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Reply I to ‘‘Comments on nonlinear viscosity and Grad’s moment method’’
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We show that the comments given by Santos@preceding paper, Phys. Rev. E67, 053201~2003!# to our work
do not hold since he failed to notice the difference between an approximation and an exact result. We also
follow his line of thought for the Navier-Stokes equations showing that although his assumptions lead to
specific conclusions, they are totally unrelated with those which he takes as the basis of his comment. Several
other aspects of the problem are also mentioned.
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In his Comment to our work, Santos@1# asserts that a
steady unidirectional flow, which was studied by us@2# and
later subject to a discussion about its contents@3#, is incon-
sistent with the exact macroscopic conservation laws un
the assumptions stated by clauses~a!, ~c!, (d8), and ~e!
adopted by the author. Following those assumptions Sa
is essentially correct although his arguments are comple
foreign to the work we have done.

In order to sustain our assertion we follow the comme
tator and start with the conservation equations for a dil
monatomic gas„Eqs.~1!–~3! in Ref. @1#…, namely,

Dtn1n“•u50, ~1!

Dtu1
1

mn
“•P50, ~2!

DtT1
2

3nkB
~“•q1P:“u!50. ~3!

The five conservation equations, Eqs.~1!–~3!, do not
form a complete set as they contain more than five
knowns. Therefore, it is necesary to provide constitut
equations~as in the Chapman-Enskog method! or additional
equations forP and q ~as in Grad’s method!. One of the
motivations for our previous work@2# was to see if Grad’s
method could provide such constitutive equations beyond
Navier-Stokes regime. Before considering the more gen
setting we decided to see if the more restrictive situation
considering ten moments could give us sensible result
were obtained by the successful approach of Gorban
Karlin @4# and Karlinet al. @5#. Also, we decided to leave ou
the heat flux, by takingq50, a condition certainly not physi
cally sound so that physically unsound results could be
pected. In fact, Karlin and Gorban@6# were able to include
the heat flux, however, while we used explicityq50, our
results remain the same if a constant heat flux is conside
at least when a linearized collision operator is used. The
fore, we will include the heat flux and in order to keep t
discussion on the same basis as Santos@1# and ours@2#, we
shall here assume thatq(r ,t)5q(x,t) i. In this respect it is
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interesting to notice that the energy conservation equat
see Eq.~3!, gives rise to the same equation whetherq50 or
“•q50. We also wish to stress at this stage that in o
original work @2# the conservation equations were never co
sidered, since its aim was precisely to provide for a con
tutive equation for the stress tensor. Clauses~d! and (d8) of
Santos were never used. It is worth emphasizing that
though the condition of zero heat flux can be replaced wit
constant one without altering the results in Ref.@2#, the ar-
gumentation of including such a variable is strongly rela
with Grad’s moment method which seems to be subjecte
deep objections@7#. We shall leave this question for futur
debate. Furthermore, we considered unidirectional flow
the formu(r ,t)5u(x,t) i and for the pressure tensor we us
P(r ,t)5P(x,t), together withPxy5Pxz and Pyy5Pzz. We
also regarded the flow as stationary, meaning that the t
derivatives are zero, a restriction which we shall not int
duce for the time being. Then under the conditions j
given, Eqs.~1! and ~3! read

] tn1]x~nu!50, ~4!

] tu1u]xu1
1

mn
]xPxx50, ~5!

]xPxy~x,t !50, ~6!

]xPxz~x,t !50, ~7!

DtT1
2

3nkB
~Pxx]xu1]xq!50. ~8!

We now use the results obtained in Ref.@2# to discuss the
nature of the conserved variables that follow from Eqs.~4!–
~8! for the stationary case. For this case they reduce to

d

dx
~nu!50, ~9!

mn~x!u~x!u8~x!1
dPxx

dx
50, ~10!

3
2 n~x!kBu~x!T8~x!1Pxxu8~x!1q8~x!50, ~11!
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where the prime denotes derivative with respect tox and Eqs.
~6! and ~7! have been omitted.

As noted by Santos@1# ~see also Ref.@8#!, Eqs.~9!–~11!
can be integrated to give

n~x!u~x!5C1 , ~12!

Pxx1mn~x!u2~x!5C2 , ~13!

S 3

2
p~x!1Pxx~x!1

m

2
n~x!u2~x! Du~x!1q~x!5C3 ,

~14!

whereC1 , C2, andC3 are constants. Thus the problem is
solve Eqs.~4!, ~5!, and~8! for n, u, andT ~for an ideal gas we
have thatp5nkBT) in the nonstationary case, or Eqs.~12!–
~14! for the stationary case.

We notice that so far we do not knowPxx and therefore
additional information is needed. Therefore, the main is
for the moment is how to find an expression forPxx in terms
of n, u, andT, or equivalently an additional equation forPxx .
Such equation comes from Grad’s method and reads, u
the assumptions mentioned previously@9,10#, as

] t~Pxx2p!1]x@~Pxx2p!u#1
8

15
]xq1

4

3
~Pxx2p!]xu

1
4

3
p]xu1

6

m
B1

(2)r~Pxx2p!50, ~15!

wherer is the mass density andB1
(2) is a collision integral

which has been evaluated by Grad@9# approximately for in-
verse power molecules~soft spheres!, see Eq.~A3.50! in Ref.
@9#. Furthermore, by considering special cases Grad was
to identify B1

(2) in terms of the viscosityh so that

B1
(2)5

kBT

6h
. ~16!

Then Eq.~15! can be written as

] t~Pxx2p!1]x@~Pxx2p!u#1
8

15
]xq1

4

3
Pxx]xu

52
p

h
~Pxx2p!. ~17!

It is instructive at this moment to compare Eq.~17! with
the equations that have been used by other authors. Fir
all since for the case considered here we have thatPxx
2Pyy5

3
2 (Pxx2p) ~see Eq.~20! in Ref. @2#!, it can be shown

that in the stationary case and for a constant heat flux~not
only for zero heat flux as we mentioned@2#! Eq. ~17! reduces
precisely to Eq.~17! of Ref. @2#. On the other hand, Eq.~17!
reduces@12# to Eq. ~1d! in the work by Karlinet al. @5# for
the case of a constant heat flux. Furthermore, it also red
to Eq. ~16! of Ref. @1#! when ]x(Pxx2p)50 ~and for con-
stant heat flux!. Finally, in the stationary case Eq.~17! re-
duces to the one considered by Grad@11# in his study of the
shock wave problem.
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For constant heat flux, Eqs.~4!, ~5!, ~8!, and ~15! can in
principle be solved forn, u, T, andPxx , if boundary and or
intial conditions are given. We would like to stress the fa
that in our previous work we dealt exclusively with Eq.~17!
@10#. Our main aim was to obtain an explicit equation forPxx
which we obtained as follows.

~i! We considered the stationary case of Eq.~15! for a
constant heat flux, that is,

]x@~Pxx2p!u#1
4

3
Pxx]xu52

p

h
~Pxx2p!. ~18!

~ii ! We used the approximation„see Eq.~27! in Ref. @2#…

iu~x!]x~Pxx2p!i!i~Pxx2p!]xui ~19!

in Eq. ~18! @13#.
The explicit expression that we obtained@2# is

Pxx5p~x!
3p~x!13hu8~x!

3p~x!17hu8~x!
, ~20!

whereu8 denotes the derivative with respect tox. Equation
~20! recovers the Navier-Stokes constitutive relation, and
physical meaning only ifu8.2p/3h @14,15#. Notice that
the Navier-Stokes constitutive relation can be obtained fr
Eq. ~17! by usingPxx5p andq50 in the left hand side of
this equation to obtain

Pxx5p2 4
3 h]xu, ~21!

an idea that goes back to Grad@9# ~see p. 371!, thus leaving
the condition given by Eq.~19! or the condition]x(Pxx
2p)50 out of context.

So far, except for our explicit evaluation ofPxx , we have
proceeded along the lines adopted by Santos. The cru
step is that Santos@1# used]x(pxx2p)50 in Eqs.~12!–~14!
to conclude thatu(x)5const is the only physical solution
implying that his clauses~a!, ~c!, (d8) and ~e! are inconsis-
tent with the conservation equations@16#. In our analysis,
however, we must use the expression obtained forPxx , Eq.
~20! @17#, to obtain from Eqs.~12!–~14! that

p~x!
3p~x!13hu8~x!

3p~x!17hu8~x!
1mC1u~x!5C2 , ~22!

S 3

2
p~x!1p~x!

3p~x!13hu8~x!

3p~x!17hu8~x!
1

m

2
C1u~x! Du~x!5C4 ,

~23!

whereC45C32q0 with q0 the constant heat flux, after Eq
~12! was used to eliminaten(x). If the viscosity is a function
of the temperature only it can always be expressed in te
of p andu. Equations~22! and~23! represent two first-orde
differential equations foru(x). They can be solved foru8 to
yield

u8~x!52
3p2~x!13mC1u~x!p~x!23C2p~x!

3p~x!h17mu~x!h27C2h
, ~24!
2-2



id
-

l

t

fer-

by
n is
ach
can

er,
-

een
s
ing

h
and
t. In
m,
xact

ld
rac-
re-
urs

COMMENTS PHYSICAL REVIEW E 67, 053202 ~2003!
u8~x!52
15u~x!p2~x!13mC1u2~x!p~x!26C4p~x!

27p~x!h17mu2~x!h214C4h
.

~25!

Mathematical consistency requires that the right-hand s
of Eqs. ~24! and ~25! should be equal. This gives a third
order polynomial forp(x), two of the solutions arep(x)
50 which we will ignore, the other one is given by

p~x!5
1

3

mC1u2~x!12C422C2u~x!

u~x!
. ~26!

Substitution of Eq.~26! in the right hand of Eq.~24!, or in
the right hand of Eq.~25!, leads finally to the result that

u8~x!5F„u~x!…[2
P„u~x!…

Q„u~x!…
, ~27!

where

P„u~x!…54m2C1
2u4~x!110mC1u2~x!C4213mC1u3~x!C2

14C4
3214C2u~x!C4110C2

2u2~x!, ~28!

and

Q„u~x!…53h@8mC1u2~x!12C429C2u~x!#u~x!. ~29!
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Equation ~27! can in principle be solved for the initia
conditionu(0) ~provided the constantsC1 , C2, andC4 are
given!, if the viscosityh is known. For example, for sof
spheres we have thath5CTg, with C a constant, and thus
the temperature can be expressed only in terms ofu by using
Eq. ~26!. Notice thatF in Eq. ~27! is a meromorphic function
for soft spheres and the local uniqueness theorem for dif
ential equations holds@18#. Thus, the solution to Eq.~27! is
hardly only a constant function and therefore the remark
Santos is not generally true for our approach. The questio
if a nonconstant heat flux can be included in our appro
and what can be said. Actually, the procedure given here
be carried out in principle including the heat flux. Howev
recently Velascoet al. @7# noted a mathematical inconsis
tency in the moments method—a problem which has b
detailed for shock waves@19#—and at this moment it seem
better to properly understand this finding before consider
this question.

Summarizing, Santos@1# has analyzed a problem whic
has an interest of its own although his argumentation
results are hardly related to the work he comments abou
fact we have been interested in deviations from equilibriu
as exemplified by the Navier-Stokes equations, but the e
solutions considered by Santos@1,14# either blow up in a
finite time or when the limit for large times exists, they yie
an unphysical zero number density. This means that in p
tice, his exact solutions do not reach equilibrium and the
fore he is considering an entirely different problem than o
@2#.
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