordan
unit circle in the sinh(ZkgT) complex plane for the two- curve, and the scattered points are bounded by the Jordan
dimensional zero-field Ising model on simple square latticecurve. Note that the Jordan curve is a quasi-one-dimensional
[18]. Since then, the distributions of Fisher zeros of the Isingcircle with the Hausdorff dimension equal to 1. It is also well
model with isotropic or anisotropic couplings on a variety of known that the limiting set of the distribution of the zeros of
classic planar lattices have been investigdte®-22. Re-  the diamond-hierarchical Ising mod@HIM) is a Julia set,
cently Lu and Wu completed the Ising picture by calculatingwhich owns a multifractal structurgs,7,13—15%. The Julia
the density of zeros for two-dimensional Ising model in zeroset, which is a bounded planar distribution with the Haus-
field as well as in a pure imaginary fieler/2 on a variety of  dorff dimension greater than one, is quite different from the
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zZm=>> [H exp(noioj)|, 1)

{or LD

where the sum is over all bond-connected p&ir$) of n
lattice, and the Ising spin takes two possible valugss
+1. Here we consider uniform ferromagnetic couplings
characterized by the coupling strengthand the dimension-
less coupling parametey is defined asy=J/kgT.
To calculate the partition function of E@L) for an arbi-
trary n lattice, we use the bond-renormalization scheme in
(2) (b) (¢) evaluating the Boltzmann factors associated witmdiond.
The details of the derivations are given in Regf4], and we
FIG. 1. A decorated bond with the decoration lefg@ln=0, (b) briefly summarize the results in the followings.
n=1, and(c) n=2. Note that the Ising spins with the Latin sub-  The Boltzmann factor associated with the 0 bond, denoted
scripts are referred as inner spins. by B2, . is given as expfo,c,), and it can be written as

O, O,

14 14

Jordan curve. Based on these observations, we may expect BESL)’m:cosh( n)+o,0,siNN 7). 2

that the Julia set occurring in DHIM may also appear in _ _
DDIM, and thence we may understand the formation of thel here are decoratecs{(” - 2) sites for am bond. The Ising
multifractal structure in the Julia set by studying the varia-SPins defined on the decorated sites couple only to those

tion of the distribution and the density of the zeros in theP€longing to the sama bond, and we refer them as inner
course of increasing the decoration level of DDIM to theSPINS. Then we may define the Boltzmann factors associated
infinite limit. with ann bond,B{") . as the result of taking the sum over

This paper is organized as follows. In Sec. I, we brieflythe inner spins for the product of all Boltzmann factors as-
describe how to deduce the exact expression of free enerdgipciated with then bond:

via the construction of the exact renormalization map of tem-

: : 1\"-2)
perature between two successive decoration levels and thg(n _ _)
use of the known results of the Ising model on simple square () 2
lattice. In Sec. lll, we study the distribution of the Fisher
zeros and exhibit the change of the distribution pattern as the X > eX (0, T4+ Taopt - +050,)].
decoration level increases. In Sec. IV, we determine the den- TarTh s s s
sity of the zeros for the first two decoration levels by using @)

the results for the case of simple square lattice, and the den-

sities for higher decoration levels are given qualitatively byHere the two subscripte andv denote the two primary sites
conjecture. In Sec. V, we discuss how the Julia set arises inefore decorations, the front factor is added for the normal-
the limit of infinite decoration level and characterizes its glo-ization of the sum, and the sum is over tH&"{— 2)-inner

bal mutifractal structure. Finally, Sec. VI is preserved forspins. By substituting the expression of HE) into each
summary and discussion. Boltzmann factor of Eq(3), we have

Il. FREE ENERGY BEZ)@:R(n)(’?)[COSH 77(n))+UMUV5inr( 7M1, (4

We construct the exact expression of the free energy offor n=1, where the functioR™(7) is given as

DDIM with an arbitrary decoration levet in this section. A n
simple square lattice with diamond-type bond decorations up RO () =[T [exp 774", (5)
to the leveln is referred as an lattice. Then, simple square k=1
lattice itself is O-lattice, and its connecting bonds betweerhndn
any two nearest neighbors are named as 0 bonds. We denote
the total site number and bond number of 0 latticeaand exp( 7%9)=cosh 27+ 1), (6)
n, with n,=2n4. A 1 bond is formed by replacing a 0 bond
by a diamond that consists of four O bonds. Starting with a
bond, after then fold iterative replacements of 0 bonds with
1 bonds, we obtain am bond that has site numb&™
=2(4"+2)/3 and 0 bond numbeB(M=4", An n lattice is
formed by replacing all 0 bonds of a O lattice withbonds. 1 1 (27d¢ (27d@
For ann lattice, the average site and bond numbers per pri- fO=——Insinh(27)— —J >—| 5=
mar . (n) _ (n)_ (n) 4 4 0 2 0 2
y square of O lattice ardNg’=2S""—3 and Ny
=2B(, respectively. The construction procedure is schema-
tized in Fig. 1. XIn
The general form of the partition function for DDIM de-
fined on amn lattice reads with

() is determined by the recursion relation,

gvith the initial condition(®= 7 for 1<k=n.

It is well known that the corresponding free energy per
bond perkgT of Eq. (1) for the case of O lattice can be
written as

sinh(2#7) +

W—(ﬁmﬁ)}, (7)
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O(0,¢)=cosf+cose. (8)

By observing that up to a factoR("(7) the effective

Boltzmann factor of am bond possesses the same form as
that of a 0 bond, we can express the free energy density of an

n lattice as[24]

£ = ()

1 In sinf(2 7™ 1 jZquﬁ 27d 6
4BM nsinh(227") 4BM Jo 27)o 27

X In| sinh(2 (M) + —
sinh

Py —<o,¢>1, ©

wheref{" is the contribution from the factdR(™(7),

= R ( 7) (10)
DT g ”'
which can be expressed as
o1
= _gl E|n[cosr(277<k—l>)], (12)

by using the recursion relation of E(). Note that thef(D“)
part exists only fom=1.

Ill. FISHER ZEROS
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FIG. 2. (a) The distribution of the Fisher zeros of arattice in
the complex tanh{™) plane as the leftgray) and the right(bold-
faced n cycle, andb) the densityleft vertical scalg and the radius
(right vertical scalgof the Fisher zeros in the left cycle.

[tanh( 7("M) + 1| = /2. (14)
The two circles intersect at two poinisand —i. As shown
in Fig. 2(a), due to the intersections there is a ring contained
in the two circles. For the purpose of identification, we refer
the circles as twa cycles and the ring asring. Note that in
displaying the distributions of zeros, we always use bold-
faced curves for the right cycle and its descendants, and
gray curves are for those from the lefcycle. This distribu-
tion also appears to have the symmetry of inversion about
the center tanh{")=0.

For the purpose of comparing the distributions of zeros
among differenn lattices, we have to bring the zeros to the
complex plane of an unique variable chosen to be tanfp

The partition function zeros of a 0 lattice in the thermo- ycpieve this, we notice that the recursion relation of @&d.
dynamic limit can be obtained by setting the argument of thg.oy pe rewritten as

logarithm in the free energy density of E) equal to zero

[23]. It is known that the zeros may lie on the unit circle

|sinh(27)|=1 [23] or on two circles|tanh(y)+1|=2 [18], 2[tanh ("~ 1))]2

M)y —
depending on the variable used for the complex temperature tanf(™) 1+[tank 77(n—l))]4’ (15)
plane. In this paper, we study the distribution and density of
the Fisher zeros in the complex tamh(plane. The basic \yhich has the inverse map given as
features appearing in the complex sinhdlane are essen-
tially the same as those we obtain in the complex tghh( 1+ T-Ttanh 7™ 112
plane. tanh( 7" 1) =+ | — ety DR ) ag

By observing the free energy density of H§), in the
thermodynamic limit we can obtain the distribution of zeros
of ann lattice from the solutions of two conditions,

tanh( (")

Then, starting with the twa cycles in the complex tank{™)
plane, we can obtain the corresponding distribution of zeros
in the complex tanhf) plane by performing the fold back-

H n —
sinh(2") + sinh(27™) 0(6,¢)=0 (12) ward iterations provided by Eq16).
After the first backward iteration, we show the resultant
and distribution in the complex tani") plane in Fig. a)
where the points indicated by crosses are the preimages of
cosh27* " Y)=0 for k=1,2,...n. (13)  the map of Eq(15) for the centers of twa cycles, 1 and

—1. The results indicate that each of theycles shown in
Note that the latter can also be viewed as the condition of th&ig. 2(a) splits in to two closed curves referred as—(1)
zeros for the Ising system defined onmbond, and such a cycles. There are eight intersection points between the de-
system becomes DHIM in the limit of infinite. scendants of the right cycle and those from the leficycle,
From the result of two circles for the partition function and the loci of the intersections are determined by the in-
zeros of a 0 lattice in the complex tanf)(plane, we may verse maps of the points,and —i, which are the intersec-
conclude that the solution of E@l2) is two circles in the tions of twon cycles. There are four rings, referred as (
complex tanhg™) plane: —1) rings, caused by the intersections. Note that the distri-
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FIG. 3. (a) The four (h— 1) cycles for the zero distribution of an (ec) (a)
n lattice in the complex tanhf" ) plane. The cycles displayed by 0.03 12 003 1.2
the bold-faced curves are the descendants of the rigtitcle and —~0.025 1 F0.03s o
the gray curves are those from the leftircle. The points indicated ¢ o0.02 0 Bf éﬁ 0.02 0.8§
by crosses are taken as the centers of the 1) cycles, and they H3 0.015 0.6 3 & 0.015 0.6 3
are the preimages of the renormalization map for the centers of twWos 5 o1 0.0 ® A 0.0 0.2
n cycles.(b) The density(left vertical scal¢ and the radiugright 6,005 o2 0.005 0.2
vertical scalg of the Fisher zeros in then-1) cycle with the ' ’ ’ )
center at (1,0). 0.40.60.8 1 1.2 0.40.60.8 1 1.2
al™? /n al® /n

bution shown in Fig. &) are Jus.t the dlstrlbutlon.qf Zeros In FIG. 4. (a) The 12 fi—2) cycles for the zero distribution of an
the complex tan_hﬂ plane subject to the condition of Eg. n lattice in the complex tanh{"~?) plane. The points indicated by
(12) for an 1 lattice. _ crosses are taken as the centers of the 2) cycles, and they are
Proceeding with the inverse map given by Et6) from  (he preimages of the renormalization map for the centers of the
the complex variable tanh{"?) to tanh¢;"~?) for the four  (n—1) cycles. The 12 f—2) cycles can be divided into three
(n—1)-cycles, we obtain 12n(—2) cycles, as shown in Fig. classes, I, Il, and i, according to the decreasing order in the mag-
4(a). The (n—2) cycles contain 16— 2) rings caused by nitude of the circumference of a circle. The dengisft vertical
the 32 intersections among the cycles. The intersections aggalg and the radiugright vertical scalg of (b) the (n—2) cycle,
again the preimages of the map of E4j5) for the loci of the  which is the one marked I if), with the center coordinate (1,0);

intersections among then¢- 1) cycles. (c) the (n—2) cycle, which is the one marked Il i@), with the
Continuing with this procedure, we show the distribution canter coordinate/1+ V26l and(d) the (n—2) cycle, which is
of zeros in Fig. 5 fom=4 and Fig. 6 fom=8. In general, the one marked Il in (@), with the center coordinate

the zero distribution for a lattice in the complex tanh [ oimia

plane, subject to the condition of E¢L2), is the union of L+ \2e ™.

[2+2(4"~1)/3] O cycles, which have /2 intersections,  are the union of the intersection points amdngycles in the
and these intersections yield' 4 rings contained in the 0 complex tanhg®) plane for l<k=n. in the complex
cycles. The O cycles can be divided into two classes: ongynne,) plane for am lattice.

consists of the descendants of the leftcycle with [2 Thus, we can describe the distribution pattern of the
+2(4" "= 1)/3] members and the other ha¥2 members, Fisher zeros of DDIM with the decoration levelin the
which are the descendants of the rightycle. The intersec-  complex tanhg) plane as follows. There are 274 1)/3
tions only occur between two 0 cycles belonging to differentgatiered points given by E¢L7). In addition, there arg2
class. The distribution always maintain the inversion symme= 4" 1)/3] 0 cycles with 2<4" intersections obtained

try about the center tang=0. from Eq. (12).
For the cg?ditiqn of Eq(13), it can be rewritten in terms Among all the zeros we obtained in the above, as a con-
of the tanhy™ variable as sequence of the Lee-Yang theor¢h$,17), the bulk critical

points correspond to the zeros falling on the physical region.
The physical region of the variable tanfi(is O<tanh(y)
Then, for the case afi=1 the two zerosj and —i, in the <1 for ferromagnetic couplingg=0. This implies that the

! : - - - variable tanhg™) also takes the range<tanh(/™)<1 as
complex tanhy plane are just the intersection points of two g 77

cycles in the complex tank®) plane. Proceeding to the the physical region for anp value.
case ofn=2, we obtain, besides of the previous two zeros, oM the solutions of the conditions of E¢$2) and(13),

eight more points in the complex tanf)(plane fromk=2 in ~ We know that there is only one zero in the physical region.
Eq. (17). These additional points are the preimages of thel NiS Z&ro belongs to the rigintcycle and locates at
renormalization map for the original two points, and they are c 0

the intersection points among four€ 1) cycles in the com- tant( (M) =h(®), (18
plex tanh ¢"~Y) plane. By induction, we may conclude that . _ .

the zeros in the complex tant)( plane obtained from the With h(®=2—1 for arbitrary deSOfa“O” levet. Here, for
condition of Eq.(17) are 2(4'—1)/3 scattered points which convenience, we use the notatios " to denote the equality

tanhn"V==i for k=1,2,...n. (17)
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Im[tanh(n)]
Im{sinh(2n)]
o

Re[tanh (n)] Re[sinh(2n)]
FIG. 5. The zero distribution of an lattice in the complex

- “ FIG. 6. The zero distribution of an lattice in the complex
tanh(y) plane obtained from the condition of E({.2) for n=4.

tanh(y) plane obtained from the condition of E({.2) for n=8.

established only at the phase transition point. Note that the IV. DENSITY OF ZEROS
h(® value is just the reduced critical temperature,
tanhQ/kgT.), of the ferromagnetic phase transition for the
square Ising model, i.en=0.

To find the locus of the zero specified by E8) in the

The density of twon cycles in the complex tank{™)
plane has been determined by Lu and J28]. Based on this
result, we determine the density of the zeros of DDIM in this

complex tanhg) plane, we can continuously use the inversesecuon by performing proper transformations. First, we de-

map of Eq.(16) to obtain the equivalent expression of Eq. Scr'll'bheetmoriig:tegfolf_uEg(nld4)V\§:eb\5\|/$iTtye rl]n(’;ge following.
(18) as

tani 7(™) = 1=r(aM)expia™), (21)

C
tanh( " ¥)=h{), (19 wherer(a™)=12 is the radial distance from the center
coordinate. By considering av X 2N simple-quartic lattice
with with Brascamp-Kunz boundar_y _condition, we i_ntrqduce the
zero densityg. («(™), that satisfies the normalization con-
dition

(20

h(k)_<1_ /1_(h(Rli)2> 1/2

2m 1
h(D) fo g-(aM)da™=3, (22

for 1<k=n. Note that in obtaining Eq20) for the critical ~ such that the number of zeros in the interjal™,a(™
value of tanhg™¥) we have used the constraint 0 +da™]is 2MNg. (a™)da!™ for the left (+) and right
<tanh@" ¥)<1. (=) ncycle, respectively. The zero density is given as
Thus, the zerd(® in the complex tanh{") plane corre-
sponds to the zerb(™ in the complex tanhf) plane, and the x || 1—y2cosa(™
n is i iti g (aM=g_(m—aM)=| = || ——F=—=|K(x),
h(™ value is just the reduced critical temperature 72)|3—2+2cosal™
tanh/kgT,) of the ferromagnetic phase transition for DDIM (23
with the decoration leveh. The sequence di(" decreases
asn increases, and the™ value in the limit of infinitenis  where
given by the asymptotic value of the sequencen®f. For
the recursion relation of E@15), there are three fixed points, 2|Sina(n)|(\@_003a(n))
one repellor locating at 0.543 . ., and twoattractors at 0 X= 22 ™
and 1. Since thé™ value is obtained fronh(®) via then 3—2y2cosa
fold backward iterations given by EQRO) and the attractors
(repellorg of the map become the repelldigtractors of the
inverse map, we may conclude that & value is the locus
of the repellor of Eq(15), h(W=0.54% . . ., for thecase of

/2 1
R
infinite n. (x) 0 J1—x%sirft

(24)

andK(x) is the complete elliptic integral of the first kind,

(29
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The density of g, (™), which has the symmetry where tanhg" %) is the complex conjugate of tardi{ ).
g. (M) =g, (27— a™), is plotted in Fig. 2b) for the  This result is obtained by substituting E45) into Eq. (14)
range 0< oM< 7. Here we also specify the radial distance for the leftn cycle. By further substituting Eq27) with z,
of a zeror (M), in the right vertical scale. For smal(™, =1 into Eq.(30), we obtain

the result of Eq(23) has the linear behavior as

r*+134 coga™ V)] +1%(4-2y2)

3+2\2
Wf)la‘”)l- (26) —r[4+2coga™V)]-2\2=0. (31)

g+(a(n)):<

. ~ This equation can be solved numerically to obtaja (")
Note that the denSItg+(a(n)) of the zeros near the pOInt and dr/da(n_l)_ Moreover, the relation betwe(n) and
aW=0 is the same as the densiy («™) near the point  4("~1) has been specified by the map of E§S). We sub-

oM =7, which is the ferromagnetic phase transition point of stjtyte Eqgs(21) and(27) into Eq. (15) to obtain
the bulk system, and this linearly vanishing density of the

zeros near the bulk transition point leads to the logarithmic
singularity of the specific heat. _ 2[1+r(a" Nexpgia"1)]?
To find the corres [ ity i 1+2 exptial") = : -
ponding density in the complex 1+[1+r(a(nfl))equa,(nfl))]4
tanh(@ "~ Y) plane, we first write ther(— 1) cycles as (32)

By differentiating this equation with respectad” ) and by
tanh( 7" M) =zo+r (" V)expia™ ). (27)  ysing the known values af(a" V) and dr/da™ D, we
can determine the derivativir(W/da("~1) and then obtain
Here the center coordinateg are chosen to be the preim- the densityg,(«("~)) according to Eq(29).
ages of the map of Eq15) for the center coordinates of The numerical result of the densig(a""%) is shown
cycles, tanhg™)=1 and—1, and this leads ta;=1, —1,i,  in Fig. 3b) for the range & " V<7 with the radial dis-
and—i for the center coordinates of foun¢ 1) cycles. The tance of a zeror(« 1), specified in the right vertical
zero density of the {—1) cycle, specified by the center scale. Our results indicate that when the complex plane
coordinatez,, is denoted ag, («""), and we have the changes from tanii{™) to tanh¢;"~?), the distribution den-
relation sity oscillates more rapidly with the peak number increasing
from 2 to 4 for half cycle. The locus of the zero correspond-
ing to the ferromagnetic phase transition point moves from

- a - - aM=0 of the leftn cycle toa"" Y= 7 of the (h—1) cycle
g:1(a"V)=g; §+a(n 1)) =g_y(m+a"Y) of zy=1. For the zeros near to"" Y= 7, the density has
the linear behavior as
—q |am-0_T
_g"(a 2)’ 28 3+2\2
gi(m+a"Y)=6, - )|a(nl)|1 (33
for the distribution shown in Fig.(8). Thence, we determine
the densityg;(a("" %), and the densities of othen¢-1)  with
cycles are followed frong, ("~ V) according to the above
relation.
Because that the inverse map given by Ed) is 1 to 4 s _E da™ —0.1529 (34)
and the f—1) cycle ofzo=1 is a descendant of the lait 4 gD — e '

cycle, we can express the densiy(a" %) as

This linear behavior, again, gives the logarithmic singularity
of the specific heat.

To extend the calculation of density ta{ 2) cycles, we
may divide the 12 1§—2) cycles shown in Fig. @) into
three classes named as class |, I, and lll, according to the
decreasing order from the longest to the smallest in the mag-
nitude of the circumference of the circles. Then, there are
four members in each class, and all members of class | are
the descendants of the laftcycle and those belonging to
classes Il and lll are from the right cycle. Similar to the

[tank 7"~ V)|*—{[tanK "~ V]?+[tanhy("~V*)]2} case of (—1) cycles, we can write

(n (m
gl(a(nfl)):ng(a ) dOf ’
4 |da-D)|

(29

To determine the transformation Jacobiaa(™/da("~1)|,
we first notice that ther(—1) cycles ofzp==*1 are the
solutions of the equation

—24/2|tanh( ") |2+ 1=0, (30) tani 7" =z, +r(a" D expia"?) (35)
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for the zeros of (—2) cycles, and the center coordinaigs 5 6 2
are chosen to be the preimages of the map of(E5).for the >4 ta) (b)
center coordinates ofn(-2) cycles, 1,—1, i, and —i. 2.2 1.5
Then, we can express the densities of the-@) cycles as g 2 3 N
1.8 w
1.6 0.5
(n—1) (n—1) 1.4 :
! (a(0=2)= 9u(a™ 7) | dar ‘ (36) 1.2
9z, (@ 4 n—2)|’ 0
da ‘ -20 0 20 40 60 1 1.5 2 2.5 3
q a
and
FIG. 7. (a) The generalized dimensidd, and(b) the singularity
(n—1) 1 spectrumf(a) of the Julia set associated with the renormalization
i ) |da® )‘
gII,III(a(n—Z)): I (37) map.
% 4 |da-2)’

are similar to a (—2) cycle of class Il, and the rest have a
respectively, where the superscript I, Il, or Ill is used tosimilar shape as an(—2) cycle of class Ill. Up to an overall
denote the class to which aa{2) cycle belongs, and the reduction factor, the densities of the 16 members have the
subscript,zy, is used to specify an—2) cycle in the given same oscillation pattern as that shown in Fi¢c)4and the
class. Since the members belonging to the same class are ttiensities for the rest members possess the same oscillation
same up to a global rotation, we only need to determine th@attern that shown in Fig.(d). For the 44 descendants of the
zero density of arf—2) cycle for each class. The cycles of (n—2) cycles of class | displayed by gray curves in Fig. 5,

z=1, Vi+ 26 and V=14 26/ ™. belonging to the corresponding density reduces but oscillates more rapidly

classes I, I, and IIl, respectively, are choosen for the calcuith 32 peaks in half cycle in comparing with that shown in

lation of the density of the respective class. Fig. 4(b).

The numerical method of calculating the correspondence Continuing with this procedure in finding the density, we
between o™ and «™2 and the Jacobians obtain 2'** peaks in amr period for each of the 0 cycles,

|[da"D/da("2)| are exactly the same as we did in the lastWhich are the descendants of the Iaftycle. On the other
case. The results of(a("2) (right vertical scalg and hand, the peak number always maintain to be 4 for each of
g(("2)) (left vertical scalg are shown in Figs. @), 4c),  the 0-cycles belonging to the descendants of the nigtycle

and 4d), respectively, for the three cycles. These results in_along with the decreasing radius msncreases.

dicate that the rapidity of oscillation in the distribution den-

sity of the cycles of class | increases as the peak number V. JULIA SET AND INFINITE N LIMIT
doubles with respect to the last case, while the peak number
remains to be the same for the cycles of classes Il and lll. The recursion relation given by E¢L5) happens to be a

The zero corresponding to the critical point of ferromagneticgtional map of degree 4. Then, from the work of Julia and
phase transition moves from "™ "= of the (1—1) cycle  Fatou, we may conclude that the backward iterations defined
of zo=1to o""?)=m of the (n—2) cycle ofzy=1 of class  py Eq. (16) leads towards the Julia set associated with the
I. The density of the zeros near to this locus has the Iineafnap of Eq.(15).
behavior Generally, Julia sets can be divided into two classes: some
are connected in one piece while the others are just a cloud
3422 of point;. The tendency O.f thg zero density with ingreafsing
>|a(n—2)|’ (39) shown in the above section indicates that the Julia set here

w

glzl: (7t a(”_z)) =0,

da(™
da(nfl)

da(”_l)
da("=2)

belongs to the latter. Moreover, by observing the distribution
. patterns and the densities of the zeros, we may conclude that
with a 0 cycle belonging to the descendants of the rigltcle
shrinks to a point in the limit of infiniten, and these infinite
5 number of points coincide not only with the O cycles gener-
5 :(E) ated from the leftn cycle but also with the zeros obtained
V] ) 1 from the condition tanhf"Y)==i for infinite n. Thus, the
o T o same Julia set arises in DHIM as well as DDIM in the infi-
=0.0365. (39 nite limit. In fact, the loci of the zeros of DDIM in the infi-
nite limit are identical to that of DHIM.

From the densities obtained in the above, we may conjec- The Julia set arising from the distribution of the Fisher
ture qualitatively the density of the O cycles with=4  zeros possesses multifractal structure, and the corresponding
shown in Fig. 5 as the following: There are 128 membersggeneralized dimension®, and singularity spectrunfi(«),
belonging to the descendants of thre<(2) cycles of classes obtained by using derivative method and by approximating
[l and Ill, as displayed by bold-faced curves in Fig. 5. The 16the limiting set of the zero distribution with that of=8
members of the 128, appearing in the outermost of Fig. 5shown in Fig. 614,15, are shown in Fig. 7.
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tices with diamond-type bond decorations in this paper. By
carrying out the exact renormalization map of temperature,
we can express the free energy ofratattice as the sum of
two parts: one, referred as the local part, is mainly the con-
tribution from ann level decorated bond and the other, re-
ferred as the long-range part, is the contribution from the
interactions among level decorated bonds. For the local
part, we obtain the zeros as a set of scattered points. Along
with the increase in the number of the scattered points in the
distribution of the zeros as the decoration leméhcreases,

all zeros belonging to the lower decoration levels are also
contained in the distribution of zeros of the higher decoration
level. The corresponding zeros of the long-range part are the
union of continuous closed curves, which also form subrings
due to the intersections. For the long-range part, the distri-
2 bution of the zeros leads towards the Julia set associated with
Re([sinh(2n)] the renormalization map, which is a rational map of degree
4. This Julia set also serves as the limiting set of the zeros
obtained from the local part of the free energy. The zero
representing the critical point of ferromagnetic phase transi-
tion is one of the zeros of the long-range part in the physical
. . , . region, and the locus of the critical point for an arbitrary
The sinh(2) complex plane is also widely used in study- decoration leveh is given. Along with the distribution pat-

ing the distribution of the zeros for simple square ISingltern we also calculate the density of the zeros of the long-
model. The results of simple square Ising model imply thatran ’e art for the cases ni- 1. andy2 The evolution of the 9
the zeros may lie on the unit circlginh 2;"|=1, for ann ge p :

lattice. To obtain the distribution in the sinhf2 complex density of zeros in the course of increasingndicates that

plane, starting with the unit circle we then perfomfold the Julia setis a 9IOUd of points. Thus, the Julia set has the_:
backward iterations of the map Hausdorff dimension greater than 1 and possesses the multi-

fractal structure.
Comparing with the continuous closed curves appearing

Im[sinh(2n)]

FIG. 8. The zero distribution of an lattice in the complex
sinh(27) plane obtained from the condition of E(.2) for n=8.

1 [sinh(270~1)4 in the distribution of zeros of'theT simple square Ising model,
sinh(27M)== we have more complicated distribution patterns for the bond-
2| 1+[sinh(27"~)7? decorated Ising model. The patterns remain to be continuous

closed curves in both tanf( and sinh(2;) complex planes

for a finite decoration levat, and only in the limit of infinite
1, (40) n the continuous closed curves break into areas that contain

multifractal structure. It has been demonstrated on classic
o ) ) o lattices that when the couplings among the nearest neighbors
which is an equivalent expression of H). This is also @ change from isotropic to anisotropic, the distribution of the
rational map of degree 4, and the Julia set associated Withisher zeros may change from continuous curves to an area
this map can be approximated withfold backward itera- i the plang[19,20. However, the converse is not necessary
tions for a sufficiently largen. The resultant distribution of g pe true as the example shown in R&B]. In regard to the
n=8 are shown in Fig. 8. Though the distribution pattern ishond-decorated Ising model, the interactions among the Ising
different from that in the complex tanf)( plane shown in  spins are effectively isotropic after the renormalization map
F|g 6, OWing to the fact that Julia set is an invariant Set, tth the Corresponding 0 |attice, a|though the coordination
global multifractal structure characterized By, andf(a) is  numbers of lattice sites are highly inhomogeneous fonan
the same as that shown in Fig. 7. lattice with largen. This leads to the conclusion that in the

The density near the bulk transition point has a lineanimit of infinite decoration levels the system has completely

behavior, and the linear behavior gives the logarithmic singitferent properties: The distribution of the zeros has multi-
gularity of the specific heat. By observing the results of Eqsfractal structures, and the nature of phase transition of the

(26), (33), and(38), we may expect that the linear behavior system is different from that of finite decoration levERs].
for the density near the bulk transition point disappears in the

limit of infinite n. This leads to the nondiverging behavior in
the specific heat as the decoration level goes infiratg. ACKNOWLEDGMENTS

2[sinh(27(""1)]?
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