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We study in detail the time behavior of classical fidelity for chaotic systems. We show, in particular, that the
asymptotic decay, depending on system dynamical properties, can be either exponential, with a rate determined
by the gap in the discretized Perron-Frobenius operator, or algebraic, with the same power as for correlation
functions decay. Therefore the decay of fidelity is strictly connected to correlations decay.
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As it is known, the exponential separation of orbits start- In addition, at least for short times, the decaying behavior
ing from slightly different initial conditions has been associ- depends on the initial state&oherent state, mixture, elc.
ated with classical chaos. It has been noticed that the situd¥/hile it can be true that, for practical purposes, the short
tion in quantum mechanics is drastically different. Indeed theaime behavior of fidelity may be the most interesting one, it
scalar product of two state§y|i,) is time independent. is also true, without any doubt, that in order to have a clear
This has led to the introduction of fidelity as a measure of theéheoretical understanding and identify a possible universal
stability of quantum motiofl]. More precisely one consid- type of quantum decay one needs to consider the asymptotic
ers the overlap of two states which, starting from the saméehavior of fidelity.
initial conditions, evolve under two slightly different Hamil-  There arises the problem of understanding the corre-
toniansH, andH_ =Hy+ €V. The fidelity is then given by sponding classical decay of fidelity and later on inquiring
f(t)=|(y|exp(H Mh)exp(—iHt/A)|»)[2. The quantity f(t)  about the time scales at which quantum decay mimics the
can be seen as a measure of the so-called Loschmidt echockssical one. In the present paper, we concentrate our atten-
state| ) evolves for a time under the Hamiltoniaiiy, then  tion on the classical behavior.
the motion is reversed and evolves back for the same time What do we know about the decay of classical fidelity for
under the HamiltoniarH, and the overlap with the initial chaotic systems? What is the relation with correlation func-
state|¢) is considered. tions? Can we derive the decay of fidelity from the behavior

However, we would like to stress that, in principle, suchof correlations or is fidelity a completely independent func-
difference between classical and quantum mechanics actualtion? In a recent papdr 2] it has been found numerically
does not exist. The Liouville equation, which describes clasthat, after an initial transient, classical fidelity decays expo-
sical evolution, is unitary and reversible as the Sdimger ~ nentially and the rate is given by the Lyapunov exporisae
equation. However, as stressed in several occasises, also Refs[8,13)]). This is also in agreement with previous
e.g., Ref[2]), there exist time scales up to which quantumpapers[4—6] indicating that quantum fidelity, for strong
motion can share the properties of classical chaotic motio@nough quantum perturbatigmhich, for a fixed classical
including local exponential instability. Due to the existenceperturbation strength, corresponds to semiclassical rggion
of such time scales, what may be different, and indeed it isjecays exponentially with a rate given by the the Lyapunov
is the degree of the stability of dynamical motion. Indeed, agxponent of the corresponding classical system. On the other
clearly illustrated in the analysis of Loschmidt echo in Ref.hand, we know that the decay of correlation functions is not
[3], qguantum motion turns out to be more stable than theuled by the Lyapunov exponent. In the first place, there is
classical motion. the general phenomenon of long time tails which means

The growing interest in quantum computers has attractegower law decay. In addition, for the special cases in which
recent interest in this quantity as a measure of the stability obne can prove exponential decay, the rate is determined by
guantum computation in the presence of hardware imperfedhe gap in the discretized Perron-Frobenius operator and not
tions or noisy gate operations. Confining ourselves to classby the Lyapunov exponent.
cally chaotic systems, the emerging picture which results In this paper, we show that the asymptotic decay of clas-
from analytical and numerical investigatiofd—12] is that  sical fidelity for chaotic systems is not related to the
both exponential and Gaussian decays are present in the tinhgapunov exponent: Similarly to correlation functions, this
behavior of fidelity. The strength of the perturbation deter-decay can be either exponential or power law. In the first
mines which of the two regimes prevails. The decay rate ircase, the decay rate is determined by the gap in the dis-
the exponential regime appears to be dominated either by theretized Perron-Frobenius operator, and in the latter case the
classical Lyapunov exponent or, according to the Fermpower law has the same exponent as for correlation func-
golden rule, by the spreading width of the local density oftions.
states. The classical fidelityf(t) is defined as follows:
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f(t):lexpe(xlt)Po(X:t)u (1)

where the integral is extended over the phase space, and

pO(X,t)ZUBp(X,O), pe(x7t):Utep(X10) (2)

give the evolution aftet steps of the initial density(x,0)
[assumed to be square normalized, if@xp?(x,0)=1] as
determined by théth iteration of the Perron-Frobenius pera-
torsU, andU ., corresponding to the Hamiltoniam, and
H., respectively. The above definition can be shown to cor-

respond to the classical limit of quantum fidel[i§,10]. In 0 20 40 60 80 100

the ideal case of perfect eche=0), the fidelity does not i

decay,f(t)=1. However, due to chaotic dynamics, when

#0 the classical fidelity decay sets in after a time scale FIG. 1. Decay of the fidelitg(t) for the sawtooth map with the

parameterK o= (/5+1)/2 ande=10"2 for different values ofL

=1,3,5,7,10,2%; from the fastest to the slowest decaying curve,
' ©) respectively. The initial phase space density is chosen as the char-

acteristic function on the support given by thé,|f) €[0,27)
required to amplify the perturbation up to the sizeof the [~ 7/100:7/100]. Note that between the Lyapunov decay and the
initial distribution, with\ the Lyapunov exponent. Thus, for €xponential asymptotic decay there isca_/\ﬁ decay, as expected
t>t, the recovery of initial distribution via the imperfect from the qmuswe.behawor. Inset: n‘!agnlflcatlon of the same plot
time-reversal procedure fails, and the fidelity decay is deter©" short times, with the corresponding Lyapunov decay indicated
mined by the decay of correlations for a system that evolve&S @ thick dashed line.
forward in time according to the Hamiltoniark$, (up to
timet) andH, (from timet to time 2t). This is conceptually e
similar to the “practical” irreversibility of chaotic dynamics: —[(®)J/[f(0)—=f(=)]; in this wayg(t) drops from 1 to 0
due to the exponential instability, any amount of numerical’Vhent goes from 0 toe. We note thaf (0)=1, while for a
error in computer simulations rapidly effaces the memory ofchaotic systenf(=) is given by the raticA/A., with A
the initial distribution[3]. In the present case, the coarse the area of the chaotic component to which the initial distri-

graining which leads to irreversibility is not due to roundoff bution belongs. _ o
errors but due to a perturbation in the Hamiltonian. The behavior ofg(t) is shown in Fig. 1, forko=(15

In the following, we illustrate this general phenomenon in +1)/2 and different. values. One can see that only the short
standard models of classical chaos, characterized by uniforiine decay is determined by the Lyapunov exponent. It takes
exponential instabilityithe sawtooth map marginal stability ~ Place fort,<t<t., with t, defined in Eq.(3) and t,

tll
V)\ne

librium for fidelity, we consider the quantitg(t)=[f(t)

(the stadium billaryj or mixed phase space dynamighe  ~(1/\)In(27/€) time scale required to amplify the effect of
kicked rotatoy. the Hamiltonian perturbation up to the maximum extension
The sawtooth map is defined by in the angled. The Lyapunov regime is followed by a power

law decay[12] «1/\/Dt until the diffusion timety~L?%/D
E= p+Fo(6), 0= 9+E (4) and then the asymptotic relaxation to equilibrium takes place

exponentially, with a decay ratg (shown in Fig. 2, which,
where (,0) are conjugated action-angle variableB,  as discussed below, is ruled not by the Lyapunov exponent
=Ky(6— ), and the overbars denote the variables after ondut by the largest Ruelle-Pollicott resonarté]. In particu-
map iteration. We consider this map on the torus® lar, it is e independent.

<2, —wL=<p<wL, whereL is an integer. FOKy>0 the We determine numerically these resonances for the saw-
motion is completely chaotic and diffusive, with the tooth map using the following methdd5,16.
Lyapunov exponent given b\ =In[(2+K,+[(2+K,)? (i) The phase space torus€®<2w, —wL<p<mwlL) is

—41Y)/2]. ForK,>1 one can estimate the diffusion coef- divided intoNxNL square cells.

ficient D by means of the random phase approximation, ob- (ii) The transition matrix elements between cells are de-
taining D~ (72/3)K3. In order to compute fidelitf1), we  termined numerically by iterating for one map step the phase
choose to perturb the kicking strengh=K,+ e, with ¢  space distributions given by the characteristic functions of
<K,. In practice, we follow the evolution of farajectories, ~€ach cell: in this way we build a finite dimensional approxi-
which are uniformly distributed inside a given phase spacénation of the one-period evolution operatdg.

region of area\, at timet=0. The fidelityf(t) is given by (i) This truncated evolution matrix/{" (of size LN?

the percentage of trajectories that return back to that regior LN?) is diagonalized: it is no longer unitary, and its eigen-
aftert iterations of map(4) forward, followed by the back- valuesz") are inside the unit circle in the complex plafea
ward evolution, now with the perturbed strendth in the  example is shown in Fig.)3The nonunitarity of the coarse-
same time interval. In order to study the approach to equi- grained evolution is due to the fact that the transfer of prob-
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FIG. 2. Asymptotic exponential decay rates of fidelity for the t

_ _ — 3 :
sawtooth maiKo=(y5+1)/2, =10 ?] as a function oL. The FIG. 4. Power law decay of fidelity for the stadium billiard with

rates are extracted by fitting the tails of the fidelity decay in Fig. 1__ . _ .
R=1 he 1 h of th h 2 (th
(triangles and from the discretized Perron-Frobenius operatorradlus and the length of the straight segmens=2 (the

. . . turbed stadi had=d,+ e, with e=2x107%). The initial
(circles. The line denotes the1/L2 behavior of the decay rates, perturbed stadium had=do + €, with e ) € nia

. . . . hase space density was chosen to be a direct product of a charac-
p_redlcted_ by _the Fok_ker-_PIanck_equatlon, which describes the Cla{)éristic function on a circle in configuration space, the center of
sical motion in the diffusive regime.

which was at(0.5,0.25 as measured from the center of the billiard
and its radius was 0.1, while for momenta thgp|— 1) distribu-

ability to finer scale structures in the phase space is cutofft,Ion was used. The dashed line has slope.

and this results in an effective dissipatiftb]. . . .
(iv) Resonances correspond to “frozen” nonunimodularFrobenius spectrum. It should be stressed that, since fidelity

eigenvalues, namelwi('\‘)—ii when N—s, with |z|<1. involves forward and backward evolutions, the fidelity decay

Convergence of eigenvalues to values inside the unit circle§t t|m§t Eas tr?_ be compgreltzj_ W'tzh thhe c_orlrelatlons deca(ljy at

comes from the asymptotic self-similarity of chaotic dynam-t'nje2 - For this reason in Fig. 2 the circles correspond to

ics [15]. Y= %o _ L .
As it is known, the asymptotict(~) relaxation of cor- We would like to stress that the same qualitative behavior

relations is determined by the resonance with largest mode2f Fig. 1 is obtained ir_1 the_ presence of stochas_tic hoise, e.g.,
the backward evolution is driven by a kicking strength

lus, [z|=max|z|<1, giving a decay rate,=In[Z. In Fig. 2, Kot : , )
we illustrate the good agreement between the asymptotic gl =Ko+ (), with {e(t)}1=1,,... uniformly and ran
cay rate of fidelity(extracted from the data of Fig) and the

decay rate as predicted by the gap in the discretized Perron- 10°§ ' QL AR N
1 L _
05 1
~N
E O '
-05 1
1t §
' : ' ' ' FIG. 5. The decay of fidelity for the kicked rotator witk,
-1 -0.5 0 0.5 1 =2.5,L=1, ande=10"2 (full curve). The support of the initial
Re(z) (characteristic density is inside the chaotic component, with

(6,p) €[0,0.2][0,0.2]. The dotted curve represents the exponential
FIG. 3. Spectrum of the discretized Perron-Frobenius operatodecay at a rate given by the Lyapunov exponkrt0.534. The
for the sawtooth map with parameteks,=(\5+1)/2, L=7, dashed line has slope 0.55. The dot-dashed curve gives the cor-
and discretizationN=20. The asymptotic decay of fidelity is relation decayD(2t), for the same initial density and for twice the
determined by the largest modulus eigenvalue apart from théme t. It is clearly seen that, asymptotically, fidelity and correla-
eigenvalue 1. tions have the same power law decay 5
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domly distributed inside the interv@l-e€,€]. In particular, the kicked rotator with kicking paramet&i,=2.5, for which

we observed the initial Lyapunov decay and the asymptotithe phase space contains chaotic components and stable is-

exponential relaxation with the same rateThis means that lands. The correlator is given byD(t)=[C(t)

the effect of a noisy environment on the decay of fidelity for — C(x)]/[C(0)—C()], with C(t)=fqdxpo(X,t)p(X,0).

a classical chaotic system is similar to that of a generic statig; js seen that, after an initial Lyapunov decay, fidelity ap-

Hamiltonian perturbation. proaches the same asymptotic power law decay of correla-
Further confirmation for the validity of the above illus- tions[19).

trated scenario has been obtained by analyzing systems in |, summary, we have shown that in chaotic systems the

which the asymptotic decay of correlations is algebraic. This,qy mntotic decay of classical fidelity, which describes the

happens in the following cases. , _structural stability of motion under system’s perturbations, is
(i) When the system possesses marginally stable orbits: 45 5q0us to the asymptotic decay of correlation functions.

typical example is the stadium billiard in which, as it is 1hjg asymptotic decay can be either exponential or algebraic,

known [17], correlations decay astl/ _ depending on the dynamical properties of the system. In any
(i) When there is mixed phase spdds]: A typical €x-  jgtance, it is not related to the local exponential instability

ample is the kicked rotator modgdescribed by Eq4) with 104 by the Lyapunov exponent and it ésindependent. It

Fo=Kgsind). would be interesting to understand what are the implications

Since in the long time limit the fidelity decay at timés ¢ thege findings for the decay of quantum fidelity.
still related to the decay of correlations at timig & the case

of power law decay of correlations d5S“, we expect a We thank Roberto Artuso for useful discussions. This
power law decay of fidelity with the same exponentThis  work was supported in part by the EC RTN Contract No.
is indeed confirmed by our numerical results. In Fig. 4 it iSHPRN-CT-2000-0156, the NSA and ARDA under ARO Con-
shown that, for the stadium billiard, fidelity decays asymp-tract No. DAAD19-02-1-0086, the PA INFM “Weak chaos:
totically « 1/t, as expected. In Fig. 5, we compare the fidelity Theory and applications,” and the PRIN 2000 “Chaos and
decay(at timet) and the correlations decdgt time 2) for  localization in classical and quantum mechanics.”
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