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Comments on nonlinear viscosity and Grad’s moment method
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It is shown that the steady unidirectional flow with vanishing heat flux considered by B. C. Eu@Phys. Rev.
E 65, 031202~2002!#, and earlier by Uribe and Garcı´a-Colı́n @Phys. Rev. E60, 4052~1999!#, is inconsistent
with the exact conservation laws of mass, momentum, and energy. The inconsistency does not lie in the
assumed symmetry properties of the flow but in the stationarity assumption. The unsteady problem is consid-
ered and its solution from the Boltzmann equation for Maxwell molecules is given.
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In a recent paper@1#, Eu analyzed asteadyunidirectional
flow at uniform temperature and derived the equations
the stress tensor elements from the Boltzmann equation
means of Grad’s moment method. These are essentially
same state and the same method as those considere
Uribe and Garcı´a-Colı́n @2#, except that the transversal velo
ity gradients were assumed to vanish in Ref.@2#, while they
are included in the analysis of Ref.@1#. The major aim of this
Comment is to show that the steady unidirectional flow
uniform temperature of Refs.@1,2# is inconsistent with the
exact macroscopic conservation equations.

For a dilute monatomic gas, the macroscopic bala
equations expressing the conservation of mass, momen
and energy are@3,4#

Dtn1n“•u50, ~1!

Dtu1
1

mn
“•P50, ~2!

DtT1
2

3nkB
~“•q1P:“u!50, ~3!

whereDt[] t1u•“ is the material time derivative,n is the
local number density,u is the local flow velocity,T is the
local temperature,m is the mass of a particle,kB is the Bolt-
zmann constant,q is the heat flux vector, andP is the pres-
sure~or stress! tensor. The flow considered in Refs.@1,2# is
characterized by the following properties~not necessarily in-
dependent!: ~a! it is a unidirectional flow, i.e., u(r )
5ux(r ) x̂, wherex̂ is the unit vector along the flow direction
~b! the temperature is uniform,“T50; ~c! the heat flux van-
ishes,q50; ~d! the pressure tensor is uniform; and~e! the
state is stationary, i.e.,] t→0. Let me consider first the geo
metrical properties~a!–~d! separately from the stationarit
assumption~e!. Application of assumptions~a!–~d! on the
exact balance equations~1!–~3! yields

] tn1
]

]x
~nux!50, ~4!
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] tux1ux

]

]x
ux50, ~5!

3nkB

2
] tT1Pxx

]ux

]x
1Pxy

]ux

]y
1Pxz

]ux

]z
50. ~6!

Are Eqs.~4!–~6! consistent with a steady state? Equation~5!
shows that the flow velocity is stationary if and only if th
flow is incompressible, i.e., if]ux /]x50. In that particular
case, Eq.~4! is consistent with a stationary density if an
only if the density is uniform as well. But, even if]ux /]x
50 andn5const, energy balance equation~6! implies that
the temperature cannot be stationary but monotonically
creases with time due to viscous heating effects~note that
Pxy]ux /]y,0 and Pxz]ux /]z,0 because of physical rea
sons!. Therefore, the steady state assumption~e! is incompat-
ible with assumptions~a!–~d!, except in the trivial case
“ux50, i.e., at equilibrium. TheunsteadyBoltzmann equa-
tion for the incompressible unidirectional flow with]ux /]x
5]ux /]z50, ]ux /]y5const, usually referred to as uniform
shear flow or homoenergetic simple shear flow, has b
solvedexactly for arbitrary shear rates in the case of Ma
well molecules@5–7#. An analogous solution has been o
tained in the case of the BGK model kinetic equation
more general interactions@8–10#.

In the case of a compressible flow in the absence of tra
versal gradients, i.e.“uxi x̂, Eq. ~5! shows that the flow ve-
locity is necessarily unsteady. According to continuity equ
tion ~4!, it is still mathematically possible that] tn50 if the
productnux is uniform, i.e.n(x)ux(x,t)5K(t). Insertion of
this condition into Eq.~5! yields K22K̇(t)5n22n8(x)5
2A21, where the dot denotes a time derivative, the pri
denotes a spatial derivative, andA is a constant. The solution
to these equations is simplyn(x)5A/(x2x0), ux(x,t)
5a(x2x0)/(11at), where x0 and a are constants. This
mathematical solution is unphysical unless the problem
restricted to the half domainx.x0 (x,x0) if A.0 (A
,0). But even in that case the existence of a nonunifo
density is in conflict with the uniformity assumptions~b! and
~d! because in a dilute gasn5p/kBT, wherep5 1

3 tr P is the
hydrostatic pressure. In summary, assumptions~a!–~d! do
not contradict the conservation laws~1!–~3! in the compress-
ible flow with ]ux /]xÞ0 if and only if the three hydrody-
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namic quantities~density, flow velocity, and temperature! are
unsteady, so assumption~e! is again incompatible with~a!–
~d!.

Strictly speaking, assumptions~b! and ~d!, i.e., uniform
temperature and pressure tensor, were not explicitly state
Ref. @2#. Actually, assumption~b! is implicit in ~c!; other-
wise, one would have a thermal gradient that does not p
duce any heat flux, what is at odds with the second princ
of thermodynamics. As for assumption~d!, it was replaced in
Ref. @2# by a weaker one:~d8! the irreversible part of the
pressure tensor is uniform, namely,](Pxx2p)/]x50. From
a physical point of view it seems difficult to concile a un
form normal stress differencePxx2p with a nonuniform hy-
drostatic pressurep. In any case, let me drop conditions~b!
and ~d! for the moment and prove that conditions~a!, ~c!,
~d8!, and~e! are also inconsistent with the conservation law
except at equilibrium. Application of~a!, ~c!, and~e! on Eqs.
~1!–~3! gives

]

]x
~nux!50, ~7!

mnux

]

]x
ux1

]

]x
Pxx50, ~8!

3

2
nkBux

]

]x
T1Pxx

]

]x
ux50, ~9!

where, as in Ref.@2#, the case“uxi x̂ has been considered
Equations~7!–~9! can be easily integrated to get

nux5n0u05const, ~10!

Pxx1mnux
25P01mn0u0

25const, ~11!

S 3

2
p1Pxx1

m

2
nux

2Dux5S 3

2
p01P01

m

2
n0u0

2Du0

5const, ~12!

where the subscript 0 denotes quantities evaluated at s
reference pointx5x0. So far, assumption~d8! has not been
used. This condition implies thatPyy2p5P02p05const,
so that, according to Eq.~11!,

p1mnux
25p01mn0u0

25const. ~13!

Insertion of Eqs.~11! and ~13! into Eq. ~12! yields

F3

2
p01P01mn0u0S 1

2
u022uxD G~ux2u0!50. ~14!

Both solutions of this quadratic equation are constants~but
the physical one isux5u0). This closes the proof that as
sumptions~a!, ~c!, ~d8!, and ~e! are not consistent with the
conservation equations except in the trivial caseux5const.

On the other hand, there is nothing wrong with assum
tions ~a!–~d! in the unsteady case. What is then the rig
form of n and ux if “uxi x̂? Since assumptions~b! and ~d!
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imply that n is uniform, Eq. ~4! states that2]ux /]x

5n21ṅ52K(t), so ux(x,t)5K(t)(x2x0). Substitution
into Eq. ~5! gives K22K̇521, so we finally haven(t)
5n0 /(11at), ux(x,t)5a(x2x0)/(11at). This simple
flow is known as homoenergetic extension@6,11#. Again, the
unsteadyBoltzmann equation can be solvedexactlyfor arbi-
trary values of the constant control parametera in the case of
Maxwell molecules@6,11,12#, as well as with Grad’s method
@13# and in the case of the BGK model kinetic equation@12#
for more general interactions. A situation where a transve
velocity gradient]uy /]x coexists with a longitudinal one
]ux /]x has been studied by Galkin@11#.

It is illustrative to recall the application of Grad’s metho
to the unsteadyunidirectional flow at uniform temperatur
with no transversal gradients@13#. We have seen above tha
conservation of mass and momentum imply thatn(t)
5n0 /(11at) and gx(t)[]ux(x,t)/]x5an(t)/n0. Positive
values of the longitudinal deformation rategx represent
some sort of ‘‘explosion’’~or expansion! flow, while negative
values represent an ‘‘implosion’’~or condensation! flow @2#.
The energy balance equation~3! becomes

] tp1S p1
2

3
PxxDgx50. ~15!

In Grad’s method, this equation is coupled to the~approxi-
mate! evolution equation for the stress elementPxx @13#:

] t~Pxx2p!1S Pxx2p1
4

3
PxxDgx52m~Pxx2p!,

~16!

where nonlinear terms have been neglected on the right-h
side andm5p/hNS is an effective collision frequency,hNS
being the Navier-Stokes shear viscosity. Equation~16! is
equivalent to Eq.~21! of Ref. @2#, except that the time de
rivative is absent in the latter. Without the time derivati
operator, however, Eq.~16! cannot be made consisten
with Eq. ~15!. After a transient regime, the system reach
a generalized hydrodynamic regime withPi j (t)
5p(t)Pi j* „gx* (t)…, wheregx* (t)[gx(t)/m(t) is the reduced
longitudinal deformation rate. In general, from Eqs.~15! and
~16! one gets a nonlinear first-order ordinary different
equation forPxx* (gx* ) @12,13#. In the special case of Maxwel
molecules~i.e., m}n), gx* ~but not gx) is independent of
time so one gets from Eqs.~15! and ~16! an algebraic qua-
dratic equation whose physical solution isPxx* 5322Pyy* ,
where

Pyy* ~gx* !5
3

8gx*
SA11

4

3
gx* 14gx*

22112gx* D .

~17!

It turns out that this result for Maxwell molecules goes b
yond the scope of Grad’s method, since it can be exa
derived from the Boltzmann equation@6,11,12#.

To the best of my knowledge, Grad’s method has not b
applied yet to the unsteady unidirectional flow at unifor
1-2
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temperature with transversal gradients. For this flow,
analysis of Eqs.~4! and ~5! shows that, in addition ton(t)
5n0 /(11at) and gx[]ux /]x5an(t)/n0, one generally
has shear ratesgyx[]ux /]y5a2n(t)/n0 and gzx[]ux /]z
5a3n(t)/n0, wherea, a2, anda3 are independent constant
Standard application of Grad’s method yields the followi
evolution equation for the elements of the stress tensor:

] tPi j 1Pi j

]ux

]x
1 (

k51

3

~Pikd jx1Pjkd ix!
]ux

]xk

52m~Pi j 2pd i j !. ~18!

Taking the trace in this equation one recovers the ene
conservation equation~6!. It is worth noting that Eq.~18! can
again be obtained exactly from the Boltzmann equation
the case of Maxwell molecules. For this interaction potent
the reduced ratesgx* [gx /m, gyx* [gyx /m, andgzx* [gzx /m
are constants and Eq.~18! yields a coupled set of algebra
equations forPi j* [Pi j /p. Without loss of generality@14# we
can choosegzx* 5gyx* , so thatPyy* 5Pzz* and Pxy* 5Pxz* . In
that case, Eq.~18! yields

gx* 5
3Pyy* ~12Pyy* !24Pxy*

2

2Pyy* @2Pxy*
22Pyy* ~322Pyy* !#

, ~19!

gyx* 5
Pxy* ~32Pyy* !

2Pyy* @2Pxy*
22Pyy* ~322Pyy* !#

. ~20!

These two equations include as particular cases the hom
ergetic extension flow (gyx* 50), in which case Eq.~17! is
recovered, as well as the uniform shear flow (gx* 50), where
Pxy*

25 3
4 Pyy* (12Pyy* ) and Pyy* is the solution of the cubic

equation 4gyx* 2Pyy* 353(12Pyy* ).
The inconsistency of assumption~e! on the stationarity of

the flow geometrically characterized by~a!–~d! @or ~a!, ~c!,
and ~d8!# manifests itself in the results obtained in Refs.@1#
and @2# for the stress tensor elements from Grad’s meth
Assuming cylindrical symmetry (Pxy5Pxz ,Pyy5Pzz), Eu
gets the following expression for the normal pressure e
mentPyy ~neglecting nonlinear terms in the collisional int
grals! @1#:

Pyy* 53
~112gx* !~113gx* !

~112gx* !~317gx* !14gyx* 2
. ~21!

According to Eq.~21!, Pyy becomesnegativeat least in the
interval 2 3

7 ,gx* ,2 1
3 , regardless of the value ofgyx* . This

is unphysical because the diagonal elements of the pres
tensor are positive definite quantities. Settinggyx* 50, Eq.
~21! reduces to the result derived by Uribe and Garcı´a-Colı́n
in the linear approximation@2#. When the nonlinear terms ar
included, they get@2#

Pyy* 581
49

3
gx* 27A11

94

21
gx* 1

49

9
gx*

2. ~22!
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According to this expression,Pyy,0 if gx* ,2 5
14 . The pre-

diction of negative values ofPyy can be observed in Fig. 1
which shows the ratioPyy /p given by Eqs.~21! and~22! in
the range20.4<gx* <0 for vanishing shear rate (gyx* 50)
and for gyx* 5 1

2 . Comparison with the exact results~17! for
gyx* 50 and Eqs.~19! and ~20! for gyx* Þ0 in the case of
Maxwell molecules shows that predictions~21! and~22! are
only valid in the Navier-Stokes domain of small gradien
wherePyy /p'11 2

3 gx* . It is worth noting that the applica
tion to the unidirectional flow of a rheological theory by E
@15# also yields unphysical negative values for the diago
elements of the pressure tensor@16#.

In Ref. @1#, Eu claims that Grad’s moment method is n
thermodynamically consistent@17#. Actually, Grad’s method
is not but an approximate scheme for~partially! solving the
hierarchy of moment equations stemming from the Bol
mann equation. The point I want to emphasize is that
physical inconsistency of the equations for the stress ten
elements derived in Refs.@1,2# does not lie in the use o
Grad’s method~even if nonlinear terms are neglected!, but in
the wrong ansatz about the stationarity of the flow. In fact,
said before, the application of Grad’s method to the unidir
tional flow at uniform temperature for Maxwell molecule
gives the same evolution equations for the stress elemen
the Boltzmann equation. Therefore, at least in this instan
Grad’s method is free from any thermodynamic incons
tency.

It might be argued that assumptions~a!–~e! @or ~a!, ~c!,
~d8!, and~e!# are used in Refs.@1,2# only as a tool to derive
rheological constitutive equations relating the irreversib
part of the stress tensor to the velocity gradients in anonlin-
ear way by means of Grad’s method. Such constitutive eq
tions could then be applied to the conservation equati
~1!–~3! regardless of whether the flow is steady or n
whether the pressure is uniform or not, etc. However, it
doubtful that a constitutive equation derived from assum

FIG. 1. Plot of the normal pressure elementPyy relative to the
hydrostatic pressurep, as derived in Refs.@1,2#, versus the longitu-
dinal deformation rate in the range20.4<gx* <0 for ~a! zero shear
rate (gyx* 50) and~b! gyx* 5

1
2 . The thin solid lines correspond to th

linear approximation, Eq.~21!, while the dashed line in case~a!
corresponds to the nonlinear approximation, Eq.~22!. The thick
solid lines represent the exact results for Maxwell molecules.
1-3
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tions incompatible with the conservation laws can be acc
able beyond the Navier-Stokes regime, as Fig. 1 illustrat

Before closing this paper, let me comment on a couple
remarks made in Ref.@1# which are not directly related to th
discussion made so far. First, Eu states that ‘‘the shear
cosity is impossible to define’’ in the absence of transver
velocity gradients and, consequently, ‘‘it is impossible
measure a shear viscosity without shearing the fluid.’’ This
misleading. To clarify this point, take the Navier-Stokes co
stitutive equations, namely@4#,

Pi j 5pd i j 2hNSS ]ui

]xj
1

]uj

]xi
2

2

3
“•u d i j D . ~23!

In the special case of a unidirectional flowu5uxx̂, Eq. ~23!
yields

Pxy52hNS

]ux

]y
,

1

2
~Pxx2Pyy!52hNS

]ux

]x
. ~24!

Thus, to Navier-Stokes order, the response of the shear s
Pxy to a shear rate]ux /]y is the same as the response of t
normal stress difference (Pxx2Pyy)/2 to a longitudinal de-
formation rate]ux /]x. As a consequence, the Navier-Stok
shear viscosity can be measured from the normal stress
ference, even in the absence of shearing (]ux /]y50).

The second point refers to Eu’s claim@1# that the velocity
distribution functionf (r ,v;t) obeying the Boltzmann equa
tion must always depend on the three spatial coordina
despite the fact that the hydrodynamic variables may dep
on one space coordinate only, e.g.,n(x,t), u(x,t), T(x,t). In
support of this claim, Eu recalls that ‘‘even if the fluid pa
ticle moves one dimensionally in its hydrodynamic config
ration space, it does not mean that the molecules makin
the fluid particle and contained in the elementary volume
the hydrodynamic configuration space@•••# should be mov-
s

f
e,

05320
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ing one dimensionally.’’ While the quoted sentence is e
tirely correct, Eu’s conclusion, namely, that one cannot ha
f (r ,v,t)5 f (x,v,t), does not apply to the Boltzmann velocit
distribution function f (r ,v,t) but to the microscopicone-
body distribution function defined by

F~r ,v,t !5(
i 51

N

d„r2r i~ t !…d„v2vi~ t !…, ~25!

where $r i(t),i 51, . . . ,N% and $vi(t),i 51, . . . ,N% are the
sets of positions and velocities of the particles of the sys
at timet. Actually, the velocity distribution functionf (r ,v,t)
is theaverageof F(r ,v,t),

f ~r ,v,t !5^F~r ,v,t !&5E dG F~r ,v,t !r~G!, ~26!

where r(G) is the probability density or ensemble for th
initial state and the integration is carried out over all t
points G of the phase space. While in a given microscop
realization of the systemF(r ,v,t) is a highly nonuniform
function, its statistical averagef (r ,v,t) has a much smoothe
spatial dependence. In particular, it can depend on one c
dinate only or it can even be uniform~e.g., at equilibrium!.
Of course, the fact that the hydrodynamic fields have a o
dimensional spatial dependence does not necessarily m
that the same holds tof, but there is nothing wrong if one
restricts oneself to solutions to the Boltzmann equation w
the same symmetry properties as the hydrodynamic fields
fact, the so-called normal solutions are those that depen
space and time through afunctionaldependence on the hy
drodynamic fields@4#.
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