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Comments on nonlinear viscosity and Grad’s moment method
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It is shown that the steady unidirectional flow with vanishing heat flux considered by B. {PHys. Rev.
E 65, 031202(2002], and earlier by Uribe and GaezColn [Phys. Rev. B0, 4052(1999)], is inconsistent
with the exact conservation laws of mass, momentum, and energy. The inconsistency does not lie in the
assumed symmetry properties of the flow but in the stationarity assumption. The unsteady problem is consid-
ered and its solution from the Boltzmann equation for Maxwell molecules is given.
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In a recent papdrl], Eu analyzed ateadyunidirectional 9
flow at uniform temperature and derived the equations for JyUy+ Ux5Ux=0, )
the stress tensor elements from the Boltzmann equation by
means of Grad’'s moment method. These are essentially the
same state and the same method as those considered by 3nkg JUy duy duy
Uribe and Gar@-Coln [2], except that the transversal veloc- 2 G+ PXXW + PXYW + X2 o7
ity gradients were assumed to vanish in Réf, while they
are included in the analysis of R¢L]. The major aim of this
Comment is to show that the steady unidirectional flow a
uniform temperature of Ref$1,2] is inconsistent with the
exact macroscopic conservation equations.

For a dilute monatomic gas, the macroscopic balanc
equations expressing the conservation of mass, momentu
and energy arg3,4]

0. (6)

lAre Egs.(4)—(6) consistent with a steady state? Equaiibn
shows that the flow velocity is stationary if and only if the
flow is incompressible, i.e., i#u,/dx=0. In that particular
gase, Eq.(4) is consistent with a stationary density if and
rgnly if the density is uniform as well. But, even du,/dx
=0 andn=const, energy balance equatit®) implies that
the temperature cannot be stationary but monotonically in-
D,n+nV-u=0, (1) creases with time due to viscous heating effe(msge that
Pyyduy/dy<0 andP,,du,/3z<0 because of physical rea-
1 song. Therefore, the steady state assumpt®rs incompat-
Du+—V.-P=0, 2) ible with assumptionsg@)—(d), except in the trivial case
mn Vu,=0, i.e., at equilibrium. TheinsteadyBoltzmann equa-
) tion for the incompressible unidirectional flow withu, /9x
s . _ =du,/9z=0, du,/dy=const, usually referred to as uniform
DT+ 3nkB(V'q+P'Vu)_O’ © shear flow or homoenergetic simple shear flow, has been
solved exactlyfor arbitrary shear rates in the case of Max-
whereD=4d,+u-V is the material time derivative) is the  well molecules[5—7]. An analogous solution has been ob-
local number density is the local flow velocity,T is the tained in the case of the BGK model kinetic equation for
local temperaturan is the mass of a particlég is the Bolt-  more general interactiorj§—10].
zmann constang is the heat flux vector, an@ is the pres- In the case of a compressible flow in the absence of trans-
sure(or stress tensor. The flow considered in Refd,2] is  yersal gradients, i.&V u,/|x, Eq. (5) shows that the flow ve-
characterized by the following properti@sot necessarily in-  |ocity is necessarily unsteady. According to continuity equa-
dependent (a it is a unidirectional flow, i.e.,u(r)  ton (4), it is still mathematically possible than=0 if the
=u,(r)x, wherex is the unit vector along the flow direction; productnu, is uniform, i.e.n(x)u,(x,t)=K(t). Insertion of
(b) the temperature is uniforny, T=0; (c) the heat flux van-  this condition into Eq.(5) yields K 2K(t)=n"2n’(x)=
ishes,q=0; (d) the pressure tensor is uniform; atg) the ~ —A~! where the dot denotes a time derivative, the prime
state is stationary, i.e5;—0. Let me consider first the geo- denotes a spatial derivative, aAds a constant. The solution
metrical propertiesa)—(d) separately from the stationarity to these equations is simpIp(x)=A/(X—Xg), Uy(X,t)
assumption(e). Application of assumptionsa)—(d) on the  =a(x—x,)/(1+at), wherex, and a are constants. This
exact balance equatiori$)—(3) yields mathematical solution is unphysical unless the problem is
restricted to the half domaix>x, (x<xp) if A>0 (A
4) <0). But even in that case the existence of a nonuniform
density is in conflict with the uniformity assumptioftt® and
(d) because in a dilute gas=p/kgT, wherep=3trP is the
hydrostatic pressure. In summary, assumptics-(d) do
*Email address: andres@unex.es; URL address: http:mot contradict the conservation lawl—(3) in the compress-
www.unex.es/fisteor/andres ible flow with du,/dx#0 if and only if the three hydrody-
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namic quantitiegdensity, flow velocity, and temperatyrare  imply that n is uniform, Eq. (4) states that—du,/dx
unsteady, so assumptige) is again incompatible witlla) -  =n~n=—K(t), so u,(x,t)=K(t)(x—x,). Substitution
(d). into Eq. (5) gives K 2K=—1, so we finally haven(t
Strictly speaking, assumptioris) and (d), i.e.,' gniform - no/(irat)? ux(x,t)za(x—io)/(l+at). T¥1is sim(pl)e
temperature and pressure tensor, were not explicitly stated Wow is known as homoenergetic extensi@nll]. Again, the

Ref. [2]. Actually, assumption(b) is implicit in (c); other- . y
wise, one would have a thermal gradient that does not prQltJnstead)Boltzmann equation can be solveslactlyfor arbi

. . ~- P ffrary values of the constant control parametén the case of
duce any heat ﬂl.JX’ what is at odds.wnh.the second pr'r!c'pk?\/laxwell moleculeg6,11,13, as well as with Grad’s method
of thermodynamics. As for assumpti¢a, it was replaced in PR

; : ) [13] and in the case of the BGK model kinetic equatjag]
Ref. [2] by a we.aker. one(d’) the irreversible part of the for more general interactions. A situation where a transversal
pressure tensor is uniform, named,P,,— p)/dx=0. From

. ) A X . . velocity gradientdu, /dx coexists with a longitudinal one
a physical point of view it seems difficult to concile a uni- y 9 Y g

form normal stress differende,,— p with a nonuniform hy- duylox has been studied by Galkii1],

drostatic pressurp. In any case, let me drop conditiofs It is illustrative to recall the application of Grad’s method
' ’ " to the unsteadyunidirectional flow at uniform temperature
and (d) for the moment and prove that conditiofe, (c), wu P

(d"), and(e) are also inconsistent with the conservation laws with no transversal gradient43]. We have seen above that

S o ‘conservation of mass and momentum imply that)
except at equilibrium. Application d8), (c), and(e) on Egs. _ _ "
(1)—(3) gives ng/(1+at) and y,(t)=du,(x,t)/dx=an(t)/ny. Positive

values of the longitudinal deformation ratg, represent
9 some sort of “explosion’{or expansiopflow, while negative
&(nux)=0, (7)  values represent an “implosionfbr condensationflow [2].
The energy balance equati¢8) becomes

J J 2
MNthGx et Gx Pro=0: ® ap+| pt gpxx) =0, (15
3 J J In Grad’s method, this equation is coupled to ta@proxi-
2 NkUy axT+ P IX U=0, © mate evolution equation for the stress eleméyt, [13]:
where, as in Ref[2], the caseVu,/|x has been considered. 4
Equations(7)—(9) can be easily integrated to get (P P) | Pux=p+ §PXX) ¥x= = (P P),
(16)
Nu,= NgUy= CONSt, (10
where nonlinear terms have been neglected on the right-hand
Pyxt an§= Pot+ mn0u§= const, (11 side andu=p/ nys is an effective collision frequencyyys
being the Navier-Stokes shear viscosity. Equati@6) is
3 m 3 m equivalent to Eq(21) of Ref. [2], except that the time de-
5P+ Pt SNU JUx={ 5 Po+ Po+ 5 Nolig | Ug rivative is absent in the latter. Without the time derivative
operator, however, Eq(16) cannot be made consistent
=const, (12)  with Eq. (15). After a transient regime, the system reaches

. - a generalized hydrodynamic regime  withP;;(t)
where the subscript 0 denotes quantities evaluated at somepy) P} (¥ (1)), wherey} (t)=y,(t)/u(t) is thereduced
reference poink=X,. So far, assumptiofd’) has not been |ongitudinal deformation rate. In general, from E¢E5) and
used. This condition implies tha,,—p=Po—po=const,  (16) one gets a nonlinear first-order ordinary differential
so that, according to Eq11), equation forP,(y¥) [12,13. In the special case of Maxwell

_ 2_ molecules(i.e., un), yx (but noty,) is independent of
p+mnuf Po + MMotlp =Const. (13 time so one gets from Eq¢15) and (16) an algebraic qua-
Insertion of Eqs(11) and (13) into Eq. (12) yields drﬁt'c equation whose physical solution #,=3-2PJ, ,
where
3 1
§p0+ Po+mngug Euo—Zux (uy—ug)=0. (14 . 3 4 - .
Pyy(Yx):B_* 1+§7x+47x _1+27x :
Both solutions of this quadratic equation are constétg x (17)

the physical one isl,=ug). This closes the proof that as-

sumptions(a), (c), (d'), and(e) are not consistent with the |t turns out that this result for Maxwell molecules goes be-

conservation equations except in the trivial cage const. yond the scope of Grad's method, since it can be exactly
On the other hand, there is nothing wrong with assumpderived from the Boltzmann equati¢6,11,13.

tions (8)—(d) in the unsteady case. What is then the right To the best of my knowledge, Grad’s method has not been

form of n andu, if Vux||>A<? Since assumption®) and (d) applied yet to the unsteady unidirectional flow at uniform
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temperature with transversal gradients. For this flow, an

analysis of Egs(4) and (5) shows that, in addition to(t)
=ng/(1+at) and y,=du,/dx=an(t)/ny,, one generally
has shear rateg,,=du,/dy=a,n(t)/ny and y,=du,/dz
=agn(t)/ng, wherea, a,, anda; are independent constants.
Standard application of Grad’s method yields the following
evolution equation for the elements of the stress tensor:

3
u
+k§=:1 (PikSjx+ Pjidix)

X

a X
&Xk

=—u(Pij—pdij). (18

Taking the trace in this equation one recovers the energy

conservation equatiof). It is worth noting that Eq(18) can
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again be obtained exactly from the Boltzmann equation in  FiG. 1. Plot of the normal pressure elem@y, relative to the
the case of Maxwell molecules. For this interaction potential hydrostatic pressume, as derived in Refg1,2], versus the longitu-

the reduced rateg} =y, /u, ¥y= vyx/p, andy;,= v,/ u
are constants and E¢L8) yields a coupled set of algebraic
equations foPj; =P;; /p. Without loss of generality14] we
can choosey;,= vy, SO thatPjy, =P, and P}, =P%,. In
that case, Eq(18) yields

2
_ 3P}, (1—-P},)— 4P},
2P;‘y[2p;‘y2— Py, (3—2P))]

Vx (19)

P:Y(3— P;Y)
, .
2 P;‘y[ 2 P:y - P;‘y( 3-2 P;‘y)]

(20

*
yyx_

These two equations include as particular cases the homoe,
ergetic extension flow j,=0), in which case Eq(17) is
recovered, as well as the uniform shear floy§ €0), where
Px,>= 2Py, (1—P},) and P}, is the solution of the cubic
equation 4/,°Py *=3(1-PJ,).

The inconsistency of assumptiée) on the stationarity of
the flow geometrically characterized i6g)—(d) [or (a), (c),
and (d’)] manifests itself in the results obtained in Réfk]
and[2] for the stress tensor elements from Grad's method
Assuming cylindrical symmetryR,,=P,,,P,,=P,,), Eu
gets the following expression for the normal pressure ele
mentP,, (neglecting nonlinear terms in the collisional inte-

grals [1]:

(1+29)(1+3%)
(1+2y5)(B+7y5) +4v52

*:g
yy— ¥

(21)

According to Eq.(21), P,, becomeshegativeat least in the
interval — % < yx <-— 3, regardless of the value of;,. This

is unphysical because the diagonal elements of the pressu{&,

tensor are positive definite quantities. Settimpfo, Eq.
(21) reduces to the result derived by Uribe and Ga€oln

in the linear approximatiof2]. When the nonlinear terms are
included, they gef2]

49 94 49
Py,=8+ gy:—7\/1+ TR gy;% (22)

dinal deformation rate in the range0.4< y} <0 for (a) zero shear
rate (yy,=0) and(b) yy,= %. The thin solid lines correspond to the
linear approximation, Eq(21), while the dashed line in cad@)
corresponds to the nonlinear approximation, E2R). The thick
solid lines represent the exact results for Maxwell molecules.

According to this expressiom,,<0 if v} <-— 2. The pre-
diction of negative values dP,, can be observed in Fig. 1,
which shows the rati®,,/p given by Eqs(21) and(22) in
the range—0.4< y; <0 for vanishing shear ratey(jX:O)
and fory;‘,(:%. Comparison with the exact result7) for
¥yx=0 and Eqgs.(19) and (20) for yy,#0 in the case of
Maxwell molecules shows that predictiof&l) and (22) are
only valid in the Navier-Stokes domain of small gradients,
Where Pyy/p~1+3y5 . Itis worth noting that the applica-
tion to the unidirectional flow of a rheological theory by Eu
[15] also yields unphysical negative values for the diagonal
elements of the pressure ten$ab].

In Ref.[1], Eu claims that Grad’s moment method is not
thermodynamically consisteht7]. Actually, Grad’s method
is not but an approximate scheme fpartially) solving the
hierarchy of moment equations stemming from the Boltz-
mann equation. The point | want to emphasize is that the
physical inconsistency of the equations for the stress tensor
elements derived in Ref$1,2] does not lie in the use of
Grad’s methodeven if nonlinear terms are neglectehut in
the wrong ansatz about the stationarity of the flow. In fact, as
said before, the application of Grad’s method to the unidirec-
tional flow at uniform temperature for Maxwell molecules
gives the same evolution equations for the stress elements as
the Boltzmann equation. Therefore, at least in this instance,
Grad’'s method is free from any thermodynamic inconsis-
tency.
It might be argued that assumptiot@—(e) [or (a), (c),
), and(e)] are used in Refd.1,2] only as a tool to derive
rheological constitutive equations relating the irreversible
part of the stress tensor to the velocity gradients noalin-
earway by means of Grad’s method. Such constitutive equa-
tions could then be applied to the conservation equations
(1)—(3) regardless of whether the flow is steady or not,
whether the pressure is uniform or not, etc. However, it is
doubtful that a constitutive equation derived from assump-
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tions incompatible with the conservation laws can be accepting one dimensionally.” While the quoted sentence is en-

able beyond the Navier-Stokes regime, as Fig. 1 illustratestirely correct, Eu’s conclusion, namely, that one cannot have
Before closing this paper, let me comment on a couple of (r,v,t) =f(x,v,t), does not apply to the Boltzmann velocity

remarks made in Ref1] which are not directly related to the distribution functionf(r,v,t) but to the microscopicone-

discussion made so far. First, Eu states that “the shear vidsody distribution function defined by

cosity is impossible to define” in the absence of transversal

velocity gradients and, consequently, “it is impossible to N
measure a shear viscosity without shearing the fluid.” This is F(r.v,t)= 21 S(r—ri(t))s(v—vi(t)), (25
misleading. To clarify this point, take the Navier-Stokes con-
stitutive equations, namefy], where {r;(t),i=1, ... N} and {v(t),i=1,... N} are the

U du. 2 sets of positions and velocities of the particles of the system

P =pd&ij— 7ns 2 —§V us;|. (23 at timet. Actually, the velocity distribution functiofi(r,v,t)

IXj X is the averageof F(r,v,t),
In the special case of a unidirectional flaws u,x, Eq. (23
yields f(r,v,t)=<F(r,v,t)>=f dI' F(r,v,t)p(I'),  (26)

Uy

E(pxx_ Pyy)=— WS%_ (24)  where p(T') is the probability density or ensemble for the
2 IX initial state and the integration is carried out over all the
eggintsl“ of the phase space. While in a given microscopic
realization of the systenk(r,v,t) is a highly nonuniform
function, its statistical averad€r,v,t) has a much smoother
spatial dependence. In particular, it can depend on one coor-
inate only or it can even be uniforfe.g., at equilibrium
Of course, the fact that the hydrodynamic fields have a one-
. , . dimensional spatial dependence does not necessarily mean
o e Sy 1l th Seme st hre s rahing o one
tion must always depeﬁ d on the three spatial coor dinatesresmCtS oneself to solutlon§ to the Boltzmann equation with
despite the fact that the hydrodynamic variables may depe the same symmetry properties as the hydrodynamic fields. In
nf%lct, the so-called normal solutions are those that depend on

on one space coordinate only, ery(x,t), u(x,t), T(x,t). In : : )
support of this claim, Eu recalls that “even if the fluid par- ngé:;nzrrﬁctlﬁné?d?ﬁ)ughfanctlonaldependence on the hy

ticle moves one dimensionally in its hydrodynamic configu-

ration space, it does not mean that the molecules making up Partial support from the Ministerio de Ciencia y Tecno-
the fluid particle and contained in the elementary volume ofogia (Spain and from FEDER through Grant No.
the hydrodynamic configuration space - ] should be mov- BFM2001-0718 is gratefully acknowledged.

ny: - nNSW,

Thus, to Navier-Stokes order, the response of the shear str
P,y to a shear ratéu,/dy is the same as the response of the
normal stress differenceP(,— P,,)/2 to a longitudinal de-
formation ratedu, /9x. As a consequence, the Navier-Stokes
shear viscosity can be measured from the normal stress di
ference, even in the absence of sheariag,(Jy=0).
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