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Position-space renormalization-group approach for driven diffusive systems
applied to the asymmetric exclusion model
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This paper introduces a position-space renormalization-group approach for nonequilibrium systems and
applies the method to a driven stochastic one-dimensional gas with open boundaries. The dynamics are
characterized by three parameters: the probahilithat a particle will flow into the chain to the leftmost site,
the probabilityB that a particle will flow out from the rightmost site, and the probabiitthat a particle will
jump to the right if the site to the right is empty. The renormalization-group procedure is conducted within the
space of these transition probabilities, which are relevant to the system’s dynamics. The method yields a
critical point at .= B.=1/2, in agreement with the exact values, and the critical exponer2.71, as
compared with the exact value=2.00.
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I. INTRODUCTION the neighboring site is empty. The dynamics are sequential:
at each time steglt, we choose at random a pair of sites
Driven diffusive systems exhibit a variety of nonequilib- (i,i+1) and, if sitei is occupied and sitet+ 1 is empty, then
rium phase transitions between steady states of the systeifnie particle at theéth site will jump to the right with prob-
(see, for example, Refl]). We present a general position- ability dt,
space renormalization-group approach for these systems and . N
illustrate its application to the asymmetric exclusion model 7i(t+dt)=1 with probabilityx; = 7;(t)

[2—-4]. This model, a one-dimensional lattice gas with open (D[ 1= 7()]= 7(D)[1— 744 (D)]}dL,
boundary conditions, provides an excellent testing ground

for new methods, since it exhibits both first and second order 7(t+dt)=0 with probability 1-x;,

phase transitions, and the exact solution is kng@B]. We

apply the method to a system with stochastic dynamics, one whereie{l,... N—1}. (1)

in which a master equation describes its evolution. Recursion ) )
relations link the model parameters that are relevant for thé\l Of the other sites do not change. The boundary sites are

system’s dynamics and criticality on various length scales. Mriated n tge following Wﬁy' IV\]{then the cr]]osen_ pl)alr Is (0.1) ,I
the asymmetric exclusion model, these parameters are e¥’ ere site 0 represents the left source of particles, a particle

pressible in terms of one- and two-site probability distribu-'S injected into the chain with probabilitydt if the first site

tion functions. In order to construct the recursion relations,Of the chain is empty:

we exploit the exact general form of the solutiofj and the 7 (t+dt)=1 with probability xo=7,(t)+ e[ 1— m,(t)]d,
knowledge of the steady state current in each different re-

gion. When the solution is not known, the functional depen- 7 (t+dt)=0 with probability 1-x,. )
dence of the current on model parameters can be obtained, at

least approximately, from the mean field solution. For the \When the chosen pair iSN(N+ 1), where theN+1 site
asymmetric exclusion model, a mean field treatment yieldsepresents the right boundary of the chain, the particle at site
the exact current as a function ef and 3, the probability N, if it is occupied, will flow out of the chain with probabil-
rates for particles entering and leaving the system, respegty gdt:

tively. There have been several recent papers on position-

space renormalization for reaction-diffusion systéfis-13 n(t+dt)=1 with probabilityxy=(1— B) m(t)dt,
that successfully study these models. They use the fact that
these models can be related to the ground state of a suitably 7n(t+dt)=0 with probability 1—xy. (3

defined quantum Hamiltonian and then use the methods

available for quantum spin systems. Another recent work More general models have been studi8®] introducing

[14] investigates mainly the asymmetric exclusion model, agpossibilities for the particles to jump to a left neighbor and

we do in this paper, by developing a position-space rescalingllowing particles at the left boundary to flow out of the

procedure that preserves the density and the current in thehain and particles at the right boundary to flow into the

chain and calculating the dynamical critical exponent of thechain.

model. Now we want to investigate the appearance of the steady
The model consists of a one-dimensional open chaiN of state distributions. Averaging the above equations over the

sites. Each sita can be occupied i{=1) or empty @ events that may occur in one time stgépand over the his-

=0). A particle can hop to its right neighbor provided that tories up to timet, one obtaing3]
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d 1
m<7i>:<7'i—1(1_Ti)>_<Ti(1—Ti+1)>1
5 | M c
whereie{l,... N—1},
05
d A
a<7’1>=a’<1_T1>—<T1(1_7'2)>, 1
d o B, By
a<7N>:<TN—l(1_TN)>_IB<TN>- (4) 0 05 5 1

Equations(4) serve as our basic equations for applying the FIG. 1. The phase diagram of the mogete, for example, Ref.

N 8]). The low density phasa s divided into two phase4, andA,,
renormalization-group procedure. The steady state of th[gnd the high density phageinto B, andB,, . The maximum current

model IS given in te'rms d?N(Tl’.T?’ T ’.TN)’ V\./hICh are the hase is labele€. The bulk density in the regions, B, andC is,
probabilities of finding the specific configuration representecfespectivelyﬂ 1- B, and 1/2. The linesr=0.5 andg=0.5 indi-
by t,he occupation nulmberls-].(, 72, .- -,7y) in @ chain with cate second order phase transitions. The lirre3<<0.5 is a first
N sites. In the long time limit, the system reaches a steady,qer phase transition.
state where the probabilitie®y(71,7, ...,7y) do not
change with time, i.e., The current is a continuous function over the whole param-
eter space and, in the thermodynamic limit\as> o0, has the
aPN(Tl,Tzv T simple form
J=a(l—a) for «a<1/2 and B>« (phaseB),
d—<7i>=0, etc. (5
t J=B(1—p) for B<1/2 and a>p (phased)

The steady state solution can be obtained from the expres-

sion[2,7] J=1/4 for B=1/2 and a=1/2 (phase&C). (9

Pn(T1,72, oo o) =FN(T1, 72, - .., 7n)/Zy With In applying the rescaling scheme we need only the above
functional relation for the steady state current which, for this
4 - system, can be obtained directly from a mean field treatment
Zn= 2 E e E fn(71,72, ..., 7y) and [7]. Thus the method is applicable to other types of systems,
n=07=0 =0 in which the exact solution is not known.

N
(172, ) =(WIIL D+ (1= m)E)V), (6§ Il. MAIN RESULTS

Here we illustrate the general rescaling procedure with a
whereD andE are square matriceé\V| and|V) are vectors length rescaling factor of 3. Using a larger length rescaling
satisfying factor would be expected to yield more accurate results, but

also leads to substantially more involved algebra in the re-
DE=D+E, cursion relations. The sétry, 75, ... ,7y} Maps into the set
{T{,T5, ..., Tx}, where we have used the majority rule to
determine the stat@mpty or occupiedof the coarse-grained

site andN=N/3. We assume that the matrix algebra remains

the same after the blocking procedure, prohibiting any ex-
@) pansion of the parameter space. The rateand 8 are al-

lowed to evolve under rescaling, while the rate for the for-

o ) ward jumpp=1 is held constant. From Ed4) it follows
As shown in Fig. 1, the system can be in three phases: g4t

low density phaseA), a high density phaseB(, and the

maximum current phaseC). The high and low density (11(1—75))
phases are separated by a first order phase boundary, and a= =g
both are separated from the maximum current phase by a {(1=m)
second order phase boundary. The steady state current is

1
DIV)=51V),

1
(WIE=—(W].

given by the formuld2] e (tn—1(1=1y)) (10
T
(wich1|v) T
NT N whereC=D+E. (8) - -
(w|CN|V) Therefore, for the rescaled parametersind 8 we have
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(T (1-Ty))
(1-Ty

(Tn-2(1=Tw))
(Tn)

a=

B= (11)

The one-site and two-site probability distributions in the _
coarse-grained chain can be expressed in terms of three-site
and six-site probability distribution functions of the original

chain as follows:

(1CN-1y,=(111CN-3)_+(011CN"3),+(101CN~3)_
+(110cN 73y,
(10CN=2):=(11100@CN "), +(11100CN9)

+(11101@N "% + ..., etc. (12)
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tions, using the algebra represented by &g, we find that
the rescaled values depend on the expression
(wich#|v)
(WICY|v)
(WIS V) (wiehEv) - (wictEv)
(WICMV) (WICh V) (wch )’

(13

wherea is a natural number. In the thermodynamic limit,
each of these ratios becomes the curikrdand this expres-
sion can be rewritten as

(WChA)

im 2 (14)

After some algebrddetailed in the Appendix one ob-

The subindicesT and 7 indicate the system on which the tains from Eq(11) using Eqs(7), (8), (12), and(14) the final
average is calculated. Working out each of these distriburecursion relations

3
344+ 6——— = |+ | 4——+ =+ = | P+ | 5+ — |2
~ (12 a2 a3 o (13
a:
1+ 1+ ! + J
a o a?
and
3+4J+

(15

From Eq.(15) the flow diagram displayed in Fig. 2 is gen- (0.5,2.929) and the other attracted to (2.929,0.5). If one in-

erated as follows. First we select initial valuesmfand 3.
These values determine the currehtwhich has different
values in thex-B plane, as specified by E). Plugging the
values ofa, 8, andJinto Eq.(15) yields the rescaled values
@ andB. The rescaled current is obtained again from 4.
using the rescaled values af and 8. This process is done
iteratively to generate the full flow diagram.

creases the length rescaling factor, these fixed points and the
attractor for the maximum current phase should move toward
their correct locations, i.e., the value 2.929 should approach
infinity.

An interesting closed subspace of the flow diagram is the
line connecting (0,1) and (1,0), all contained within the low
current region. On this liney+ 8=1, the steady state solu-

The flow diagram shown in Fig. 2 captures the exact criti-tion becomes trivial. One can choose one-dimensional matri-
cal point and phase boundaries separating the high and |o@ps(sc_alar$D=B‘1 andE=a"* to solve the problem. The
current and high and low density regions. Attractive fixedflow diagram clearly captures this feature.

points occur atv=8=0.0, the zero current fixed point, and

The basins of attraction corresponding to the high and low

at a=B8~2.929, which attracts all points within the maxi- density regions are separated by a first order boundary, evi-

mum current phase. The maximum current phasen( Fig.

denced in the flow diagram by the line from the unstable

1) is separated from the high and low density phases byritical fixed point to the attractive fixed point at=;
second order phase boundaries, corresponding in the flow 0.0. Thus, the flow diagram captures all of the phase

diagram to the two separatrices, each originating atcdhe

boundaries and the critical point. A similar flow diagram was

=B=0.5 fixed point, with one attracted to the fixed point obtained by Stinchcombet al. in Ref.[14] by coarse grain-
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FIG. 2. Flow diagram for the totally asymmetric exclusion  0-2
model. Points start from the vicinity of the repulsive fixed point
a.=B.=0.5. There are fixed points af0,0, (0,1, (1,0,
(0.5,2.929, (2.929,0.5, and(2.929,2.929 Comparison with Fig. 1 0 T T T T
shows that the flow lines capture exactly the position of the first and 0 20 40 €0 80 100
second order phase transitions as well as the critical point. successive iterations

. . FIG. 3. The ratior of the length between successive points,
ing the operator® and E and using them to calculate the ' d ! ve pal

. o | bined with . which provides the eigenvalues of the matrix. The ratio of 1.5 oc-
system properties. Our results combined with previous trealy < i the critical region. The other ratio occurs near the attractor

ments[11-14 indicate that a reliable qualitative picture, and |5cated at (2.929,2.929).
sometimes exact quantitative agreement, can be obtained
with these position-space rescaling approaches using small From the exact solutiofig], a length scalet, can be
length rescaling factors. defined ’ 7

Central to the flow diagram is the critical poiat,= 8, '
=0.5, which is repulsive as expected. The linearized recur-

1
sion relations around this fixed point can be written as

o=~ No(1=0)]" (19
da da
5% Ja % Sa where o can be eithera or 8 and the length scalg ™!
~|=l -~ - . wheresa=a—1/2, etc. =&, —£&5" governs the decay of the density profile. When
op B IB op o tends to 1/2, this length scale diverges as
da B |e=12
B=112 Ex[o—1/2]72, (20)

(16)

The above matrix has two eigenvalues and\,. From  Which gives the critical exponent=2.00. ,
the ratio of the distances between consecutive points in the '€ Same rescaling procedure can be applied to the more
renormalization-group flowsee Fig. 3, we obtain the nu- 9€neral system with probabiliy dt for a jump to an empty
merical values for these eigenvalues site on the right. In this case Eq#l) become

A=N\,=15. (17) d

s G =R (1= )= (L= 7)),
Thus the eigenvalue matrix is proportional to the identity
matrix with a proportionality coefficient of 3/2. The critical

d
exponent associated with the correlation lengtaln b/in —(m)=a(l—71)—p{T1(1— 7)),
dt
equals
_ I3 2.710 18 d = 1 21
V_In(3/2)~ . . (18 a<7N>_p<TN—1( — 7))~ B(7n). (21)
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S T 7 P da  da [ of . af 33 af 3
‘ Ja B U dda 3B
v IT: - af aJ ot af 9d
9B Ik —= o
da 9B |a=12 L dJ da au  94J dB aep12
B=1/2
[ of 1 0} 23
Bos | Ju Yy 0 1

where Eqgs(9) are used to calculate the necessary derivatives
in the different regions. Therefore the matrix remains propor-
tional to the identity matrix with proportionality coefficient
(9f/ou) evaluated at the critical point. The renormalization-
group flow does not distinguish between the high density
regionsA, and A, (or between the low density regior
. T T andB,)) reported in Ref[8]. These areas differ only in how
0.49 LA S N B S the bulk density is approached, coming from the boundary
49 0.5 0.51 site, and thus have identical macroscopic properties in the
o thermodynamic limit.

FIG. 4. Flow diagram in the vicinity of the critical point. Dots We .have alsq tested anotherl approach for Constructlng the
indicate the flow occurring at successive iterations away from thd€CUrsion equations, one that imposes the requirement that
unstable fixed point. the current remains invariant under rescaling, de=J. Ap-

plying this approach to the system wiphdt# 1, again with
In terms of new variablese=a/p and 8= B/p, the steady a length rescaling factor of 3, we obtain
state Eqs(10) become identical to the equations for the sys-

tem with pdt=1. The critical point moves toa.= 3. ~ (1-7) ~ (1—71) ~ (1-7y
=p/2, in agreement with results obtained using other meth- = —F v: P o)y PR T
0ds[9], and the critical exponent stays the same. (24)

An interesting related question is whether the linearized
recursion matrix Eq(16) remains proportional to the identity and, with the matrix algebra changed pE=D+E, the
matrix when larger rescaling factors are ugsde Fig. 4. recursion equations become
This conjecture can easily be proven. The general recursion
relations betweend, ) and (,8), because of the particle-
hole symmetry, would be of the form

a=

B 1 1 1 1
a=f[a,d(a,B)], a2 J+a—2pJ
B=1[B.I(a,B)]. (22 .
The functionf(u,J) would be different for different scaling B= , (29
. . 1 1 1 1
parameterghereu can be either or B). It is easy to check (_ +— 4+ _> J+—72
that the matrix would become p?2 Bp p? B%p
~ 1
i J+ 4J2+ 6+ 3 + > 3+ 41 + > + > 4+ 4 + > J5.
p2 p3 p4 ap3 a2p2 p5 ap4 a2p3 a3p2 a2p4 a3p3

This approach yields the same value for the critical expoinvolves twelve parameters that control the flow of the gas in
nentv=2.710. Here the parameters that change during théhe bulk of the chain. The general steady state solution for
rescaling arex, 8, andp. As reported in Ref[10], the gen-  this case is not known yet. As in the equilibrium case, in
eral case of the Fock representation of the quadratic algebi@der to obtain more accurate calculations, we would have to
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include in the system after rescaling new dynamical rules, to 1
add more allowed transitions between states. In other words, (WE= ;(Wl (A1)
the rescaled dynamics, with appropriate generality, should
include possibilities for the following transitions: and the obvious consequences of them,
diffusion to the right, #0—0+1 (ratel'y), D=C—E,
coagulation at the right, +1—0+1 (ratel'5}), D2=C2-EC-C,
decoagulation at the right, 10—1+1 (ratel'}y), D3=C3-2C?-EC?+EC, (A2)
birth at the right, OF0—0+1 (rateI'9)), etc., one can calculate the expressions
. 1
death atthe right, #0—0+0 (ratel's). (26) (DCNy=(CN*1y—=(CNy,
o
IIl. CONCLUSIONS

<DZCN>:<CN+2>_ ( 1+ 2 (CN+1>,

We have presented a general position-space
renormalization-group approach for driven diffusive systems
and shown how it can be applied to the asymmetric exclu- 1 1
sion model. The same scheme can be applied to any system (D3CN)=(C""3) | 2+ o (Ch 2+ ;<CNH>'
in which the parameters driving the system can be expressed (A3)
in terms of the system’s correlation functions, provided that
these correlation functions can be conveniently stated. Thusn an analogous way, one can derive the formulas involving
the crucial part is that, when the system is rescaled, the re&& and 8. For example, below we show how the calculation
sulting higher correlations that enter into the equations carffor the expression in the denominator in Efjl) is done:
be calculated exactly or within a good approximation. In the
cases discussed above, these correlations are reducible to a  (1—T;)7=(100 ,+(010),+(001).+(000) ,,
functional dependence on the steady state current.

The method that we have introduced to study the totally (W|DE2CN 3| V),
asymmetric case is not only interesting in itself, but also (100 ,= N
shows how the rescaling procedure can be applied to systems (WICT|V).
out of equilibrium to determine critical properties when the

:<W|EDECN’3|V>T

steady state is known exactly or to a good approximation. (010)
The second method for deriving the recursion relation, i.e., ! (W|CNVy,
J=1, provides a general scheme to study other systems such
as models of fast ionic conductors, gel electrophoresis, traffic (WIE?DCN V),
flows, etc., within a position-space renormalization-group (00D, = N '

(W[CT|V),
framework.
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DE?CN 3=CECV 3=(C+E?*CN 3=CcN"2-E?CN "3,
APPENDIX (AS)

Here we show the details for obtaining Ef5). Using the ~ Now it can easily be calculated using EgA3) to give

algebraic rules
(WIDE*CY V), (WIC™ 3V), (WIE*CM V),

C=D+E, (W|CN|V), (W|CNV)., (WICNV),
DE=D+E, o, 1
=J +;J : (A6)
D|V)= ! V
V)= E| ) In the same way we obtain the rest of the averages:
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(WIECNT?V), 1

010,=——— =72,
(019 (Wchlv), @

(WE*DCN®lv), 1 1
(001),= =—J12-—J8
(W|CN|V), a? a®

00 ——<W|E3CN73|V>T—iJ3 (A7)
0= wcv), @

Combining these expressions leads to the resultferT,)r=(1+ 1/a+ 1/a?+ I/ «?)J?. The rest of the calculations are done
using the same techniques. The cas@#fl can be handled in the same manner.
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