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The Comments by Sant¢Bhys. Rev. 57, 053201(2003] are addressed in this paper. It is shown that his
comments are based on an assumption that is not made in the [faper. Rev. E65, 031202(2002]
commented upon by him. It is also shown that the hydrodynamic equations used by him are not the same as
those implied by the constitutive equations for the stress tensor elements in the paper under comment. There-
fore, the deductions and the conclusion drawn by him are not applicable to the aforementioned stress tensors.
His comments on the thermodynamic consistency and the dimensionality of the kinetic equation are also
shown to be baseless.
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At the core of the Comments by San{dg lies the ques- but also one dimensional. On the other hand, the unidirec-
tion of whether or not the approximate evolution equationgional channel flow underlying the stress tensor calculated in
for macroscopic field variabldge., hydrodynamic equations Ref.[2] is not one dimensional in the sense meant by Santos
or moment equationglerived from a kinetic equatiofe.g.,  With Egs.(4)—(6), because flow velocity componeny and
the Boltzmann kinetic equatiprare self-consistent from the Other flow variables depend og y, z in general and, in a
standpoint of hydrodynamics. Since a one-dimensional kiSPeCial case, on bothandy. It is evident from Eq(28) in _
netic equation is used in his analysis of the question it | Ref. [2] that the stress tensor is not one-dimensional. This

' . . . _ S%:eans that the hydrodynamic equations, namely, mass, mo-
appropriate to discuss first the nature of the one-dimensiongl,entym, and energy balance equations corresponding to the
kinetic equation fro_m the stan(_jpplnt of kinetic theory Of_mat'stress tensor calculated from E@8) of Ref. [2] are not
ter. Then we examine the basic ideas and methodologies ergne-dimensional equations as E@4)—(6) are, as will be
ployed in the kinetic theory for the purpose of deriving theshown in the course of the reply given in the following.
aforementioned evolution equations, before the replies anttherefore, Santos’ principal conclusion deduced from Egs.
responses are specifically made to his comments. (4)—(6) in his Comment papefrl] is not applicable to the

A one-dimensional kinetic equation is a mathematicalhydrodynamics of flow implied by the stress tensor provided
construct that is often used for heuristic reasons to provide ugy Eq. (28) of Ref. [2]. It should be emphasized that the
insights into more realistic but often mathematically intrac-Stress tensor calculated frorq. (28) of Ref. [2] by no
table three-dimensional kinetic equation which is consideredneans implies Assumption (d) of his.
to be the molecular theory basis of macroscopic phenomena One of the principal aims in rheology lies in establishing
of interest. It is difficult to believe that a group of molecules the rheological constitutive equations for the substance of
are all confined to a line and move one dimensionally ininterest in terms of the shear rate and_/or the elongation rate
unison, giving rise to a one-dimensional macroscopic fluig@nd also in terms of external forces if necessary. In .other
motion, as is suggested by the one-dimensional kinetic equd!Crds, the stress tensor components of the substance in hand
tion. One-dimensional kinetic equations are against the basf'® calculated in terms of various velocity gradients or pres-
concept of random molecular motions inherent to statistical ure gradients under the influence of which the substance

mechanics, in which macroscopic observables are calculat E’WS' The Shear and elpnganon rates are experlm.ental Inputs
: -in the rheological constitutive equations, because in rheology
as mean values of the corresponding molecular expressio

fd ical tities defined in th ltidi i I'?ﬁey are treated as experimentally given. This raises some
of dynamical quantities denned in the multidimensionalg, ;e guestions in the high shear rate regime. Nevertheless,

phase space of many particles. However, they are used oftgy js how it is done in rheology according to the textbooks
in kinetic theory investigations because they sometimes prosn rheology and rheometis, ],

vide exact solutions and thus invaluable insights into more gy the purpose of obtaining such constitutive equations
realistic but complex problems for which exact or analyticthe methods of statistical mechanics and kinetic theory are
solutions are difficult to obtain. Deductions made from themoften emp]oyed unless the approach is phenomeno]ogicaL In
for macroscopic phenomena should be used with cautiorsuch a kinetic theory derivation of rheological constitutive
Santos seems to think otherwise about them. equations the flow problem under investigation does not re-
It is useful to put the gist of the Reply in a paragraphquire solutions of a full set of hydrodynamic equations,
before presenting the details of the Reply and response to hishich includes the conservation laws of mass, momentum,
comments. The mass, momentum, and energy conservati@nd internal energy and the rheological constitutive equa-
laws (balance equationsEqgs.(4)—(6) of Ref.[1], used by tions (evolution equationsfor the stress tensors and, per-
him are one dimensional and do not contain fluid dynamichaps, the constitutive equatiofevolution equationsfor the
variables in other than thedirection in the coordinate sys- heat flux, diffusion fluxes, and other relevant nonconserved
tem. In other words, they do not involve velocity compo- variables. The basic reason underlying this approach is that
nents, stress tensor components, and heat fluxes in the dirate primary role of rheological constitutive equations is in
tions ofy andz. Therefore the flow is not only unidirectional relating the stress tensors to the shear and elongation rates
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(velocity gradients which are experimental inputs, in a eraturg5,8]. It also underlies the kinetic theory method used
manner compatible with the principles of mechanics and hyfor the derivation of the stress tensor evolution equation in
drodynamics and also of thermodynamics. HydrodynamidRef.[2].
flow calculations are performed in the next stage with the In Ref.[2] under Comment by Sant¢&] the present au-
conservation laws together with the rheological constitutivethor has made an analysis of the constitutive equations for
equations so constructed and elucidated through rheologicéte stress tensor components which Uribe and Garcia-Colin
experiments. [9] reported in this journal. Their derivation of the constitu-
The Chapman-Enskog methd8] is one of the major tive equations is within the bounds of the general philosophy
methods established for solving the Boltzmann kinetic equataken in the traditional kinetic theory methods mentioned
tion or equivalent kinetic equations and for calculating theearlier. The authors of Reff9] derived the constitutive equa-
aforementioned constitutive equations. In the Chapmantions for the stress tensor under the assumption that the trans-
Enskog method the constitutive equations for the nonconversal velocity gradients vanidhe, Vyu,=V,u,=0) in the
served variables arise as the solvability conditions for thecase of a unidirectional flow along theaxis (i.e., u,# 0 in
kinetic equation order by order with respect to the nonunithe flow) and made some deductions claimed to be of general
formity parameter in a series of which the distribution func-nature regarding the material functioi®., shear and longi-
tion is expanded. Thus the Euler equations, the Navierfudinal viscosities The present author in Reff2] pointed
Stokes-Fourier equations, the Burnett equations, and so dipt that t_he aforem_ent_loned assumption could give rise to
are obtained systematically and self-consistently accordin appropriate constitutive equations for the stress tensor
to the order of the nonuniformity parameter. The constitutive omponents for the unidirectional flow considered. The ther-

equations for stresses and heat fluxes—namely, the Newtorr1TJOOIynamIC consistency of the constitutive equations so ob-

ian law of viscosity and the Fourier law of heat conduction atained were also questioned and commented on in the paper
: Y . 2]. In addition, a general sort of comment was made with
the first order level of the Chapman-Enskog solution—do no

involve time derivati dth b ded egard to the dimensionality of the kinetic equation often
Involve time derivatives, and thus may be regarded as steaqyyen, in the kinetic theory approaches made in the literature

state approximations of the moment equations_arising, fo[lO], in which the kinetic equatiore.g., the Boltzmann
example, in the Grad moment methi. Thus derived hy-  equation is made one dimensional in the configurational
drodynamic equations are self-consistent and provide MOspace if the hydrodynamic flow is one dimensional.
lecular theory foundations of the classical hydrodynamics, |t was certainly not advocated by this author in Réf]
which adequately accounts for diverse flow phenomena.  that the constitutive equations for the stress tensor compo-
On the other hand, in the moment method of MaxWeé]l  nents in question should be used for rheological studies of
and Grad 6] the moment evolution equations generated fromthe material functions of the gases considered. As a matter of
the kinetic equation provide another set of macroscopidact, the present author has derived and reported on a set of
equations for field variables, which may be regarded asydrodynamic equations, called the generalized hydrody-
equivalent to those of the Chapman-Enskog method. Thegamic equations which are not only thermodynamically con-
may be systematically solved by expanding the moments in aistent but also capable of successfully accounting for experi-
series of the nonuniformity parameter. Thus obtained hydromental data on shock wave structureidl], various flow
dynamic equations are mathematically self-consistent orde¢haracteristics in rarefied gadd<], and rheological proper-
by order within the series expansion method employed, anfies[13] of complex liquids such as polymeric liquids. These
the leading order hydrodynamic equations acquired coincid@'® the aspects that the moment equations derived by the
with those derived by the Chapman-Enskog method. For grad moment method are not generally able to account for

given flow problem, depending on the degree of departuré’mperly' Consequently there is no compelling reason for the
from equilibrium, one is then to solve such hydrodynamicPr€Sent author to suggest Grad's moment equations for ap-

equations at an order of the nonuniformity parameterplications in the study of flow problems in fluid systems. It is

namely, the Euler, Navier-Stokes-Fourier, or Burnett equa'_[herefore out of ordinary that Santos takes issue with the

tions, subject to initial and boundary conditions. Again, thepresent author about the object of Comment by the present

! ; : .~ —author, which the latter concluded defective in H&fl and
hydrodynamic equations thus derived are mutually consistenfe er intended to use for application. If he finds the consti-

regardless of whether a steady state assumption is taken Qe equations for stress tensors by Uribe and Garcia-Colin

not. This is especially so in_the case of co_nstit_utive equationfg] to have defects the comments should have been directed
for the nonconserved variables appearing in the momengyarg Ref.[9], not to the paper making analysis of their
method. If one wishes to avoid using the aforementione¢onstitutive equations and find them defective, unless there is
expansion in the nonuniformity parameter for nonconserveg, problem with the analysis in Ref2]. However, since he
variables then the methodology so developed for solution ohas addressed to R¢2] collateral Comments, which | find
the moment evolution equations will take us beyond the levehre unwarranted, | am obliged to respond to his comments.
of the classical hydrodynamics. The moment evolution equa- Santos attributes five assumptions to R¢g. and [9].
tions still remain self-consistent. Since Assumptions a, b, ¢, and e are present in R2f8],

The previous four paragraphs describe a general philosdaut do not have a crucial significance to the alleged incon-
phy and backdrop for various kinetic theory efforts to derivesistency of the hydrodynamic equations, only Assumption d
constitutive equations for nonconserved variables in the liton the spatial uniformity of the pressure tensor needs to be
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discussed here. Nowhere in R¢2] is the assumption in balance equations arises when the flow in ztdirection is
guestion made nor is it inferred or indicated, and it is myneutral in the case of a unidirectional flow parallel with the
interpretation that the same holds true for Réf. axis. One may use the solutions of Eg8) of Ref.[2] and,
First of all, the notationlI for the excess stress tensor for example, iterative solutions thereof for the components of
used in Ref[2] has been incorrectly interpreted and con-II in Egs. (1) and (2). The normal stress differences are
fused with the pressuretress tensorP by Santos. It should defined byN;=II,,—II,, and N,=II,,—1II,,. Since the
be emphasized thdl is not the same aB. It is defined by stress tensoll is traceless symmetric it follows thdl,,
II=P—pd, where § denotes the unit second rank tensor.=(2N;+N,)/3, II,,=(N,—N;)/3, and II,,=—(N;
This confusion has unfortunate and undesirable ramifications-2N,)/3. The normal stress differences are of second order
in his discourse. The following discussion shows that aswith respect to the shear rate; this can be easily verified with
sumption d is not implied by the constitutive equations inthe approximate solutions of E(R8) of Ref.[2]. Therefore,
Refs.[2] and[9]. if the shear rate is small the normal stress differences may be
In the aforementioned systematic methods of solving theneglected. In such an approximation and in the event the
kinetic equation the underlying principle is the functional pressure gradient in thedirection vanishes as is the case for
hypothesig5,8,14, in which nonconserved variables are as-creeping flow under a constant pressure gradient inxthe
sumed to be functionals of the conserved variables, whicldirection, we obtain from Eggl) and (2) the momentum
determine the time and spatial scales for the macroscopisalance equations in the form
evolution of the system. Because of this functional hypoth-
esis the derivatives of nonconserved variables appear as D +0_P+1H -0 3)
terms, at least, one order higher than the nonconserved vari- PR gy Y
ables themselves in the aforementioned schemes of expan-
sion, if such an expansion method is employed to solve the
kinetic equation. Therefore, for example, at a given order of a_Xny: 0. (4)
approximation the derivatives of stress tenBoin the term
such asu- VP appearing in the constitutive equation for the These equations should be compared with Gjof Ref.[1]
stress tensor does not occur in the momentum balance equa-order to see their differences; for example, E§sand(4)
tion at the same order of the nonuniformity parameter. Noteare two-dimensional partial differential equations whereas
also that VP in the term u-VP is not the same as Eq.(5) of Ref.[1] is one dimensional.
V- P. Therefore even iti- VP is ignored in the constitutive Equation(4) implies thatll,, is independent oX, that is,
equation forP because the former is one order higher than 11, =11,,(y). Therefore, if the flow is under a constant pres-
in the expansion scheme, it does not mean thaWthe term  sure gradient in thex direction then the two-dimensional
should be absent in the momentum balance equation. Benomentum balance equatiofi¥) and (2) are reduced to a
sides, the approximate constitutive equations derived in Refsingle ordinary differential equation i Furthermore, if the
[2,9] depend on position and hen§e P+#0 in general and channel is infinite in length so that, is translationally in-
consequently the terrV - P is not absent in the momentum variant in thex direction and hence@u,/dx=0 then D,uy
balance equatioimomentum conservation law =0. In this case Eq(3) is the equation for the Poiseuille
Certainly the constitutive equations for the components oflow in the channel if the Newtonian law of viscosity is used
tensorll, which are derived by the Grad moment method infor I1,,, and it gives rise to the well-known parabolic veloc-
Ref.[2], do not suggest in any way thht is uniform in the ity profile that is in the basis of a rheometric method for
configuration space. In fact, assumption d is contradicted byneasuring viscosity. | would like to point out that the New-
the constitutive equations for the componentglofresented  tonian law of viscosity is contained as the leading order ap-
in Ref.[2]; see Eq(28) and its approximatéterative) solu-  proximation with respect to the shear rate in the solutions of
tions in Ref.[2]. Setting aside the feature questioned abouEq. (28) of Ref.[2] and that for the unidirectional flow and
the stress tensor evolution equations of Uribe and Garciahe accompanying stress tensor calculated in R&f.the
Colin in Ref.[2], | would like to state that neither do the momentum and energy balance equations are quite different
evolution equations for the componentshoin Ref.[9] sug-  from Egs.(5) and(6) of Ref.[1], the most important being
gest assumptiofd). the dimensionality of the equations.
| would like to point out that, as a matter of fact, the  Therefore, it can be said that the analysis giving rise to
momentum balance equations corresponding to the streSantos’ conclusion that the unidirectional flow considered in
tensorll for the unidirectional flow described in R¢R] are  Ref.[2,9] is inconsistent with the steady state assumption is

as follows: inapplicable to the stress tensor calculated in IR&. it ap-
plies to the one-dimensional flow model under his assump-
ap d J : o . ; X
pDiuy—+ x &Hxﬁ a—ny=0, (1) tions, which is obviously different from the flow described
y by Egs.(1) and(2), because assumptidd) of his does not
p d d _ apply to the constitutive equations for the stress tensor com-
v T o eyt -5 1y =0, 2) onents derived in Ref2]. Therefore, his conclusion is in-
ay X ay p

correctly directed and irrelevant to the hydrodynamic equa-
where D; is the substantial time derivative, is the mass tions accompanied by the constitutive equationloderived
density, andu,=0 becausel,=0. This set of momentum in Ref.[2].
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In Ref. [2] an approximate set of constitutive equationsquently the conclusion drawn therefrom is rendered dubious.
for Il,, II,,, andIl,, was suggested as the lowest-orderBesides, sincé,, is a normal stress in the dimensions ex-
iterative solutions of Eq(28); see Eqs(28), (32), (33), and  cluded in his one-dimensional flow model, Eg1), is extra-

(34) of Ref.[2]. It was also suggested in R¢R] that more  neous to his flow model and thus cannot be regarded as a
accurate results could be obtained by means of numericaésult consistent with his flow model. In any case, such ap-
solutions of Eq{(28). Therefore, it is clear that E¢33), for ~ proximate solutions for the stress tensors have never been
example, will have a limited range of validity, and Santos isadvocated for application in R€22]. They have been used to
pointing out the obvious fact that it indeed has limitations. Inpoint out the differences arising when the assumption is
fact, such implied limitations were precisely the unstatedmade with regard to the transversal velocity gradients by
point of deriving such approximate solutions in addition toUribe and Garcia-Colin in Ref9]. If the conclusion drawn

the point made about the appearance of the shear stress. ThisRef. [1] is truthful there is all the more reason to be du-
author, however, did not, and does not, advocate them fdoious about the constitutive relations obtained in Ref.

any application to study of flow problems in R¢2]. It is The Grad moment method does not provide theoretical
anyone’s guess why such an incidental formula should be #oundations for irreversible thermodynamics, which is con-
point of so belabored an argument, in which he takes pain teistent with the thermodynamics laws at all orders of ap-
distinguish the deductions of the constitutive equations irproximation, and this point was demonstrated in the litera-
Refs.[2] and[9] in what seems like an attempt to put the ture [15,16. Therefore, the constitutive equations for
latter in a more favorable light. nonconserved variables obtained by the Grad moment

Equation(16) of Ref.[1] is an approximation of the evo- method are generally inconsistent with the thermodynamic
lution equation derived from the Boltzmann equation, and itdaws. This was a point repeated in RE2Z]. The particular
validity is questionable. Therefore, any deduction made witrequations derived from the one-dimensional Boltzmann
it is equally dubious. One curious aspect of ELj) is thatit ~ equation and used by Santdd may turn out to be thermo-
is about the stress tensor componBp which has no place dynamically consistent, but he has not shown that they are
in his one-dimensional flow model because his flow modeindeed thermodynamically consistent. In this connection it
should have only, andP,,, but nothing else. This Com- should be clearly understood that tHetheorem satisfied by
ment also applies to Eq18) of Ref. [1], which is in fact the Boltzmann equation is not the same as the second law of
incorrect. It should read thermodynamics. Thél theorem is broader than the second
law of thermodynamics, being a stability theorem for the
homogenous steady state solution of the Boltzmann equa-
tion, and the macroscopic equations derived from the Boltz-
mann equation do not necessarily satisfy the second law of
=~ u(Pij=péjj), ©) thermodynamics, as is shown in the literat{it®,16. | be-
lieve that Santos is using the term thermodynamic consis-

‘ency in the sense broader than | have been using in[REf.
and in the literaturd15—17] on my work on irreversible
“thermodynamics. In the Comment pap#éf Santos is argu-
ing without proof that his equations are thermodynamically
consistent in the sense | have defined the term earlier. It is

Jd Juy au,
DiPjj+ a—xklﬂkiﬁ &_kaij +(Pyjoi + Pki(sjl)&_xk

where the Einstein convention is used for repeated su
scripts, i;=(mCC;C;f) with C, (I=i,j,k) denoting the
Ith component of the peculiar velocity, but the rest of nota
tion is the same as in Refl]. In the unidirectional flow, in
which u,=u,=0, Eq.(5) should read

J Ju U U yet to be shown to be true for everyone to see.
DiPij+ — thaj + _’<pij + pk]__'_|_ Pyi _J) The phase space density functiBir,v,t) in Eq. (25) in
Xk PRy Xk Xk Ref.[1] is defined in the Bl-dimensional phase space, and if

= — (P, —péb) (6) Eq. (25 is averaged over the initial distributiop(I') as
! o suggested in Ref.1] then the singlet distribution function
where au; /dx,;= 8 (Auy/dx,) and au; /ax,= 8, (duy/dx,).  follows
On comparing this equation with EGL8) of Ref.[1] we find N
that in Eq.(18) ¢; should readD; and the termyiy;; / dxy is
missing. In this connection note the; is not necessarily f(r,v,t)=<F(r,v,t)>:§1 f dlip(r,v,I), 7
equal to the heat flux and that for the one-dimensional flow
model considered in Refl] there are no other components
of P than thex component, namely,=j=x. The results of
the analysis based on E(L8) therefore seems to be of a
dubious quality.
Having performed an analysis with such a faulty equation,
Santos concludes that the stress tensor components obtained AU =dradvy---dri_;dv; 1dri;1dviy- - -drydvy.
as approximations for the solutions of E&8) in Ref. [2] ) ) ) o
yields “ unphysical negative values for the diagonal ele-Since the particles are identical it follows that
ments of the pressure tensor.” However, as a matter of fact,
because of the incorrect interpretationldfused in Ref[2] _
as mentioned earlier, Eq21) of Ref.[1] is in error. Conse- f(r'VJ)—NJ dlyp(r,v,I'y). 8

where

Fi=(ry, vy rionVic i Vises 5 InsVn),
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This distribution function may indeed obey, for example, theas is often done in many kinetic theory approaches to some

three-dimensional field-free Boltzmann equation

aJ 2m %
vy f(r,v,t)=f olv’fO d(pfo dbbd f(r,v*,t)
X (vt —f(r,ve Df(r,v*t)]
=J[ff] (9)

in the standard notation.

hydrodynamic flow problems. And it is the case with Ref.
[9]. Equations(10) and (11) are not the same unless the
collision integral is linear with respect foTherefore, such a
manner of using the Boltzmann kinetic equation needs cau-
tion. This was the essential point of the remark made in
connection with the kinetic equation in R¢2]. In the case

of the Maxwell model the Boltzmann equation superficially
becomes linear if the functional integral depending on the
distribution function and related to the relaxation time in the
kinetic equation is regarded as a parameter independent of

In this manner of defining the singlet distribution function the dimension of the system. Thus it appears as if the kinetic
f(r,v,t) the one-dimensional distribution function, say, equation can be one dimensional, but because the functional

f(x,v,t) for particles confined to a line parallel to tlkeaxis
is obtained if Eq(8) is integrated ovey andz,

f(x,v,t)=f dyf dzf(r,v,t)

=Nf dyJ dzJ dr'yp(r,v,I"y)

and, if the singlet distribution functiof(r,v,t) obeys kinetic
equation(9) then the reduced distribution functidifx,v,t)

integral related to the relaxation time is not one dimensional,
if one has started with the three-dimensional Boltzmann ki-
netic equation, the kinetic equation is only quasi-one dimen-
sional. Therefore, the claim that the one-dimensional kinetic
equation has no problem appears to be acceptable in the case
of the Maxwell model, if one ignores the fact that the afore-
mentioned functional integral in the kinetic equation still in-
volves a three-dimensional distribution function. A similar
comment applies to the case of a linearized Boltzmann equa-
tion. However, as is clear from Eqgg€l0) and (11), the con-
clusion holding for linearized Boltzmann equation does not

obviously obeys the one-dimensional reduced kinetic equaextend to the nonlinear Boltzmann equation, and it will be a

tion

ot

J
—+vX~Vx)f(x,v,t)=f dyJ dzJ ff](x,y,z). (10

misconception that a kinetic equation can be generally one
dimensional in the configuration space if the flow problem
under consideration is one dimensional. One should remem-
ber that a fluid particlda packet of moleculescontains a
large number of molecules, which move three dimensionally

However, f(x,v,t) does not obey the kinetic equation in in the configuration space of the phase space for the fluid
which the three-dimensional distribution functions in theparticle. A one-dimensional kinetic equation, such as Eq.
Boltzmann collision term are replaced by the one-(11), is just a mathematical model, which does not faithfully

dimensional distribution functiori(x,v,t), namely, the ki-
netic equation

(%+UX'VX)f(X,V,t):J[f(x,v,t)f(X,V,t)]y (11)

represent the physical reality in the kinetic theory description
of macroscopic systems, if the processes require a nonlinear
kinetic equation. Therefore, | do not agree with Santos on the
matter regarding the one-dimensional kinetic equation on the
point of principle.
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