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Approximate analytical solutions of the Bidomain equations for electrical stimulation of cardiac
tissue with curving fibers
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The mechanism by which an applied electric field stimulates cardiac tissue far from the stimulating elec-
trodes is not wholly understood. One possible mechanism relates the curving cardiac fibers to the induced
membrane currents and transmembrane potentials. However, we lack a qualitative understanding of where
these areas of polarization will occur when an electric field is applied to a sheet of cardiac tissue with curving
fibers. In our study, we derive an analytical model for the transmembrane potential, dependent on the gradient
of the fiber angley, for a two-dimensional passive sheet of cardiac tissue exhibiting various fiber geometries.
Unequal anisotropy ratios are crucial for our results. We compare the results from our analytical solution to a
numerical calculation using the full bidomain model. The results of our comparison are qualitatively consistent,
albeit numerically different. We believe that our analytical approximation provides a reliable prediction of the
polarization associated with an electric field applied to cardiac tissue with any fiber geometry and a qualitative
understanding of the mechanisms behind the virtual electrode polarization.

DOI: 10.1103/PhysRevE.67.051925 PACS nunier87.19.Hh, 87.18-h, 87.10+e, 87.90+y

[. INTRODUCTION and the local fiber directiom(x,y). The values of the four
bidomain conductivities are fairly well knowf8], and we
The mechanism for electrical stimulation of cardiac tissueassume they are the same everywhere. In general, the fiber
has been studied intensely over the past few yigdrhis is  direction is not fixed, but varies throughout the tissue.
an important topic because of the role electrical stimulation We can write the four bidomain conductivities in terms of
plays in cardiac pacing and defibrillation. Of particular inter-four more useful parameterg; =gi. +9e, 97=0iT T JeT»
est is “far-field” stimulation, which we take to mean excita- a=g¢;, /ger, ande=1—[(9e./9:7)/(0i. /9;7)]. These pa-
tion of cardiac tissue far from any stimulating electrode orrameters are similar to the ones used8f, except that for
tissue boundary. One proposed mechanism for far-fieldar-field stimulation the parallel combinations of conductivi-
stimulation is based on “fiber curvaturg¢2,3]. According to  ties,g, andgy, are more convenient to work with than the
this hypothesis, when an electric field is applied to the tissuseries combinations ifi8]. The parametee is particularly
the change in the direction of the myocardial fibers withuseful, because it is equal to zero when the tissue has “equal
position induces membrane currents and a transmembramisotropy ratios” (e, /det=0;. /git). We can write the
potential. Although this mechanism has been studied exterfour bidomain conductivities in terms of these parameters as
sively in numerical simulation4—6], we still lack a quali-
tative understanding of how it works. If the fiber direction in
the x-y plane is specified by(x,y), the angle between the giL=0L
fibers and thex axis, we have found it difficult to predict
which regions of the tissue will be polarized by an electric
field simply by inspection of9(x,y). For example, Fig. 1 9r=9 ( x(1-¢€) ) )
shows the fiber geometry throughout a sheet of tissue and the T M1+ a(l-e))
direction of the applied electric field. Can you look at Fig. 1

a
1+a)’

(€Y

and predict where the tissue will be depolarized and where it
will be hyperpolarized? Our goal in this paper is to elucidate S
the mechanism of tissue polarization caused by fiber curva- ; S PP 5
ture, and to provide a way to predict the distribution of po- ////// / //////——
larization qualitatively. ///// /////"
—> —»///// H/////— —
— L s
Il. DERIVATION OF THE ANALYTICAL EQUATIONS s S S—
. . . . . —— S]] S S
We represent cardiac tissue using the bidomain mjg@el — | S | ——
which accounts for both the intracellular and extracelluar T
spaces. In a two-dimensional sheet of tissue, the local prop-

erties of the anisotropic bidomain are governed by five pa-
rameters: the intracellular conductivity parallel to the fibers, F|G. 1. The line segments indicate the fiber direction in a two-
i ; the intracellular conductivity perpendicular to the fibers, dimensional sheet of cardiac tissue, and the arrows indicate the
git; the extracellular conductivity parallel to the fibegg, ;  direction of the applied electric field. The reader’s task is to predict
the extracelluar conductivity perpendicular to the fibggs,; qualitatively the resulting transmembrane potential distribution.
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1 1 ~ 1+a
JeL= 9L m ) 3 V. gi;"'a(l_e)ge VVm_TﬂGm[1+a(1_e)]Vm
1 ==V [Gi—a(l-e)Ge] V. 13
—ge| ——— . 4
Jer=0r| ¢ a(l—e)) @ Equations(12) and (13) are two coupled partial differen-

tial equations that need to be solved Y6 and . Analytical
In a fixed Cartesian coordinate systemy(), the fiber solutions to these equations are rare, except in the case of
direction does not generally align with the coordinate axesequal anisotropy ratios. Therefore, we search for approxi-
Therefore, both the intracellular and extracelluar conductivimate analytical solutions using a perturbative expansion in
ity tensors are functions of positigthrough the fiber angle powers ofe, with the zeroth order term in this expansion
6(x,y)] and will in general have off-diagonal components corresponding to equal anisotropy ratios. This type of expan-

(9] sion proved useful for analyzing unipolar stimulation of car-
diac tissue and for understanding the extracelluar potential
an cos 9+grsirf 6 (g.—gr)cosésing produced by an expanding wave frdd0].
9= (gL—gr)cosfsing g, sir? 6+gycod )’ To begin, we expan¥,, and ¢ in powers ofe
= 2
The bidomain equations govern the intracellular potential Vin=Vmot @V + €Vimp -, (14)
V; and the extracelluar potenti¥l,,
| potentt U= ot eyt eyt 19

V- GiVVi=BGn(Vi—Ve), (6) We can also expand the expressions for the bidomain con-

5 ductivities[Egs. (1)—(4)] in powers ofe. Placing these ex-
V-8eVVe=—BGn(Vi—Ve), (7)  pressions into Eq$12) and(13), we collect terms with com-

) . . mon powers ofe to obtain equations governing,o, ¥g,
whereg is the ratio of membrane surface area to tissue voly/ . etc.

ume andGy, is the membrane conductance per unit area. The zeroth-order equation faf, is
These equations are based on the assumption that the tissue
is in steady state, and that the membrane is passive. Previ
ously, we found that the bidomain equations are easier t
analyze analytically when written in terms of two different

. Y Y,
(g, cos 6+ gy Sirt 6) &—XO +(g_—gr)cosd sin Ha_yo

potentials,V,, and ¢, which are linear combinations &f; d . diyg
andV, + W (gL—gT)cosesmeW
Vi=V,—Ve, 8 . J
moorue ® + (g sir? 6+ gt cos a)ﬁiyo =0. (16)
1
P=Vit Ve, (9 This boundary value problem fa#, does not depend ow,,

(the equations uncouple f@a=0). This expression is diffi-

whereV, is the transmembrane potential agtds an auxil- ~ Cult to solve when the tissue is anisotropde#gr, with an

iary potential with no simple physical interpretatift0]. we ~ arbitrary fiber ge(?metry)(g,y)z. Wheng, =gr, Eq.(16) re-

can invert these relationships to determie and V, in  duces to Laplace’s equatioN,",=0. The solution depends

terms ofV,, and ¢ on the boundary conditions fog,. In this paper, we are
m

concerned with boundary conditions that correspond to a
uniform electric field at largéx| and|y|.

1 ; )
Vi:m y+ va), (10 The zeroth-order equation f&f,, is
d oV
o | L cog 6+ gy sir? ) &;no
Ve=17, (¥~ Vm). (13)
+ psing Y me
If we add Eqs(6) and(7) and express them in terms ¥f, (9L~ gr)cosésin ay
and ¢, we obtain
+ i —gt)cosé sin ﬁavmo
o 1 ay (9L—0r ax
V-(@i+8e) V==V Gi—=Te|VVn. (12)
@ . Nmo| 0L
+ (g, sir? #+grcos ) ~ |- vaozo,
If we multiply Eq. (6) by gi7/get, and subtract the product y L
from Eq. (7), we get (17)
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where the length constant\; is equal to
VOiL 9e /(9iL + 9eL) BGy This equation does not depend on
¥o. Wheng, =gy, it reduces to the two-dimensional cable
equation,VZVmo—Vmol)\fzo. If we assume that,,, goes
to zero at largex| and|y|, then the solution to this equation
is V,0=0. There is no transmembrane potential induced in
the case of equal anisotropy ratios.

To determine the first nonzero contribution to the trans-
membrane potential, we consider the first-order equation for
Vit

—>

50 mV

p) .Y
&[(QL cos’ f+gr Sir? 6) Wml+(9L_gT)

50 mV
——

. avml ﬁ . (9le
X cosfsing 3 + v (gL.—gt)cosésing X FIG. 2. (Color) The transmembrane potential as a functiorx of
y y (horizonta) and y (vertica). The fiber geometry is given by
Nml| 9L 6(x,y) =tan }(x/L), and the local fiber direction is indicated by the
+ (g, sir 6+ gy cos 6) 07_} - val line segments. A 2020 mn? region of tissue is shown, with the
y L origin at the center. The arrows indicate that the electric field points
9 I I to the right(x direction). The parameters used in this calculation are
=—Q — 1 — — 4 ing— E,=500 V/m, =0, \{ =0.434 mm,e=0.75, andL=2 mm.
o b cog 6 o Tcososing Y } 0 ¢ L
d o o 2 00 a9
+— ing— +sirt 6 —| | . Vm1=EpA{| COS¢| sin 20 ———cos 20 —
Y cosfsing— sir? 6 3y (18 m1= Eo\{ X ay
. . . . a6 a6
Although this equation appears formidable, in many cases +sin ¢>( —€0S 26 ——sin 20—”, (21
the fiber geometry is smooth, so théfx,y) changes little X d

over distances on the order of the length conskantin that
case, the first two terms on the left-hand side of @) are
negligible compared to the third, and EG8) becomes sim-

ply

or, in a somewhat more compact form,

- ~ >

Vmi=A’Eqo-D- V4, (22)

J where

, @
le:)\"l-i- a | IX

Jd J
cog eﬂ +cosé sin Hﬁ
ax ay

- sin20 —cos29
| L e

- —cos29 —sin20

o

Jd
cosﬁsin@ﬂJrsin2 0—
X ay

d
+ —
ay

L

Ill. SIMPLE EXAMPLES

This is our central result. In the literature on bioelectric phe-

nomena, the expression on the right-hand-side of(E®).is
called the “activating function.”

To make further progress, we must knaiy. But ¢ is

As a first example, consider a fiber geometry similar to
that examined by Skouibinet al. [5],

difficult to (;Igtgrmine in general; we must solve Em). We o(x,y)=tan ! f)' (24)

can make initial progress understanding the physical basis of L

far field stimulation if we assumg, =g+ so thaty, obeys o )

Laplace’s equation. The simplest solution of Laplace’s equaShown in Fig. 2. In this case,

tion is a uniform electric field of strength, in the direction %L

¢ in26=
sin 26 E2+—X2, (25)

1+« .
Yo=—— Eo(xcosgp+ysing). (20 e L2—x? o6

cosB=z e 20

The factor of (& a)/« ensures that wherf, is substituted

into Egs.(10) and (11), the strength of the electric field in 90 L 27)

both the intracellular and extracellular spaceg&gs Substi- ax  LZ+x?

tuting Eq.(20) into Eq.(19), and taking the derivatives of the

trigonometric functions, we find that and
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(a) /

fiber orientation

Y
y
Y

(b) / ’

) ) fiber orientation
FIG. 3. (Color) The transmembrane potential as a functiorx of
(I R
J
H D

(horizonta) and y (vertical). The fiber geometry is given by
6(x,y) =tan }(x/L), and the local fiber direction is indicated by the
:Je
Ji
FIG. 4. A schematic diagram illustrating the mechanisms of far-

line segments. A 2R 20 mn? region of tissue is shown, with the
origin at the center. The arrows indicate that the electric field points
up (y direction. The parameters used in this calculation &g
90 field electrical stimulation due to fiber curvatur@) First mecha-
—=0, (29 nism, when the fiber orientation changes in the direction parallel to
ay the electric field(b) Second mechanism, when the fiber orientation

=500 VIm, ¢=m/2, A\ =0.434 mm,e=0.75, andL=2 mm. The
color bar is the same as in Fig. 2.
changes in the direction perpendicular to the electric field.

S0
eE\? 1 X x| 2 . . . :
m= 5151 COS¢h2 E—S|n¢> 1- T , the extracellular space, with relatively little current passing
1+ X through the more resistive intracellular space. As the fiber
L orientation changes from parallel to perpendicular to the

(29 electric field(middle), current redistributes from the intrac-
ellular space into the extracellular space, which depolarizes
the membranéD). Similarly, if the fiber orientation changes
from perpendicular to parallel to the electric field, current
redistributes from the extracellular into the intracellular
the left (minimum=—23 mV), and positive(depolarizes ~ SPace. hyperpolarizing the membrane..This_ bgha\(ior is con-
on the right (maximurs 23 mV). Figure 3 shows a similar _S|st§nt with the transmembrang potential Q|str|but|on §hown
plot for the electric field in they direction (¢=/2). The |n_F|g. 2. the that unequ_al anisotropy ratios are crum_al for
transmembrane potential is strongly hyperpolarized in thdhis mechanism. Ig;_ /ge, is the same agjr/ger, the ratio
center (minimurs — 35 mV), and weakly depolarized to the of intracellular to extracellular current is the same regardless
left and right (maximuns 4 mV). of the fiber orientation, so there is no current redistribution
This simple example is useful because it highlights thebetween the intracellular and extracellular spaces, and no
two mechanisms underlying the polarization of cardiac tissugnembrane polarization. Only whegy /ge  #git/ger (O,
by an applied electric field when fibers curve. Figu@4 equivalently,gi /git# JeL/JeT) IS Vi NONZero. This mecha-
shows schematically the first mechanism, which appliesism has been described befdsee Fig. 10 of1]).
when the fiber orientation changes along the direction paral- The second term in Eq29) corresponds to the fiber ori-
lel to the electric fieldthe first term in Eq(29)]. On the left,  entation changing along the direction perpendicular to the
the electric fieldE is parallel to the fibers. In this case, the electric field. We have never seen this second mechanism
intracellular and extracellular conductivities are similgr,(  described in the literature, but it appears to be as important
=g [8], and the net current densiflydivides evenly be- as the first mechanism. Figurgbd elucidates this second
tweenJ; andJ,, the current densities in the intracellular and mechanism. When the electric field is either perpendicular to
extracellular spaces. On the right, the electric field is perpendeft) or parallel to(right) the fiber direction), J;, andJ, are
dicular to the fibers. In this case, the intracellular conductiv-all in the same direction as the electric field. When the elec-
ity is much less than the extracellular conductivity;y  tric field is at an angle to the fiber directiemiddle), the net
<de7 [8]. Therefore,J (which is the same on the left and currentJ is parallel toE becausey, =gr. However,J; and
right, because we are assumigg=gs) flows primarily in  J, individually have components perpendicular to the elec-

correct to first order in powers @& Figure 2 shows a plot of
V., when the electric field is in thex direction (Eq
=500 V/m, $=0, A\ =0.434 mm,e=0.75, andL=2 mm).
The transmembrane potential is negatiilgperpolarizegion
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e —>

(@)

FIG. 5. (Color) The transmembrane potential as a functiorx of

(horizonta) and y (vertica). The fiber geometry is given by (b)
6(x,y) =tan }(y/x)+3m/4, and the local fiber direction is indicated

by the line segments. A 2020 mn? region of tissue is shown, with

the origin at the center. The arrows indicate that the electric field
points to the right(x direction. The parameters used in this calcu-

lation areE;=500 V/m, ¢=0, A\ =0.434 mm, ance=0.75. The

two small panels on the left indicate the separate contributions of

the two mechanisms. The color bar is the same as in Fig. 2.

—

tric field.! This results in a current loop: intracellular current
flows to the right, where it exits the intracellular space and
depolarizes the tissued(), and then returns as extracellular
current to the left, where it enters the intracellular space and
hyperpolarizes the tissugl). If the anisotropy ratios were
equal, bothlJ; andJ, would individually be parallel td&, and

the current loop and transmembrane polarization would dis- FIG. 6. (Color The transmembrane potential as a functiorx of

appear. Th_'s k_Jeh'§1V|or IS con_S|ste_nt with the transme_mbrz_in@]orizoma} andy (vertica) (a) determined analytically using the
potential distribution shown in Fig. 3. This mechanism is ;nnroximate expression, arit) computed numerically using the
analogous to the one responsible for tissue polarization whegy pidomain model. The fiber geometry is given b§(x,y)
the fibers approach a sealed boundary in the presence of an;/2 cog(mx/D)cog(my/D), and the local fiber direction is indi-
electric field[11]. cated by the line segments. A 2@0 mn? region of tissue is
Both of these mechanisms are particularly clear when wehown, with the origin at the center. The arrows indicate that the
assumeg_=gr. Of course in cardiac tissue this is not the electric field points to the righix direction. The parameters used in
casejg, is about 4 times larger thagy [8]. This complicates this calculation areEy=500V/m, ¢=0, A\ =0.434 mm, \y
the calculation of/, and implies that the electric field varies =0.174 mm,a=1, e=0.75, andD =20 mm. The two small panels
throughout the tissue. But the underlying mechanisms reon the left indicate the separate contributions of the two mecha-
main the same. nisms. The color bar is the same as in Fig. 2.

Another simple fiber geometry, shown in Fig. 5, is remi-

niscent of that present at the apex of the hgh2] B(x.y)=tar! y N 3_77 (30
X 4
ThatJ, rotatesawayfrom the fiber direction is a consequence of implying that
our unrealistic assumption that =g;. For instance, the param- s
etersg, =g1=0.4 S/m,a=1, ande=0.75 correspond to the con- . —X
ductivities g;. =0.2 S/m, g;t=0.08 S/m, g, =0.2 S/m, andg.r sin 20= x2+y?’ (31)
=0.32 S/m. In this case, the extracellular space has its largest con-
ductivity perpendicular to the fibers. In real cardiac tissgg, 2xy
#07, and both the intracellular and extracellular spaces have their COS20= ——, (32
largest conductivity parallel to the fibers. Howevér,will be ro- xX“ty
tated toward the fiber direction more thdn, because of the greater
anisotropy in the intracellular space, so the current loop will still 0_‘92 . y (33)
exist. Assumingg, =g+ allows us to separate effects arising spe- ox X2+y2’
cifically because of unequal anisotropy rati@s#0) from effects
arising because of the overall anisotropy of the tissyeAgr). and
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TABLE |. Bidomain parameters.

g 0.1863 S/m

Uit 0.0186 S/m

el 0.1863 S/m

et 0.0745 S/m

B 0.3um™*

Gm 1.65 S/t T
Ry i

The resulting expression for,, is

1
VmZEEO)\EW[—COSQS y+sing x]. (35

The transmembrane potential produced by an electric field in
the x direction is shown in Fig. 5. The polarization gets very
large near the origin, because the fibers are spiraling into a
singular point where the fiber direction changes dramatically
over short distances. In this example, the fiber orientation
changes in both thg andy directions, so that both mecha-
nisms described in Fig. 4 contribute to the transmembrane
potential. The two smaller panels to the left in Fig. 5 are the
separate contributions of the two mechanisms, with the upper
panel corresponding to the first mechanism, and the lower
panel to the second.

b
IV. COMPARISON OF ANALYTICAL AND NUMERICAL ©
CALCULATIONS FIG. 7. (Color) The transmembrane potential as a functiorx of
(horizonta) andy (vertica) (a) determined analytically using the
We have made several assumptions when deriving the appproximate expression, arit) computed numerically using the
proximate analytical solution given by E@1). In particular,  full bidomain model. The fiber geometry is given b§(x,y)
we assumed that we could retain only the first order terms in= 7/2 cog(mx/D)cog(my/D), and the local fiber direction is indi-
the expansion in powers of, that the fiber orientation cated by the line segments. A 220 mn? region of tissue is
changed gradually enough that we could neglect the first twehown, with the origin at the center. The arrows indicate that the
terms on the left-hand side of E(L8), and that the electric electric field points uply direction. The parameters used in this
field is uniform, which can only be true in the caseqyf  calculation are Eq=500V/m, ¢=m/2, N =0.434mm, A
=g+. In order to see how valid these assumptions are, we0.174 mm,a=1,e=0.75, and> =20 mm. The two small panels
can Ca'cu'atevm(X,y) numerica”y without these assump- 0r| the left indicate the separate Contribgtions of the two mecha-
tions, and compare it to the expression in Egl). One  Nisms. The color bar is the same as in Fig. 2.
difficulty that arises is the influence of the boundary. When

myocardial fibers approach a sealed boundary at an angle,tle right by the first mechanisfFig. 6(a), small top pandl
transmembrane potential is induced in the presence of am also induces a more complicated distribution of
electric field [11]. We wish to exclude such boundary- hyperpolarization-depolarization-hyperpolarization-depolari-
induced membrane polarization from our analysis. The easization in they direction by the second mechanigFig. 6(a),
est way to avoid such boundary artifacts is to choose a fibesmall bottom panél When these two contributions are added
geometry such that the fibers are always parallel or perpenegether, we obtain a spiral-like distribution of transmem-

dicular to the boundarigs$]. brane potentialFig. 6(@)].
One simple fiber orientation that is zero at the tissue We compare the result in Fig.(@ to the numerically
boundaries X=*D/2 andy=*+D/2) is calculated transmembrane potential using the full bidomain
model, shown in Fig. ®). The bidomain equations were
B(x.y) = zcosz( wi) cosz( Trl) (36) solved using a finite difference method described previously
’ 2 D D/’ [13], using the parameters given in Table I. The space step

was 0.1 mm, compared to a length constant parallel to the
shown in Fig. 1. When an electric field is in thedirection,  fibers of 0.43 mm. A grid of 201 by 201 nodes implies a
it induces depolarization on the left and hyperpolarization ortissue sheeD =20 mm on each side. The boundary condi-
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a) =

b)

(b)

FIG. 9. (Color) The transmembrane potential as a functiorx of
(horizonta) andy (vertica) (a) determined analytically using the
approximate expression, arfd) computed numerically using the
full bidomain model. The fiber geometry is given W(x,y)=
—sin(2mx/D)sin(2my/D), and the local fiber direction is indicated
by the line segments. A 2020 mn? region of tissue is shown, with
Othe origin at the center. The arrows indicate that the electric field
points up(y direction). The parameters used in this calculation are
Ey=500V/m, ¢=m/2, A\ =0.434 mm, \;=0.174 mm, a=1, e
=0.75, andD =20 mm. The two small panels on the left indicate
e separate contributions of the two mechanisms. The color bar is
e same as in Fig. 2.

FIG. 8. (Color) The transmembrane potential as a functiorx of
(horizonta) andy (vertica) (a) determined analytically using the
approximate expression, arid) computed numerically using the
full bidomain model. The fiber geometry is given (x,y)=
—sin(2mx/D)sin(2my/D), and the local fiber direction is indicated
by the line segments. A 2020 mn? region of tissue is shown, with
the origin at the center. The arrows indicate that the electric fiel
points to the rightx direction. The parameters used in this calcu-
lation areEq=500 V/m, ¢=0, A\ =0.434 mm,\+=0.174 mm,«
=1, e=0.75, andD=20 mm. The two small panels on the left
indicate the separate contributions of the two mechanisms. Th%jl
color bar is the same as in Fig. 2. t

study of far-field stimulation. The strength of the electric
field, Ey, is 500 V/m, and it is applied in either theor y

NV direction.

—f_0 (379 The analytical and numerical transmembrane potential
distributions differ quantitatively, but have the same general
qualitative form, implying that the analytical equations do
not determineV,,(x,y) accurately, but do provide an intui-
tive understanding of th¥, distribution and the underlying

tions at the edge of the tissue are

an

on sides parallel to the electric field,

Ve==5V (37D mechanisms that give rise to it. Figure 7 compares the ana-
on sides perpendicular to the electric field, and g’itr'g;li:r?d numericaVn(x,y) for an electric field in they
oV A second example is shown in Fig. 8 for the fiber distri-
—M_o. (38)  bution
an
. X\ y
The boundary condition fov,, implies that the normal com- 0(x,y)=—sin 2775 siny 2775

ponents oV, andV; are the same, and ensures that there are
no large boundary artifacts that would interfere with ourwith the electric field in thex direction. Figure 9 shows the
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same fiber geometry with the electric field in theirection.  the tissue occurred in the same places in both the numerical
Again, quantitative differences exist between the analyticcalculation using the full bidomain model and the analytical
and numerical calculations, but the qualitative transmemealculation using an approximate model. Using more realis-

brane potential distributions are the same. tic fiber geometries may be a way to test our model further
by comparing it with experimental data.
V. DISCUSSION Two other possible mechanisms for electric field stimula-

) o o . tion of cardiac tissue are macroscopic inhomogeneities and

The main result of our paper, exhibited in Fig. 4, is thatihe sawtooth potential. A simple scaling comparison of the
two different mechanisms can induce polarization in cardiaGnaximum transmembrane potential amplitud¥e, may, can
tissue with curving fibers. The first, which applies when thepe made between our results and the effects of these two
fiber orientation changes along the direction of the electrignechanisms. Assuming that the electric field is in the direc-
field, arises as current redistributes from the intracellulagjgn of the fibers, macroscopic inhomogeneities can be rep-
space(favored wherE is parallel to fibersto the extracel- resented by multiplying the electric field times the length
lular space(favored wherE is perpendicular to fibeysThe constantV, ma—=EN\, and the sawtooth potential can be ap-
second, which applies when the fiber orientation changegyoximated by multiplying the electric field by the length of
perpendicularly to the direction of the electric field, arisesy myocardial cellV, n=Ea [14]. For our fiber curvature
becquse]i andJe_ are not p_arallel t(E_or to e_ach other when solution, Vi, max can be approximated from Eq19) by
the fibers are oriented obliquely. This provides a current l00Ry £\ 2/ \wherel is a characteristic distance over which the
through the intracellular space in one direction and backiers curve. The ratio of the,,, ;e from macroscopic inho-

through the extracellular space in the opposite direCtionmogeneities to that from fiber curvature E\/(eE\2/L)
Where these current loops end, the current must cross the, je\ ~This ratio implies that inhomogeneities will domi-

membrane, thereby polarizing the tissue. Both mechanismg,a fiper curvature unless the fibers curve over a distance

require unequal anisotropy ratios. . . _comparable to the length consant. The ratio of Yhgmax
We are not the first to derive an approximate analytlcalfrom the sawtooth potential to fiber curvature is

solution ofVrn for fiber curvature, Sobiet al.[9] proposeda ' gg(eEx?/L) = (aL/er?). The cell lengih a is much less
gener? 1€ _actwatmghunctl?jn It :‘t préelcltsdr_zglons ot is- than)\, but the distance over which fibers curig,is gener-
sue polarization. Yet, the model of Someal. did not em- - oy ch greater tham. Thus the ratical/e\? is on the

phasi;e the es_sential role of unequal anigotr_opy ratio_s. OWrder of 1, so we can reach no conclusion about the domi-
analytical solution suggests a similar “activating function,” nant mechanism from this simple analysis

but one that highlights the role of unequal anisotropy ratios. We opened this manuscript by challenging the reader to

In addition, the model of Sobiet al. [9] did not go so far as o it ualitatively the transmembrane potential distribution

to define their activating function in terms of the derivative for the fiber geometry shown in Fig. 1. The correct prediction
of the fiber angleg, as ours does. Therefore, they were Notic +he spiral shape distribution &f,, shown in Fig. 6. The

able to qualitatively predict effects of the electric field ap- two mechanisms described in Fig. 4 are the key to making

plied to curving fibers and QOUId not provide Fhe same inSighguch predictions and to understanding membrane polariza-
into the mechanisms behind the polarization that we Obfion caused by fiber curvature in cardiac tissue

tained.

There are certain limitations to our approximation that
could have_afchted our resu!ts. We assume that a first order ACKNOWLEDGMENTS
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sufficient, that the fiber curvature is small enough so the This work was supported by grants from the National In-
terms on the left-hand side of E¢L8) can be ignored, and stitutes of HealthRO1 HL57207 and the American Heart
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