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Position-space renormalization-group approach for driven diffusive systems
applied to the asymmetric exclusion model

Ivan T. Georgiev and Susan R. McKay
University of Maine, Orono, Maine 04468

~Received 1 October 2002; published 7 May 2003!

This paper introduces a position-space renormalization-group approach for nonequilibrium systems and
applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are
characterized by three parameters: the probabilitya that a particle will flow into the chain to the leftmost site,
the probabilityb that a particle will flow out from the rightmost site, and the probabilityp that a particle will
jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the
space of these transition probabilities, which are relevant to the system’s dynamics. The method yields a
critical point at ac5bc51/2, in agreement with the exact values, and the critical exponentn52.71, as
compared with the exact valuen52.00.

DOI: 10.1103/PhysRevE.67.056103 PACS number~s!: 05.10.Cc, 05.70.Fh, 05.70.Jk, 64.60.Ak
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I. INTRODUCTION

Driven diffusive systems exhibit a variety of nonequili
rium phase transitions between steady states of the sy
~see, for example, Ref.@1#!. We present a general position
space renormalization-group approach for these systems
illustrate its application to the asymmetric exclusion mo
@2–4#. This model, a one-dimensional lattice gas with op
boundary conditions, provides an excellent testing grou
for new methods, since it exhibits both first and second or
phase transitions, and the exact solution is known@5,6#. We
apply the method to a system with stochastic dynamics,
in which a master equation describes its evolution. Recurs
relations link the model parameters that are relevant for
system’s dynamics and criticality on various length scales
the asymmetric exclusion model, these parameters are
pressible in terms of one- and two-site probability distrib
tion functions. In order to construct the recursion relatio
we exploit the exact general form of the solution@7# and the
knowledge of the steady state current in each different
gion. When the solution is not known, the functional depe
dence of the current on model parameters can be obtaine
least approximately, from the mean field solution. For
asymmetric exclusion model, a mean field treatment yie
the exact current as a function ofa and b, the probability
rates for particles entering and leaving the system, res
tively. There have been several recent papers on posit
space renormalization for reaction-diffusion systems@11–13#
that successfully study these models. They use the fact
these models can be related to the ground state of a sui
defined quantum Hamiltonian and then use the meth
available for quantum spin systems. Another recent w
@14# investigates mainly the asymmetric exclusion model,
we do in this paper, by developing a position-space resca
procedure that preserves the density and the current in
chain and calculating the dynamical critical exponent of
model.

The model consists of a one-dimensional open chain oN
sites. Each sitei can be occupied (t i51) or empty (t i
50). A particle can hop to its right neighbor provided th
1063-651X/2003/67~5!/056103~7!/$20.00 67 0561
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the neighboring site is empty. The dynamics are sequen
at each time stepdt, we choose at random a pair of site
( i ,i 11) and, if sitei is occupied and sitei 11 is empty, then
the particle at thei th site will jump to the right with prob-
ability dt,

t i~ t1dt!51 with probabilityxi5t i~ t !

1$t i 21~ t !@12t i~ t !#2t i~ t !@12t i 11~ t !#%dt,

t i~ t1dt!50 with probability 12xi ,

where i P$1, . . . ,N21%. ~1!

All of the other sites do not change. The boundary sites
treated in the following way. When the chosen pair is (0,1
where site 0 represents the left source of particles, a par
is injected into the chain with probabilityadt if the first site
of the chain is empty:

t1~ t1dt!51 with probability x05t1~ t !1a@12t1~ t !#dt,

t1~ t1dt!50 with probability 12x0 . ~2!

When the chosen pair is (N,N11), where theN11 site
represents the right boundary of the chain, the particle at
N, if it is occupied, will flow out of the chain with probabil
ity bdt:

tN~ t1dt!51 with probabilityxN5~12b!tN~ t !dt,

tN~ t1dt!50 with probability 12xN . ~3!

More general models have been studied@8,9# introducing
possibilities for the particles to jump to a left neighbor a
allowing particles at the left boundary to flow out of th
chain and particles at the right boundary to flow into t
chain.

Now we want to investigate the appearance of the ste
state distributions. Averaging the above equations over
events that may occur in one time stepdt and over the his-
tories up to timet, one obtains@3#
©2003 The American Physical Society03-1
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d

dt
^t i&5^t i 21~12t i !&2^t i~12t i 11!&,

where i P$1, . . . ,N21%,

d

dt
^t1&5a^12t1&2^t1~12t2!&,

d

dt
^tN&5^tN21~12tN!&2b^tN&. ~4!

Equations~4! serve as our basic equations for applying t
renormalization-group procedure. The steady state of
model is given in terms ofPN(t1 ,t2 , . . . ,tN), which are the
probabilities of finding the specific configuration represen
by the occupation numbers (t1 ,t2 , . . . ,tN) in a chain with
N sites. In the long time limit, the system reaches a ste
state where the probabilitiesPN(t1 ,t2 , . . . ,tN) do not
change with time, i.e.,

d

dt
PN~t1 ,t2 , . . . ,tN!50,

d

dt
^t i&50, etc. ~5!

The steady state solution can be obtained from the exp
sion @2,7#

PN~t1 ,t2 , . . . ,tN!5 f N~t1 ,t2 , . . . ,tN!/ZN with

ZN5 (
t150

1

(
t250

1

••• (
tN50

1

f N~t1 ,t2 , . . . ,tN! and

f N~t1 ,t2 , . . . ,tN!5^Wu)
i 50

N

„t iD1~12t i !E…uV&, ~6!

whereD andE are square matrices,^Wu anduV& are vectors
satisfying

DE5D1E,

DuV&5
1

b
uV&,

^WuE5
1

a
^Wu. ~7!

As shown in Fig. 1, the system can be in three phase
low density phase (A), a high density phase (B), and the
maximum current phase (C). The high and low density
phases are separated by a first order phase boundary
both are separated from the maximum current phase b
second order phase boundary. The steady state curre
given by the formula@2#

JN5
^WuCN21uV&

^WuCNuV&
, whereC[D1E. ~8!
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The current is a continuous function over the whole para
eter space and, in the thermodynamic limit asN→`, has the
simple form

J5a~12a! for a,1/2 and b.a ~phaseB!,

J5b~12b! for b,1/2 and a.b ~phaseA!

J51/4 for b>1/2 and a>1/2 ~phaseC!. ~9!

In applying the rescaling scheme we need only the ab
functional relation for the steady state current which, for t
system, can be obtained directly from a mean field treatm
@7#. Thus the method is applicable to other types of syste
in which the exact solution is not known.

II. MAIN RESULTS

Here we illustrate the general rescaling procedure wit
length rescaling factor of 3. Using a larger length rescal
factor would be expected to yield more accurate results,
also leads to substantially more involved algebra in the
cursion relations. The set$t1 ,t2 , . . . ,tN% maps into the set
$T1 ,T2 , . . . ,TÑ%, where we have used the majority rule
determine the state~empty or occupied! of the coarse-grained
site andÑ5N/3. We assume that the matrix algebra rema
the same after the blocking procedure, prohibiting any
pansion of the parameter space. The ratesa and b are al-
lowed to evolve under rescaling, while the rate for the f
ward jump p51 is held constant. From Eq.~4! it follows
that

a5
^t1~12t2!&

^12t1&
,

b5
^tN21~12tN!&

^tN&
. ~10!

Therefore, for the rescaled parametersã and b̃ we have

FIG. 1. The phase diagram of the model~see, for example, Ref
@8#!. The low density phaseA is divided into two phasesAI andAII ,
and the high density phaseB into BI andBII . The maximum current
phase is labeledC. The bulk density in the regionsA, B, andC is,
respectively,a, 12b, and 1/2. The linesa50.5 andb50.5 indi-
cate second order phase transitions. The linea5b,0.5 is a first
order phase transition.
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ã5
^T1~12T2!&

^12T1&
,

b̃5
^TN21~12TN!&

^TN&
. ~11!

The one-site and two-site probability distributions in t
coarse-grained chain can be expressed in terms of three
and six-site probability distribution functions of the origin
chain as follows:

^1CÑ21&T5^111CN23&t1^011CN23&t1^101CN23&t

1^110CN23&t ,

^10CÑ22&T5^111000CN26&t1^111001CN26&t

1^111010CN26&t1•••, etc. ~12!

The subindicesT and t indicate the system on which th
average is calculated. Working out each of these distri
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tions, using the algebra represented by Eq.~7!, we find that
the rescaled values depend on the expression

^WuCN2auV&

^WuCNuV&

5
^WuCN21uV&

^WuCNuV&

^WuCN22uV&

^WuCN21uV&
•••

^WuCN2auV&

^WuCN2a11uV&
, ~13!

where a is a natural number. In the thermodynamic lim
each of these ratios becomes the currentJ, and this expres-
sion can be rewritten as

lim
N→`

^WuCN2auV&

^WuCNuV&
5Ja. ~14!

After some algebra~detailed in the Appendix!, one ob-
tains from Eq.~11! using Eqs.~7!, ~8!, ~12!, and~14! the final
recursion relations
ã5

314J1S 62
3

a
2

3

a2D J21S 42
1

a
1

3

a2
1

3

a3D J31S 4

a2
1

3

a3D J4

11
1

a
1

1

a2
1

J

a2

and

b̃5

314J1S 62
3

b
2

3

b2D J21S 42
1

b
1

3

b2
1

3

b3D J31S 4

b2
1

3

b3D J4

11
1

b
1

1

b2
1

J

b2

. ~15!
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From Eq.~15! the flow diagram displayed in Fig. 2 is gen
erated as follows. First we select initial values ofa andb.
These values determine the currentJ, which has different
values in thea-b plane, as specified by Eq.~9!. Plugging the
values ofa, b, andJ into Eq.~15! yields the rescaled value

ã andb̃. The rescaled current is obtained again from Eq.~9!,
using the rescaled values ofa and b. This process is done
iteratively to generate the full flow diagram.

The flow diagram shown in Fig. 2 captures the exact cr
cal point and phase boundaries separating the high and
current and high and low density regions. Attractive fix
points occur ata5b50.0, the zero current fixed point, an
at a5b'2.929, which attracts all points within the max
mum current phase. The maximum current phase (C in Fig.
1! is separated from the high and low density phases
second order phase boundaries, corresponding in the
diagram to the two separatrices, each originating at tha
5b50.5 fixed point, with one attracted to the fixed poi
-
w

y
w

(0.5,2.929) and the other attracted to (2.929,0.5). If one
creases the length rescaling factor, these fixed points and
attractor for the maximum current phase should move tow
their correct locations, i.e., the value 2.929 should appro
infinity.

An interesting closed subspace of the flow diagram is
line connecting (0,1) and (1,0), all contained within the lo
current region. On this line,a1b51, the steady state solu
tion becomes trivial. One can choose one-dimensional ma
ces~scalars! D5b21 andE5a21 to solve the problem. The
flow diagram clearly captures this feature.

The basins of attraction corresponding to the high and
density regions are separated by a first order boundary,
denced in the flow diagram by the line from the unsta
critical fixed point to the attractive fixed point ata5b
50.0. Thus, the flow diagram captures all of the pha
boundaries and the critical point. A similar flow diagram w
obtained by Stinchcombeet al. in Ref. @14# by coarse grain-
3-3
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ing the operatorsD and E and using them to calculate th
system properties. Our results combined with previous tr
ments@11–14# indicate that a reliable qualitative picture, an
sometimes exact quantitative agreement, can be obta
with these position-space rescaling approaches using s
length rescaling factors.

Central to the flow diagram is the critical pointac5bc
50.5, which is repulsive as expected. The linearized rec
sion relations around this fixed point can be written as

F dã

db̃
G5F ]ã

]a

]ã

]b

]b̃

]a

]b̃

]b

G
a51/2

b51/2

Fda

dbG , wheredã5ã21/2, etc.

~16!

The above matrix has two eigenvaluesl1 andl2. From
the ratio of the distances between consecutive points in
renormalization-group flow~see Fig. 3!, we obtain the nu-
merical values for these eigenvalues

l15l251.5. ~17!

Thus the eigenvalue matrix is proportional to the ident
matrix with a proportionality coefficient of 3/2. The critica
exponent associated with the correlation lengthn[ ln b/ln l
equals

n5
ln~3!

ln~3/2!
'2.710. ~18!

FIG. 2. Flow diagram for the totally asymmetric exclusio
model. Points start from the vicinity of the repulsive fixed po
ac5bc50.5. There are fixed points at~0,0!, ~0,1!, ~1,0!,
~0.5,2.929!, ~2.929,0.5!, and~2.929,2.929!. Comparison with Fig. 1
shows that the flow lines capture exactly the position of the first
second order phase transitions as well as the critical point.
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From the exact solution@8#, a length scalejs can be
defined,

js52
1

ln@4s~12s!#
, ~19!

where s can be eithera or b and the length scalej21

[ja
212jb

21 governs the decay of the density profile. Wh
s tends to 1/2, this length scale diverges as

js}@s21/2#22, ~20!

which gives the critical exponentn52.00.
The same rescaling procedure can be applied to the m

general system with probabilityp dt for a jump to an empty
site on the right. In this case Eqs.~4! become

d

dt
^t i&5p^t i 21~12t i !&2p^t i~12t i 11!&,

d

dt
^t1&5a^12t1&2p^t1~12t2!&,

d

dt
^tN&5p^tN21~12tN!&2b^tN&. ~21!

d

FIG. 3. The ratior of the length between successive poin
which provides the eigenvalues of the matrix. The ratio of 1.5
curs in the critical region. The other ratio occurs near the attra
located at (2.929,2.929).
3-4
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In terms of new variablesâ5a/p and b̂5b/p, the steady
state Eqs.~10! become identical to the equations for the sy
tem with p dt51. The critical point moves toac5bc
5p/2, in agreement with results obtained using other me
ods @9#, and the critical exponent stays the same.

An interesting related question is whether the lineariz
recursion matrix Eq.~16! remains proportional to the identit
matrix when larger rescaling factors are used~see Fig. 4!.
This conjecture can easily be proven. The general recur
relations between (ã,b̃) and (a,b), because of the particle
hole symmetry, would be of the form

ã5 f @a,J~a,b!#,

b̃5 f @b,J~a,b!#. ~22!

The functionf (u,J) would be different for different scaling
parameters~hereu can be eithera or b). It is easy to check
that the matrix would become

FIG. 4. Flow diagram in the vicinity of the critical point. Dot
indicate the flow occurring at successive iterations away from
unstable fixed point.
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F ]ã

]a

]ã

]b

]b̃

]a

]b̃

]b

G
a51/2

b51/2

5F ] f

]u
1

] f

]J

]J

]a

] f

]J

]J

]b

] f

]J

]J

]a

] f

]u
1

] f

]J

]J

]b

G
a5b51/2

5F ] f

]uG
a5b51/2

F1 0

0 1G , ~23!

where Eqs.~9! are used to calculate the necessary derivati
in the different regions. Therefore the matrix remains prop
tional to the identity matrix with proportionality coefficien
(] f /]u) evaluated at the critical point. The renormalizatio
group flow does not distinguish between the high dens
regionsAI and AII ~or between the low density regionsBI
andBII) reported in Ref.@8#. These areas differ only in how
the bulk density is approached, coming from the bound
site, and thus have identical macroscopic properties in
thermodynamic limit.

We have also tested another approach for constructing
recursion equations, one that imposes the requirement
the current remains invariant under rescaling, i.e.,J̃5J. Ap-
plying this approach to the system withp dtÞ1, again with
a length rescaling factor of 3, we obtain

ã5a
^12t1&

^12T1&
, p̃5a

^12t1&

^T1~12T2!&
, b̃5b

^12tN&

^TN&
,

~24!

and, with the matrix algebra changed topDE5D1E, the
recursion equations become

ã5
1

S 1

p2
1

1

ap
1

1

a2D J1
1

a2p
J2

,

b̃5
1

S 1

p2
1

1

bp
1

1

b2D J1
1

b2p
J2

, ~25!

e

p̃5
1

3

p2
J1

4

p3
J21S 6

p4
1

3

ap3
1

3

a2p2D J31S 4

p5
2

1

ap4
1

3

a2p3
1

3

a3p2D J41S 4

a2p4
1

3

a3p3D J5

.

in
for
in

e to
This approach yields the same value for the critical ex
nent n52.710. Here the parameters that change during
rescaling area, b, andp. As reported in Ref.@10#, the gen-
eral case of the Fock representation of the quadratic alg
-
e

ra

involves twelve parameters that control the flow of the gas
the bulk of the chain. The general steady state solution
this case is not known yet. As in the equilibrium case,
order to obtain more accurate calculations, we would hav
3-5
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include in the system after rescaling new dynamical rules
add more allowed transitions between states. In other wo
the rescaled dynamics, with appropriate generality, sho
include possibilities for the following transitions:

diffusion to the right, 110→011 ~rateG01
10!,

coagulation at the right, 111→011 ~rateG01
11!,

decoagulation at the right, 110→111 ~rateG11
10!,

birth at the right, 010→011 ~rateG01
00!,

death at the right, 110→010 ~rateG00
10!. ~26!

III. CONCLUSIONS

We have presented a general position-sp
renormalization-group approach for driven diffusive syste
and shown how it can be applied to the asymmetric exc
sion model. The same scheme can be applied to any sy
in which the parameters driving the system can be expre
in terms of the system’s correlation functions, provided t
these correlation functions can be conveniently stated. T
the crucial part is that, when the system is rescaled, the
sulting higher correlations that enter into the equations
be calculated exactly or within a good approximation. In t
cases discussed above, these correlations are reducible
functional dependence on the steady state current.

The method that we have introduced to study the tota
asymmetric case is not only interesting in itself, but a
shows how the rescaling procedure can be applied to sys
out of equilibrium to determine critical properties when t
steady state is known exactly or to a good approximati
The second method for deriving the recursion relation, i
J5 J̃, provides a general scheme to study other systems
as models of fast ionic conductors, gel electrophoresis, tra
flows, etc., within a position-space renormalization-gro
framework.
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APPENDIX

Here we show the details for obtaining Eq.~15!. Using the
algebraic rules

C[D1E,

DE5D1E,

DuV&5
1

b
uV&,
05610
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^WuE5
1

a
^Wu ~A1!

and the obvious consequences of them,

D5C2E,

D25C22EC2C,

D35C322C22EC21EC, ~A2!

etc., one can calculate the expressions

^DCN&5^CN11&2
1

a
^CN&,

^D2CN&5^CN12&2S 11
1

a D ^CN11&,

^D3CN&5^CN13&2S 21
1

a D ^CN12&1
1

a
^CN11&.

~A3!

In an analogous way, one can derive the formulas involv
E andb. For example, below we show how the calculati
for the expression in the denominator in Eq.~11! is done:

^12T1&T5^100&t1^010&t1^001&t1^000&t ,

^100&t5
^WuDE2CN23uV&t

^WuCNuV&t

,

^010&t5
^WuEDECN23uV&t

^WuCNuV&t

,

^001&t5
^WuE2DCN23uV&t

^WuCNuV&t

,

^000&t5
^WuE3CN23uV&t

^WuCNuV&t

. ~A4!

In order to calculate the average in the numerator for^100&t
we rewriteDE2CN23 as

DE2CN235CECN235~C1E2!CN235CN222E2CN23.
~A5!

Now it can easily be calculated using Eqs.~A3! to give

^WuDE2CN23uV&t

^WuCNuV&t

5
^WuCN22uV&t

^WuCNuV&t

1
^WuE2CN23uV&t

^WuCNuV&t

5J21
1

a2
J3. ~A6!

In the same way we obtain the rest of the averages:
3-6
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^010&t5
^WuECN22uV&t

^WuCNuV&t

5
1

a
J2,

^001&t5
^WuE2DCN23uV&t

^WuCNuV&t

5
1

a2
J22

1

a3
J3,

^000&t5
^WuE3CN23uV&t

^WuCNuV&t

5
1

a3
J3. ~A7!

Combining these expressions leads to the result for^12T1&T5(111/a11/a21J/a2)J2. The rest of the calculations are don
using the same techniques. The case ofpÞ1 can be handled in the same manner.
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