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We show that the comments given by Sarjfm®ceding paper, Phys. Rev6E, 053201(2003] to our work
do not hold since he failed to notice the difference between an approximation and an exact result. We also
follow his line of thought for the Navier-Stokes equations showing that although his assumptions lead to
specific conclusions, they are totally unrelated with those which he takes as the basis of his comment. Several
other aspects of the problem are also mentioned.
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In his Comment to our work, Santd4] asserts that a interesting to notice that the energy conservation equation,
steady unidirectional flow, which was studied by[@} and see Eq(3), gives rise to the same equation whether0 or
later subject to a discussion about its conté¢Bfsis incon- V.q=0. We also wish to stress at this stage that in our
sistent with the exact macroscopic conservation laws undesriginal work[2] the conservation equations were never con-
the assumptions stated by claus@s, (c), (d'), and (e sidered, since its aim was precisely to provide for a consti-
adopted by the author. Following those assumptions Santdstive equation for the stress tensor. Clau@bsand (d) of
is essentially correct although his arguments are completelgantos were never used. It is worth emphasizing that al-
foreign to the work we have done. though the condition of zero heat flux can be replaced with a

In order to sustain our assertion we follow the commen-constant one without altering the results in R&f}, the ar-
tator and start with the conservation equations for a diluteyumentation of including such a variable is strongly related

monatomic gagEqgs.(1)—(3) in Ref.[1]), namely, with Grad’s moment method which seems to be subjected to
deep objection$7]. We shall leave this question for future
Din+nV-u=0, (1) debate. Furthermore, we considered unidirectional flow of
the formu(r,t)=u(x,t)i and for the pressure tensor we used
DU+ iV'Pz 0, 2 P(r,t)=P(x,t), together WithPX_y= P,, and P¥y= P,,. We _
mn also regarded the flow as stationary, meaning that the time

derivatives are zero, a restriction which we shall not intro-

2 _ B duce for the time being. Then under the conditions just
DT+ 3nkB(V-q+P.Vu)—O. 3 given, Egs(1) and(3) read
The five conservation equations, Eq4)—(3), do not dn+d,(nu) =0, (4)

form a complete set as they contain more than five un-

knowns. Therefore, it is necesary to provide constitutive 1

equationgas in the Chapman-Enskog methad additional GUF UG U+ d,Piu=0, )
equations forP and q (as in Grad's methgd One of the
motivations for our previous work2] was to see if Grad's
method could provide such constitutive equations beyond the
Navier-Stokes regime. Before considering the more general
setting we decided to see if the more restrictive situation of IxPxAx,1)=0, @)
considering ten moments could give us sensible results as
were obtained by the successful approach of Gorban and
Karlin [4] and Karlinet al.[5]. Also, we decided to leave out
the heat flux, by taking=0, a condition certainly not physi-
cally sound so that physically unsound results could be exwe now use the results obtained in REf] to discuss the
pected. In fact, Karlin and Gorbd6] were able to include nature of the conserved variables that follow from Hdg-—

the heat flux, however, while we used expliciy=0, our  (8) for the stationary case. For this case they reduce to
results remain the same if a constant heat flux is considered,

at least when a linearized collision operator is used. There- d

fore, we will include the heat flux and in order to keep the ax(nw=0, 9)
discussion on the same basis as Sapi¢sand ourd 2], we

shall here assume thg(r,t)=q(x,t)i. In this respect it is

IxPyy(X,1)=0, (6)

2
DtT+ m(PXXé’XU'FO')Xq):O. (8)

, Pux
mn(x)u(x)u’(x)+ ax =0, (10
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where the prime denotes derivative with respect &amd Eqs.
(6) and(7) have been omitted.

As noted by Santogl] (see also Refl8]), Egs.(9)—(11)
can be integrated to give

n(x)u(x)=Cy, (12
Pyt mn(x)u?(x)=C,, (13)
3 m
Ep(X) + Pyx(X) +5n(X)u2(X) u(x)+q(x)=Cs,
(14

whereC,, C,, andC; are constants. Thus the problem is to
solve Eqgs(4), (5), and(8) for n, u, andT (for an ideal gas we

have thatp=nkgT) in the nonstationary case, or Eq$2)—
(14) for the stationary case.

We notice that so far we do not knoR, and therefore
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For constant heat flux, Eq#&4), (5), (8), and(15) can in
principle be solved fon, u, T, andP,,, if boundary and or
intial conditions are given. We would like to stress the fact
that in our previous work we dealt exclusively with E7)
[10]. Our main aim was to obtain an explicit equation Ry,
which we obtained as follows.

(i) We considered the stationary case of Etp) for a
constant heat flux, that is,

p

4
K[ (Pyx—p)ul+ §Pxxaxu: - ;(Pxx_ p). (189

(iil) We used the approximatiofsee Eq.(27) in Ref.[2])

additional information is needed. Therefore, the main issue

for the moment is how to find an expression Ry, in terms
of n, u, andT, or equivalently an additional equation fg, .

Such equation comes from Grad’s method and reads, under

the assumptions mentioned previoudy10], as
8 4
at( Pxx_ p) + ax[(Pxx_ p)u] + 1_507xq+ §( F)xx_ p)&xu

4 6 .
+ 3P+ —BPp(Py—p)=0, (15

wherep is the mass density ar8(?) is a collision integral
which has been evaluated by Gri@] approximately for in-
verse power moleculdgsoft spheres see Eq(A3.50) in Ref.

Hu(x)ﬁx( Pxx_ p)||<||(Pxx_ p)axu” (19)
in Eq. (18) [13].
The explicit expression that we obtaingd] is
3p(x)+37u’(x)
Pyx=p(X) (20)

3p(x)+77nu’(x)’

whereu’ denotes the derivative with respectxoEquation
(20) recovers the Navier-Stokes constitutive relation, and has
physical meaning only iu’>—p/37 [14,15. Notice that
the Navier-Stokes constitutive relation can be obtained from
Eq. (17) by usingP,,=p andg=0 in the left hand side of
this equation to obtain

Pu=p— g ndxu, (21)
an idea that goes back to Grg@] (see p. 37), thus leaving
the condition given by Eq(19) or the conditiondy(Pyy

[9]. Furthermore, by considering special cases Grad was able py— g out of context.

to identify B{*) in terms of the viscosity; so that

_ keT

()2
B{; 6y (16)
Then Eq.(15) can be written as
8 4
(9»[( I:)xx_ p) + ﬁx[(Pxx_ p)u] + 1_5‘9xq+ §Pxx‘9xu
p
=——(Pw—p). 1
77( xx~ P) 17)

It is instructive at this moment to compare Ed7) with

the equations that have been used by other authors. First o

all since for the case considered here we have Bat

—Pyy=3(Pxx—P) (see Eq(20) in Ref.[2]), it can be shown

that in the stationary case and for a constant heat (fax

only for zero heat flux as we mentiong2l) Eq. (17) reduces

precisely to Eq(17) of Ref.[2]. On the other hand, E¢17)
reduceqd12] to Eq.(1d) in the work by Karlinet al.[5] for

So far, except for our explicit evaluation Bf,, we have
proceeded along the lines adopted by Santos. The crucial
step is that Santdd ] usedd,(pyx— p)=0 in Egs.(12)—(14)
to conclude thau(x)=const is the only physical solution
implying that his clause&), (c), (d') and(e) are inconsis-
tent with the conservation equatioh6]. In our analysis,
however, we must use the expression obtainedPfgr Eq.

(20) [17], to obtain from Eqs(12)—(14) that

3p(x) +37u’(x)

X m-ﬁ-mClU(X):CZ,

(22
3p(x)+37nu’(x)

m
Oy 2 e |u=c,

(23

3
5P00+p(X)

whereC,=C3;— (o with gg the constant heat flux, after Eq.
(12) was used to eliminate(x). If the viscosity is a function

of the temperature only it can always be expressed in terms
of p andu. Equationg22) and(23) represent two first-order

the case of a constant heat flux. Furthermore, it also reducékfferential equations fou(x). They can be solved far’ to

to Eq. (16) of Ref.[1]) when d,(P,x,—p)=0 (and for con-
stant heat flux Finally, in the stationary case E(L7) re-

duces to the one considered by Gfad] in his study of the

shock wave problem.

yield

3p?(x)+3mC,u(x)p(x) — 3C,p(X)
~ 3p(x)p+7mu(x)p—T7Cy7

u'(x)= , (29
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~ 150(X)P?(X) + 3 CyU?(X)p(x) — 6C4p(X)

u'(x)= 27p(x) p+ 7TmUP(x) p—14C, 9

(29
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Equation(27) can in principle be solved for the initial
conditionu(0) (provided the constants,, C,, andC, are
given), if the viscosity 7 is known. For example, for soft
spheres we have thai=CT”, with C a constant, and thus

Mathematical consistency requires that the right-hand sidefle temperature can be expressed only in termstuf using
of Egs. (24) and (25) should be equal. This gives a third- Ed.(26). Notice thatF in Eq. (27) is a meromorphic function

order polynomial forp(x), two of the solutions arg(x)
=0 which we will ignore, the other one is given by

1 mCu(x)+2C,4—2C,u(x)
pPX)=3 0

(26)

Substitution of Eq(26) in the right hand of Eq(24), or in
the right hand of Eq(25), leads finally to the result that

u’(x)=F(u(x))=- Pea)

QUK @0

where

P(u(x))=4m?C?u*(x)+10mC,u?(x)C,— 13mC,u’(x)C,
+4C3—14C,u(x)C4+ 10C5u3(x), (28

and

Q(u(x))=37[8MCu?(x)+2C,—9C,u(x)Ju(x). (29

for soft spheres and the local uniqueness theorem for differ-
ential equations holdgl8]. Thus, the solution to Eq27) is
hardly only a constant function and therefore the remark by
Santos is not generally true for our approach. The question is
if a nonconstant heat flux can be included in our approach
and what can be said. Actually, the procedure given here can
be carried out in principle including the heat flux. However,
recently Velascoet al. [7] noted a mathematical inconsis-
tency in the moments method—a problem which has been
detailed for shock wavegd 9]—and at this moment it seems
better to properly understand this finding before considering
this question.

Summarizing, SantoEl] has analyzed a problem which
has an interest of its own although his argumentation and
results are hardly related to the work he comments about. In
fact we have been interested in deviations from equilibrium,
as exemplified by the Navier-Stokes equations, but the exact
solutions considered by Sant$,14] either blow up in a
finite time or when the limit for large times exists, they yield
an unphysical zero number density. This means that in prac-
tice, his exact solutions do not reach equilibrium and there-
fore he is considering an entirely different problem than ours

[2].
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