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Nonlinear dynamical model of human gait
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We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The
stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal
nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait.
Moreover, the long-range memory in these fluctuations is lost when the gait is keyed on a metronome. Human
locomotion is controlled by a network of neurons capable of producing a correlated syncopated output. The
central nervous system is coupled to the motocontrol system, and together they control the locomotion of the
gait cycle itself. The metronomic gait is simulated by a forced nonlinear oscillator with a periodic external
force associated with the conscious act of walking in a particular way.
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[. INTRODUCTION human gate may also be voluntarily forced, for example, by
following the frequency of a metronome. We model the com-
Walking is a complex process which we have only re-plex gait system by assuming that the amplitude of the im-
cently begun to understand through the application of nonpulses of the correlated firing neural centers regulates only
linear data processing techniqugk-4] to study interval the unpertu.rbed inner freqqency of a r!onlinear forced. Van
data. It has been known for over a century that there is &er Pol oscillatof10] that mimics the gait cycle. The stride
variation of 3-4% in the stride interval of humans during interval is assumed to coincide with the actual period of the
walking [5], and only in the last decade did Hausdatfal. ~ Van der Pol oscillator. In this way the gait frequency may
[1] demonstrate that the stride-interval time series exhibitgliffer slightly from the potential frequency induced by the
long-time correlation, suggesting that the phenomenon opeural firing activity. In fact, the chaotic behayior of nonlin-
walking is a self-similar, fractal activity. Subsequent studiesear oscillators, such as the Van der Pol oscillator, allows a
by West and Griffin[3,4] supported the conclusion that the more complex behavior that may be controlled also by a
human gait time series is fractal. However, more recently iconstraint that forces the oscillator to follow a particular
was determined that these time series, rather than beirf§€d frequency. _ _ _
monofractal, are Weak|y mu|tifracté5,7]_ In particu|ar, in The SCPG model is tested on a dataset available in Ref.
Ref. [7] the interested reader will find a detailed fractal and[11]. These data were originally collected and used by Haus-

multifractal analyses of the stride-interval datasets that herglorff et al. [12] to determine the dependence of the fractal
we try to model. dimension of the time series on changes of the average rate

Human locomotion is known to be a voluntary process,Of walking. These data contain the stride-interval time series

but it is also regulated through a network of neurons called 40r ten healthy young men walking at a slow, normal, and
central pattern generat¢éEPG [8], capable of producing a fast pace, for a period of 1 h. The same individuals are then
syncopated output. The early nonlinear dynamical models ofequested to walk at a pace determined by a metronome set
CPGs for gait assumed that a single nonlinear oscillator bat the average slow, normal, and fast paces for 30 min to
used for each limb participating in the locomotion processdenerate a second dataset.

[9] Therefore a quadruped requires the Coup”ng of four non- The fractal and multifractal analyses of the data _are done
linear oscillators to determine the correct phase relation8y studying the estimated distribution of the locallétier
among the four legs in order to distinguish between variou§Xponents using wavelet transforms. The interested reader
modes of locomotion, that is, Wa|king’ trotting, Cantering’Wi” find a detailed discussion about the analySiS methOd, in
and galloping. More recent dynamical models, using theParticular, in Ref[13], and in Refs[14-18. In Ref.[7] we
property of Synchronizaﬁon of nonlinear dynamica| Systems’also discuss th|S method in detail. To better understand the
allow for neurons within an assembly to become enslaved t§1eaning of the Hider exponenh, we recall that the relation

a single rhythmic muscular activity. Thus, rather than havingPetween the Hader and Hurst exponerti [17] in the con-

a separate nonlinear oscillator for each limb, it is possible tdinuum limit of a monofractal noise is=H—1 according to
have a single CPG to determine how we walk. the notation adopted in Reff7,13]. According to this defi-

The model that we present here, the super GBGPQ, nition, the autocorrelgtion functiohl8] of a fractal noise
assumes that the central nervous system is coupled to tHéi} is related to the Hader exponent via the relation
motocontrol system, and together they control the locomo-
tion of the gait cycle. We stress that it is the period of the gait
cycle that is ultimately measured in these stride-interval ex- C(r)=

<§i§i+r> 0(|"2H_2=|’2h
periments, and not the neural firing activity. The dynamics of <§i2>

, (1)
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or, equivalently, in the power spectrum representation pulses is used to drive the stepping. This is not a simple
linear response process because changing the frequency of
[ iomtr LoH e—1-on the driver has little effect of the walking cyc[@0]. How-

S(f)= JGC(r)e drocf =f . 2 ever, since the frequency of the stepping increases in propor-
tion to the amplitude of the stimulation, we can conclude that
the variation in the stride-interval of humans is related to the
fluctuation of the amplitude of the impulses of the firing
neural centers.

As Collins and Richmond8] point out, in spite of the
studies establishing the existence of a CPG in the central
nervous system of quadrupeds, such direct evidence does not
exist for a vertebrate CPG for biped locomotion. Conse-
stride-interval time series is weakly multifractal with a main quently, these and other authors have turned to the construc-

tion of models, based on the coupling of nonlinear oscilla-

fractality close to that of I/noise. The time series is some- . ; .
times nonstationary and its fractal variability changes in thetors’ thehard-wired CPG, to establish that the mathematical

. . ; . : models are sufficiently robust to mimic the locomotion char-
different gait mode regimds]. In particular, the persistence . : .
. ; S . .~ _acteristics observed in the movements of segmented bipeds
as well as the multifractality of the stride-interval time serie

S . .
tend to increase for both slow and fast paces, above that égré]’ear?iggl;z? '_?h%iaédéﬂg?;;g;g:iégesigﬁoggut?]ee ?\//vniqtcmh?;ry
the normal paces. Moreover, if the pace is constrained by grop T K 9

metronome, the stochastic properties of the stride—intervat mong multiple gait patterns, are shown to neither depend on

. : S , . e detailed dynamics of the constituent nonlinear oscillators
time series change significantly, from persistent to antipersis- g . .
nor on their interoscillator coupling strengtfs.

tent fluctuations, but, in general, in each case there is a re- As we mentioned in the Introduction, it has been known

duction in the long-term memory and an increase in random; . TR ;
ness g y for over a century that there is a variation in the stride-

. . i 0 )
In Sec. I, we give a short introduction to the phenomenon'merval of humans during walking of-3-4 % [5]. This

of locomotion, the traditional methods for modeling using random variability has been showd,3,4,6,12 to exhibit

the CPG, and review the data processing used to establish t!é)?nv?/z-atlllgi]rf ?ggeéztlfgifﬁiIz?dfrzlé?geiig/i:ha_}_gzeegigfgﬁcn;eor;on
fractal behavior of the stride-interval time series. Section Il 9 ' ' Y.

eviews he stochastc propertes of the normal and meud°0% [, e beter suggets e forinewr osci:
nomic gaits under different various pace velocities, slow, . . P '
in the chaotic regime.

s,
normal, and fast. In Sec. IV, we present the mathematical A stochastic version of a CPG was developed by Haus-

details of the SCPG model. In Sec. V, we compare the resultaOrff etal. [6,12] to capture the fractal properties of the

of computation using the SCPG model with the phenomenoi'nterstride-interval time series. This stochastic model was
logical data. Finally, in Sec. VI we draw some conclusions. '

later extended by Ashkenazy and co-workg28,24 to de-
scribe the changing of gait dynamics as we develop from
Il. CENTRAL PATTERN GENERATOR childhood to adulthood. The model is essentially a random
AND LOCOMOTION walk on a correlated chain, where each node of the chain is a
ural center of the kind discussed above, and with a differ-

be partitioned into two phases: a stance phase and a swi tfrequency._ This ran_dom walk is found to generate a fra<_:-
phase. The stance phase is initiated when a foot strikes tHé Process, with a multifractal width that depends parametri-

e : .« . cally on the range of the random walker's step size.
ground and ends when it is lifted. The swing phase is initi-C& -
ated when the foot is lifted and ends when it strikes théAshkenazy and co-workerg23,24 focused on explaining

ground again. The time to complete each phase varies witf'€ €hanges in the gait time series during maturation, using
the stepping speed. A stride-interval is the length of time€ll stochastic CPG model. .
Herein we extend the previous models by assuming that

from the start of one stance phase to the start of the next . _ .
stance phase. gait dynamics are regulated by a stochastic correlated CPG

Traditionally, the legged locomotion of animals is under-S'rnllar to th_at of Ashkenazy and co-worké@s3, 24, couplgd .
stood through the use of a CPG, an intraspinal network ofo the nonlinear oscillators needed to model locomotion in
neurons capable of producing a’ syncopated ouEBLLI] the unstable, forced, and chaotic regimes. We show that two
The implicit assumption in such an interpretation is that apharafme'.[ers, the averageffrﬁquerﬁgl_)and the !Ir;tensn)A of i
given limb moves in direct proportion to the voltage gener-t"€ forcing component of the nonlinear oscillator, are suffi-

ated in a specific part of the CPG. Experiments establishin ient to determine both the fractal and multifractal variabili-
the existence of a CPG have been done on animals witﬂes of human gait under normal, stressed, and metronomic

spinal cord transections. Walking, for example, in a mesenconditions, using the SCPG model.
cephalic cat, a cat with its brain stem sectioned rostral to the
superior colliculus, is very close to normal, on a flat, hori-

zontal surface, when a section of the midbrain is electrically In this section, we summarize the main fractal and multi-
stimulated. Stepping continues as long as a train of electricdtactal characteristics of the stride-interval of the human gait

Consequentlyh=0 corresponds to pink or fl/noise, — 1
<h<—0.5 corresponds to antipersistent noi¢es —0.5
corresponds to uncorrelated Gaussian nois®.5<h<0
corresponds to correlated noise=0.5 corresponds to
Brownian motion, andh=1 corresponds to black noi§26].

By estimating the Hioler exponents and their spectra us-
ing a wavelet transforni13], we have showr7] that the

Walking consists of a sequence of steps. These steps m

IIl. HUMAN GAIT ANALYSIS
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FIG. 1. Stride interval for slow, normal, and fast gaits. The Holder exponents: slowstay (hy=0.105, c=0.060), normal(tri-
period of time over which measurements were done is approxiangle (hy=-—0.125, 0=0.063), and fas{circle) (ho=—0.012,
mately 1 h. 0=0.056) gaits for a single individual. The fitting curves are

Gaussian functions with averagg and standard deviatioa.
data that we discussed in detail elsewhigte More details . i
regarding the collection of data can be found in Réfl] that the fractal propertleiof a dataset can be studied by de-
from where we downloaded the data and in RgTs12]. termining the mean valuke of the distribution of the Hioler

The downloaded datasets analyzed in Réf.consist of exponents. The details of the method can be found in Refs.
the gait time series of ten persons in the three different cont7,13]. Moreover, Struzik also shows that a monofractal time
ditions of slow, normal, and fast walking. Each time series isseries of finite length presets a nonzero width of the distri-
~1-h long for unconstrained walking for slow, fast, and nor-bution of the Héder exponents. Therefore, the existence of
mal walking, see, for example, Fig. 1. Similarly, each timesuch a nonzero width can be a source of confusion between a
series is ~30-min long for metronomically constrained monofractal time series of finite length and a truly multifrac-
walking for slow, fast, and normal walking, see, for example,tal time series. A multifractal time series can be distinguished
Fig. 2. Participants in the study had no history of any neurofrom a monofractal time series of the same length only if the
muscular, respiratory, or cardiovascular disorders. They werwidth of its Hdder-exponent distribution is significantly
not taking any medications and had a mean age of 21.7 yarger than that of a corresponding monofractal time series
(range: 18-29 yr mean height 1.7#0.08 m and mean with the Hurst exponenti=h+1. To address this problem
weight 71.8-10.7 kg. All subjects provided informed writ- in Ref. [7] we suggest that given a dataset of lenbthits
ten consent. Subjects walked continuously on level groundiistribution of the Hdder exponents estimated by using
around an obstacle-free, lofgither 225 or 400 m approxi-  Struzik’s algorithm can be approximately fitted by a Gauss-
mately oval path and the stride-interval was measured usingn distribution of the type
ultrathin, force sensitive switches taped inside one shoe. For

the metronomic constrained walking, the individuals were 1 (h—hg)?
told only once, at the beginning of their walk, to synchronize g(h)= o expg — 7 ) (©)
mTo g

their steps with the metronome.
In Ref.[13], Struzik introduces a method to estimate the
local Hdder exponents of a time series. This author showsvhere the valué is a good approximation t. Usually, hy
is slightly larger thanh because the distribution of the

16 : : : : . : Holder exponents presents a slightly positive skewness. The
sl | ' WOW m" standard deviatiow is considered a good indicator of the
o width of the distribution. Then, we generate many artificial
g 14 | b datasets of fractal noise of finite lengthcharacterized by a
iy 13 Hurst coefficientH=h+1 and study the distribution of the
5 monofractal widthsr by using a fit with Eq(3). Finally, if
£ 12 ‘ ~ normal gait ] o is larger thanoe and this is statistically significant, we
£ 14 Isotaviiieienpb bbb conclude that the original time series is multifractal.
(| ast gait | By applyi_ng _the above metho[j?] we determined that
WMWWWWWW typical distributions of the Hder exponents, for uncon-
09 : ' : : : : strained walking of a single individual, are of the type de-

0 5 10 15 20 25 30

i ) picted in Fig. 3. Figure 4 shows the average distributions of
time (min)

the Hdder exponents for the cohort of ten walkers. Figures 3
FIG. 2. Stride intervals for slow, normal, and fast gaits for and 4 show that stride-interval time series for human gait are

metronomic-triggered walking. The total period of time is characterized by strong persistent fractal properties very
~30 min. close to that of the I/noise,h~0. However, normal gait is
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FIG. 4. Histogram and probability density estimation of the  FIG. 5. Metronomic walking for a single individual. Histogram
Holder exponents for the three walking groups are shown: slowand probability density estimation of the lder exponents: slow
(stan, normal (triangle), and fast(circle) gaits. Each curve is an (sta) (hy=—0.765, 0=0.064), normal(triangle (ho=—0.204,
average over the ten cohorts in the experiment. By changing the=0.064), and fasfcircle) (hy=—0.436,0=0.066).
gate mode from slow to normal, the Holder expondmidecrease

but from normal to fast they increase. There is also an increase of . S .
the width of the distributiors by moving from the normal to the uncorrelated noise because the distribution of thélétoex-

slow or fast gaits mode. The fitting curves are Gaussian functions;Oonents is centered closelie- — 0.5 characteristic of Gauss-
slow (sta) (hy=0.046, ¢=0.102), normal (triangl® (hq lan or uncorrelated random noise. Finally, the slow gait pre-
=-0.092, 0=0.069), and fastcircle) (h,=—0.035, 0=0.081) Sents a large variability from persistent to antipersistent
gaits. fluctuations.

We notice that some individuals may be unable to walk at
usually slightly less persistent than both slow and fast gaits2 given cadence and their attempts to synchronize the pace
The slow gait has the most persistent fluctuations and makesult in a continual shifting of the stride-interval longer and
present nonstationary propertigs>0. The slow gait fluc- shorter in the vicinity of an average. For these individuals the
tuations may also deviate most strongly from person to perphasing is never right and this gives rise to a strong antiper-
son. The higher values of the iier exponents for both slow Sistent signal for all three gait velocities.
and fast gaits, relative to normal gait, may be explained as In summary, the stride-interval of human gait presents a
due to a stress condition that increases the persistency ar@gmplex behavior that depends on many factors. Walking is
therefore, the long-time correlation of the fluctuations. More-a strongly correlated neuronal and biomechanical phenom-
over, the regular curves of Fig. 4 show that unconstraine@non which may be strongly influenced by two different
walking is characterized by fractal properties that do notstress mechanismé&) a natural stress that increases the cor-
change substantially from one individual to another. Finally,relation of the nervous system that regulates the motion at
a careful comparison of the widths of the distributions of thethe changing of the gait regime from a normal relaxed con-
Holder exponents for the different gaits with the widths for adition to a consciously forced slower or faster gait regime,
corresponding monofractal noise dataset of the same lengfh) a psychological stress due to the constraint of following a
has proven that the stride-interval of human gait is onlyfixed external cadence such as a metronome. The metronome
weakly multifractal[7]. However, the multifractal structure causes the breaking of the long-time correlation of the natu-
is slightly more prominent for fast and slow gaits than forral pace and generates a large fractal variability of the gait

normal gait.

Figure 5 shows typical distributions of the lder expo- 35
nents for metronome-constrained walkif, which is little Nof,ﬁg} gg:{ ——
different from the histograms in Fig. 3. Figure 6 shows the 3T Slow gait —— 1
average distributions of the Her exponents for all ten 25
walkers. The figures clearly indicates that under the con- . f 7(

straint of a metronome, the stride-interval of human gait be-

|
comes more random and the strong long-time persistence of 15 : Yé iﬁg\
the 1f noise is lost for some individuals. The data present a 1 o B S
large variability of the Htwler exponents from persistent to : 3
antipersistent fluctuations, that is, the exponent spans the en-
tire range of-1<h<0. However, the metronome constraint 0= i
usually has a relatively minor effect upon individuals walk- 124 08 06 04 02
. . . Holder exponent - h -
ing normally, the second peak at low lder exponents in
Fig. 6 being attributable to a single person, who has diffi- F|G. 6. Metronomic walking. Histogram estimation of the
culty with the external cadence. Probably, by walking at aHolder exponents for the three walking groups: skstap, normal

normal speed an individual is more relaxed and he or sheriangle, and fast(circle) gaits. Each curve is an average over the
walks more naturally. The fast gait appears to be almost aten cohorts in the experiment.

-p(h)

0‘5 b 2
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regime. In the following section, we present a SCPG model We observe that nonlinear oscillators may present chaotic
that is able to reproduce these properties. regimes and may be forced by an external frequga6y, so

they may be useful in describing not only the change of

phase from the walk, trot, canter, and gallop of the quadru-

IV. THE SCPG MODEL FOR HUMAN GAIT peds, but also the variability of the stride intervals observed

In this section, we introduce a model of locomotion thatin humans. In bipeds it is possible to mimic the movements
governs the stride-interval time series for human gait. ALf the two legs with two nonlinear coupled oscillators. How-
anticipated in the previous sections the model has to simulafgVe'. because the geometry of the bipeds’ gait, contrary to
a CPG[8] capable of producing a syncopated correlated outthat for quadrupeds, is unique and the two legs must be
put associated with a motocontrol process of the gait cycleShifted by rad in phase, we can mimic the biped's gait with
Moreover, the model incorporates two separate and distin@nly one nonlinear oscillator. In our model we use a well-
stress mechanisms. One stress mechanism, which hias an known neuronal oscillator model, that is, the forced Van der
ternal origin, increases the correlation of the time series dud©! oscillator[8,10] that is defined by the following equa-
to the change in the velocity of the gait from normal to thetlon:
slower or faster regimes. The second stress mechanism has . .
anexternalorigin and decreases the long-time correlation of X+ (x> = p?)x+ (2mf))?x=Asin 2 ft). (4)
the time series under the frequency constraint of a metro- ) o
nome. We model this complex phenomenon by assuming thath® Parametep controls the amplitude of the oscillations,
the intensity of the impulses of the firing neural centers regu¢0ntrols the degree of nonlinearity of the oscillatris the
lates only the inner virtual frequency of a forced Van der Polinner virtual frequency of the oscillator during thth cycle
oscillator [10]. The observed stride-interval is assumed tothat is related to the intensity of théh neural fired impulse,
coincide with the actual period of each cycle of the Van der@ndA andf, are, respectively, the strength and the frequency
Pol oscillator; a period that depends on the unperturbed innétf the external driver. The frequency of the oscillator would
frequency of the oscillator, the amplitude of the forcing func-be f=f; if A=0. . _
tion, and the frequency of the forcing function. - We notice that the nonlinear term QS WeII as the driver

Since the frequency of the stepping increases in propormduce the oscillator to move around a limit cycle. The actual
tion to the amplitude of the electric stimulatip20], we can ~ frequency of each cycle may differ from the inner virtual
assume that the time series of the intensity of the impulseequencyf. We assume that at the conclusion of each cycle,
fired by the neural centers is associated with a time series ¢ Neéw cycle is initiated with a new inner virtual frequerfgy
virtual frequenciegf;}. So, in the spirit of the model sug- Produced by the stochastic CPG model while all other pa-
gested by Ashkenazy and co-workd23,24, we assume rameters are kept constant. However, the simulated stride-
that the long-time correlated frequency of the SCPG is delnterval is not 1f; but it is given by the actual period of each
scribed by a random walk on a finite-size correlated chaincycle of the Van der Pol oscillator.
where each node of the chain is a neural center of the kind We assume that the neural centers of the SCPG may fire
discussed above, which fires an impulse with a particulafmpulses with different amplitudes that induce virtual fre-
intensity that would induce a particular virtual frequency.quencies{f;} with finite-size correlations. Here, therefore,
Ashkenazy and co-worker®23,24 focused on explaining We model directly the time series of virtual frequencies. The
the multifractal changes in the gait time series during matuvirtual frequencies(f;} are centered around the driver fre-
ration from childhood to adulthood, assuming that neuraduencyfq according to the relation
maturation is parametrically associated with the rapgef
the Brownian process that activates the nodes of the finite- fi=fot¥X, ®)
size correlated chain of frequencies. _ ) L _

Here, we adopt a different approach because we are inteptherey is a constant and; is a finite-size correlated vari-
ested in modeling the gait for human adults operating undefPle; that is,
different conditions. We assume that neural maturation and,
therefore, the standard deviatipnof the random walk pro- Cy(r)= {(XiXir) = XF{ _r

. . X
cess remains constant, whereas the strength of the correlation (X2 o
among the neural centers increases with the change of the
velocity of the gait from the normal to the slower or faster The parameter, measures the spatial range of the correla-
regimes. The change of velocity is interpreted as a biologicalions of the neural network. The chain of frequencigs
stress. Moreover, contrary to Ashkenazy and co-workers=f,+ yX; is generated by a first-order autoregressive pro-
[23,24 we do not add any noise to the output of each node teess, also known as a linear Markov procgs], which is
mimic biological noise. The final output given by the actual generated by the recursion equation
frequencies of the gait cycle fluctuates due to the chaotic
solutions of the nonlinear oscillators in the SCPG, here that Xi=aXi_1+¢g;, (7)
being the forced Van der Pol oscillator. The advantage of
using chaos in the model, rather than noise, is that chaos where 0<a<1 is a constant anfk;} is a normalized zero-
an intrinsic property of the SCPG dynamics and thereforecentered discrete Gaussian process. It is easy to g&bje
introduces variability in a controllable way. that the autocorrelation function of the chdi} is given by

: (6)
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XXir) g

Cx(r)= ) ®)

0.05

A direct comparison between Eq$6) and (8) gives a ‘
=exp(-1/ky), so, we can easily generate a data sequence § 0.9/Y%0.5
with the desired finite-size correlation valug. Following
Ref.[23,24], we assume that a frequency is activated by the ‘
position of a random walker given by the discrete function explY/2] erfcl(Y/2)0.5] ——
g(j) with j=1,2,...,whose jump sizes follow a Gaussian 041
distribution of width p. The width of this distribution, ac-
cording to the interpretation of Ashkenazy and co-workers
[23,24), is associated with the human neural age maturation.
This random walk mechanism allows us to obtain from the FIG. 7. Autocorrelation function of the stochastic CPG, Eq.
finite-time, correlated frequency seri€f}, a new time se- (12). The variableY [Y=J(p/r,)?] is given by Eq.(14). The two

ries of frequenciesf;} with i=g(j), characterized by long- straight lines correspond to the long-range autocorrelation function
time correlations, that is, (1) with the Hdder exponenth=—0.25, andh=—0.025 which
correspond to the Hurst exponemis=0.75 andH =0.975.

0.01 0.1 1 10 100
Y

i=g(j)
ifi} Ui ©  function (1) with the Hdder exponentsh=—0.25 andh

; : : = —0.025. The figure shows that for small C;(J) is char-
Finally, the new sequence of frequenc{ds} is used in Eq. : ; - f ,
(4) re)éursively. a q 165 d acterized by a slope with the Hier exponent~0 typical

To establish the fractal properties of the SCPG model, wé' the pink noise and, for large value ¥f C¢(J) asymptoti-
estimate the autocorrelation function of the new sequence ¢f2lly_converges to a long-range fractal signal wih-

frequencied f;}. We have[18] —0.25 and the Hurst exponeHt=0.75. The inverse power-
! law character of the correlation function would lead one to
((Fi=fo)(fjea—fo))  (XgiyXg(j+9)) conclude that the time series is a fractal stochastic process.
Ci(J)= 5 = > (10) We assume that normal gait is characterized by the fre-
((Fj=f0)%) <Xi> quencyfy, and occurs when the individual is relaxed, and

consequently the correlations between the neuronal centers
are minimum. By implication, whether the gait increases or

[g—9()]? decreasgs in velocity_, the correla_tions between the neuronal

B e ce_nters increase. This increase in the stress is modeled by

Cf(‘]):f ex;{ B |9_9(J)|} 2Jp using the short-time correlation parametgrof the stochas-

V2mIp? da. tic CPG by assuming
(12) )
ro=ronl1+B(fo—fon)“l, (15

It is not difficult to deduce that

)

—o0

where the first term of the integral is the autocorrelation be-

tween the positioy(j) and a generic positiog given by Eq.  wherer, is the short-range correlation among the firing
(6), and the second term of the integral is the Gaussian disaeural centers at the normal frequency ggitis the mean
tribution of the generic positiog after J steps of a random frequency, andB is a positive constant that measures the
walker that starts from the positiag(j). Equation(11) can increasing of short-range correlation at the anomalous fre-

be solved, and gives guency gait.
Figure 7 and Eqs14) and(15) suggest that the increase
Ci(J)=ex X orf \ﬁ (12) of the short-time correlation parametgrleads a decrease of
f 2 20 Y. Because we determine the fractal exponents by fitting a

fixed number of stepd[7], a decrease of leads to a shift of
where the fitting range of the) steps toward a region where the
curve of the autocorrelation functidia?) is characterized by

fofx) = 1— X 24 13 a higher curvature. A higher curvature of the autocorrelation
erfo(x) = Jmlo € 13 function may be detected as an increase of the multifractal
properties of the signal. So, we expect that our method of
is the complement of the error function and analysis gives a slight increase of thelther exponents as
well as a slight increase of the multifractal properties when
p\? the gait increases or decreases in velocity according to Eq.

In summary, our model is based upon the following as-
Figure 7 shows the autocorrelation function of the stochastisumptions. First, we have to observe that the experimental
CPG, Eq.(12). The variableY is given by Eq.14). The two  datasets are about the stride intervals of the gait. Second, the
straight lines correspond to the long-range autocorrelatiofrequency of walking may be associated with a long-time
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correlated neural firing activity that induces virtual pace fre- 1.7

guency, nevertheless, the walking is also constrained by the 1.6 slow gatt
biomechanical motocontrol cycle that directly controls _ 15

movement and produces the pace itself. Therefore, what we g 14 (1

have to do is to incorporate both the neural firing activity 3 43

given by a stochastic CPG and the motocontrol constraint g 12 norm gait

that is given by a nonlinear filter characterized by a limit 3 »

cycle. Therefore, we model our SCPG model such that it is E

based on the coupling of a stochastic with a hard-wired CPG !

model and depends on many factors. The most important 0'9[ fast gait |

parameters of the model are the short-correlation sjzef 08 0
Eq. (6), which measures the correlation between the neuron
centers of the stochastic CPG, the intengitgf the forcing
driving component of the nonlinear oscillator of Ed) and, FIG. 8. Stride-interval time series for slow, normal, and fast
of course, the mean frequendy of the actual pace that computer-simulated gaits.
distinguishes the slow, normal, and fast gait regimes. The
other parametersy, p, u, andp may be, to a first-order short-time correlated frequency neural chain, we obtain the
approximation, kept fixed. time series of the frequenci¢$;} to use in the time evolu-
While the numerical simulations are left to the following tion of the Van der Pol oscillator. For simplicity, we keep
section, we can anticipate an interpretation of the two mairtonstant the two parameters of the nonlinear component of
parameterg, and A. In fact, the short-correlation sizg,  oscillator(4), u=1 andp=1. The only parameters allowed
may be interpreted as a parameter that measures the natutal change in the model are the mean frequerigythat
correlation between the neural centers and such short-timghanges also the value of via Eq.(15), and the intensityA
correlation increases under particular stress, for exampl&éf the driver of the Van der Pol oscillaté4).
when the velocity of the gait is slower or faster than the Figure 8 shows the stride-interval time series for slow,
normal relaxed situation. The intensity of the forcing driving normal, and fast computer-simulated gaits using the SCPG.
component may be associated with the voluntary action of For the simulation of the normal gait we ufe=1 and for
trying to follow a particular cadence and is expected to in-hoth slower and faster gaits, we use=2. We assume that
crease under a metronomic constraint. the amplitudeA of the driver of the Van der Pol oscillat¢4)
should be smaller for the normal gait than that for either the
slower or faster gaits, because in our interpreta®omea-
sures the magnitude of the constraint to walk at a particular
In this section we present and comment on our computevelocity. The amplituded is smaller for the normal gait be-
simulations of the stride-interval of human gait under a va-cause the normal gait is the most relaxed, spontaneous, and
riety of conditions. For simplicity, we make use of the fol- consequently the most automatic of the three gaits. The fig-
lowing values of the parameters. The frequency of the norure shows that the SCPG model is able to reproduce a real-
mal gait is fixed at the experimentally determined value ofistic persistence and volatility for the three gaits by simply
fon=1/1.1 Hz, so that the average period of the normal gaithanging the frequency of the gait itself. In particular, note
is 1.1 s; the frequency of the slow and fast gaits are, respecthe high volatility of the slow gait that is remarkably similar
tively, fos=1/1.45 Hz andfy;=1/0.95 Hz, with an average to that seen in Fig. 1.
period of 1.45 and 0.95 s, respectively, which is similar to Figure 9 shows the stride-interval time series for slow,
experimentally realized slow and fast human gaits shown imormal, and fast metronome-triggered computer-simulated

10 20 30 40 50 60
time (min)

V. SIMULATED STRIDE-INTERVAL GAIT

Fig. 1. gaits. We use the same frequency series generated by the
Also the hopping-range parameter is chosen equal to that

for adults[23,24), that is,p=25 and kept constant. More- 1.6 —

over, we chose,,=25 such that forf,=",, we haver, s slow galt

=25 that coincides with the corresponding value found in 7

Ref.[23]. To generate an artificial sequence with a variability g 14 U : o

compatible to that of the experimental sequence, we chose 3 13

B=50 in Eq.(15) and, in Eq.(5), y=0.02, that is, a value 5

compatible to the average of the standard deviation of all the ; 12 norm-gait

data analyzed by uf7], however, the value ofy may be £ 14
smaller and may decrease with an increase in the frequency | p .
. . . . . . 1 : ! fast gait
fo and/or an increase in the intensity of the forcing amplitude WWMMMWM
A of Eq. (4) 0.9 ! i i i i

0 10 20 30 40 50 60
time (min)

So, we choose a frequendy, calculater, via Eg. (15
and the Markovian parameter then we generate a chain of
frequenciedf;} via Egs.(5) and (7). Finally, by using the FIG. 9. Stride-interval time series for slow, normal, and fast
random walk process to activate a particular frequency of thgaits for metronome-triggered computer-simulated gait.
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FIG. 10. Histogram of probability density estimation of the  FIG. 11. Histogram and probability density estimation of the
Holder exponents for computer-simulated gait: sldstan (hg Holder exponents for metronome-triggered computer-simulated
=0.058, 0=0.068), normal(triangle (ho=—0.093, 0=0.058),  gait: slow (staj (h,=—0.516, o=0.067), normal(triangle (h,
and fast(circle) (ho=—0.015, 0=0.063) gaits for a single indi- =-0.276, =0.059), and fastcircle) (h,=—0.373, ¢=0.063)
vidual. gaits for a single individual.

SCPG used to produce the sequences of Fig. 8. We only
change the intensiti of the driver of the Van der Pol oscil- artificial stride-interval time series that present similar fractal
lator (4). We use for the normal gaih=4 and for both and multifractal behaviors to those of real stride-interval data
slower and faster gaité=8. Again we suppose that the taken under the constraint of a metronome. By increasing the
intensity A of the driver of the Van der Pol oscillatdd) intensity A of the driver of the Van der Pol oscillatéd), the
should be smaller than that for both slower and faster gaitg/andomness of the time series increases and it is possible to
because the normal gait is the most relaxed and spontaneowdtain a large variety of time series, from those having anti-
By comparing Figs. 8 and 9 we note the increase in randompersistent to those with persistent fractal properties. In the
ness, the loss of persistency, and the reduction in volatilitySCPG, the parametérmeasures the constraint of conscious-
all effects that are induced in the latter time series by increasaess on the gait, and therefore the valué\dfas to increase
ing the value ofA and are found in the phenomenological if the walker is asked to synchronize his or her pace with the
data shown in Figs. 1 and 2. frequency of a metronome. The figure suggests that the
Figure 10 shows histograms of distributions of thddés =~ SCPG model is able to explain a number of other properties
exponents for the three computer-simulated gaits shown inf the metronome-triggered walking. Figure 6 shows that the
Fig. 8. The calculations are done in the same way as thosgsually normal metronome-triggered gait is that with the
used to produce the histograms in Fig. 3 for the experimentdiighest persistent fractal properties. The normal gait is also
data, for details see Rdf7]. The figure shows that the SCPG the most natural under the constraint of the metronome and,
model is able to generate artificial stride-interval time seriesherefore, we should expect that the normal gait is the most
with statistical properties similar to the fractal and multifrac- automatic and the least constrained by human consciousness.
tal behaviors of the real data. By changing the gait modeThis is the reason that we have chogen4 for the normal
from slow to normal, the center of the distribution oflHer =~ metronome-triggered gait. For both slower and faster
exponenh, decreases. In the same way by changing the gainetronome-triggered gaits we have chogen8 to indicate
mode from normal to fast, the mean'lder exponent again a higher conscious stress that constrains gait at anomalous
increases, just as it does for the real data. According to thepeeds. Moreover, by comparing Figs. 10 and 11 and consid-
SCPG model, this increase in the scaling parameter is due ®ring that in both simulations we have used the same value
the increase of the inner short-time correlation among thef the forcing parameteA for both slower and faster gaits,
neuronal centers, modeled by E@5) as we have explained we notice that the largest fractal shift occurs for the slower
in the preceding section by commenting the behavior of theyait. This increased shift implies that the slower gait is more
autocorrelation functiorC;(J) shown in Fig. 7 at smal¥.  sensitive to a voluntary constraint and, so, the slower mode
Furthermore, this behavior is due to the biological stress ohas the larger variability. In fact, our human experience and
consciously walking at a speed that is different from thethe superposition of the distributions of the IHer exponents
normal spontaneous speed. In addition, the multifractality ofor the ten cohorts in Fig. 6 show a large fractal variability of
the gait time series slightly increases for a walking rate dif-the slower gait. Finally, Fig. 6 reveals that few persons are
ferent from normal. Here again this effect is observed in thecharacterized by a strong antipersistent pace when asked to
real stride-interval data and it is proven by a slight increasdollow a metronome. According to the SCPG model, some
in the width of the histograms for fast and, in particular, slowpeople are not able to find a natural synchronization and
gait. need to continuously adjust and readjust the speed of their
Figure 11 shows the histograms of probability density espace to match the beat of the metronome. This changing of
timations of the Hitwer exponents for the three metronome- pace implies a very strong conscious act and, therefore, a
triggered computer-simulated gaits shown in Fig. 9. The calvery high value of the parametéx that would produce a
culated points show that the SCPG is able to generatetrong antipersistent signal.
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VI. CONCLUSION The variety of complex behaviors is regulated by two pa-

We have introduced a kind of the SCPG model that is abl [ameters, the average frequenigyand the amplitude\ of

to mimic the complexity of the stride-interval sequences o?he driver of the Van der Pol oscillator. The frequeriy

. o regulates the speed and may be associated with a neuronal
human gait under the several conditions of slow, normal, an . )
; : : tress that increases the correlation among the neural centers.
fast regimes for both walking freely and keeping the beat o

a metronome. The SCPG model is based on the assumptiq he amplitudeA may be associated with the voluntary action

that human locomoation is regulated by both the central ner.pl;tl trying to track a particular frequency and it is expected to

vous system and by a motocontrol system. A network ofcrease under a mefronome constraint. Finally, He®24

neurons produces a correlated syncopated output that is COrrtgport that the stride-interval time series for elderly subjects

related according to the level of physiological stress and thiand for subjects with Huntington's diseases are more random

network is coupled to the motocontrol process. The combi:?han for young healthy subjects. According to the SCPG

nation of systems controls locomotion and the variability omedel’ this may be_ explained by a decrease of the normal
. - . . : short-range correlation among the neural centers that may be
the gait cycle. It is the period of the gait cycle that is mea- . : . - .
. ; . - associated with a nervous degeneration caused by injury, dis-
sured in the datasets considered herein. Moreover, walkin X ; ; .
o ase, or aging. This decrease in correlation may be modeled
may be conditioned by a voluntary act as well, for example

walking may be consciously forced following the frequencylitrr:rtc;]uew];‘i’vt“gf]c tigé(;?ﬁgggzvrigth:Isdoe(t:)rgzssesgéi(;?gdelv?/?tﬁnan
of a metronome. We model the complex system generatin 9 ) Y

the data by assuming that the correlated firing activity of theﬁ]crreljos‘leo(;]:;itlraeto?mg I't(i?‘elr?ff;réf ?;g’;lggjg?:cg IE:; V:lr; o
neural centers generated by a stochastic CPG regulates onq . » B4l ' ! y
consciously choose to walk more carefully.

the inner frequency of a forced Van der Pol oscillator that . ; .
mimics the motocontrol mechanism of the gait cycle. The We emphasize that the selection of the van der Pol oscil-

stride-interval is the actual period of each cycle of the forcedr";g)(;e?insdngr lee upeart%ﬁilficv;tofohE;Sr?izscol??hgor;(;zgl ﬁ((a:cz(;
Van der Pol oscillator. In this way the gait frequency is que. Prop

slightly different from the inner frequency induced by the sary to capture the physiological properties of the interest in

neural firing activity whose impulse intensities are able tot[he gait-interval time series are the followir(@) the dynam-

generate only a potential, but not an actual frequency. Thics of the system unfolds on an attractor in phase space and

chaotic behavior of such a nonlinear oscillator, such as th%)n;gi]r\:\?;;ﬂ\/gfg?ggﬁéég?; :)i]:[tfrrZCt&;r:cs:i(arng%e;&}?y a
Van der Pol oscillator, and the possibility to force the fre- q ' Y

quency of the cycle with an external fixed frequency allow!S 9eneric for relaxation oscillators, so the same behavior

the SCPG model to generate time series that present Sim"g\{ould result for a family of such nonlinear oscillators. Prop-

fractal and multifractal properties to that of the human physi-erty (2) is also generic and leads to a multiplicative stochas-

ological stride-interval data in all situations here analyzed;fIC t?rlm "1 thtefno?rl]lneijar dyn_amllcal gqluatlon and to a multi-
Moreover, by implementing the SCPG with four coupled ractal output for the dynamical mode.

forced Van der Pol oscillators as in R¢B], it should be
possible to simulate the change of phase between various
modes of quadrupeds’ locomotion, that is, walking, trotting, N.S. thanks the Army Research Office for support under
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