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Transport on percolation clusters with power-law distributed bond strengths
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The simplest transport problem, namely finding the maximum flow of current, or maxflow, is investigated on
critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments
and exact numerical computations, for power-law distributed bond strengths of thB type- o~ . Assum-
ing that only cutting bonds determine the flow, the maxflow critical exponerg found to bev(a)=(d
—1)v+1/(1—-«). This prediction is confirmed with excellent accuracy using large-scale numerical simulation
in two and three dimensions. However, in the region of anomalous bond capacity distributiens(D) we
demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the
transport properties of the backbone. This “blob dominance” avoids a crossover to a regime where structural
details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling
exponents, however, still follow the simplistic red bond estimate. This is argued to be due to the existence of
a hierarchy of so-called minimum cut configurations, for which cutting bonds form the lowest level, and whose
transport properties scale all in the same way. We point out the relevance of our findings to other scalar
transport problemsi.e., conductivity.
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I. INTRODUCTION constant conductance, has not been analytically derived up to
now. The difficulty in derivingt, resides in that is deter-
The transport properties of percolation clusters have beemined by the blobs, and thus one would require detailed
a subject of interest for many yedrs 2]. A natural problem  information[18] about the internal structure of the blobs.
to study is, e.g., conductivity, and one often complicates it On the contrary, it has been argued by several authors
further by using random bond “strengthg’ with a power-  [6,11,1§ that t(«) in the anomalous regime is determined
law tail of the formo ™% [3—11]. In the first place, because by the cutting bonds alone. Since these form linear chains of
this allows one to represent continuum percolafi§j7] and  typically LY bonds atp. [15], the resulting conductivity
thus get closer to some actual physical realizations of percc@xponent is easily derived. The argument to support the be-
lation. A second reason why these systems are interesting §i¢f that blobs are irrelevant in the anomalous regime seems
the equivalencd12] between transport on strongly disor- {0 be roughly the following: an exceedingly small conductiv-
dered systems and percolative transp8H. ity falling on a blob has little effect on the overall conduc-
Transport critical exponents on these systems are found f§Nce, because there are many alternative parallel paths. On
depend ony, which means that strict universality is lost. The € other hand, if this small conductivity is located on a
original observation that transport exponents become norfUtting bond it will certainly dominate the system conduc-
universal is due to Kogut and Stralég], who used mean- t@nce. While this argument is true in principle, this reasoning
field-type arguments. Later Stral¢¥], with the help of the mlsses'the fact t.hat the number of cutting bonds is itself a
nodes-links-blobg[13—-16 picture of the backbone, con- fluctuating quantity. The issue of blob irrelevance has been

cluded that the conductivity exponent such thatS ~ (p considered by Machtat al. [6] using a hierarchical model
—p )t is the maximum of the universal exponett= (d for the backbone, to reach similar conclusions. However, as
c/

— noted by the authors, their model does not include structural
Ii/)’fg an: the c_x—?ﬁpender;tt_explonertﬁ(a)—(d—t2)vd fluctuations. We will demonstrate in this work that it is in
(1-a). Herew IS the correlation length exponen a fact the blobs and not the cutting bonds that determine the
measures the contribution of blobs to the resistance betwe

&itical transport properties, even in the anomalous regime.
two points on the backbone, for the case of constant condu Pott Prop ' 9

i For th ductivit blem thus there | GFhis, as we will see, is due to structural fluctuations. How-
ances. -or the conduclivity problem thus Inere IS a Crossovedy o the resulting transport properties turn out to be the same

from the universal exponerty for a<a. to t(a) in the  as those given by the most simplistic red bond estimate.
‘anomalous regime”a>a.. Although not without some A related critical transport problem, which is relevant for
controversy initially[6,8,9,17, this result is by now well disordered superconductors, is that of determining the criti-
established8-11]. - cal current density.=1.L "4~ that a percolation network

It is somehow surprising that(a) can be analytically can sustain, and which aboyg behaves ad.~(p—p.)’
calculated in the anomalous regime, given that the universdll9—24. This problem has a simple geometrical interpreta-
exponentty, which applies to the arguably simpler case oftion. Finding the maximum flow of current, enaxflow is
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equivalent to finding the surface across the system, on whictistribution may extend down to zero in the form of a power
the sum of critical currents of the bonds is maximized. As welaw (see later. The existence of such fluctuations has been
will draw advantage of this analogy later on, we note thathoted by some works previous[80,31], but their role in
this surface is called mincutin computer science language transport properties has not been considered. These number
[25-27. fluctuations, we will show in Sec. I, do modify the transport

In this paper our goal is to present a comprehensive stud§xponent that results from a string of cutting bonds. Then by
of the maxflow problem on percolation clusters. This is mo-analyzing the conceptually and numerically simple maxflow
tivated by the following observations. First, this is the sim-Problem, we will be able to show that in fact blobs cannot be

plest transport problem that one can think about, and has n&€dlected. The net outcome, which we justify by a heuristic

been as such discussed much in the literature. Second, we {f@rarchical picture, is that although the simplest cutting-

able to use to our advantage recent developmEzas on ond scalingwithout fluctuationgis restored, it is in fact the
. . Lo . . . blobs that set this scaling behavior.
combinatorial optimization algorithms, in the context of dis-

ordered svstems. Here one can use a three-step approach. i The structure of the rest of the paper is as follows. Section
Y ) P app il I%resents the analytical discussion, based on a “fluctuating

which first a critic_al spanning cluster is set, its backbo_ne IS umber of cutting-bonds” picture. In Sec. Il we go through
pruned out, and flnal!y that is u;ed for the maxflow-mmcutOne by one the numerical methods employed, the findings
problem. Each stage is solved with one of the powerful graphy, gt “stryctural fluctuations, and some further numerical
optimization algorithms for the particular problem, as dis-gnqjysis of the extremal statistics aspects. Section IV con-
cussed Iate_r. . tains the results concerning the maxflow problem, and some
In the simplest version of the maxflow problem, all yetajls of interest that can be determined from analyzing

present bonds have the same critical currentapacity b |arge statistics. Section V finishes the paper with a discus-
and absent bonds havg=0. At criticality, a typical perco-  gjon.

lating cluster is a linear chain of cutting bonds and thus
=i.. From this observation plus the usual scaling relation
Jo(L)~L7¥" one concludes thatl9] v=(d—1)v. This
result is consistent with experimer|ts9,22 and numerical We consider diluted lattices where the maximum super-
simulation[21,24). In a more realistic model, each presentcurrenti, that a present bond can sustain is a random vari-

bond has a random capacity with power-law distribution  aple distributed between 0 and 1 according to
P(ig)~i.“. This is, for example, the case for continuum

II. CRITICAL CURRENT DENSITY

percolation model§20,21,23. A simple extension of the P(is)=(1—a)c™ ¢, (@h)
“typical cutting-bond string” argument givew (a)=(d
—1)v+1/(1-«a) as we show later in Sec. Il. with a<1.

In the following we will find it useful to compare the Let I, be the maximum supercurrefar maxflow) that the
conductivity and critical current problems to each other. Thiswhole system, given a set of valuis}, can sustain. The
comparison is done by interpreting the random bond variaverage current density, is thenJ.=(1.)/L@" Y, and goes
ablesi. alternatively as bond conductancesor as bond to zero atp, as
capacities .. Consider, for example, two bonds withh and
o, connected in parallel. The resulting conductargs, Je~(P—pe)’- 2
=01+ 05 is then the same as the maximum currggt, that
can flow if o; are capacities. If these bonds are instead conRight atp., and for a system of finite linear side usual
nected in series, thewrgeres=(0; +0,) 1 and I, finite-size scaling argumenf48,32 imply that
=min(oq,0,) are no longer equal. However, the series con-
ductance can be written af29] geries=Min(oy,07)(1 Je(Pe,L)~L 70", ()
+B)7L, with B=min(oy,05)/max(y,0). In the limit of ) ) )
strong disorder ¢—1), B is typically negligible. We con- where vis the perC(_)Iatlon correlation Iength exponent. The
clude that, in this limit, also in the series case the conduchodes-links-blobs picture of the percolation clugte3—16
tance equals exactly the maximum current obtained by intertells us that, right ap., there is typically a single connected
pretingo; as capacities, . Therefore in thex— 1 limit, the ~ Path through the sample. This path is a sequence of multiply
resistive current problem and the superconducting currergonnected regiongblobs connected by strings of singly
problem(maxflow) are equivalent, at least for all structures connected bonds, also callemlitting bonds The average
that can be solved by a combination of series and paralldlumber of cutting bonds is of the order ot” at p, [15].
bond reduction§36]. Moreover, as shown in Sec. Il B, we  We now start by considering the maximum fldw al-
find that the equivalence noticed above is valid not only inlowed by a string ofn cutting bonds, and which obviously
the a—1 limit but for a range ofa values, for strings of €quals the least capacity among thebonds. The typical
bonds in series. least valuef® among a collection oh>1 random numbers

In deriving a-dependent exponents, both fofa) and  ic With probability P(i.) satisfies

t_(a), the assumption is made that the backbone always con- .
tainsL'” cntting bond_s. While this is true Wpically, the num- jfn P(i)di=1/n. (4)
ber of cutting bonds is in fact a fluctuating variable whose 0
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Thus

fr=n-Ua-e), (5)

On a system of linear sizk at p., the average number of

cutting bonds i [15]. In replacing this one obtainf:
~L WA dm1g (@D mu(@lv gnd thus from Eq(3),

v(a)=(d=1)v+1(1l—a) (6)

as advanced in the Introduction.

This typicaln argument, however, neglects the fact that
is a fluctuating number. Sind®(n) actually has a power-law

PHYSICAL REVIEW &7, 056106 (2003

P(f)(1+a) min[n}’ '”(f)]na“dn.

f)=
m( ) (nt)l+a 1

(11)

Defining f,,=(n}) Y%, k=(a+1)(1-a), and \
=kl(a+2), this last expression can be written as

f —a
e [ if 0<f<f
Mtyp(ftyp) ! typ
m(f)= 12
O e (12
)\ftyp<ryp) if ftyp<f<1'

tail extending down te=0 [31], this neglect turns out to be Thig gives the PDF for the maxflowthrough a string of

not correct for quantities that depend om Hs Eq.(5).

cutting bonds on a system of sikeallowing for fluctuations

We now present a more careful treatment, which takes, the numbem of bonds on the string. The strength of the

into account the fluctuations in. It is known [31] that

fluctuations of 1rt is characterized by the exponetitwhich

Pu(n)=(nf) *P(n/n}), whereP(n) is a size-independent in turn depends oa. If a— = (nonfluctuating limi, m(f) is
function, andn® ~LY” [15]. Since for the purpose of our nonzero only forf <fiyp. Thus(f)~f,,, and Eq.(6) is re-

discussion all that matters is the behavior Bfn) as n
—0, we take for simplicity’’(n)=(1+a)n?, for 0<n
<1. Thus,

P(n)=(1+a)(nf) " ¥n?, (7)
for 1=<n=n{ . We will for the moment assume thatannot
be zero.

Let nowf be the minimum among numbersx distributed

with probability P(x). The distributionm,,(f) of f is deter-
mined as

f n—1
mn(f)znP(f){ 1—f P(x)dx}
0

f
~nP(f)eX[{—nJO P(x)dx). (8)

Because of the strong exponential suppression that occurs f
f larger thanf; defined by Eq.(4), we can approximate

ma(f) by
nP(f) if
0 if

o<f<f;
f>fr.

mn(f)~[ ©)

Now allowing for the fact than fluctuates, the probability
distribution function(PDPF of the maxflowf through a string

of cutting bonds is

m(f)= flxan(n)mn(f)=(1+a)

<)@ [Canremyn, 10

covered in this case. However, it is known tleat 0.22 in
two dimensiong31].

For generala and «, m(f) has a power-law tail with
exponent (I «) for f>f,,,. The importance of this power-
law talil is evidenced by considering the average flow

<f>:mftyp+ﬁ(ftyp)'(- (13

When k>1, (f)~fy,~(nf) YO~ and Eq.
(6) is recovered. However, ilw>al/(a+1) (k<1), the
power-law tail dominates the average. In this caBg
>fyy,. Therefore(f)~L~@* D/ and Eq(3) implies that in
this case,

v=(d=1)v+a+1. (14)
The meaning of this is clear. K is large, typical cases with
Or(n’,_‘) cutting bonds will only allow an exceedingly small
ux f. The average flowf), however will be dominated by
the very rare cases in which is small and for whichf
~0(1)>f,,. So finally we conclude that, if we idealize the
backbone ap. as a string ofn cutting bonds, and ifP(n)
behaves for smalh asn?, one has that

—1 d—1) if 2
1_a+v( —-1) i a<1+a

via)= a (15
+1+v(d—1 i e
a v( ) if a>1+a.

I1l. NUMERICAL RESULTS
A. Algorithms

In this section we test our analytical derivationugix) of

Sec. Il in two and three dimensions on large systems, with
for 0<f<1. From Eqgs(5) and(9) we conclude that, for a the help of powerful combinatorial algorithmia8]. Percola-
given value off, the only nonzero contributions in EGLO)  tion backbones are first generated by means of a matching
come from n values which are smaller thany(f) algorithm[28,33], for square and cubic lattices. We do this
=f"(1=9 Thus by randomly adding bonds one at a time until a percolation
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FIG. 1. Maxflow exponents measured for two-dimensidaal)
(empty squaresand 3D(filled squarek percolation clusters gi,. . 102
Dotted lines indicate the theoretical resudt(a)/v—(d—1)
=1/v(1- ), with 1/v=0.75(2D) and 1.13(3D). The maximum 10! | d=3 - WX
linear size simulated wals=4000 in two dimensions and=120 — i
in three dimensions. Error bars are smaller than symbol sizes. >_, 100 g N
(= »

path is first present. At this point the matching algorithm & 4
identifies the conducting backbone, exactly at the percolation H
point for each sample. Alternatively, one could fix the den- - . . .
sity of present bonds to a value close to the infinite system 1 1% 10 102 107 10°
critical densityp., and then identify the percolating back- nL v

bone with the same algorithm. However, our procedure has R .
the advantage that no Separate estlmate |s necessany for FlG 2. D|Str|but|0n of the numban of Cuttlng bonds on perCO-
For each percolating backbone, capacities are drawn frofgtion clusters in twdtop, L =32 (empty squargs 128 (asterisks
the given distribution, and the maxflow is calculated by@and 1024(full squares] and thregbottom,L =16 (empty squares
means of a flow augmentation algorithisee Ref[28] fora 32 (asterisks and 64(ful|/IV squares] dimensions, in terms of the
review of the maxflow problejn The efficiency of the max- 'educed variablé&=n/L". We find thatP(n) is consistent with a
flow algorithm is highly increased when working on the power lawn? for smalln (dashed lines Within numerical accuracy,
t?e exponeng=1.25 both in two and three dimensions.
backbone only, so we are able to analyze thousands o
samples for each value af. In this way we estimate numeri-
cally the average flow ap. for several linear sizek, and
from its scaling properties(«) is derived. The largest

sample sizes studied wete=4000 in two dimensions and grow percolatively by depositiof23]. In this case the point

L =120 in three dimensions. These are mostly set by th at which the supercurrent is nonzero for the first time is

CPU usage of the combination of the matching and flow, . X
algorithms, which in turn is dominated far large by the defined by the first appearance of a connected path, not by a

: . , fixed density of occupied bonds.
scaling of the matching part. The maxflow code is actually As we ad)é bonds gne at a time, our numerical simulations

sublinear inn=L2 in CPU time, since the mass of the back- correspond to this case rather than to fixi our mea-
bone scales with its fractal dimension. Notice that once the P g P -

backbone of a sample has been established, it can be used §Ot+rements of the distribution of the number of cutting bonds
s : indicate (Fig. 2) thatP(n)~n? for smalln, with a~1.25 in
several consequent maxflow determinations for differetd

save CPU time. In the Appendix, we present an idea for aﬁw%ﬁfldretztriigénr;elﬂglsonis\;e rise to different distributions of
optimal algorithm for this problem. 9

the number of cutting bonds, and specifically to different
values ofa so, if Eq.(15) were to hold for percolation clus-
B. Results ters, the resulting transport exponent would be ensemble de-

Results are shown in Fig. 1. Our numerical simulationpendent. However, our maxflow measurements on percola-
results confirm Eq(6) nicely. However, the saturation of tion clusters are consistent with E@) for all «, without any
v(a) predicted by Eq(15) for >a/(a+1) does not occur. sign of saturation.
Notice thata is not a universal exponent but depends on the In view of the failure of percolation clusters to show the
ensemble. For example, if the ensemble is determined bpredicted exponent saturation, we first confirmed the validity
fixing p=p., numerical measurements and renormalizatiorof Eq. (15) for strings of cutting bonds. We did so by nu-
group calculation$31] give a~0.22. Additionally, roughly — merically studying strings of bonds whose numbeis dis-
20% of the connected samples have zero cutting bondgibuted according to Eq(7), and whose conductancesr
[30,31], that is,P(n)~0.205(n) + cn®22 for smalln. capacities, for the maxflow problerare distributed accord-

However, other ensembles can be considered. Considéng to Eq.(1). The maximum flow is simply the least critical
for example, the percolation cluster defined by the construceurrenti,. Alternatively, bond capacities, may be inter-
tion of Ambegaokaret al, in which conductances are laid preted as conductances, in which case the resulting conduc-
down on the lattice in order of increasing conductivity until atance for the whole string is simply=1/="_,1/i.(j). We

percolating path is creat¢d?2]. At least the last conductance
to be laid down is a cutting bond, §9(0)=0. Experimen-
tally this situation is realized when superconductive samples
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B,

v(o/v-(d-1), H{o)/v-(d-2)

FIG. 3. Maxflow (squares and ohmic currentcircles scaling
exponents, as numerically estimated for strings of cutting bonds.
The number of bonds on the string is distributed according to Eq.
(7), with a=1.00 andn’L*:Ll’V with 1/v=0.75. Averages were
taken over 10 samples, fol. =32,128,512,2048, and 8192. Notice

o scb
total

0o00@m oo

that (apart from a trivial shift both critical exponents saturate to 1
(a+1)/v for large . For the maxflow exponent this is the behav- (a)
ior predicted by Eq(15). The fact that thgshifted conductivity
exponent has the same behavior forat O indicates that the sum

10

10000

100 1000 10000
P(m)

of resistances along the string is dominated by the largest one, ir
this regime.

find for these strings of cutting bondkig. 3) that Eq.(15) is e

satisfied very accurately. Figure 3 also shows that the con:
ductivity and maxflow exponents are the same #or0,
indicating that the conductance is dominated by the lgast
value in that regime. We conclude that Ed5) is exact for
strings of cutting bonds. Thus the failure of E{.5) for
percolation clusters simply means that thdeenotbehave as o
strings of cutting bonds do. In other words, femear 1, it is 10
not correct to approximate a percolation cluster as a string of
cutting bonds.

g/ 100
Z

<O total
0 OSCB
m] o “ blobs

IV. THE ROLE OF BLOBS

A. Structural fluctuations
10000

20 30
In (m)

Our resultgFig. 1) show that the maxflow exponenta)
follows Eg. (6), although fluctuations in the number of
cutting bonds, which exist and are relevant in real percola-
tion clusters, were disregarded in its derivation. So we face ¢
somehow paradoxical situation, since a naive calculation
gives the correct resultEqg. (6)], while a seemingly more
careful calculation that takes into account the fluctuations in,
n[Eg. (15)] does not. As mentioned in the preceding section, £
this means that our assumption that the maximum flow is
determined by the cutting bonds alone needs to be revised. |
order to test this assumption, we separately measure th
maximum flow allowed by cutting bonds and by blobs,
which we callm; andm,, respectively, for each percolation
cluster. The overall maximum flow is the minimum of these.
The procedure works such that one picks first the smallest o ’

1000 |

100 |

total
Oscb
[ blobs

the cutting-bond capacities, and then assigns to it an infinite(c)
capacity. Then the maxflow is found, which is now given by
the minimal blob mincut(configuration. Figures 4a—0
show how the PDF ofm, (cutting-bond flow and the total
PDF vary with «. For nonanomalous values=0 [Fig.

FIG. 4. Probability distribution for the maxflow allowed by cut-
ting bonds (squares blobs (circles, and resulting maxflow

4(a)], the distribution is centered around a well-defined mearicrosses which is the minimum of both. Results are shown For

value. With increasingr one enters the anomalous regime, =256 in two dimensions. From top to bottom, the disorder expo-

and the PDF develops a power-law tail. This would be ex-ent isa=0.0, 0.5, and 0.7.
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1 T T . T . T T 350
O L=64 . L
O L=128 RS 800
0.8 o L=256 oL
A L=512 rOA " 250 |
T el
o § 200 t
0.6\ <>‘:ﬁ° = =)
2 B i £ 150 |
4" & 3
0.4 - 100 t
a P
A O i
=d 50 |
0.2 s o Iﬁd:g} = 0 E o
L > M - 0 5000 10000 15000 20000 25000 30000 35000
0 o o',:b':p . | . A ) bonds in cluster
0 5 10 15 20 )
ln(m(L/64)2‘38) FIG. 6. The number of singly connected bonds o+ 256 vs

the backbone mass, sample to sample. 10 000 samples.
FIG. 5. Probability distributions for the blob-dominated fraction.
The data are collapsed by scaling with the average maxflow.  about the blob’s internal structure. However, an estimate can
—-0.7. be obtained from the following arguments. It is known that
the backbone ap. has a hierarchical, or self-similar, struc-

pected to result from the cutting bonds, while the blob flowstUre [15]. At the top level of this hierarchy, the backbone

m, have a much narrower distribution, decaying roughly ex-tSelf can be thought of as a string of singly connedet-
ponentially for large flows. This means that, whem is ting) bonds interspersed with blobs. Blobs in turn are loops

large, most probablyn, will be much smaller and thus the made of doubly conneqted pond; intersper_sed Wit.h smaller
overall flow will be determined byn,. Thus, although our blobs anq Soon, as depl_cted n F.'g' 8. Thl_s_hle.rarchlcal struc-
derivation of Eq.(15) is correct for strings of cutting bonds, ture has its counterpart in a _S|m|Iar clq53|f|cat|on of surfaces
it is the blobs that determine the flow in those rare cases ilr'lhat separate the backbone into two pie@Rgs. At the top
which m, is large. Therefore, the power-law tail R(m,), level of t'hIS hierarchy are the surfacgs;} that cut the back-
which is responsible for the saturation wfa) at large val- bone at just one bond, next come those surfaggithat cut
ues ofa in Eq. (15), is suppressed by blobs on percolationthe baqkbong at exactly two bonds, etc. T.h..e capdfy) of
clusters. Figure 5 illustrates this by showing that the fractiorf: CUtSIS def_lned as the sum of the capacmlgsf the bonds
of cases—for a given maxflom—that are dominated by the cros;ed by it. Because of th_e _maxﬂow-mmcut t,heorem’. the
blob contribution follow a separate PDF. The collapse is noffaximum ﬂO.W equals the minimum of the cuts’ capacities.
completely perfect, since there may be a very slight trend irPur assumption t_hat cutting k.)o.nd.s.alone determ!r]e the maxi-
the total fraction of blob-dominated cases with increading mum flow is equivalent to minimizing the capacmt_as among
On the other hand, the variances of the maxflow distribution he S, alone. We now describe h.OW the next le@lin this
scale as expecte@s the mean It is worth mentioning that  ierarchy can be analyzed. Conig[ib5] has shown that the
the distribution ofk cuts(number of bonds in the mincuis
roughly exponential, so th&k) is of the order of 1.4—-1.5 for 10 ‘
a=0.7. + data

It is also worth pointing out that there are cross correla- g 2optave
tions between the structural quantities on one hand, and be
tween the structure and the maxflow on the other hand.
These are illustrated in Figs. 6 and 7. In a system with a
givenL it is after a moment's deliberation rather clear that .
there may be an inverse correlation betweenrthmberof 2 10
cutting bonds and the sample-to-sample weight of the back-&
bone. We have not tried to measure this relationship quanti-
tatively, but given such a relation it is no surpridég. 7)
that the mass of the backbone correlates strongly with the ¢ |
maxflow value.

8

10"

4

B. Blob dominance

. 10 ' ; |
In order to prove that our hypothesis, namely, that the 0 10000 20000 30000 40000
blobs set the maxflow scale, is correct, we still have to show Meackbone
'@at the blob flowmy has the right s<-:aI|ng propertle§, .., FIG. 7. The maxflow, fol. = 256 andm=—0.7, vs the actual
mp~L Y29 A complete calculation of the maximum backbone mass. The average is a running average over 20 samples,
flow allowed by blobs would require detailed information with consecutive masses from“8amples.
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We then see that, in those rare cases in which the number
of singly connected bonds is smélhey allow a large flow
blobs take their role thus limiting the flow to a value that is
typically of the order oL ~*(1=) Thjs then shows that the
correct value of the exponen{«) is given by Eq.(6). Simi-
lar behavior is of course expected for other transport proper-
ties, e.g., conductivity, in the limit of anomalous distributions
of bond strengths. This is so because in this limit the resis-
tance of the whole cluster is dominated by that of the mincut,
where conductivities are interpreted as critical currents.

backbone

,/ doubly

'\ connected

V. CONCLUSIONS

FIG. 8. Backbone structure. In this paper we have demonstrated that the transport
problem on percolation clusters still holds surprises. Our
I . o . . findings deny the widespread notion that, in the limit of
denvaﬂye of the spanning probability W|th.respect tpis anomalous strength distributions, it is the cutting bonds alone
proportional to the average number of cutting bofwls An 3¢ Getermine the transport properties. We show analytically,
extension of his reasoning, due to Kan8e), allows one to anq confirm numerically that, if blobs could be neglected
write the second derivative gf' (p) with respect top atpc  (pecause of their allowing a larger maxflow than cutting
asd?p'1ap?|p ~(n(n—1)—2Ny)[, , wheren is the number ponds then the overall system’s behavior would be strongly
of cutting bonds and\, is the number of pairs of doubly dependent on the ensemlitBe cutting-bond PDF tail expo-
connected bonds. Because by definiti@ip’/dp?=0 at p; nend. This ensemble dependence would come about because
[37], one finds that &N,)=(n?)—(n) at p.. Since(n)  the number of cutting bonds has a “broad” distribution ex-

~ L [38], we conclude that the typical number of pairs of tending down to zero. However the predicted ensemble de-
doubly connected bonds g, is N,~L2”. However, this pendence is not there, as we show numerically on large two-

alone is not enough to estimate the typical maximum floy2nd three-dimensional systems. Using scaling arguments we
allowed by doubly connected bonds, for they might bethen demonstrate that it is in fact the blobs that finally deter-

grouped into blobs in different ways. Fortunately the total "€ the average_maxflow. quever, we are forced 1o finish
numbern, of doubly connected bonds at. can also be with the' paradoxical conclusion that though the expectgd
calculated 15], and it turns out to b¢n2>~L1"’. This means mechanism for the maxflow, namely, cutting-bond domi-

that the blob statistics is dominated by one large ring ofrance, does not work in the anomalous regifaegea), the

roughly LY bonds and therefore contains a number of pairsorlglnal cutting-bond estimate for the transport exponent is

of doubly connected bonds, which is of the orderL3’ nevertheless restored by the limiting effect of the blobs.
Using this information we can now estimate the maximum
flow allowed by blobs at the level of doubly connected ACKNOWLEDGMENTS

bonds. This large blob dominates the maximum flow since Thjs collaboration was partially supported by théis#n
lesser blobs, located somewhere else along the backbonggyndation, Finland. C.F.M. acknowledges financial support
will allow a larger flow. Thus one has to find the maximum py CONACYT, Mexico, through a research project under
flow for two parallel strings, each containirig”” cutting  Grant No. 36256-E. C.F.M. also wishes to acknowledge the
bonds. The typical flow allowed by each string is of the ordering hospitality of the Laboratory of Physics, HUT, where
of L™= and therefore the typical maximum flow al- parts of this work were done. M.A. was supported by the

the right order.

Our reasoning for doubly connected bonds only considers
typical cases, i.e., fluctuations in the number of doubly con-
nected bonds are disregarded. If a particular cluster, in addi- We note that the augmenting path method is better here
tion to having a small number of cutting bonds, also has ahan in the general maxflow proble(so-called push-relabel
small number of doubly connected bonds, then the next levpreflow algorithmg34] enjoy the most popularily This is
els in this hierarchy would be relevant. The same sort okince the structure of the backbone is essentially one dimen-
reasoning can be used at all levels in the hierarchy of cutsional, the number of augmentations remains small, of the
but because the algebra becomes too complicated for triplgrder of 1. To remind the reader, such an algorithm consists
connected bonds already, we did not test this in detail. Howef flow augmentationsvhich are repeated until the mincut is
ever, it seems safe to assume that{@{§)}~L "¢~ 9 for  formed (by a surface of blocked bondsnd maxflow is
all k>2 as well. Additionally notice that, in order for the reached. For each augmentation one needs to establish a path
mincut to be located at triply connected bonds, it is necessarfrom the “source” to the “sink,” which can be done, e.g., by
that the numbers of singly and doubly connected bonds basing shortest-distance path meth¢28].
simultaneously small, an occurrence which arguably has a The one-dimensional nature means that the backbone can
small probability. be decomposed into strings of subsequent cutting b@hds

APPENDIX: AN OPTIMAL ALGORITHM
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and and blobs separating such strif&ys Thus the structure (iii) Augment flow, that is, find the smallest capacity in
is equivalent to the one-dimensional seriesthe C;, and the smallest capacity in all tiBs. This isf;.
...CB;Ciy1.... Inprinciple, one may thus write a more (iv) If £, equals the minimal cutting-bond capacity stop,
efficient algorithm by abandoning the lattice structure, andbtherwise augmer{subtractf, from C;, and the paths inside
describing the internal geometry of eaBhseparately. Thus B;).
an optimal version of the algorithm would entail the follow-  (v) Update the paths inside thoBg, only, where a bond
ing steps. was saturated by; (i=1 to begin with. Go to (iii ).
(i) Establish the structures(,C;). We have used, instead, an Euclidean background for the
(i) Find an augmenting path along the chain, acrossnaxflow part, since the scaling of the matching program is

all Bi .

indeed the bottleneck.
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