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Simple model of the aging effect in heart interbeat time series
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In this work, we calculate the fractal dimension of heart interbeat time series of some healthy young and
elderly individuals. As has been found by means of other metkdetsended fluctuation and spectral analy-
seg, we also find that interbeat series of healthy young subjects can be characterized by only one scaling
exponent and a crossover behavior in it is observed with aging. By means of a zoom over the hinges of the
crossover region, interesting effects of aging are presented. Our results with real interbeat time series are
reasonably reproduced by using a simple model based on combinations of noisy first-order autoregressive
series.
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[. INTRODUCTION healthy elderly subjectéthree of them the oldest in their
sample, 76, 77, and 81 yyrin the present paper, within the
Heart rate dynamics is related to a large number of contro$pirit of the findings of lyengaet al., we propose a method
mechanisms. Heartbeat fluctuations are a very comple$o study the evolution of interbeat time series with aging.
manifestation of regulatory neuroautonomic feedback loop&ur approach is based on the fractal analysis proposed by
[1]. In recent years, fluctuations of this physiological signalHiguchi [12] and we find the crossover phenomena associ-
have been studied by means of several methods derived frogted with aging and model them by means of combinations
nonlinear dynamics and statistical physics, such as detrend@d first-order autoregressive processes that mimic both the
fluctuation analysigDFA) [2,3], spectral analysi$4,5,15, young 1f-like behavior and the evolution of interbeat time
entropy (approximate and samplg6,7], and correlation di-  series with aging. This paper is organized as follows. In Sec.
mension[8]. In particular, fractal methods have been provedll, we briefly introduce the Higuchi’'s method and apply it to
to assess diverse characteristics and changes in heart rdxeart interbeat time series of two groups of individuals:
dynamics. These methods are strongly related to the fact thitealthy young and healthy elderly subjects. In Sec. llI, we
irregularity of the beat-to-beat time series for the case ofropose a numerical model to simulate the results observed
healthy human heartbeat exhibits an absence of characterisift the preceding section and finally, we give some conclu-
time scales compatible with the concept of adaptability un-sions in Sec. IV.
derstood as a system’s repertoire of responses to environ-
mental stimuli. Heart rate variability has been proposed as an . FRACTAL APPROACH TO RR-TIME SERIES
important marker of changes at the level of neuroautonomic

SR . As asserted by Goldberget al.[9], the output of healthy
control [9,10]. Declination In the_ neurpautonom|c control of living systems, under certain parameter conditions, reveals a
heart as a process occurring with aging and some heart fa

. . ype of complex variability associated with long-ran@ac-
ure has been propos¢8,11]. An important question related ; o :
with aging is to quantify the loss of fike behavior(long- tal) correlations. Although nowadays it is recognized that

) . 2. heart interbeatRR-) time series display multifractal proper-
range correlationsas a synonym of healthy heart variability ties [10], in a first approximation one can study them by
towards degradated regiméas that propo_sed by lyengar means of a monofractal approat®5]. Higuchi [12] pro-
et al.[5] to model healthy very elderly subjexiShese au-  nosed a technique to measure the fractal dimension which
th.ors rgported by means of DFA and spectral :_:maIyS|s th ives stable indices even for small number of data. The
with aging a crossover phenomenon appears .W'th respect e thod consists in considering a finite set of data taken at an
the former monofractal behavior corresponding to young o rval ve v s From this series. we construct new
healthy individuals. This crossover behavior occurs in the, seriééukz’ ldle'fi’ng(.j as :
interbeat scaling exponents, from a higher valuexofthe m’

DFA exponent, close to Brownian noise for fluctuations on N—k

small time scales, to a lower value @f(close to white noise v(m),y(m+Kk),v(m+2k), ... ,»| m+ T}k)

for large time scales. lyengat al. modeled this type of

crossover behavior by a simple stochastic model consisting with m=1,2,3 ... k, (1)

in a noisy first-order autoregressive process that gives a rea-
sonable fit with the fluctuations of interbeat interval for four where[ ] denotes Gauss’ notation, that is, the bigger integer,
andm andk are integers that indicate the initial time and the

interval time, respectively. The length of the curvél is
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FIG. 1. Log-log plot of(L(k)) vs k for representative cases of  FIG. 2. Plot ofD(k) vs logk, in the region of short scales for
(@) healthy elderly andb) healthy young subjects. three representative cases: healthy young, healthy adult, and healthy

elderly subjects. In this region, the aging effect is quite evident.
[(N—m)/K]

1
Ln(k) =1 ( > | v(m+ik) sion valuetstandard deviation which corresponds to a
spectral exponeng~1.26, within the range of 1/like be-
havior. This monofractal behavior for healthy young indi-
B viduals has been reported by means of other methods such as
—y[m+ (i —1)k]‘ >— (2)  DFA and power spectral analysi8,5]. On the other hand,
N—m K healthy elderly individuals present a clear crossover phenom-
enon, which has been reported by means of DFA andl$$is

k
In this case we find two regions: over short scalks k¢

and the term l—1)/[(N—m)/k]k represents a normaliza- ~9) fractal dimension is in the rang®s~1.51959
tion factor. Then, the length of the curve for the time interval =0.0841, whereas for lagsk>kc~9, D ~1.82657
k is given by(L(Kk)): the average value ovérsetsL (k). ;0.093;. By using Studentstest, we find that there is a
Finally, if (L(k))=k P, then the curve is fractal with dimen- highly significant difference betwedns andD_ for elderly
sionD. For the case of self-affine curves, this fractal dimen-subjects P=0.0001), but not for the youngX=0.137). We
sion is related to the spectral exponghtby means of3 present an additional numerical study of the crossover phe-
=5-2D. If D is in the interval xD<2 then < B<3  homenon observed in the fractal dimension. Although appar-
[12]. Higuchi showed that this method provides an accurat@ntly the two-segment curve drawn in the case presented in
estimation of the fractal dimension and has advantages ovérg. 1(@) satisfactorily fit the log) versus logL(k)) data,
conventional methods. One important feature of this methodhese plots show a round corner around a cetinSince
is that is very sensitive to changes in the self-organizatiorihe fractal dimensio is defined by minus the slope of the
(fracta) and it may reflect this fact through changes of thestraight line fitted to the log.(k)) versus logk) points, we
fractal dimension over several scales, giving an importanfissume that the fractal dimension can be writtefl@$
tool to study the crossover phenomena.

We analyze beat-to-beat time series obtained from ten dIn(L(k))
healthy young subject@ge 21-31 yk; eight healthy elderly D(k)=— W 3
subjectgage 70—81 yr, and one 58 yr old healthy individual
[13]. All records were sampled at 250 Hz under repose con-
ditions. In the present study, we analyze only short segments Fig. 2, the behavior oD (k) with respect to logk) is
of ECG's (2 h), equivalent to~8000 beats. By using the plotted[14]. The two dotted horizontal lines superposed in
Higuchi's algorithm described above, we calculate the fractathe figure indicate the values &f andDg, which are ob-
dimension of all series. In Fig. 1, we present log-log plots oftained by fitting the two-segment curve showed in Fi@).1
(L(k)) versusk for representative cases from each gra@p; In the case of healthy elderly subjedisig. 2(c)], clearly,
a healthy elderly subjectb) a healthy young subject. In all D(k) gradually becomes larger &sncreases, and then satu-
of the healthy young subject cases, a single fractal dimensiorates alD~1.82, a small increase is observed at lag is
value is needed to fit the data, but in the cases of healthgoteworthy thaD (k) does not discontinuously change from
elderly subjects, two fractal dimension values are requiredDg to D; as a step function, but it shows a gradual increase
The fractal dimension associated with healthy young subjectask increases. It is remarkable that in the pldhk) versus
lies within the range oD~1.874+0.0213(fractal dimen- log,k, as can be seen in Fig. 2, the aging effect over the

052901-2



BRIEF REPORTS PHYSICAL REVIEW B7, 052901 (2003

beat-to-beat time series is quite evident. In this figure, one 2AC
can observe how for a healthy young individfiage 29 yr, S(f)= ¢ [arctai2m7,f) —arcta 2w, ). (8)
Fig. 2(a)] the crossover follows a very soft small-slope path

(this path smoothly tends tB~1.9), while for a healthy This expression can be separated in three regions;
adult personfage 58 yr, Fig. th)] the transition is more

remarkable, but less dramatic than in the case of a healthy ( 1 1
elderly persorfage 81 yr, Fig. &)]. We believe that in the 4AcAT,  0<f< e y—
planeD (k) versus log(k), one can observe the aging effect 2 !
over RR-time series in a very clear fashion and apparently a Ac
correlation between the vertical deviationsfk) and the S(fy=~{ <f< (9)
age is observed. f 2mT, 2mTy
IIl. THE AUTOREGRESSIVE MODEL AcAT 1 Y o
. o . mlrr,f2 2w, 2mT
A simple model of 1f noise is a stochastic process com- \

posed of a superposition of many modes with exponenti
decay associated with different time constdd. One time
constant can be obtained from a single first-order autoregre
sive process,

a\llvhereA 7= 7,— 71. In the first regionvery low frequencies
the process is white noise type, with a flat power spectrum;
T the second region (12r,<f<1/277;) the process is 1/
type; and in the third regiorivery high frequenciesit is
Brownian type.

As was reported by lyengaet al. [5], healthy-elderly

wheree is a Gaussian distributed random variable arig a heart rate dynamics can be resembled by a single first-order

coefficient that is related to correlations of events. We aréautqregressivg relation Wit.h a single characteristic tim_e. We

interested in the case wheresa<1. Correlations between '€ mterested in recuperating healthy heart rate dynamics and
different events can be calculated @$7)=Aa™=Ae™, how it evolves to senescence. We use the simple model of
with A a constant. Time constants are related to the Correlas_uperposmon of many modes .W'th exponentlgl (_Jlec_ay Su.Ch as
tion function as the characteristic time in which the correla-de.scr'bed above. The.repertowe of charact_erlsuc times is ob-
tion has decayed &/ Thus, the autocorrelation function for a tained from the variation of the parametin the interval

<a<1. . ) "
stochastic process with a single characteristic tim€(is) 0 a=<1. In case(i), we take a linear superposition of 1_8
S . . - time constants of the first-order autoregressive model given
=Ae 770, with 7= —1/Ina, clearly , goes from zero to

infinite while a varies from 0 to 1. By using the Weiner- by Eq. (4), chosen equally spaced in the interyal,a,]

Khinchine theoren{17] it is easy to show that the power =[0.15,0.93 (no__te that time constants are not equally
T spacedl In case(ii), we reduce the interval of parameter
spectrum of such a process is given by

(equally spacedto [a;,a,]=[0.65,0.99, and take only nine
time constants to perform the superposition. In déigg we
s(f)= L' (5) consider only six time constants from the interyal ,a,]
1+ (2mfr)? =[0.85,0.93 to perform the superposition. The Higuchi
analysis of case6) and(iii) and their comparison with real
This spectrum shows two different zones; for low frequen-data is presented in Fig. 3. In this figure, one can observe that
cies (f<1/2w7y) it is constant with a white noise behavior a single fractal dimension can be associated with the simu-
and for high frequenciest& 1/277,) is a Brownian motion. lated case of a healthy young and a good agreement is ob-
It has been proposed that a linear superposition of mangerved with real data. Also, in the simulated case of a healthy
independent characteristic times with hyperbolic distributionelderly subject, we obtain a crossover as is observed in real
leads to 1f noise in a certain regiofl7]. The sum of many data. It is interesting to note that in the case of the simulation
power spectra given by singlgs is of a healthy elderly subject, the left region of the separation
generated by the crossover is Brownian type and a good
% agreement is observed with real data. It is important to note
S(f)= fo d7os(f)P (7o), (6)  that the crossover point is given lat~9 in both cases. By
performing a zoom on the crossover point in simulated cases
(Fig. 4), we roughly recover the behavior reported in real
cases(see Fig. 2 In the case of healthy-young-simulated
behavior, a very soft path is observed. As the interval and the
number of time constants are reduced, a gradual decrease and
7) a nonstep transition are observed around the crossover point.

Xt+7’+1:axt*r+ t—r» (4)

where P(7p) is the characteristic-time distribution of the
form

clrg if 0<m<7o<m,
0 otherwise

P(To):[

. L . IV. CONCLUSIONS
with ¢ a normalization constant and, 7, being the lower

and upper time interval limits, respectively. The integration By means of the Higuchi's fractal approach, we find that
of Eqg. (6) leads to RR-time series of young healthy individuals have a reason-
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FIG. 3. Log-log plot of(L(k)) vs k. A comparison between FIG. 4. Zoom on the region of short scales for simulated cases

simulation and real data for healthy elderly and healthy young pertj) i), and(iii).
sons is depicted.

based on first-order autoregressive processes. This simple
model suggests to consider aging as a gradual loss of heart

able monofractal behavior with long-range correlations. Th'.sadaptability understood as a system’s repertoire of responses

behavior is usually taken as a sign of cardiac health that i 0 environmental stimuli. This is expressed as the diminution

gradually lost with aging. This is apparently expresse of the number of characteristic times needed to simulate the

through the appearance of the crossover pheqomena in t'I‘-?R-time series and also as the diminution of aheoefficient
RR-time series. We also observe this feature in the fractql

) . . nterval.
dimension. When we apply a zoom over the hinges corre-
sponding to the crossover points, we find that the size of the
transition ofD from the region of low lags to that of greater

lags can work, probably, as an auxiliary biomarker of physi- We thank M. Santilla for comments on the manuscript.
ological aging. Some of these properties of actual RR-timéThis work was partially supported by COFAA-IPN and

series are resembled by means of a simple statistical modelUPERA-ANUIES Meico.
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