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Reply II to ‘‘Comments on nonlinear viscosity and Grad’s moment method’’
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The Comments by Santos@Phys. Rev. E67, 053201~2003!# are addressed in this paper. It is shown that his
comments are based on an assumption that is not made in the paper@Phys. Rev. E65, 031202 ~2002!#
commented upon by him. It is also shown that the hydrodynamic equations used by him are not the same as
those implied by the constitutive equations for the stress tensor elements in the paper under comment. There-
fore, the deductions and the conclusion drawn by him are not applicable to the aforementioned stress tensors.
His comments on the thermodynamic consistency and the dimensionality of the kinetic equation are also
shown to be baseless.
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At the core of the Comments by Santos@1# lies the ques-
tion of whether or not the approximate evolution equatio
for macroscopic field variables~i.e., hydrodynamic equation
or moment equations! derived from a kinetic equation~e.g.,
the Boltzmann kinetic equation! are self-consistent from th
standpoint of hydrodynamics. Since a one-dimensional
netic equation is used in his analysis of the question i
appropriate to discuss first the nature of the one-dimensi
kinetic equation from the standpoint of kinetic theory of m
ter. Then we examine the basic ideas and methodologies
ployed in the kinetic theory for the purpose of deriving t
aforementioned evolution equations, before the replies
responses are specifically made to his comments.

A one-dimensional kinetic equation is a mathemati
construct that is often used for heuristic reasons to provid
insights into more realistic but often mathematically intra
table three-dimensional kinetic equation which is conside
to be the molecular theory basis of macroscopic phenom
of interest. It is difficult to believe that a group of molecul
are all confined to a line and move one dimensionally
unison, giving rise to a one-dimensional macroscopic fl
motion, as is suggested by the one-dimensional kinetic eq
tion. One-dimensional kinetic equations are against the b
concept of random molecular motions inherent to statist
mechanics, in which macroscopic observables are calcul
as mean values of the corresponding molecular express
of dynamical quantities defined in the multidimension
phase space of many particles. However, they are used o
in kinetic theory investigations because they sometimes
vide exact solutions and thus invaluable insights into m
realistic but complex problems for which exact or analy
solutions are difficult to obtain. Deductions made from the
for macroscopic phenomena should be used with caut
Santos seems to think otherwise about them.

It is useful to put the gist of the Reply in a paragra
before presenting the details of the Reply and response to
comments. The mass, momentum, and energy conserv
laws ~balance equations!, Eqs. ~4!–~6! of Ref. @1#, used by
him are one dimensional and do not contain fluid dynam
variables in other than thex direction in the coordinate sys
tem. In other words, they do not involve velocity comp
nents, stress tensor components, and heat fluxes in the d
tions ofy andz. Therefore the flow is not only unidirectiona
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but also one dimensional. On the other hand, the unidir
tional channel flow underlying the stress tensor calculated
Ref. @2# is not one dimensional in the sense meant by San
with Eqs. ~4!–~6!, because flow velocity componentux and
other flow variables depend onx, y, z in general and, in a
special case, on bothx andy. It is evident from Eq.~28! in
Ref. @2# that the stress tensor is not one-dimensional. T
means that the hydrodynamic equations, namely, mass,
mentum, and energy balance equations corresponding to
stress tensor calculated from Eq.~28! of Ref. @2# are not
one-dimensional equations as Eqs.~4!–~6! are, as will be
shown in the course of the reply given in the followin
Therefore, Santos’ principal conclusion deduced from E
~4!–~6! in his Comment paper@1# is not applicable to the
hydrodynamics of flow implied by the stress tensor provid
by Eq. ~28! of Ref. @2#. It should be emphasized that th
stress tensor calculated fromEq. ~28! of Ref. @2# by no
means implies Assumption (d) of his.

One of the principal aims in rheology lies in establishi
the rheological constitutive equations for the substance
interest in terms of the shear rate and/or the elongation
and also in terms of external forces if necessary. In ot
words, the stress tensor components of the substance in
are calculated in terms of various velocity gradients or pr
sure gradients under the influence of which the substa
flows. The shear and elongation rates are experimental in
in the rheological constitutive equations, because in rheol
they are treated as experimentally given. This raises so
subtle questions in the high shear rate regime. Neverthe
that is how it is done in rheology according to the textboo
on rheology and rheometry@3,4#.

For the purpose of obtaining such constitutive equatio
the methods of statistical mechanics and kinetic theory
often employed unless the approach is phenomenologica
such a kinetic theory derivation of rheological constituti
equations the flow problem under investigation does not
quire solutions of a full set of hydrodynamic equation
which includes the conservation laws of mass, moment
and internal energy and the rheological constitutive eq
tions ~evolution equations! for the stress tensors and, pe
haps, the constitutive equations~evolution equations! for the
heat flux, diffusion fluxes, and other relevant nonconser
variables. The basic reason underlying this approach is
the primary role of rheological constitutive equations is
relating the stress tensors to the shear and elongation
©2003 The American Physical Society03-1
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COMMENTS PHYSICAL REVIEW E 67, 053203 ~2003!
~velocity gradients!, which are experimental inputs, in
manner compatible with the principles of mechanics and
drodynamics and also of thermodynamics. Hydrodynam
flow calculations are performed in the next stage with
conservation laws together with the rheological constitut
equations so constructed and elucidated through rheolog
experiments.

The Chapman-Enskog method@5# is one of the major
methods established for solving the Boltzmann kinetic eq
tion or equivalent kinetic equations and for calculating t
aforementioned constitutive equations. In the Chapm
Enskog method the constitutive equations for the nonc
served variables arise as the solvability conditions for
kinetic equation order by order with respect to the nonu
formity parameter in a series of which the distribution fun
tion is expanded. Thus the Euler equations, the Nav
Stokes-Fourier equations, the Burnett equations, and so
are obtained systematically and self-consistently accord
to the order of the nonuniformity parameter. The constitut
equations for stresses and heat fluxes—namely, the New
ian law of viscosity and the Fourier law of heat conduction
the first order level of the Chapman-Enskog solution—do
involve time derivatives, and thus may be regarded as ste
state approximations of the moment equations arising,
example, in the Grad moment method@6#. Thus derived hy-
drodynamic equations are self-consistent and provide
lecular theory foundations of the classical hydrodynam
which adequately accounts for diverse flow phenomena.

On the other hand, in the moment method of Maxwell@7#
and Grad@6# the moment evolution equations generated fr
the kinetic equation provide another set of macrosco
equations for field variables, which may be regarded
equivalent to those of the Chapman-Enskog method. T
may be systematically solved by expanding the moments
series of the nonuniformity parameter. Thus obtained hyd
dynamic equations are mathematically self-consistent o
by order within the series expansion method employed,
the leading order hydrodynamic equations acquired coinc
with those derived by the Chapman-Enskog method. Fo
given flow problem, depending on the degree of depart
from equilibrium, one is then to solve such hydrodynam
equations at an order of the nonuniformity parame
namely, the Euler, Navier-Stokes-Fourier, or Burnett eq
tions, subject to initial and boundary conditions. Again, t
hydrodynamic equations thus derived are mutually consis
regardless of whether a steady state assumption is take
not. This is especially so in the case of constitutive equati
for the nonconserved variables appearing in the mom
method. If one wishes to avoid using the aforemention
expansion in the nonuniformity parameter for nonconser
variables then the methodology so developed for solution
the moment evolution equations will take us beyond the le
of the classical hydrodynamics. The moment evolution eq
tions still remain self-consistent.

The previous four paragraphs describe a general philo
phy and backdrop for various kinetic theory efforts to der
constitutive equations for nonconserved variables in the
05320
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erature@5,8#. It also underlies the kinetic theory method us
for the derivation of the stress tensor evolution equation
Ref. @2#.

In Ref. @2# under Comment by Santos@1# the present au-
thor has made an analysis of the constitutive equations
the stress tensor components which Uribe and Garcia-C
@9# reported in this journal. Their derivation of the constit
tive equations is within the bounds of the general philosop
taken in the traditional kinetic theory methods mention
earlier. The authors of Ref.@9# derived the constitutive equa
tions for the stress tensor under the assumption that the tr
versal velocity gradients vanish~i.e, ¹yux5¹zux50) in the
case of a unidirectional flow along thex axis ~i.e., uxÞ0 in
the flow! and made some deductions claimed to be of gen
nature regarding the material functions~i.e., shear and longi-
tudinal viscosities!. The present author in Ref.@2# pointed
out that the aforementioned assumption could give rise
inappropriate constitutive equations for the stress ten
components for the unidirectional flow considered. The th
modynamic consistency of the constitutive equations so
tained were also questioned and commented on in the p
@2#. In addition, a general sort of comment was made w
regard to the dimensionality of the kinetic equation oft
taken in the kinetic theory approaches made in the litera
@10#, in which the kinetic equation~e.g., the Boltzmann
equation! is made one dimensional in the configuration
space if the hydrodynamic flow is one dimensional.

It was certainly not advocated by this author in Ref.@2#
that the constitutive equations for the stress tensor com
nents in question should be used for rheological studies
the material functions of the gases considered. As a matte
fact, the present author has derived and reported on a s
hydrodynamic equations, called the generalized hydro
namic equations which are not only thermodynamically co
sistent but also capable of successfully accounting for exp
mental data on shock wave structures@11#, various flow
characteristics in rarefied gases@12#, and rheological proper-
ties @13# of complex liquids such as polymeric liquids. The
are the aspects that the moment equations derived by
Grad moment method are not generally able to account
properly. Consequently there is no compelling reason for
present author to suggest Grad’s moment equations for
plications in the study of flow problems in fluid systems. It
therefore out of ordinary that Santos takes issue with
present author about the object of Comment by the pre
author, which the latter concluded defective in Ref.@2# and
never intended to use for application. If he finds the con
tutive equations for stress tensors by Uribe and Garcia-C
@9# to have defects the comments should have been dire
toward Ref.@9#, not to the paper making analysis of the
constitutive equations and find them defective, unless the
a problem with the analysis in Ref.@2#. However, since he
has addressed to Ref.@2# collateral Comments, which I find
are unwarranted, I am obliged to respond to his commen

Santos attributes five assumptions to Refs.@2# and @9#.
Since Assumptions a, b, c, and e are present in Refs.@2,9#,
but do not have a crucial significance to the alleged inc
sistency of the hydrodynamic equations, only Assumptio
on the spatial uniformity of the pressure tensor needs to
3-2
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COMMENTS PHYSICAL REVIEW E 67, 053203 ~2003!
discussed here. Nowhere in Ref.@2# is the assumption in
question made nor is it inferred or indicated, and it is m
interpretation that the same holds true for Ref.@9#.

First of all, the notationP for the excess stress tens
used in Ref.@2# has been incorrectly interpreted and co
fused with the pressure~stress! tensorP by Santos. It should
be emphasized thatP is not the same asP. It is defined by
P5P2pd, where d denotes the unit second rank tens
This confusion has unfortunate and undesirable ramificat
in his discourse. The following discussion shows that
sumption d is not implied by the constitutive equations
Refs.@2# and @9#.

In the aforementioned systematic methods of solving
kinetic equation the underlying principle is the function
hypothesis@5,8,14#, in which nonconserved variables are a
sumed to be functionals of the conserved variables, wh
determine the time and spatial scales for the macrosc
evolution of the system. Because of this functional hypo
esis the derivatives of nonconserved variables appea
terms, at least, one order higher than the nonconserved
ables themselves in the aforementioned schemes of ex
sion, if such an expansion method is employed to solve
kinetic equation. Therefore, for example, at a given orde
approximation the derivatives of stress tensorP in the term
such asu•“P appearing in the constitutive equation for th
stress tensor does not occur in the momentum balance e
tion at the same order of the nonuniformity parameter. N
also that “P in the term u•“P is not the same as
“•P. Therefore even ifu•“P is ignored in the constitutive
equation forP because the former is one order higher thau
in the expansion scheme, it does not mean that the“•P term
should be absent in the momentum balance equation.
sides, the approximate constitutive equations derived in R
@2,9# depend on position and hence“•PÞ0 in general and
consequently the term“•P is not absent in the momentum
balance equation~momentum conservation law!.

Certainly the constitutive equations for the components
tensorP, which are derived by the Grad moment method
Ref. @2#, do not suggest in any way thatP is uniform in the
configuration space. In fact, assumption d is contradicted
the constitutive equations for the components ofP presented
in Ref. @2#; see Eq.~28! and its approximate~iterative! solu-
tions in Ref.@2#. Setting aside the feature questioned ab
the stress tensor evolution equations of Uribe and Gar
Colin in Ref. @2#, I would like to state that neither do th
evolution equations for the components ofP in Ref. @9# sug-
gest assumption~d!.

I would like to point out that, as a matter of fact, th
momentum balance equations corresponding to the s
tensorP for the unidirectional flow described in Ref.@2# are
as follows:

rDtux1
]p

]x
1

]

]x
Pxx1

]

]y
Pyx50, ~1!

]p

]y
1

]

]x
Pxy1

]

]y
Pyy50, ~2!

where Dt is the substantial time derivative,r is the mass
density, andDtuy50 becauseuy50. This set of momentum
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balance equations arises when the flow in thez direction is
neutral in the case of a unidirectional flow parallel with thex
axis. One may use the solutions of Eq.~28! of Ref. @2# and,
for example, iterative solutions thereof for the components
P in Eqs. ~1! and ~2!. The normal stress differences a
defined byN15Pxx2Pyy and N25Pyy2Pzz. Since the
stress tensorP is traceless symmetric it follows thatPxx
5(2N11N2)/3, Pyy5(N22N1)/3, and Pzz52(N1
12N2)/3. The normal stress differences are of second or
with respect to the shear rate; this can be easily verified w
the approximate solutions of Eq.~28! of Ref. @2#. Therefore,
if the shear rate is small the normal stress differences ma
neglected. In such an approximation and in the event
pressure gradient in they direction vanishes as is the case f
creeping flow under a constant pressure gradient in thx
direction, we obtain from Eqs.~1! and ~2! the momentum
balance equations in the form

rDtux1
]p

]x
1

]

]y
Pyx50, ~3!

]

]x
Pxy50. ~4!

These equations should be compared with Eq.~5! of Ref. @1#
in order to see their differences; for example, Eqs.~3! and~4!
are two-dimensional partial differential equations where
Eq. ~5! of Ref. @1# is one dimensional.

Equation~4! implies thatPxy is independent ofx, that is,
Pxy5Pxy(y). Therefore, if the flow is under a constant pre
sure gradient in thex direction then the two-dimensiona
momentum balance equations~1! and ~2! are reduced to a
single ordinary differential equation iny. Furthermore, if the
channel is infinite in length so thatux is translationally in-
variant in thex direction and hence]ux /]x50 then Dtux
50. In this case Eq.~3! is the equation for the Poiseuill
flow in the channel if the Newtonian law of viscosity is use
for Pyx , and it gives rise to the well-known parabolic velo
ity profile that is in the basis of a rheometric method f
measuring viscosity. I would like to point out that the New
tonian law of viscosity is contained as the leading order
proximation with respect to the shear rate in the solutions
Eq. ~28! of Ref. @2# and that for the unidirectional flow an
the accompanying stress tensor calculated in Ref.@2# the
momentum and energy balance equations are quite diffe
from Eqs.~5! and ~6! of Ref. @1#, the most important being
the dimensionality of the equations.

Therefore, it can be said that the analysis giving rise
Santos’ conclusion that the unidirectional flow considered
Ref. @2,9# is inconsistent with the steady state assumption
inapplicable to the stress tensor calculated in Ref.@2#; it ap-
plies to the one-dimensional flow model under his assum
tions, which is obviously different from the flow describe
by Eqs.~1! and ~2!, because assumption~d! of his does not
apply to the constitutive equations for the stress tensor c
ponents derived in Ref.@2#. Therefore, his conclusion is in
correctly directed and irrelevant to the hydrodynamic eq
tions accompanied by the constitutive equation forP derived
in Ref. @2#.
3-3
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COMMENTS PHYSICAL REVIEW E 67, 053203 ~2003!
In Ref. @2# an approximate set of constitutive equatio
for Pxx , Pxy , and Pyz was suggested as the lowest-ord
iterative solutions of Eq.~28!; see Eqs.~28!, ~32!, ~33!, and
~34! of Ref. @2#. It was also suggested in Ref.@2# that more
accurate results could be obtained by means of nume
solutions of Eq.~28!. Therefore, it is clear that Eq.~33!, for
example, will have a limited range of validity, and Santos
pointing out the obvious fact that it indeed has limitations.
fact, such implied limitations were precisely the unsta
point of deriving such approximate solutions in addition
the point made about the appearance of the shear stress
author, however, did not, and does not, advocate them
any application to study of flow problems in Ref.@2#. It is
anyone’s guess why such an incidental formula should b
point of so belabored an argument, in which he takes pai
distinguish the deductions of the constitutive equations
Refs. @2# and @9# in what seems like an attempt to put th
latter in a more favorable light.

Equation~16! of Ref. @1# is an approximation of the evo
lution equation derived from the Boltzmann equation, and
validity is questionable. Therefore, any deduction made w
it is equally dubious. One curious aspect of Eq.~17! is that it
is about the stress tensor componentPyy which has no place
in his one-dimensional flow model because his flow mo
should have onlyux and Pxx , but nothing else. This Com
ment also applies to Eq.~18! of Ref. @1#, which is in fact
incorrect. It should read

DtPi j 1
]

]xk
cki j1

]uk

]xk
Pi j 1~Pk jd i l 1Pkid j l !

]ul

]xk

52m~Pi j 2pd i j !, ~5!

where the Einstein convention is used for repeated s
scripts,cki j5^mCkCiCj f & with Cl ( l 5 i , j ,k) denoting the
l th component of the peculiar velocity, but the rest of no
tion is the same as in Ref.@1#. In the unidirectional flow, in
which uy5uz50, Eq. ~5! should read

DtPi j 1
]

]xk
cki j1

]ux

]xx
Pi j 1S Pk j

]ui

]xk
1Pki

]uj

]xk
D

52m~Pi j 2pd i j !, ~6!

where]ui /]xk5d ix(]ux /]xk) and]uj /]xk5d jx(]ux /]xk).
On comparing this equation with Eq.~18! of Ref. @1# we find
that in Eq.~18! ] t should readDt and the term]cki j /]xk is
missing. In this connection note thatcki j is not necessarily
equal to the heat flux and that for the one-dimensional fl
model considered in Ref.@1# there are no other componen
of P than thex component, namely,i 5 j 5x. The results of
the analysis based on Eq.~18! therefore seems to be of
dubious quality.

Having performed an analysis with such a faulty equati
Santos concludes that the stress tensor components obt
as approximations for the solutions of Eq.~28! in Ref. @2#
yields ‘‘ unphysical negative values for the diagonal e
ments of the pressure tensor.’’ However, as a matter of f
because of the incorrect interpretation ofP used in Ref.@2#
as mentioned earlier, Eq.~21! of Ref. @1# is in error. Conse-
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Besides, sincePyy is a normal stress in the dimensions e
cluded in his one-dimensional flow model, Eq.~21!, is extra-
neous to his flow model and thus cannot be regarded a
result consistent with his flow model. In any case, such
proximate solutions for the stress tensors have never b
advocated for application in Ref.@2#. They have been used t
point out the differences arising when the assumption
made with regard to the transversal velocity gradients
Uribe and Garcia-Colin in Ref.@9#. If the conclusion drawn
in Ref. @1# is truthful there is all the more reason to be d
bious about the constitutive relations obtained in Ref.@9#.

The Grad moment method does not provide theoret
foundations for irreversible thermodynamics, which is co
sistent with the thermodynamics laws at all orders of a
proximation, and this point was demonstrated in the lite
ture @15,16#. Therefore, the constitutive equations f
nonconserved variables obtained by the Grad mom
method are generally inconsistent with the thermodyna
laws. This was a point repeated in Ref.@2#. The particular
equations derived from the one-dimensional Boltzma
equation and used by Santos@1# may turn out to be thermo
dynamically consistent, but he has not shown that they
indeed thermodynamically consistent. In this connection
should be clearly understood that theH theorem satisfied by
the Boltzmann equation is not the same as the second la
thermodynamics. TheH theorem is broader than the seco
law of thermodynamics, being a stability theorem for t
homogenous steady state solution of the Boltzmann eq
tion, and the macroscopic equations derived from the Bo
mann equation do not necessarily satisfy the second law
thermodynamics, as is shown in the literature@15,16#. I be-
lieve that Santos is using the term thermodynamic con
tency in the sense broader than I have been using in Ref@2#
and in the literature@15–17# on my work on irreversible
thermodynamics. In the Comment paper@1# Santos is argu-
ing without proof that his equations are thermodynamica
consistent in the sense I have defined the term earlier.
yet to be shown to be true for everyone to see.

The phase space density functionF(r ,v,t) in Eq. ~25! in
Ref. @1# is defined in the 6N-dimensional phase space, and
Eq. ~25! is averaged over the initial distributionr(G) as
suggested in Ref.@1# then the singlet distribution function
follows

f ~r ,v,t !5^F~r ,v,t !&5(
i 51

N E dG ir~r ,v,G i !, ~7!

where

G i5~r1 ,v1 ;•••;r i 21 ,vi 21 ;r i 11 ,vi 11 ;•••;rN ,vN!,

dG i5dr1dv1•••dr i 21dvi 21dr i 11dvi 11•••drNdvN .

Since the particles are identical it follows that

f ~r ,v,t !5NE dG1r~r ,v,G1!. ~8!
3-4
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COMMENTS PHYSICAL REVIEW E 67, 053203 ~2003!
This distribution function may indeed obey, for example, t
three-dimensional field-free Boltzmann equation

S ]

]t
1v"¹D f ~r ,v,t !5E dv8E

0

2p

dwE
0

`

dbbg@ f ~r ,v* ,t !

3 f ~r ,v8*,t !2 f ~r ,v* ,t ! f ~r ,v8*,t !#

[J@ f f # ~9!

in the standard notation.
In this manner of defining the singlet distribution functio

f (r ,v,t) the one-dimensional distribution function, sa
f (x,v,t) for particles confined to a line parallel to thex axis
is obtained if Eq.~8! is integrated overy andz,

f ~x,v,t !5E dyE dz f~r ,v,t !

5NE dyE dzE dG1r~r ,v,G1!

and, if the singlet distribution functionf (r ,v,t) obeys kinetic
equation~9! then the reduced distribution functionf (x,v,t)
obviously obeys the one-dimensional reduced kinetic eq
tion

S ]

]t
1vx•¹xD f ~x,v,t !5E dyE dzJ@ f f #~x,y,z!. ~10!

However, f (x,v,t) does not obey the kinetic equation
which the three-dimensional distribution functions in t
Boltzmann collision term are replaced by the on
dimensional distribution functionf (x,v,t), namely, the ki-
netic equation

S ]

]t
1vx•¹xD f ~x,v,t !5J@ f ~x,v,t ! f ~x,v,t !#, ~11!
f

-

05320
a-

-

as is often done in many kinetic theory approaches to so
hydrodynamic flow problems. And it is the case with Re
@9#. Equations~10! and ~11! are not the same unless th
collision integral is linear with respect tof. Therefore, such a
manner of using the Boltzmann kinetic equation needs c
tion. This was the essential point of the remark made
connection with the kinetic equation in Ref.@2#. In the case
of the Maxwell model the Boltzmann equation superficia
becomes linear if the functional integral depending on
distribution function and related to the relaxation time in t
kinetic equation is regarded as a parameter independen
the dimension of the system. Thus it appears as if the kin
equation can be one dimensional, but because the functi
integral related to the relaxation time is not one dimension
if one has started with the three-dimensional Boltzmann
netic equation, the kinetic equation is only quasi-one dim
sional. Therefore, the claim that the one-dimensional kine
equation has no problem appears to be acceptable in the
of the Maxwell model, if one ignores the fact that the afor
mentioned functional integral in the kinetic equation still i
volves a three-dimensional distribution function. A simil
comment applies to the case of a linearized Boltzmann eq
tion. However, as is clear from Eqs.~10! and ~11!, the con-
clusion holding for linearized Boltzmann equation does n
extend to the nonlinear Boltzmann equation, and it will be
misconception that a kinetic equation can be generally
dimensional in the configuration space if the flow proble
under consideration is one dimensional. One should rem
ber that a fluid particle~a packet of molecules! contains a
large number of molecules, which move three dimensiona
in the configuration space of the phase space for the fl
particle. A one-dimensional kinetic equation, such as E
~11!, is just a mathematical model, which does not faithfu
represent the physical reality in the kinetic theory descript
of macroscopic systems, if the processes require a nonli
kinetic equation. Therefore, I do not agree with Santos on
matter regarding the one-dimensional kinetic equation on
point of principle.
s
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