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The linear preferential attachment hypothesis has been shown to be quite successful in explaining the
existence of networks with power-law degree distributions. It is then quite important to determine if this
mechanism is the consequence of a general principle based on local rules. In this work it is claimed that an
effective linear preferential attachment is the natural outcome of growing network models based on local rules.
It is also shown that the local models offer an explanation for other properties like the clustering hierarchy and
degree correlations recently observed in complex networks. These conclusions are based on both analytical and
numerical results for different local rules, including some models already proposed in the literature.
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[. INTRODUCTION ential attachment mechanism can be generalized in different
ways. A sublinear preferential attachment leads to bounded
In the last few years there has been a great interest in thdegree distributions while a superlinear one vyields graphs
study of networks, with particular emphasis on the followingwith a single hub connected to almost any other vertex
properties: small world effedtl,2], power-law degree distri- [44,45. The power laws can also be truncated after the in-
bution[3,4], and more recently degree correlatipfs7] and  troduction of other ingredients such as ag[d@], bounded
clustering hierarchy®6,8,9. This explosion has been possible capacity[43], or limited information[47]. Moreover, the in-
thanks to the increase of available network maps offering théroduction of quenche@48] and annealed49,50 disorder
graph representation for a wide variety of systems with sizeteads to logarithmic corrections and multifractal scaling, re-
ranging from hundreds to billions of nodes. Examples in-spectively.
clude technological networks such as the physical Internet The BA model provides a general mechanism to obtain
[5,6,10—-17, the World Wide Web(WWW) [18-20, elec- power-law degree distributions in growing networks. If one
tronic mail [21,27, and electronic circuit$23], biological  consider other measures like the clustering coefficient then
networks such as the protein-protein interaction networkone may conclude that this model is still insufficient to de-
[24-28, metabolic pathg29,30, and food webq31,32, scribe real graphs. However, we should not focus on the
and social networks represented by the citation gf@®-  detailed properties of the model but on its philosophy. That
35], scientific collaboration webg36—39, sexual relations s, if we assume that there is a growing tendency of the
[40], among others. network and an effective linear preferential attachment then
In particular, metrics like the degréthe number of edges we obtain a scale-free degree distribution. Actually, this ef-
incident to a vertex the minimum path distance between fective preferential attachment has been measured in differ-
pairs of vertices, and the clustering coeffici¢tite fraction ent real graphs, including the Interié&t51] and a variety of
of edges among the neighbors of a vejteave attracted the scientific collaboration webg39,51,53, supporting the hy-
attention of the physics community. Watts and Strodja;2] pothesis of a linear attachment rate. With regard to the other
have shown that, in general, real networks are characterizadpological properties, we can construct many models with
by a small average minimum path distance and a large clusdifferent clustering coefficients, minimum path distances,
tering coefficient that together are named #mall world  and other metricE53]. However, the origin of the ubiquity of
effect The name comes from the fact that we can reach everthe linear preferential attachment is not clear yet.
vertex in the graph by crossing a small number of edges. The topology of real networks is also characterized by
Moreover, Barabsi and collaborator$41,42 have pointed degree correlationg5,7] and clustering hierarchy6,9].
out that many real networks are also characterized by poweMoreover, these correlations influence the behavior of mod-
law degree distributions, giving an appreciable probability toels defined on top of these graphs, as has recently been
observe high-degree vertices. A more exhaustive analysis rehown in Refs[7,54-58. Growing network models with
veals that, in addition to power laws, truncated power lawglobal evolution rules, like the BA model, exhibit degree
and exponential distributions are also obserj4a8l. correlations. For instance, nontrivial degree correlations has
Barabai and Albert(BA) proposed a mechanism that ex- been obtained in the linear preferential attachment model
plains the origin of power-law degree distributiddd]. This  [45] and in a growing network model without any preferen-
mechanism is based on two fundamental properties of a widgal attachmen{59]. However, the degree correlations ob-
class of real networks, their growing nature, and the existained in those global models are not sufficiently strong to
tence of a preferential attachment: new vertices added to theccount for the features observed in real graphs. New models
graph are attached preferentially to high-degree vertices. Igiving a better representation of real graphs are starting to
particular, a linear preferential attachment, where the probemerge[9,60,61. In addition to the numerical simulations
ability to get connected to a vertex is proportional to itssome analytical treatments have shown that power-law de-
degree, leads to power-law degree distributions. The prefegree distributions and clustering hierarchy are obtained as an
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outcome of these model®,62—-64. However, a general designed with a hierarchical structure. This hierarchy can be
principle based on local rules is still missing. schematically divided into international connections, na-

In this work, differentlocal mechanisms that lead to tional backbones, regional networks, and local area net-
graphs with power-law degree distributions, degree correlaworks. Vertices providing access to international connections
tions, and clustering hierarchy are studied. The téooal  or national backbones are of course on the top level of this
means that we will investigate evolution rules that involve ahierarchy, since they make possible the communication be-
vertex and its neighbors. As will be shown, the preferentiatween regional and local area networks. Moreover, in this
attachment, the inverse proportionality between the averageay, a small average minimum path distance can be achieved
clustering coefficient and the vertex degree, and degree cowith a small average degree. This hierarchical structure will
relations are common features of growing graph models builintroduce some correlations in the network topology. For in-
by local rules. The general principles behind these featurestance, it is expected that vertices with high degrees are con-
are also determined. nected to vertices with low degrees.

The paper is organized as follows. In the next section the In contrast, in social networks well connected people tend
motivation for this work is presented. It is shown that, into be connected with well connected peofplé Let us take
addition to power-law degree distributions, clustering hierarthe example of the scientific coauthorship graph. A scientist
chy and degree correlations are common features of real netriting a lot of papers has in general a larger probability of
works. Then in the following sections three different modelswriting a paper with another scientist who also has a lot of
based on local rules are presented. In all cases both analytigaapers than with one with a few papers. In fact-ifis the
and numerical evidence is provided. In particular, in Sec. lllnumber of papers of scientisandF;<N, then the probabil-

a walk model is proposed as a mechanism for searchabiey that two scientists write a paper together is roughly
networks such as the WWW and the citation network. TherF;F;/N. Now, F; is in general a monotonically increasing
in Sec. IV a model for social network evolution is analyzed,function of the scientist degrest (number of collaboratojs
based on the existence of potential connections between tland, therefore, scientists with a high degree will have a better
neighbors of a vertex. Finally, in Sec. V we study modelschance of making a new article together, i.e., of being con-
with duplication or replication of their vertices. The common nected.
patterns observed on these models are summarized in the To investigate these correlations it has been proposed to
concluding Sec. VI. analyze the clustering coefficient and the nearest-neighbor
average connectivity as a function of the vertex dejbe@.
The clustering coefficient is the average probability that two
Il. CORRELATIONS AND HIERARCHY neighbord andm of a vertexi are connected. In terms of the
IN REAL GRAPHS adjacency matrixJ;; =1 if verticesi andj are connected and

In this section we study correlations in some real graphs9 Otherwise, the clustering coefficient is defined as the con-
In particular we consider five different networks here de-ditional probability that ifJ; Jin=1 thenJ;n=1. Thus, it
noted by Router, AS, WWW, Gnutella, PIN, and Math. In all Méasures in some way th? existence of'three-po'm't c_orrela-
cases the graph is obtained by representing the “relevanttions in the adjacency matrix. The clustering coefficienis
units of the system by vertices and their interactions or relathen defined as the ratio between the number of edges
tions by edges. In some cases, multiple graph representatio§10ong thed; neighbors of a given verteixand its maximum
of the same system can be obtained. “Router” is the routePossible valued;(d;—1)/2, i.e.,
level graph representation of the Internet, where each vertex
represents a router and each edge represents a physical con- c= 2€; 1)
nection among them. AS is tlaitonomous systetAS) rep- odi(di—1)°
resentation of the Internet, where each vertex represents an
AS or service provider and each edge represents a peer rel@he average clustering coefficiett) is the average of;
tion among them. WWW is the graph representation of theover all vertices in the graph. It provides a measure of how
WWW, where each vertex represents a web page and eagvell the neighbors of a vertex are locally interconnected. In
directed edge a hyperlink from one page to another. Here wRefs. [1,2] it was shown that the clustering coefficient of
will consider the directed edges as undirected. Gnutella is thenany graphs representing real systems is orders of magni-
graph representation of the peer-to-peer network of the santede larger than the one expected for a random graph and,
name, where each vertex represents a user and each edgtherefore, they are far from being random. Further informa-
peer relation among them. PIN is the graph representation dfon can be extracted if one computes it as a function of the
the protein interaction network, where each vertex representgertex degre¢6].

a protein and each edge an interaction among them. Math is In Fig. 1 we plot{c)4 vs d for different real networks.
the graph representation of the mathematical coautorship nefccording to this measure, two different classes emerge. In
work, where each vertex represents an author and each edte first clasgMath and Router daja(c)4 does not exhibit a
the existence of at least one common publication amongtrong dependency ath except for finite size effects at the
them. largest degrees. This behavior is typical of random graphs,

In general, real networks are correlated and correlationg/here the probability that two neighbors of a vertex are con-
may have different origins. Let us consider the example ohected by an edge is a constant, and equal to the probability
the Internet. Due to installation costs, the Internet has beethat any two vertices selected at random are connected. On
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FIG. 1. Clustering coefficient as a function of the vertex degree F|G. 2. Average nearest-neighbor degree as a function of the
for some real graphs. AS and Router are the autonomous systefiertex degree for the real graphs introduced in Fig. 1.
[10] and router[12] level graph representations of the Internet,
respectively. WWW is a subgraph of the WWW network, a data set | rig 2 we plot(d,,) vs d for several real networks. In

collected by the Notre Dame Group of Complex NetwofBS]. s caqe also we found the emergence of two different

G.nut.ella s the Gnutella.peer to-peer netvvorlf, prowqeq by C“.pzclasses of graphs. In one of them the average nearest-
Distributed Search Solutions. PIN is the protein-protein interaction_ . . L .

. L ) ~ neighbor degree exhibits a power-law decay with increasing
graph of Saccharomices cerevisiags obtained from two hybrid

experiment$26]. Math is the coauthorship graph obtained from all vertex degree. This is strong evidence for the existence of

relevant journals in the field of mathematics and published in thedlsa,ssortat've{or negative Correla}tlons’ where large degree_
period 1991—199839]. vertices tend to be connected with low-degree ones and vice

versa. On the other hand, for some of the graath and
Router data an increasing tendency is observed, denoting
the presence of assortatiyer positive correlations, where

e edges connect vertices with similar degrees. The same

connected. At the same time they are connected to other pa gnclusions are obtained using the Pearson coefficient of the
of the graph by high-degree vertices, having a few edge egrees at eith_er ef?ds of an ecﬁ@eﬁ?_]. Notice_that the sub-
between the subgraphs they connect but giving a small aveflivision attending either the clustering coefficient or the av-

age minimum path distance. This picture makes evident th&rage nearest-nelghbor degree cqmudes.
existence of some hierarchig,6] or modularity[9]. These observations cover a wide range of networks and

These observations for the clustering coefficient aré?'® complerrentedﬂby Ref§-7,9,67. I;|qweve_r, their orlglr;]
complemented by another metric related to the correlation$ notl yet cear.kA ﬁr some yearls 0 !nte?swﬁ reff"”? ofn
between vertex degrees. These correlations are quantified mplex networks there IS no explanation for the ubiquity o

the probabilityp(d’|d) that a vertex with degred has an the linear preferential attachment. Different models have
edge to a vertex with degred. With the available data a been proposed but a mechanism is still missing. The lack of

plot of this magnitude is very noisy and difficult to interpret. a general principle is extended to these new metrics associ-

Thus in[5] it was suggested to measure the average degr ed with correlations. In the following sections three differ-

h iah f hich is ai nt models that exhibit these properties are studied, empha-
among the nearest neighbors of a vertex, which is given b);:;}izing the mechanism behind them. Based on their analysis

some general conclusions will be achieved.

the contrary, there is another class whécg, follows an
evident decay with increasing vertex degreerhus, in this
case, low-degree vertices form local subgraphs that are we

(duna= 2 d'p(d’|d), v
‘ Ill. RANDOM WALK ON A NET

and to plot it as a function of the vertex degueef there are In this section we study the evolution of a graph where we
not degr_ee-degree correlations then the probability that ap, o\ about new vertices by simply exploring the graph, with
edge points to a vertex of degréé is independent ol and 5 jications to searchable networks such as the citation and
proportional tod’py, resulting, after normallzan_on, N Www graphs. We focus on different local mechanisms,
p(d'|d)=d’"pg /(d). Therefore, the plofd,n)q vs.dwillbe  \yhere the term “local” means that we will investigate evo-

flat and equal to lution rules that involve a vertex and its neighbors. A global
() approach based on effective attachment rates can be found in
_\a [68].
{dan)unco (dy - @ There are different ways to obtain information about the

056104-3



ALEXEI VA ZQUEZ PHYSICAL REVIEW E67, 056104 (2003

documentgarticles, web pagésn these graphs, like looking Then, when a walk is performe@ )N vertices are visited
at directories (citation index, web crawlg¢r commercial and, thereforeg,(v)N edges are added on average, resulting
spots, shown by a friend, or following the referenceita- in

tions, hyperlinks that are contained in the documents that

we already know. In the case of the citation graph, we often N

find new articles from the citation list of an article that we ot Ve

already know and, later on, we can repeat the process with
these new articles. Moreover, it is known that with a high
probability people know about new web pages by surfing on
the WWW.

Two of the major contributions to how people find out
about new web pages are following the hyperlinks of othewhereE is the number of edges, and and v, are the num-
web pages and using search engif@g]. The first source ber of surfers and the number of newly added pages per unit
can be characterized by modeling the WWW “surfers” astime, respectively. The integration of these equations yields
random walkers on the WWW graph. Let us assume that the
walk starts from a page selected at random and, on each ou in Vg
page, with probabilityg, it decides to follow one link on that (d°)=(d >=qv(v>NV—a. ®)
page or to jump to another random page with probability 1
—(e. Then, the probability; that a page will be visited is
given by

JE
E:Vqu<U>N, (7)

Thus, from Eqs(6) and (8) we finally obtain

Va
_ ) 0= . 9
1-0e Uj q,vsN
U= N +qe$ ‘]IJ djou! (4) s

“The probability that the in degree of a vertex of in degree
d™ increases by 1 when a surfer walks on the graph is
|given by A(d™)=q,v(d™) and, therefore, from Eqs5)
and(9) it follows that

whereJ;; is the adjacency matrix ardf" denotes the vertex
out degree. It is quite interesting to notice that this probabi
ity of being visited by a random surfer is often used by
search engines as a page rank criteffié@], as is the case 1 ,
with the popular Googl¢71]. Hence, the two main sources (in)y— — _ Ya (in)
through which new pages are visited are characterized by Eq. AdT) N Au(1=0e) * Qe Vsd ' (19
(4) and, therefore, the main properties of the in-degree dis-
tribution of the WWW graph should be computed by startingNotice that the walk on the graph leads to an effective linear
on it. However, to my knowledge and except from the recur-preferential attachment. The degree distribution correspond-
sive search model proposed by the author in RE2], no  ing to this attachment rate can easily be obtained using the
study has been performed in this direction. rate equation approa¢d4,45. Indeed, the number of verti-
In a mean-field approximation one can replace the sum imesngin(t) with in degreed” satisfies the rate equation

Eg. (4) by Od{", resulting in
07I"Idin

ot

1— = v Agin_1Ngin_1— VAginNgin+ v30qing.  (11)
Qe

N

+qe®d:n ’ (5)

V=

Now we should take into account that the number of vertices

where® is the average probability that a vertex pointing to ©" the WWW graph grows exponentially and, in this case,
vertexi is visited andd!" is the vertex in degree. To compute Ya>N. Moreover, assuming that each surfer has its ¢em
we should take into account that the probability that ad"0UP 0 web pag&pagesthe number of surfers is expected
vertexi has an in edge coming from a vertex with out degredl® P& proportional to the number of web pages, ig#N.
d°U is d°Upyou/(d°Y). This edge will be selected at random 'NUS:
among thed®" out edges and, therefore, with probability

ou 14
1/d°Y. Thus, Yi_ e, (12

Va

doupdou 1 <U>
dOU

0=>

S5 oy gou’

= . (6) where « is a constant. It is worth noticing that E¢L2) is
(d°) always satisfied for networks with a constant growth rate, as
may be the case of the citation graph. If this condition is
In general when we visit new pages we do not create aatisfied then the in-degree distribution reaches a stationary
hyperlink to it. In a first approximation this can be modeledstate and we can writegin(t) =N pgin, Wwherepgyin is the sta-
by introducing the probability, that a visited vertexpage  tionary probability that a vertex has in degm8. Substitut-
increases its in degree by (& hyperlink is created to)it  ing this expression in Eq11), we obtain
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1 T[a(y-1+d"] T[(1+a)(y—1)+1] 10° '
P 1ra Tla(y-D] Tf(1ta)y—1)+dn+1]’ .
(13 10° §
where 10 L i
1
y=1+—, a=aq,(1—qe) (14 £10° L i
Je Y
with the asymptotic behavior for large in degree 108 L i
Pain~(d™) 7. (15) 1
107+ .
Hence, the random walk model on a directed graph leads
to a power-law in-degree distribution, with an exponent 1072 ; ;

=2. Notice that the power-law exponent does not depend or 10° 10

g, and, therefore, we expect that generalizations of the rule d,

of creating an edge to a visited vertex will not change this

exponent. For instance, one can divide the vertices into FIG. 3. In-degree distribution of the random walk model for

classes in such a way that the edges can be created OrmﬁerenF values of the probability of continuing the wajk and for

among vertices of the same class, and the resulting powe_g_raph sizeN :_106. In all cases we take thg average over 100 real-

law exponent should be the same. Moreover, the power-lajf2tions: The inset shows the exponerubtained from the fit to the

exponent does not depend an power Iawpquv(d ) ¥ (circles together with the analytical pre-

) . diction (continuous ling
We can go beyond the in-degree distribution and compute

the clustering coefficient as a function of the total degiee

=d"+d° of a vertex. For this purpose we consider the

graph as undirected and compute the nun‘@eof edges We now study a particular random walk model by means

among the neighbors of a vertéxSince the only dynamics ©0f numerical simulations and compare its properties with the

in this model is given by the random walk, the result is analytical results obtained above. We have made some sim-
plifications in order to reduce the number of parameters and

€ in investigate the influence of the most important paranmggter
Zt = 0(0eOdiT+ Gevi). (160 The model is defined as followsnitial condition: we start

with one vertex and an empty set of edges. Then we itera-

The first term on the right-hand side is the probability that atively perform the following rules.

vertex with an out edge to is visited and the second the  Adding A new vertex is created with an edge pointing to

probability that vertex is visited and the walk follows one one of the existing vertices, which is selected at random.

of its out edges to visit an out-neighbor vertex. In all cases Walking If an edge is created to a vertex in the network

the visited vertex is selected with probabiliy. Using Eqs.  then with probabilityge an edge is also created to one of its

(5), (9), and (10) and taking into account thap,d;" nearest neighbors. When no edge is created, go tadtisg

A. Random walk model

=A(d"), we can rewrite Eq(16) as rue. _
The first simplification is that there is only one “surfer”
e, ad!" in the network, i.e.ps=1. Second, each time the “surfer”
Tt ~(1+ %)W, (17) decides not to follow one of the edges of the visited vertex it

stops, and a new vertex starts a search from a vertex selected

where we have neglected the first term in the right-hand sid8t random. In other words, the jump to a random vertex is
of Eq. (10). Integrating this equation with the boundary con- coupled with the addition of new vertices resulting i

dition e(d""=0)=0 we obtain the clustering coefficient =~ =1~ Je- Finally, each time a vertex is visited an edge is
created to it; thug,= 1. Hence, the in-degree distribution is
2e(d) 2(1+qe) 2(1+ge)(1—d°) given by Eq.(13) with
(Ca=Fa—1~ "4 d(d—1) L
(18 y=1+£, a=1. (20)

For larged the clustering coefficient scales as
We have made numerical simulations of this random walk
2(1+qe) model up to graph sized=10° taking an average over 100
(Cha~ d ' (19) realizations. In Fig. 3 we show a log-log plot of the in-degree
distribution for different values ofl.. The power-law decay
Thus, we obtain an inverse proportionality between the clusfor large in degrees is evident. The expongrbtained from
tering coefficient and the vertex degree. the fit to the numerical data is shown in the inset, together
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FIG. 4. Clustering coefficient as a function of vertex degree of

the Ta”_dom walk model, for different_values of the probability of of the random walk model, for different values of the probability to
continuing the walkg, and for graph siz&=10°. In all cases we continue the walkg, and for graph siz&=1CF. In all cases we
take the average over 100 realizations. The solid lines correspond {Q, . o average oi\a/er 100 realizations

the power-law decag (d)=2(1+q.)/d.

FIG. 5. Average neighbor degree as a function of vertex degree

B. Recursive search model
with the predicted dependency in E@0). The analytical
values overestimate the power-law exponent but the qualit%
tive picture is the same. Fay,— 0 the power-law exponent
is so large that the degree distribution cannot be distin

In the random walk model one follows only one edge of
e visited vertices. However, one may consider an exhaus-
tive search following all the edges recursivER2]. The main
idea of a recursive search is thus to be connected to one

ij'ls?te: fr?(;:wine:)i(spz}ﬁir;gilmdf;l”bu“; n.\/\l/g ;?tzgliltset’ t(ﬁloer vertex of the network, and any time we get in contact with a
PP ue=<. new vertex we follow all its edges, exploring in this way a

guantitative disagreement to the mean-field approximation : e
performed in the step from Eq4) to Eq. (5). On the other larger part of the network. This can be modeled by modify

. ! - ..ing the walking rule as follows.
hand, the behavior of the average clustering coefficient with Walking If an edge is created to a vertex in the network

respect tq the vertex dggree |s'sh.own N '.:'9' 4. In this Ca8fhen with probabilityg. an edge is also created to each of its
the analytical asymptotic behavior in E49) is in very good nearest neighbors. When no edge is created go tadting
agreement with the numerical data. rule '

We were not able to obtain a prediction for the scaling of As for the previous model we have=1, »,= 1 g, but
. . . \ = Pam e
the average neighbor degree with the vertex degree. In thi (d™ is not given by Eq(10). The form of A(d"™), and

case our analysis relies on numerical simulations. In Fig. . TR /
= consequently the in-degree distribution, is determined below
we plot{d,,) vsd for two values ofg,. Forg,=0.3 and for for two limiting cases

small values ofg. the average neighbor degree does not . . . .
i =0. In this case only theadding rule is performed;
exhibit a strong dependency ahand, therefore,_ the graph her?geA(di”)zllN indepenydent oﬁi”.gThe fact ?hatA(d‘”)
appears uncorrelated. 'In contrast, fp=0.5 and in general scales ad~ ! carries as a consequence that(N) =N pgn
for larger value_s Ohe It sh_ows a peak art_)undzlo and is the stationary solution of Eq11), wherepgin is the sta-
then decays with increasing degree. This decay becom%ﬁ)nary probability of finding a vertex with in degre#".

even faster with increasing. . We have not found an expla- A . o9 .
nation for this qualitative change of behavior yet. It is worth Substituting this expression in EL1), one obtains

noticing that the experimental data for the WWW yiejd
~2.1, which can be obtained with our model usiag
>0.5. For this value ofj the model yields negative corre-
lations in agreement with the real data presented in Sec. Il. Ge=1.For this limiting case also the in-degree distribution
However, we should take into account that the above analycan be computed exactly. Let us determi(@') using the
sis includes the fluctuation properties of the in degree, whildollowing fact. Any vertexi with in degreed;" hasd;" ver-

the statistics of the out degree was not considered. The lagites with an edge to it, which will be denoted (]
one is irrelevant to determining the in-degree distribution but=1,2, . . . di"). At the same time each of these vertices
has to be taken into account to determine the clustering anghay have other vertices with an edge to it. The following
degree correlation properties of the undirected representatiaesult holds: Any vertex with an edge to any of the vertices
of the directed graph. Hence, the results obtained here fot; also has an edge toThe proof is straightforward. If when
(c)q and(d,p)4 are not conclusive. a vertex is added it creates an edge to any of the vertices

pgn=2""+1), (21)
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then with probabilityg.=1 it creates an edge to all the near- 10° :
est neighbors ok;, among which the vertekis contained; f
end of proof. Hence, the probability that when a vertex is
added it creates an edge to verieis just the probability

(1+d")/N that the first edge is connecteditor to any of \
the d" vertices with an edge ta, i.e., A(d")=(1 100 ¢
+d"™)/N. As for g.=0 A(d'") scales as N and, therefore,
the stationary solution is of the formyin(N)=Npgin. Then S10° -
from Eq.(11) it follows that =

-2

8

1 10° ¢ .
in=—————————— (22
Pgin (d'n+1)(dm+2) 10_10 |
Notice that in this case also, although it is not implicitly
assumed, there is a preferential attachment leading to thi 107 L L o, 6
power-law decay for large in degrepgn~ (d™") 2. 10 10 10 10
The limiting cases).=0 andg.=1 are described by in- d,

degree distributions which are qualitatively different. For
g.=0 the distribution is exponential with a finite average in
degree. In contrast, foge=1, the distribution follows a
power-law decaygin~d" 7 for larged™, with y=2. This
power-law decay goes up to the largest possible dedfee
~NYO0~=D~N while pgin=0 for d"=N. Hence, forg,=1

FIG. 6. Log-log plot of the in-degree distribution of the recur-
sive search model for different values @f. The inset shows the
exponenty obtained from the power-law fipgin~(d;,)” * to the
numerical data.

and largeN the average in degree scales as nenty>2 for q.<q, and y<2 for q.>q.. Moreover, tak-
_ ing into account that the fastest divergence is obtained for
(d™M(N)=(d°“}(N)=a+ InN, (23)  g.=1, wherey=2, we conclude that fog.>q. the power-
o R ) law exponent is constant and equalye 2.
wherea is independent o and clearly(d'") diverges in the To investigate the behavior for<0g,<1 and the exis-

thermodynamidlarge network sizeslimit. In a mean-field tence of a nontrivial threshold, as predicted by the mean-

approximation one can neglect the existence of l00ps in th'I?ield approach, we have made numerical simulations of the

network and, in such a case, the Walkln_g rule will take recursive search model for different valuesggfup to graph
place on a tree. Each vertex on the tree will have on average

(d°Y(N) sons, which is just the average out degree after izesN=10". For each value ofj, the in-degree distribution

vertices have been added. Moreover, if a vertex is visited' 2> averaged over 100 runs of the algorithm. The resulting

then each of its sons will be visited with probability . In-degree distrit_)ution IS shown in Fig. 6. F%:O'l. the
Hence, when the verteN+ 1 is added, its average out de- decay for large in degrees is very fast, and can be fitted by a

gree(d°“)(N+1) will be given by the average number of power-law decay with a very large exponent, or equivalently

vertices visited during the walk, i.e., by an exponential decay. On the contrary, for larggrthe
exponent becomes smaller and the power-law behavior be-
(d°UY(N+1)=1+qe(dU(N) +[ge(d°U)(N) ]2+ - - - comes more evident. Finally, faj.=q,=0.5+0.1, the ex-
ponent becomes independent @f and equalsy=2, in
1 (24) agreement with the mean-field prediction. However, the nu-

1—qe(d°Y)(N) ’ merical threshold is twice the value obtained from Ezp).
In ordinary critical phenomena there is an absence of any
If there is a stationary state the®“)(N+1)=(d°")(N) typical length scale at the critical point, which is observed at
=(d°"). In this case Eq(24) yields two solutions. One of a precise value of the order parameter. For the present model,
them diverges whem,—0, which is not admissible since however, the absence of a characteristic in degree is mani-

(d°")=1 for g.=0. The other solution reads fested not only at a precise value gf but in the whole
interval g.<q.<1. These features are very similar to those
(do% = (M) = 1-V1-4q. (25 observed in some sandpile modgF8,74), the paradigm of

self-organized critical systen|§5,76. As in these models
[77,78, there is a time scale separation between the addition
This solution is valid fom.<q.=1/4 and, therefore, the av- of new vertices and their “walk” through the network. In the
erage out degree does not converge to a stationary valubermodynamic limit N—oo) the phase diagram of the
whenqg.>q.. In this last region the average out degree in-model is divided into a subcritical €©q.<q.) and a critical
creases logarithmically withN, as in the extreme casg, region (@.<g.<1), where the power-law exponent does not
=1 [see Eq.(23)]. Now, (d'")=(d°") and both approach a depend on the control parameter. Hence, the results pre-
stationary state for any>2 and diverge otherwise. We then sented here suggest that fiy<g.<1 the present model is
expect that the in-degree distribution has a power-law expoin a self-organized critical state.

20
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IV. CONNECTING NEAREST NEIGHBORS Ves=0. (28)

In social graphs it is more probable that two vertices W|th.|.his assumption may seem too crude for some social net-

a common neighbor get _connected than two vertices Chos(Works where it is known that social relations can be lost, but
at randon{52]. Clearly, this property leads to a large average;; is realistic in many other cases. For instance, in the net-

clustering coefficient since it increases the number of CO':%)rk of scientific collaborations two scientists are said to be

Bectlons betw:jagn the néel?hbors ofdabvelrjtex!das haéballrea nnected if they have coauthored a paper. It is clear that this
een OLSEIVed In a model proposed by Davidsen, EDEl, ang,,hq tion cannot be lost in time because the fact that they

Bornholdt(DEB) [79]. The basic assumption of their model have written a paper together cannot be changed. In general,

is that the evolution of social connections is mainly deter-i¢ o connection between two vertices is given by the occur-
mined by the creation of new relations between pairs of in-

dividuals with friend. M il h rence of a certain everftoauthoring a paper, being in the
viduals wi a_(cj:oméngn |_r||e|n ) o(rjeﬁ\[/lg;,]a sg]wk;arjr_ne(t: @ cast of the same film, having a sexual relatiam the past
nism was considered by Holme an and by Jinet history, then this connection cannot be lost and, therefore,
al. [38] to introduce an appreciable clustering coefficient iNour approximation holds
pre;(re]renzlacli att?(t:ﬁment m dOdIelﬁ' b il ¢ db Another crucial assumption is related to the fact that the
€ study of these models has been mainly pertormed by, ,qiinn from a potential edge to an edge has a higher prob-
numerical simulations. A deeper analytical understanding cal

. ) . ) Bbility of occurrence than the transition from being discon-
bg obtained by mt_roducmg_the concept of patential edge. W‘?‘nectgd to an edge. In fact, the connection of tw% discon-
will say that a pair of vertices is connected bypatential '

. nected vertices without a common neighbor is a process that
edgeif (1) they are not connec_ted by an (_adge aﬁﬁthgy .models the creation of a social relation between two social
have at least one common neighbor. Notice that while thi

o ) . . "Bntities chosen at random. We thus assume
concept has been implicitly considered in previous work its

mathematical description will be introduced here.
The graph dynamics will be defined by the transition rates Vsée:@, (29)
between the three possible states of a pair of vertices: dis- N?

connectedg), on connected by a potential edg® (or by an .
edge €). Letd* be the number of potential edges incident On the other hand, the creation of an edge between two

to vertexi, the potential degree, to abbreviate. We can write/€rtic€s with a common neighbor, that is, with a potential
dge between them, models the creation of a social relation

the rate equations for the evolution of the number of vertice . ; , . ,

with degreed and potential degree* . Instead we will use etween two “friends” of a social entity. In this case we
the continuum approad80,81. In this case we neglect fluc- 3SSUME
tuations and write mean-field equations for the evolution of

)2
d; andd} , Vp_,e=Wl- (30
ad; - . Under these approximations the system of equati@fs
N Vs—edit el — (Ve st vep)di, is reduced to
ad;

ad* . N— = g+ w.d*
N = Vsonti e pdi— (vp st vy od N~ Mot padf

- . ad? .

di:N_di_di . (26) Nﬁ_N:MOdi_Mldi . (31)

vy_y is the transition rate from stateto statey per unit ofN

andd; is the number of remaining neighbors, which are not

connected by a potential edge or by an edge to vertex
The creation(deletion of a potential edge incident to a

Hence, the existence of a linear preferential attachniteet
growth rates ofd; andd’ are linear in themselvgsn this
class of models becomes evident with the introduction of the

. . . . . concept of potential edges. Thus, a power-law degree distri-
yer.tex IS assomatgd W'.th the creau(xdeletlor) .Of an edge bution is expected. This system of differential equations is
incident to one of its neighbors. For instance, if a new verte

L 2 . . "inear and, therefore, can be easily integrated, with the result
i is connected to an existing vertgxhen a potential edge is that. for N> N
1 1

created betweenand all neighbors of. Hence
N\A N\A
Vsp= Vsoeli, di(N):d0<W) : di*(N)ZdS(W) : (32
| I

Vp—s= Vel @7 whereN; is the size of the graph when vertewas added to

These equalities are at the core of the connecting neared}-and

neighbor model.
In the following we will neglect any process where an 8= #1 — 14 A /1+4@ _ (33
edge is deleted, i.e., 2 M1
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Now, if the vertices are added at a constant rate tR@N;
=N)=1/N, yielding

>

N8
P(di>d)= P[%(W) >d}

>
>

f "IN o N 34
=, N O %l ~9): (34)
Consequently,
°
JP(d;i>d) N
Pa=—q ~d™” (35
with FIG. 7. Schematic representation of the two evolution rules of
the connecting nearest-neighbor model. Top: with probability
y=1+ 1 (36) potential edge(dashed ling becomes an edg&ontinuous lines
B Bottom: with probability I-u a new vertex is added to the graph

(disconnected vertex on the Igfthen it is connected with an edge

Notice that the main ingredient leading to this power-lawto a vertex selected at random and by potential edges to its neigh-
behavior is given by Eq27). In contrast, ifvs ., were in-  bors (right).
dependent of the vertex degree an exponential decay would
be obtained. and each time a new vertex is added one vertex is removed

We can also compute the clustering coefficient as a funcfrom the graph. We consider the growing variant because in
tion of the vertex degree. The main contribution to the evothis case it is easier to determine some properties analyti-
lution of e;, the number of edges among the neighbors ofcally. For very largeN we expect that both variants have the
vertexi, is given by the transitiopotential edge— edge In  same qualitative behavior.
fact, if the potential edge connecting a verteio another These evolution rules fit into the equations written above
vertex j, with common neighbok, becomes an edge then after setting
vertexi gains one neighbgwertexj) and a new edge among u
its neighborgthat connecting andk). Neglecting other con- _ _
tributic?ns we have ’ ). e ’ po=L m=1— (39

€ . dr Thus, from Eqgs(33) and (36) it follows that
m:Vp—»edi :/J'lﬁ- (37) N
1+ 2(1_u)( 1+ \/1+41_u> 40
Integrating this equation using E(B2), the result is YW= u u (40
2e(d) 2/ with the limiting cases

(=G0~ d (38)

Y(0)=c, y(1)=2. (41
Thus, once again we obtain the inverse proportionality be- . .
tween(c)q and vertex degred, in this case due to the con- | 1US: the power-law exponent takes its minimum value

version of potential edges between vertices with a commoi{"énu—1, corresponding to a low rate of addition of ver-
neighbor into edges. tices, and it grows with decreasinigcorresponding to higher

rates of vertex addition. In Fig. 8 we plot the degree distri-
bution as obtained from numerical simulations. For interme-
diate degrees it exhibits a power-law degay~d~?. The
To check these results we have made numerical simularalue of y obtained from the fit to the numerical data is
tions of a variant of the DEB model. Starting with a single shown in the inset, together with the analytical curve given
vertex and an empty set of edges iteratively perform the folby Eq. (40). The quantitative disagreement tells us that the
lowing rules. mean-field Eq(26) give us the right qualitative description
(1) With probability 1—u introduce a new vertex in the but fluctuations should be considered to obtain a precise
graph, create an edge from the new vertex to a vgrige«  agreement with the numerical data.
lected at randontimplying the creation of a potential edge  In Fig. 9 we plot the clustering coefficient as a function of

A. Connecting nearest-neighbor model

between the new vertex and all the neighborg)of the vertex degree. It follows a power-law decay for large
(2) With probabilityu convert one potential edge selected degrees but with an exponent smaller than 1. On the other
at random into an edge. hand, the average neighbor degree as a function of the vertex

A schematic representation of these rules is shown in Figdegree is shown in Fig. 10. It increases with increasing
7. Actually, in the DEB model the number of vertices is fixed i.e., the graphs generated using this model exhibit positive

056104-9



ALEXEI VA ZQUEZ PHYSICAL REVIEW E67, 056104 (2003

10° : : . 10° '
.
10° t 1
10° ¢ .
10" | 1
=
Q’? A:
10° ] v
10" :
10° t 1 $
= 4=0.5
*u=0.7
107" o ; > 3 . 5 10° s \ s
10 10 10 10 10 10 10° 10’ 102 10° 10*
d d

FIG. 8. D_egree distribution of the c_o_nnecting nearest_—neighbor FIG. 10. Average degree among the neighbors of a vertex with
model for different values of the addition rate graph sizeN  gegreed of the connecting nearest-neighbor model for different
=10°, and average over 100 realizations. The inset shows the &Xalues of the addition rate, graph sizeN=10°, and average over

ponenty obtained from the fit to the power lapy=ad™~” (circles 100 realizations. The solid line is a power-law growth with expo-
together with the analytical predictiqeontinuous ling nent 0.6.

degree correlations. This result is in very good agreement , . i

with the observations made for social graphs that are alsB'at 1€ad to the differentiation of the duplicate genes. The

characterized by positive degree correlations. Hence, thgvolution of the genome can be translated into the evolution

connecting nearest-neighbor mechanism generates many gf the protein-protein interaction network where each vertex
the topological properties of social networks, including "€Preésents the protein expressed by a gene. After gene dupli-

power-law degree distributions and positive correlations. cation both expressed proteins will have the same interac-
tions. This corresponds to the addition of a new vertex in the

network with edges pointing to the neighbors of its ancestor.
In addition, positive and negative mutations can be modeled

The evolution of some real graphs is gi\/en by a rep“caby the creation and loss, respectively, of the edges leading to
tion or partial replication of its local structure. An example is the divergence of the duplicaté28,50,83. The duplication
the genome that evolves, among other mechanisms, througheéchanism has also been considered in the evolution of
Sing|e gene or full genome dup"catiofBZ] and mutations other biological network§4]. Moreover, another example is

given by the WWW, where new web pages may be created
10° . by making a copy or a partial copy of the hyperlinks present
in other web pagef85]. In this case the duplication repre-
sents the copying process and the divergence the deletion or
addition of hyperlinks in the duplicated pages.

In a first approximation we will assume that the processes
of duplication and divergence are not coupled but take place
independently one of the other. Moreover, we will also as-
sume that the creation and deletion of edges take place at
random and that they are independent of the degree of the
vertices at the edge ends, or any other topological property.
Under these approximations, the evolution of the degree of a
vertex (the number of interacting partners given by

V. DUPLICATION DIVERGENCE

SR
Q

ad;

2 3 4 (9_NI:VDdi+VC(N_di)_V|_di, (42)
10 10
d

107 :
10° 10’

FIG. 9. Clustering coefficient as a function of vertex degree ofWherevp, vc, andy are the rates per unit of vertex added
the connecting nearest-neighbor model for different values of th@f duplications, edge creation, and edge lost, respectively. By
addition rateu, graph sizeN=10°, and average over 100 realiza- definition, each duplication implies the addition of a new
tions. The solid line is a power-law decay with exponent 0.6. vertex and, therefore,
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1
=y (43 y=1+ = (52
We will further assume that The origin of this power-law degree distribution is deter-
mined by the second term in the right-hand side of @&),
_Ko _K1. (44) associated with the vertex duplications and subsequent edge

vc ’ v ’ . .
N N lost. These are local mechanisms and, as in the models de-

) ) . scribe before, they lead to an effective preferential attach-
otherwise the stationary graph will be empty or fully con- nant manifested as a power-law degree distribution.

nected, both being unreal. Notice thaf and w, are new  Thg pext step is thus to investigate if the duplication-
parameters with no relation to those introduced in the previyiergence model satisfies the inverse proportionality be-
ous section. Then, substituting Eqé3) and (44) into EQ.  qyeen the average clustering coefficient and vertex degree. If

(42) we obtain the creation of new interactions takes place at random, i.e.,
ad: they appear between randomly chosen vertices, then the av-
Na_NI = o+ (1—py)d; . (45) erage clustering coefficient will be negligible for large graph

sizesN. There is, however, one source of new interactions
giving an appreciable contribution. In the duplication pro-
eSS if the ancestor is a self-interacting protein then the an-
cestor and the duplicate may have an interaction among them
[28]. Let us assume that this happens with a probabijjty
Lo NVE Thus, if a neighbor of a verteis duplicated it will gain a
)( ) R (46)  new neighbor(the copy and with probabilityq, an edge
between its neighborghat between the copy and its ances-

whereN; andd;(N;) are the graph size and degree of vertexton., and therefore
i when vertexi was added to the graph, and

The linear dependency of the growth rate dnevidences
once again the existence of an effective linear preferenti
attachment. The integration of this equation yields

N;

di(N):(di(Ni)+ -

aei adi 53

B=1-p1. (47) s 3
Here we have implicitly assumed that where we have neglected any other process leading to new
<l (48) interactions and edges lost. The integration of this equation

== yields
otherwise the stationary state will be an empty graph. 2e(d) 2
From Eq.(46) it follows that (Cyg=m— ~ % (54)
7d(d-1) d -

Mo N\# Mo
P(d‘>d):P[(d‘(Ni)+ 1—M1) (_I) a >d}' Hence, under these assumptions we obtain the inverse pro-
(49 portionality behavior. The inclusion of the edge lost may
change this result. We do not have any analytical proof but
This probability should be computed taking into account thaiince this process contributes to the loss of triangles and it
both N; andd;(N;) are random variables. If the duplications has a higher impact in high-degree vertices, then we expect
take place at a constant rate then the probability density; of that(c)4 would decay faster thad .
is given byP(N;=N)=1/N. Moreover, the probability that a
vertex has degred;(N;) when it is introduced is just the

- . . C A. | lication-di |
probability that its ancestor has this degree. If the graph is in Coupled duplication-divergence mode

a stationary state theR[d;(N;)=d]=pyq is just the degree In some practical cases the processes of duplication and
distribution. Hence divergence cannot be decoupled. For instance, the protein-
g N A protein interaction network has a functional role in the or-
NaN; , Mo ganism and, therefore, the lost of certain interactions can
P(di>d)= dz Par L T[ d'+ 1‘#1) (Wl) result in the death of the corresponding organism. According
to the classical mod€l82] after duplication the duplicate
Mo genes have fully overlapping functions. Later on, one of the
— 1—,u1>d . (50 copies may either become nonfunctional due to degenerative

mutations or it can acquire a novel beneficial function and
For N>1 we finally obtain become preserved by natural selection. In a more recent
framework[86,87, it is proposed that both duplicate genes

_5P(di>d) Mo +d 7 51 are subject to degenerative mutations, losing some functions
Pa= ad 11—y (5D but jointly retaining the full set of functions present in the
ancestral gene. To investigate the influence of the coupling
with between duplication and divergence we consider the follow-
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the interaction between duplicates, and {d)ZN) because

of duplication, and a loss proportional to 2{3){d)(N)

due to the divergence process. For laNjetaking the con-
tinuum limit, we obtain a differential equation fgd). For
ge<1/2,(d) grows with N but saturates to the stationary
value(d)=2q, /(1—2qc) + O(N?%1). On the contrary, for
ge>1/2, (d) grows withN asN2%~1, At g.=q,=1/2 there

is a dramatic change of behavior in the large scale degree
properties. Analogous equations can be written for higher-
order momentgd'). Using a rate equations approach similar
to that considered in Ref89] it is obtained that

&nd Ny
FIG. 11. Schematic representation of the coupled duplication- (9_N:Ad’lnd’l_Adnd_ﬁ+2qud—1+2(1_qv)Gd'
divergence model evolution rules. Left and middle: a vertéx (is (56)
being duplicated. Right: the divergence of the duplicates is mani-
fested as a coupled lost of interactions, where the coupling is givemwhere
by the restriction that for each neighbo®] at least one of the
duplicates should preserve an edge to it. Moreover, due to the ex- in
istence of self-interactions, a new edge can be created between the A(d™)= N(qv +0ed), (57)
duplicates(dashed ling

’ d

ing model introduced in Ref50]. At each time step a vertex Gy= Z (d_) ni(%)

is added according to the following rules. d=g\d/ N2
Duplication A vertexi is selected at random. A new ver- ] . ) )

texi’ with an edge to all the neighbors bfs created. with ~ The first two terms in the right-hand side of H&6) result

probability g, an edge betweenandi’ is establishedself- ~ from the duplication of a neighbor of a vertewith prob-

interacting proteins ability g.d/N) and the duplication of a vertex with the cre-
Divergence For each of the verticejsconnected to and ~ ation of an edge between the duplicatesith probability

i’ we choose randomly one of the two edgeg)or (i’,j)  d»/N), yielding the attachment rate in E(57). Moreover,

and remove it with probability % q. the last three terms are given by the dlverggnce of the_ dupli-
A schematic representation of these rules is shown in Figtates, where with probability;/N a vertex with degred is

11. A similar model with an asymmetric divergence was in-'eplaced by two duplicatg$actor of 2 in the last two terms

troduced in Ref[83]. For practical purposes the algorithm Thus, the coupling of the duplication and divergence mixes

starts with two connected vertices and we repeat théhe equations for differemt,. We cannot give an exact deri-

duplication-divergence ruleN times. Since genome evolu- Vation ofng but we can compute the moments of the degree

tion analysig 28,88 supports the idea that the divergence ofdistribution[50,89. Multiplying Eq. (56) by d' and summing

duplicate genes takes place shortly after the duplication, weverd we obtain

can assume that the divergence process always occurs before

any new duplication takes place; i.e., there is a time scale M= D, pgd' ~N7i) (59)

separation between duplication and mutation rates. This al- d

lows us to consider the number of vertices in the netwhitk,

as a measure of tim@n arbitrary unit3. It is worth remark-  Where

ing that the algorithm does not include the creation of new

edges, i.e., the developing of new interactions between gene o1(Je) =10+ 2

products, other than those due to self-interactions. However,

we have tested that the introduction in the coupled i .

duplication-divergence algorithm of a probability to developProvided 01(qe)>0. If ay(qe) <0 the corresponding mo-

new random connections does not change the network topdfl€Nt approaches a stationary value for largeor all | we

ogy substantially. find a _valueq| a_t WhICh the moments cross from a divergent
In order to provide a general analytical understanding of'€havior to a finite value foN—. In particular, forl =1

the model, we use a mean-field approach for the momerf® haveq;=1/2 (as obtained aboyend forl =2 we obtain

distribution behavior. Letd)(N) be the average degree of q,=2\3—3~ 0.46. Moreover, the nonlinear behavior with

e d'—d
> .

(58)

, (60)

1+q\'
T) 4

the network withN vertices. After a duplication everit | is indicative of a multifractal degree distribution.
—N+1 we have that the average degree is given by In order to support the analytical calculations, we have
performed numerical simulations of the coupled duplication-
N(d)(N)+2q,+ (29— 1){(d)(N) divergence model with graph size ranging frow=10° to
(d)}(N+1)= NT1 - (59 1P, In Fig. 12 we report the generalized exponend,)

as a function of the divergence parameggr As predicted
On average, the gain will be proportional tg,2because of by the analytical calculationsy=0 at a critical valueg; .
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FIG. 12. The exponent(qe) as a function ofg, for different FIG. 13. Clustering coefficient as a function of vertex degree of
values ofl. The symbols were obtained from numerical simulationsipe coupled duplication-divergence model for different values of

of the model. The momentsl') were computed as a function bf e, graph size\=10f, and average over 100 realizations. The solid
in networks with size ranging fromi=10° to N=10°. The expo- |ine is a power-law decay with exponent 1.

nentso(q) are obtained from the power-law fit of the plat') vs

N. In_ the inset we show the c_or_respon_din_g mean-field beh_avior, aaegree correlations has been actually reported in [,
obtained from Eq(60), which s in qualitative agreement with the ¢, 1 otein-protein interaction network. Moreover, a model
numerical results. based on these correlations has also been proposed in Ref.
[91].
The general phase diagrams obtained is in good qualitative,
but not quantitative, agreement with the mean-field predic-
tions and the multifractal picture. Noticeably, multifractal
features are present also in a recently introduced model of After analyzing these models we can conclude that grow-
growing networkq49] where, in analogy with the duplica- ing networks based on local evolution rules exhibit an effec-
tion process, newly added vertices inherit the network degretive linear preferential attachment. The general principle be-
properties from parent vertices. Multifractality thus appearshind it is the following. It is true that when we take a vertex
to be related to local inheritance mechanisms. Multifractalat random the selection does not imply any degree prefer-
distributions have a rich scaling structure where the scaleence, other than the one imposed by the degree distribution.
free behavior is characterized by a continuum of exponentddowever, if we take a neighbor of that vertex then some
This behavior is, however, opposite to that of the usual expreference is induced. In fact, the probability that veiitéx
ponentially bounded distributions. Even if the evolution rules
of the coupled duplication-divergence model are local they ' '

introduce an effective linear preferential attachment. How-
ever, because the edge deletion of duplicate vertices intro \
duce additional heterogeneity in the problem, we obtain a

L=

multifractal behavior.

The coupling between duplication and divergence is how-
ever less relevant to determine the scaling of the average
clustering coefficient with vertex degree. In fact, for the ¥ Tnw e
coupled duplication-divergence model E§3) also applies, -~ .,
obtaining the inverse proportionality in E(4). In Fig. 13 v % o
we plot(c)q4 vs d for different values ofg., manifesting a M .
power-law decay but with an exponent larger than 1. With e, ’ L
decreasingy. (increasing the loss of edgethe power-law ‘ "mm.“w.
decay deviates more and more from the predicted behavio *
(c)q~ d~1. This picture corroborates our hypothesis that if 0
the edge loss is sufficiently large then a faster decay shoult 10° 10’ 10 10°
be observed. d

On the other hand, the average neighbor degree as a func- FiG. 14. Average degree among the neighbors of a vertex with
tion of the vertex degree for different valuescpfis depicted  degreed of the coupled duplication-divergence model for different
in Fig. 14. Negative degree correlations are manifested by @alues ofg,, graph size\=10°, and average over 100 realizations.
power-law decay(d,,) ~ d~ %L The existence of negative The solid line is a power-law decay with exponent 0.1.

VI. DISCUSSION AND CONCLUSIONS
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TABLE I. Summary of the correlation properties of the different ~ These features are observed in the three models analyzed

models analyzed here. here and are summarized in Table I. They describe different
: = systems such as technological, social, and biological net-
Mechanism (c)g~d*? (dnn)q ~d* works, which appear unrelated from the definitions of their
Connecting neighbors op<1 >0 evolutlo_n rulgs. The detailed analysis performed here reveals
Random walk g=1 <0 that their main property that they are local models of grow-
. ) ing networks, explains the existence of strong similarities in
Duplication divergence p=1 a<0 . ! . .
their topological properties. These observations can be ex-
tended to other local models proposed in the literature. An
a neighbor of the randomly selected vertex is simply example is the model introduced in R¢82], where each
time a vertex is added it is connected to both ends of an edge
d; selected at random. It can be easily shown that this rule also
- (61) introduces an effective linear preferential attachment, cluster-
E d; ing hierarchy, and degree correlations. Another example is

] the deactivation mod€l60], where new vertices are con-
Elected to small subset of connected vertices. A detailed study

ered.” ; ; )

h. of its topology[63] reveals the existence of clustering hier-

aq,rchy and degree correlations.

which is exactly the linear preferential attachment consid
in the BA model[19]. Therefore, the connection to a neig
bor of a vertex selected at random leads to an effective line . . . .

In conclusion, the growing models with local rules exhibit

referential attachment.
P some of the common features of real graphs. They are char-

Another important consequence of the local models con . . .
sidered above is the inverse proportionality between the a\ﬁctenzed by an effective preferential attachment, an average

erage clustering coefficient and the vertex degree, or mor Igsrtggngngogg'crf:%é?zl;%Cr::af_ﬁz ;Igg; E]CoreelleS(ljnge Yf;:]eé(n
generally(c)q~ d~#. This result is determined by the fact gree, €9 lons. wiedge 1S
that when a new edge is created to a vertex then with Ey general principle determining the topology of growing

certain probability an edge will also be created to one Olcomplex networks.
more of its neighbors. Thus, locality is again a crucial point.
On the other hand, even if we were not able to find an ana-
lytical explanation, these local models are also characterized | thank A. Vespignani, Y. Moreno, and A.-L. Baraddor
by degree correlations among connected vertices. helpful comments and discussion.
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