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Approximate analytical solutions of the Bidomain equations for electrical stimulation of cardiac
tissue with curving fibers

Bradley J. Roth and Deborah Langrill Beaudoin
Department of Physics, Oakland University, Rochester, Michigan 48309

~Received 8 November 2002; published 27 May 2003!

The mechanism by which an applied electric field stimulates cardiac tissue far from the stimulating elec-
trodes is not wholly understood. One possible mechanism relates the curving cardiac fibers to the induced
membrane currents and transmembrane potentials. However, we lack a qualitative understanding of where
these areas of polarization will occur when an electric field is applied to a sheet of cardiac tissue with curving
fibers. In our study, we derive an analytical model for the transmembrane potential, dependent on the gradient
of the fiber angleu, for a two-dimensional passive sheet of cardiac tissue exhibiting various fiber geometries.
Unequal anisotropy ratios are crucial for our results. We compare the results from our analytical solution to a
numerical calculation using the full bidomain model. The results of our comparison are qualitatively consistent,
albeit numerically different. We believe that our analytical approximation provides a reliable prediction of the
polarization associated with an electric field applied to cardiac tissue with any fiber geometry and a qualitative
understanding of the mechanisms behind the virtual electrode polarization.
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I. INTRODUCTION

The mechanism for electrical stimulation of cardiac tiss
has been studied intensely over the past few years@1#. This is
an important topic because of the role electrical stimulat
plays in cardiac pacing and defibrillation. Of particular inte
est is ‘‘far-field’’ stimulation, which we take to mean excita
tion of cardiac tissue far from any stimulating electrode
tissue boundary. One proposed mechanism for far-fi
stimulation is based on ‘‘fiber curvature’’@2,3#. According to
this hypothesis, when an electric field is applied to the tis
the change in the direction of the myocardial fibers w
position induces membrane currents and a transmemb
potential. Although this mechanism has been studied ex
sively in numerical simulations@4–6#, we still lack a quali-
tative understanding of how it works. If the fiber direction
the x-y plane is specified byu(x,y), the angle between th
fibers and thex axis, we have found it difficult to predic
which regions of the tissue will be polarized by an elect
field simply by inspection ofu(x,y). For example, Fig. 1
shows the fiber geometry throughout a sheet of tissue and
direction of the applied electric field. Can you look at Fig.
and predict where the tissue will be depolarized and whe
will be hyperpolarized? Our goal in this paper is to elucid
the mechanism of tissue polarization caused by fiber cu
ture, and to provide a way to predict the distribution of p
larization qualitatively.

II. DERIVATION OF THE ANALYTICAL EQUATIONS

We represent cardiac tissue using the bidomain model@7#,
which accounts for both the intracellular and extracellu
spaces. In a two-dimensional sheet of tissue, the local p
erties of the anisotropic bidomain are governed by five
rameters: the intracellular conductivity parallel to the fibe
giL ; the intracellular conductivity perpendicular to the fibe
giT ; the extracellular conductivity parallel to the fibers,geL ;
the extracelluar conductivity perpendicular to the fibers,geT ;
1063-651X/2003/67~5!/051925~8!/$20.00 67 0519
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and the local fiber direction,u(x,y). The values of the four
bidomain conductivities are fairly well known@8#, and we
assume they are the same everywhere. In general, the
direction is not fixed, but varies throughout the tissue.

We can write the four bidomain conductivities in terms
four more useful parameters:gL5giL1geL , gT5giT1geT ,
a5giL /geL , and e512@(geL /geT)/(giL /giT)#. These pa-
rameters are similar to the ones used in@8#, except that for
far-field stimulation the parallel combinations of conductiv
ties, gL andgT , are more convenient to work with than th
series combinations in@8#. The parametere is particularly
useful, because it is equal to zero when the tissue has ‘‘e
anisotropy ratios’’ (geL /geT5giL /giT). We can write the
four bidomain conductivities in terms of these parameters

giL5gLS a

11a D , ~1!

giT5gTS a~12e!

11a~12e! D , ~2!

FIG. 1. The line segments indicate the fiber direction in a tw
dimensional sheet of cardiac tissue, and the arrows indicate
direction of the applied electric field. The reader’s task is to pred
qualitatively the resulting transmembrane potential distribution.
©2003 The American Physical Society25-1
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geL5gLS 1

11a D , ~3!

geT5gTS 1

11a~12e! D . ~4!

In a fixed Cartesian coordinate system (x,y), the fiber
direction does not generally align with the coordinate ax
Therefore, both the intracellular and extracelluar conduc
ity tensors are functions of position@through the fiber angle
u(x,y)] and will in general have off-diagonal componen
@9#

g̃5S gL cos2 u1gT sin2 u ~gL2gT!cosu sinu

~gL2gT!cosu sinu gL sin2 u1gT cos2 u D . ~5!

The bidomain equations govern the intracellular poten
Vi and the extracelluar potentialVe ,

“•g̃i“Vi5bGm~Vi2Ve!, ~6!

“•g̃e“Ve52bGm~Vi2Ve!, ~7!

whereb is the ratio of membrane surface area to tissue v
ume andGm is the membrane conductance per unit ar
These equations are based on the assumption that the t
is in steady state, and that the membrane is passive. P
ously, we found that the bidomain equations are easie
analyze analytically when written in terms of two differe
potentials,Vm and c, which are linear combinations ofVi
andVe

Vm5Vi2Ve , ~8!

c5Vi1
1

a
Ve , ~9!

whereVm is the transmembrane potential andc is an auxil-
iary potential with no simple physical interpretation@10#. We
can invert these relationships to determineVi and Ve in
terms ofVm andc

Vi5
a

11a S c1
1

a
VmD , ~10!

Ve5
a

11a
~c2Vm!. ~11!

If we add Eqs.~6! and ~7! and express them in terms ofVm
andc, we obtain

“•~ g̃i1g̃e!“c52“•S g̃i

1

a
2g̃eD“Vm . ~12!

If we multiply Eq. ~6! by giT /geT , and subtract the produc
from Eq. ~7!, we get
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“•S g̃i

1

a
1a~12e!g̃eD“Vm2

11a

a
bGm@11a~12e!#Vm

52“•@ g̃i2a~12e!g̃e#“c. ~13!

Equations~12! and ~13! are two coupled partial differen
tial equations that need to be solved forVm andc. Analytical
solutions to these equations are rare, except in the cas
equal anisotropy ratios. Therefore, we search for appro
mate analytical solutions using a perturbative expansion
powers ofe, with the zeroth order term in this expansio
corresponding to equal anisotropy ratios. This type of exp
sion proved useful for analyzing unipolar stimulation of ca
diac tissue and for understanding the extracelluar poten
produced by an expanding wave front@10#.

To begin, we expandVm andc in powers ofe

Vm5Vm01eVm11e2Vm21¯ , ~14!

c5c01ec11e2c21¯ . ~15!

We can also expand the expressions for the bidomain c
ductivities @Eqs. ~1!–~4!# in powers ofe. Placing these ex-
pressions into Eqs.~12! and~13!, we collect terms with com-
mon powers ofe to obtain equations governingVm0 , c0 ,
Vm1 , etc.

The zeroth-order equation forc0 is

]

]x F ~gL cos2 u1gT sin2 u!
]c0

]x
1~gL2gT!cosu sinu

]c0

]y G
1

]

]y F ~gL2gT!cosu sinu
]c0

]x

1~gL sin2 u1gT cos2 u!
]c0

]y G50. ~16!

This boundary value problem forc0 does not depend onVm
~the equations uncouple fore50). This expression is diffi-
cult to solve when the tissue is anisotropic,gLÞgT , with an
arbitrary fiber geometryu(x,y). WhengL5gT , Eq. ~16! re-
duces to Laplace’s equation,“2c050. The solution depends
on the boundary conditions forc0 . In this paper, we are
concerned with boundary conditions that correspond t
uniform electric field at largeuxu and uyu.

The zeroth-order equation forVm0 is

]

]x F ~gL cos2 u1gT sin2 u!
]Vm0

]x

1~gL2gT!cosu sinu
]Vm0

]y G
1

]

]y F ~gL2gT!cosu sinu
]Vm0

]x

1~gL sin2 u1gT cos2 u!
]Vm0

]y G2
gL

lL
2 Vm050,

~17!
5-2
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where the length constant lL is equal to
AgiLgeL /(giL1geL)bGm. This equation does not depend o
c0 . WhengL5gT , it reduces to the two-dimensional cab
equation,“2Vm02Vm0 /lL

250. If we assume thatVm0 goes
to zero at largeuxu and uyu, then the solution to this equatio
is Vm050. There is no transmembrane potential induced
the case of equal anisotropy ratios.

To determine the first nonzero contribution to the tra
membrane potential, we consider the first-order equation
Vm1

]

]x F ~gL cos2 u1gT sin2 u!
]Vm1

]x
1~gL2gT!

3cosu sinu
]Vm1

]y G1
]

]y F ~gL2gT!cosu sinu
]Vm1

]x

1~gL sin2 u1gT cos2 u!
]Vm1

]y G2
gL

lL
2 Vm1

52gL

a

11a H ]

]x Fcos2 u
]c0

]x
1cosu sinu

]c0

]y G
1

]

]y Fcosu sinu
]c0

]x
1sin2 u

]c0

]y G J . ~18!

Although this equation appears formidable, in many ca
the fiber geometry is smooth, so thatu(x,y) changes little
over distances on the order of the length constantlL . In that
case, the first two terms on the left-hand side of Eq.~18! are
negligible compared to the third, and Eq.~18! becomes sim-
ply

Vm15lL
2 a

11a H ]

]x Fcos2 u
]c0

]x
1cosu sinu

]c0

]y G
1

]

]y Fcosu sinu
]c0

]x
1sin2 u

]c0

]y G J . ~19!

This is our central result. In the literature on bioelectric ph
nomena, the expression on the right-hand-side of Eq.~19! is
called the ‘‘activating function.’’

To make further progress, we must knowc0 . But c0 is
difficult to determine in general; we must solve Eq.~16!. We
can make initial progress understanding the physical bas
far field stimulation if we assumegL5gT so thatc0 obeys
Laplace’s equation. The simplest solution of Laplace’s eq
tion is a uniform electric field of strengthE0 in the direction
f:

c052
11a

a
E0~x cosf1y sinf!. ~20!

The factor of (11a)/a ensures that whenc0 is substituted
into Eqs.~10! and ~11!, the strength of the electric field in
both the intracellular and extracellular spaces isE0 . Substi-
tuting Eq.~20! into Eq.~19!, and taking the derivatives of th
trigonometric functions, we find that
05192
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Vm15E0lL
2FcosfS sin 2u

]u

]x
2cos 2u

]u

]yD
1sinfS 2cos 2u

]u

]x
2sin 2u

]u

]yD G , ~21!

or, in a somewhat more compact form,

Vm15lL
2EW 0•D̃•“

W u, ~22!

where

D̃5S sin 2u 2cos 2u

2cos 2u 2sin 2u D . ~23!

III. SIMPLE EXAMPLES

As a first example, consider a fiber geometry similar
that examined by Skouibineet al. @5#,

u~x,y!5tan21S x

L D , ~24!

shown in Fig. 2. In this case,

sin 2u5
2xL

L21x2 , ~25!

cos 2u5
L22x2

L21x2 , ~26!

]u

]x
5

L

L21x2 , ~27!

and

FIG. 2. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical!. The fiber geometry is given by
u(x,y)5tan21(x/L), and the local fiber direction is indicated by th
line segments. A 20320 mm2 region of tissue is shown, with the
origin at the center. The arrows indicate that the electric field po
to the right~x direction!. The parameters used in this calculation a
E05500 V/m, f50, lL50.434 mm,e50.75, andL52 mm.
5-3
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]u

]y
50, ~28!

so

Vm5
eE0lL

2

L

1

F11S x

L D 2G2 H cosf2
x

L
2sinfF12S x

L D 2G J ,

~29!

correct to first order in powers ofe. Figure 2 shows a plot o
Vm when the electric field is in thex direction (E0
5500 V/m, f50, lL50.434 mm,e50.75, andL52 mm).
The transmembrane potential is negative~hyperpolarized! on
the left (minimum5223 mV), and positive~depolarized!
on the right (maximum523 mV). Figure 3 shows a simila
plot for the electric field in they direction (f5p/2). The
transmembrane potential is strongly hyperpolarized in
center (minimum5235 mV), and weakly depolarized to th
left and right (maximum54 mV).

This simple example is useful because it highlights
two mechanisms underlying the polarization of cardiac tis
by an applied electric field when fibers curve. Figure 4~a!
shows schematically the first mechanism, which app
when the fiber orientation changes along the direction pa
lel to the electric field@the first term in Eq.~29!#. On the left,
the electric fieldE is parallel to the fibers. In this case, th
intracellular and extracellular conductivities are similar (giL
5geL) @8#, and the net current densityJ divides evenly be-
tweenJi andJe , the current densities in the intracellular an
extracellular spaces. On the right, the electric field is perp
dicular to the fibers. In this case, the intracellular conduc
ity is much less than the extracellular conductivity,giT
,geT @8#. Therefore,J ~which is the same on the left an
right, because we are assuminggL5gT) flows primarily in

FIG. 3. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical!. The fiber geometry is given by
u(x,y)5tan21(x/L), and the local fiber direction is indicated by th
line segments. A 20320 mm2 region of tissue is shown, with the
origin at the center. The arrows indicate that the electric field po
up ~y direction!. The parameters used in this calculation areE0

5500 V/m, f5p/2, lL50.434 mm,e50.75, andL52 mm. The
color bar is the same as in Fig. 2.
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the extracellular space, with relatively little current passi
through the more resistive intracellular space. As the fi
orientation changes from parallel to perpendicular to
electric field~middle!, current redistributes from the intrac
ellular space into the extracellular space, which depolari
the membrane~D!. Similarly, if the fiber orientation change
from perpendicular to parallel to the electric field, curre
redistributes from the extracellular into the intracellul
space, hyperpolarizing the membrane. This behavior is c
sistent with the transmembrane potential distribution sho
in Fig. 2. Note that unequal anisotropy ratios are crucial
this mechanism. IfgiL /geL is the same asgiT /geT , the ratio
of intracellular to extracellular current is the same regardl
of the fiber orientation, so there is no current redistributi
between the intracellular and extracellular spaces, and
membrane polarization. Only whengiL /geLÞgiT /geT ~or,
equivalently,giL /giTÞgeL /geT) is Vm nonzero. This mecha
nism has been described before~see Fig. 10 of@1#!.

The second term in Eq.~29! corresponds to the fiber ori
entation changing along the direction perpendicular to
electric field. We have never seen this second mechan
described in the literature, but it appears to be as impor
as the first mechanism. Figure 4~b! elucidates this second
mechanism. When the electric field is either perpendicula
~left! or parallel to~right! the fiber direction,J, Ji , andJe are
all in the same direction as the electric field. When the el
tric field is at an angle to the fiber direction~middle!, the net
currentJ is parallel toE becausegL5gT . However,Ji and
Je individually have components perpendicular to the el

ts

FIG. 4. A schematic diagram illustrating the mechanisms of f
field electrical stimulation due to fiber curvature.~a! First mecha-
nism, when the fiber orientation changes in the direction paralle
the electric field.~b! Second mechanism, when the fiber orientati
changes in the direction perpendicular to the electric field.
5-4
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tric field.1 This results in a current loop: intracellular curre
flows to the right, where it exits the intracellular space a
depolarizes the tissue (D), and then returns as extracellul
current to the left, where it enters the intracellular space
hyperpolarizes the tissue~H!. If the anisotropy ratios were
equal, bothJi andJe would individually be parallel toE, and
the current loop and transmembrane polarization would
appear. This behavior is consistent with the transmembr
potential distribution shown in Fig. 3. This mechanism
analogous to the one responsible for tissue polarization w
the fibers approach a sealed boundary in the presence
electric field@11#.

Both of these mechanisms are particularly clear when
assumegL5gT . Of course in cardiac tissue this is not th
case;gL is about 4 times larger thangT @8#. This complicates
the calculation ofc0 and implies that the electric field varie
throughout the tissue. But the underlying mechanisms
main the same.

Another simple fiber geometry, shown in Fig. 5, is rem
niscent of that present at the apex of the heart@12#

1ThatJe rotatesawayfrom the fiber direction is a consequence
our unrealistic assumption thatgL5gT . For instance, the param
etersgL5gT50.4 S/m,a51, ande50.75 correspond to the con
ductivities giL50.2 S/m, giT50.08 S/m, geL50.2 S/m, andgeT

50.32 S/m. In this case, the extracellular space has its largest
ductivity perpendicular to the fibers. In real cardiac tissue,gL

ÞgT , and both the intracellular and extracellular spaces have t
largest conductivity parallel to the fibers. However,Ji will be ro-
tated toward the fiber direction more thanJe , because of the greate
anisotropy in the intracellular space, so the current loop will s
exist. AssuminggL5gT allows us to separate effects arising sp
cifically because of unequal anisotropy ratios (eÞ0) from effects
arising because of the overall anisotropy of the tissue (gLÞgT).

FIG. 5. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical!. The fiber geometry is given by
u(x,y)5tan21(y/x)13p/4, and the local fiber direction is indicate
by the line segments. A 20320 mm2 region of tissue is shown, with
the origin at the center. The arrows indicate that the electric fi
points to the right~x direction!. The parameters used in this calc
lation areE05500 V/m, f50, lL50.434 mm, ande50.75. The
two small panels on the left indicate the separate contribution
the two mechanisms. The color bar is the same as in Fig. 2.
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u~x,y!5tan21S y

xD1
3p

4
, ~30!

implying that

sin 2u5
y22x2

x21y2 , ~31!

cos 2u5
2xy

x21y2 , ~32!

]u

]x
52

y

x21y2 , ~33!

and

n-

ir

l
-

FIG. 6. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical! ~a! determined analytically using the
approximate expression, and~b! computed numerically using the
full bidomain model. The fiber geometry is given byu(x,y)
5p/2 cos2(px/D)cos2(py/D), and the local fiber direction is indi-
cated by the line segments. A 20320 mm2 region of tissue is
shown, with the origin at the center. The arrows indicate that
electric field points to the right~x direction!. The parameters used i
this calculation areE05500 V/m, f50, lL50.434 mm, lT

50.174 mm,a51, e50.75, andD520 mm. The two small panels
on the left indicate the separate contributions of the two mec
nisms. The color bar is the same as in Fig. 2.
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]u

]y
5

x

x21y2 . ~34!

The resulting expression forVm is

Vm5eE0lL
2 1

~x21y2!
@2cosf y1sinf x#. ~35!

The transmembrane potential produced by an electric fiel
thex direction is shown in Fig. 5. The polarization gets ve
large near the origin, because the fibers are spiraling in
singular point where the fiber direction changes dramatic
over short distances. In this example, the fiber orienta
changes in both thex andy directions, so that both mecha
nisms described in Fig. 4 contribute to the transmembr
potential. The two smaller panels to the left in Fig. 5 are
separate contributions of the two mechanisms, with the up
panel corresponding to the first mechanism, and the lo
panel to the second.

IV. COMPARISON OF ANALYTICAL AND NUMERICAL
CALCULATIONS

We have made several assumptions when deriving the
proximate analytical solution given by Eq.~21!. In particular,
we assumed that we could retain only the first order term
the expansion in powers ofe, that the fiber orientation
changed gradually enough that we could neglect the first
terms on the left-hand side of Eq.~18!, and that the electric
field is uniform, which can only be true in the case ofgL
5gT . In order to see how valid these assumptions are,
can calculateVm(x,y) numerically without these assump
tions, and compare it to the expression in Eq.~21!. One
difficulty that arises is the influence of the boundary. Wh
myocardial fibers approach a sealed boundary at an ang
transmembrane potential is induced in the presence o
electric field @11#. We wish to exclude such boundary
induced membrane polarization from our analysis. The e
est way to avoid such boundary artifacts is to choose a fi
geometry such that the fibers are always parallel or perp
dicular to the boundaries@6#.

One simple fiber orientation that is zero at the tiss
boundaries (x56D/2 andy56D/2) is

u~x,y!5
p

2
cos2S p

x

D D cos2S p
y

D D , ~36!

shown in Fig. 1. When an electric field is in thex direction,
it induces depolarization on the left and hyperpolarization

TABLE I. Bidomain parameters.

giL 0.1863 S/m
giT 0.0186 S/m
geL 0.1863 S/m
geT 0.0745 S/m
b 0.3 mm21

Gm 1.65 S/m2
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the right by the first mechanism@Fig. 6~a!, small top panel#.
It also induces a more complicated distribution
hyperpolarization-depolarization-hyperpolarization-depola
zation in they direction by the second mechanism@Fig. 6~a!,
small bottom panel#. When these two contributions are add
together, we obtain a spiral-like distribution of transme
brane potential@Fig. 6~a!#.

We compare the result in Fig. 6~a! to the numerically
calculated transmembrane potential using the full bidom
model, shown in Fig. 6~b!. The bidomain equations wer
solved using a finite difference method described previou
@13#, using the parameters given in Table I. The space s
was 0.1 mm, compared to a length constant parallel to
fibers of 0.43 mm. A grid of 201 by 201 nodes implies
tissue sheetD520 mm on each side. The boundary cond

FIG. 7. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical! ~a! determined analytically using the
approximate expression, and~b! computed numerically using the
full bidomain model. The fiber geometry is given byu(x,y)
5p/2 cos2(px/D)cos2(py/D), and the local fiber direction is indi-
cated by the line segments. A 20320 mm2 region of tissue is
shown, with the origin at the center. The arrows indicate that
electric field points up~y direction!. The parameters used in thi
calculation are E05500 V/m, f5p/2, lL50.434 mm, lT

50.174 mm,a51, e50.75, andD520 mm. The two small panels
on the left indicate the separate contributions of the two mec
nisms. The color bar is the same as in Fig. 2.
5-6
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tions at the edge of the tissue are

]Ve

]n
50 ~37a!

on sides parallel to the electric field,

Ve565 V ~37b!

on sides perpendicular to the electric field, and

]Vm

]n
50. ~38!

The boundary condition forVm implies that the normal com
ponents ofVe andVi are the same, and ensures that there
no large boundary artifacts that would interfere with o

FIG. 8. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical! ~a! determined analytically using th
approximate expression, and~b! computed numerically using th
full bidomain model. The fiber geometry is given byu(x,y)5
2sin(2px/D)sin(2py/D), and the local fiber direction is indicate
by the line segments. A 20320 mm2 region of tissue is shown, with
the origin at the center. The arrows indicate that the electric fi
points to the right~x direction!. The parameters used in this calc
lation areE05500 V/m, f50, lL50.434 mm,lT50.174 mm,a
51, e50.75, andD520 mm. The two small panels on the le
indicate the separate contributions of the two mechanisms.
color bar is the same as in Fig. 2.
05192
re
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study of far-field stimulation. The strength of the electr
field, E0 , is 500 V/m, and it is applied in either thex or y
direction.

The analytical and numerical transmembrane poten
distributions differ quantitatively, but have the same gene
qualitative form, implying that the analytical equations d
not determineVm(x,y) accurately, but do provide an intui
tive understanding of theVm distribution and the underlying
mechanisms that give rise to it. Figure 7 compares the a
lytical and numericalVm(x,y) for an electric field in they
direction.

A second example is shown in Fig. 8 for the fiber dist
bution

u~x,y!52sinS 2p
x

D D sinS 2p
y

D D
with the electric field in thex direction. Figure 9 shows the

d

e

FIG. 9. ~Color! The transmembrane potential as a function ox
~horizontal! and y ~vertical! ~a! determined analytically using the
approximate expression, and~b! computed numerically using the
full bidomain model. The fiber geometry is given byu(x,y)5
2sin(2px/D)sin(2py/D), and the local fiber direction is indicate
by the line segments. A 20320 mm2 region of tissue is shown, with
the origin at the center. The arrows indicate that the electric fi
points up~y direction!. The parameters used in this calculation a
E05500 V/m, f5p/2, lL50.434 mm, lT50.174 mm, a51, e
50.75, andD520 mm. The two small panels on the left indica
the separate contributions of the two mechanisms. The color b
the same as in Fig. 2.
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same fiber geometry with the electric field in they direction.
Again, quantitative differences exist between the analy
and numerical calculations, but the qualitative transme
brane potential distributions are the same.

V. DISCUSSION

The main result of our paper, exhibited in Fig. 4, is th
two different mechanisms can induce polarization in card
tissue with curving fibers. The first, which applies when t
fiber orientation changes along the direction of the elec
field, arises as current redistributes from the intracellu
space~favored whenE is parallel to fibers! to the extracel-
lular space~favored whenE is perpendicular to fibers!. The
second, which applies when the fiber orientation chan
perpendicularly to the direction of the electric field, aris
becauseJi andJe are not parallel toE or to each other when
the fibers are oriented obliquely. This provides a current lo
through the intracellular space in one direction and b
through the extracellular space in the opposite directi
Where these current loops end, the current must cross
membrane, thereby polarizing the tissue. Both mechani
require unequal anisotropy ratios.

We are not the first to derive an approximate analyti
solution ofVm for fiber curvature. Sobieet al. @9# proposed a
‘‘generalized activating function’’ that predicts regions of ti
sue polarization. Yet, the model of Sobieet al. did not em-
phasize the essential role of unequal anisotropy ratios.
analytical solution suggests a similar ‘‘activating function
but one that highlights the role of unequal anisotropy rati
In addition, the model of Sobieet al. @9# did not go so far as
to define their activating function in terms of the derivati
of the fiber angle,u, as ours does. Therefore, they were n
able to qualitatively predict effects of the electric field a
plied to curving fibers and could not provide the same insi
into the mechanisms behind the polarization that we
tained.

There are certain limitations to our approximation th
could have affected our results. We assume that a first o
approximation in our expansion of the small parametere is
sufficient, that the fiber curvature is small enough so
terms on the left-hand side of Eq.~18! can be ignored, and
that the electric field is uniform. However, the polarization
s

ns

sc

c
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the tissue occurred in the same places in both the nume
calculation using the full bidomain model and the analytic
calculation using an approximate model. Using more rea
tic fiber geometries may be a way to test our model furt
by comparing it with experimental data.

Two other possible mechanisms for electric field stimu
tion of cardiac tissue are macroscopic inhomogeneities
the sawtooth potential. A simple scaling comparison of
maximum transmembrane potential amplitude,Vm,max, can
be made between our results and the effects of these
mechanisms. Assuming that the electric field is in the dir
tion of the fibers, macroscopic inhomogeneities can be r
resented by multiplying the electric field times the leng
constant,Vm,max5El, and the sawtooth potential can be a
proximated by multiplying the electric field by the length
a myocardial cell,Vm,max5Ea @14#. For our fiber curvature
solution, Vm,max can be approximated from Eq.~19! by
eEl2/L, whereL is a characteristic distance over which th
fibers curve. The ratio of theVm,max from macroscopic inho-
mogeneities to that from fiber curvature isEl/(eEl2/L)
5L/el. This ratio implies that inhomogeneities will dom
nate fiber curvature unless the fibers curve over a dista
comparable to the length consant. The ratio of theVm,max
from the sawtooth potential to fiber curvature
Ea/(eEl2/L)5(aL/el2). The cell length a is much les
thanl, but the distance over which fibers curve,L, is gener-
ally much greater thanl. Thus the ratioaL/el2 is on the
order of 1, so we can reach no conclusion about the do
nant mechanism from this simple analysis.

We opened this manuscript by challenging the reade
predict qualitatively the transmembrane potential distribut
for the fiber geometry shown in Fig. 1. The correct predicti
is the spiral shape distribution ofVm shown in Fig. 6. The
two mechanisms described in Fig. 4 are the key to mak
such predictions and to understanding membrane polar
tion caused by fiber curvature in cardiac tissue.
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