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Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance

Nicolas Brunelt Vincent Hakim? and Magnus J. E. Richardsoh
INeurophysique et Physiologie du SyséeMoteur (CNRS UMR 8119), UniversRaris RefeDescartes, 45 rue des SaintSree
75270 Paris Cedex 06, France
2Laboratoire de Physique StatistiqfieEcole Normale Supeure, 24 rue Lhomond, 75231 Paris Cedex 05, France
3Laboratory of Computational Neuroscience, Brain and Mind Institute, Ecole Polytechnigleeaiede Lausanne,
CH-1015, Lausanne, Switzerland
(Received 20 December 2002; published 19 May 2003

Neurons that exhibit a peak at finite frequency in their membrane potential response to oscillatory inputs are
widespread in the nervous system. However, the influence of this subthreshold resonance on spiking properties
has not yet been thoroughly analyzed. To this end, generalized integrate-and-fire models are introduced that
reproduce at the linear level the subthreshold behavior of any given conductance-based model. A detailed
analysis is presented of the simplest resonant model of this kind that has two variables: the membrane potential
and a supplementary voltage-gated resonant variable. The firing-rate modulation created by a noisy weak
oscillatory drive, mimicking ann vivo environment, is computed numerically and analytically when the
dynamics of the resonant variable is slow compared to that of the membrane potential. The results show that
the firing-rate modulation is shaped by the subthreshold resonance. For weak noise, the firing-rate modulation
has aminimumnear the preferred subthreshold frequency. For higher noise, such as that premailirg the
firing-rate modulatiorpeaksnear the preferred subthreshold frequency.
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I. INTRODUCTION and-fire(IF) model[13,14] has been useful for understanding
in simple terms the properties of more detailed spiking neu-
Advances in recordings, in visualization techniques, andon models and of real neurons and neuronal netw(d&s
in computational modeling capabiliti¢s,2] have made no- 17]. However, the leaky integrate-and-fire model cannot de-
table progress possible towards the understanding of the dgeribe  subthreshold resonance. This motivated the
namics of neural assemblies. Neuronal synchronization anitroduction[12,1§ of a generalized integrate-and-fii@1F)
oscillations have been studigdvivo andin vitro in slices of  model to describe more accurately these types of subthresh-
neural tissues and analyzed theoretically with the help obld properties. As for conductance-based models, the spike
computer simulation$3]. The properties of the single cell rate resonance curve of the GIF model was found to be
and of the synaptic couplings between different cells are botheaked at the firing-rate frequency for low noise and around
thought to play a role in the observed dynamics. In particuthe subthreshold resonance for stronger noise regimes.
lar, it has been found that the subthreshold membrane poten- the aim of the present work is to present an analytic

tial response of neurons subjected to a small oscillatory dri,"%omputation of the spike rate modulation and phase for the
depends on the drive frequency and can be peaked at PartiCl e ‘model and a detailed analysis of the findings of Ref.

lar frequencies. Ex_amples include tri_geminal root ganglior‘tlz]. The GIE model and its relation to linearized
neurons4], neocortical neurons, 6], hippocampal pyrami- conductance-based models are first recalled in Sec. Il. The

dal cells[7,8] and interneurongs], and other$9]. It has long . o )
been known that this resonance phenomenon can be relatdifin characteristics of the model for constant input or weak
Scillatory drive without noise are given in Sec. lll. The

to the neuronal ionic channel characteristics and can be a& . . .
curately modeled using the classic Hodgkin-HuxIeerneral perturbatlvg framework of the compqtatloq for noisy
conductance-based descriptid®,11. In order to assess the inputs and'the main resultg are thgn described in Sec. 'IV.
functional significance of this subthreshold resonance, it i ey are first explained using a simple but representative
important to determine its relation to spike emission, and*@se in Sec. IV A. The general lowest-order computation is
particula”y to examine the case Of a neuron embedded in H]en dealt with in Sec. IV B. It is found here that a sufficient
neural structure under heavy Synaptic bombardment, as is tH@VGl of noise is necessary for the subthreshold resonance to
casein vivo. In a previous papdrl2], numerical simulations be seen in the firing-rate modulation. This interplay of noise
of conductance-based models under noisy oscillatory drivénd oscillations is reminiscent of stochastic resonda&
were performed to address this question. It was found thatjowever, as discussed in Sec. IV C, the two phenomena are
for a sufficient level of noise, the modulation of the spike quite different since, for instance, the usual leaky IF model
rate at the driving frequency was related to the subthresholdisplays stochastic resonani@0] but not the subthreshold
resonance curve. The classic Lapicque or leaky integrateand firing-rate resonance studied here. A discussion of the
results and some perspectives of the present work are pro-
vided in the concluding section. The results of some higher-
* Associeau CNRS et aux UniversiseParis VI et VII. order computations are described in the Appendix.
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Il. SUBTHRESHOLD DYNAMICS AND THE GIF MODEL

X=X, (Vo)
A. Subthreshold response of conductance-based models W= dx; ' ®)
The response of neurons to a small oscillatory current has dv |,
been tested in a number of experiments. In several cases, a 0

peak response has been observed at a frequency that depe”d%ithout variablesw,, Eq. (3) is equivalent to a simple

on the particular neuron type under examination. This réSOgqctricRC circuit. In this case, the amplitude of the potential

nance phenomenon is well accounted for by the

_— . oscillation induced by an injected alternating current de-
conductance-based description of a single compartment Ne{ize 565 monotonically with the frequency of the current.
ron. In this classic Hodgkin-Huxley descriptiph0,11], with

L A Variablesw, add effective inductances into this electric cir-
an injected currenit,, (t), the potential difference across the cuit analogy and can give rise to a nonmonotonic frequency

cell membrané/ = Vi, — Vo is given by response curve. Adding a single, is already sufficient to
dv produce a peak respon$@], a resonance, at a particular
(;a =g (E,—V)— E L (VLX) + 1app(t), (1) frequency and more complex responses can be obtained with
j

several variablef12].

whereC denotes the membrane capacgy,andE, are the B. The GIF model

conductance and reversal potential of a passive leak current, )
the I|'s are a set of ionic currents associated with active The effect of a subthreshold resonance on the spike rate

conductancegby convention, positive values are associated®@n be directly examined by supplementing the subthreshold
with outward currents and |, is the externally applied dynamics(3) with athrgshold for sp|kt_a emission in the spirit
current. Thel;'s are generally taken to be functions of the of the usual leaky integrate-and-fire neuron description

potential and oN additional activation and inactivation vari- [14,2]. That is, a GIF model is defined by using HG) as
ables{x, k=1, - -,N}, with time course long as the potentiab is below a thresholdd. When v

reached, a spike emission is registeradjs reset to a lower
d o valueV, and the linear evolutioii3) resumeg18]. In prin-
X X (V) =Xk ; .

RAS L. (2)  ciple, the supplementary variableg could also be reset at

dt (V) the spike emission time when= 6. For simplicity, it is cho-

sen here to leave them unaffected. This is appropriate for

where both the relaxation timeg(V) and the steady-state variables that have slow dynamics relative to the spike dura-
valuesx,, depend orV. For a small injected currett,(t),  tion and it has also the advantage of keeping to a minimum
the departure (t) of the membrane potential from its resting the number of parameters in the model. In neural structures,
value V; is described by the linearized version of E¢E.  a neuron receives a continuous barrage of inputs arriving at a
and(2) large number of synapses. This is modeled here as a constant
mean injected currenky plus a fluctuating Gaussian part

dv n(t) of amplitude A, (n(t)n(t'))=A8(t—t"). We thus
CHZ —gu —; Wt | qpp(t), consider the following two-variable GIF model:
dv
dw Ca:_gv_glw"_lo"_ () +losdt), v<0 (6)
n——=v—W,, k=1,...N, 3
dt
dw_
whereg is the sum of all the steady-state conductanegss gy VW ™

the relaxation time ofx, at the resting potentialr,

=7(Vo), andg, measures the strength of the steady-statavhere I ,{t) is a small oscillating test current. When
current flow change due to thg variation following a small ~ reachess, it is instantaneously reset 84, <6. The noise
modification of the steady-state potential value, strength is more intuitively measured by the amplitudeof
membrane potential fluctuations than By Without the

threshold condition, the two are easily related
g=g.+> ljlaVly,,
J A C+gmtoim

2_ _ [ —
oy={(v <U>)2>_2(; (g+g1)(C+gm)’ ®

dx,
dv
Vo

al;
ngE J

2Ry (49 An example of the dynamics is shown in Fig. 1.
k

Vo The present study focuses on computing the spike rate in
this model with the particular aim of analyzing the influence
Variablew, measures the departure of the activation or inacOf the subthreshold resonance on the input-output transfer

tivation variablex, from its value at the steady-state poten- function for this neuron. In the presence of a small oscillat-
tial, ing input currentl,.(t)=1/2 exp{wt)+c.c., the instanta-
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'1500 " 500 540 560 580 600 FIG. 2. Several subthreshold resonance curves. The magnitude
Time (ms) of the impedancgZ| is displayed as a function of frequency. The

four different curves correspond to the four parameter points

FIG. 1. An example of the variation of voltageand auxiliary = marked with the corresponding symbols in Fig. 3. The inset shows
variablew as a function of time for a GIF neurdriC/g,=10 ms, the impedance magnitude after normalization by its value at zero
g,/9=10, ;=10 ms, lo/g;=1 mV, andA/Cg;=5(mV)?]. (a) frequency. Fora=0, the relative strength of the resonance peak
Evolution in thev versusw plane for time 500 to 550 ms(b) increases with3, as seen by comparing the curves marked by
Evolution in thev versusw plane for time 550—600 mgc) Voltage  squares and diamonds.
v as a function of time. Spikes are indicated by vertical lines for
clarity. (d) Auxiliary variablew as a function of time. For illustra- 1. Steady-state stability
tive purposes, all voltages have been shifted480 mV, such that
for this case the rest and regelotted ling are at—60 mV (V,
=0 mV) and the threshold for spike emission is-ab5 mV (¢
=5 mV).

In the two-variable case, the dynamics depends on the
dimensionless ratioa= r,9/C and 8= 7,9, /C. For a con-
stant injected currentt,,,=1o, one can rewrite Eq(3) by
using 7; as the time unit as
neous firing-rater(t), averaged over a population of inde-

pendent neurons or over many trials for a single neuron, div:7 —Bw4
shows a weak modulation gt~ v Awtlon/C, (10
1. . ) dw
r(t)y=rg+ é[r(a))lexp(lwt)nLc.c.], 9 a:U_W_ (12)

wherer is the time-independent spike rate in the absence of ¢ steady-state =w=1,/(g+g,) exists for 1,<(g

the weak drjve(c.c. stands for the complex conjugate terms +g,)6. The exponential relaxatiofor growth of perturba-
Modulationr(w), or signal gain(e.g., Ref.[21]), measures tions is controlled by the two eigenvalués , which obey

the amplification of the frequenay in the output signal and

its phase. It is one of the main factors determining synchro- E+(a+1)é+a+B=0. (12
nization at the network levéll7]. It will be computed in the

following sections under various conditions, in order to de-The steady state is therefore stable when both eigenvalues

termine when and how it is modified by subthreshold resohave a real negative part, i.e., whent1>0 and a+f

nance. >0.
Before considering the effect of noise, the main charac-
teristics of the deterministic two-variable GIF model are de- 2. Subthreshold resonance
scribed. In this parameter domain where the resting state is stable,

the injection of a small alternating currentygt)
=1/2 exp{wt)+c.c. induces oscillations around the resting
A. Subthreshold dynamics of the two-variable model membrane  potential, v(t)=1,/(g+9;)+ 1/2 Vexp(wt)
The subthreshold dynamics of the two-variable model is+C.CJ]. An elementary computation givés=Z(w)i with
identical to the dynamics of a general two-variable l4ie

conductance-based model for small excursions around some Z(w)=E (13)
holding voltage. C B+ (1lt+tiw)(atiow)’

Ill. THE DETERMINISTIC GIF MODEL
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FIG. 4. Firing ratesr4(1) as a function of the normalized in-

FIG. 3. The phase diagram of the GIF model in the jected current =(l4/g9,— 0)/(8—V,) for two zero-leak GIF mod-

=97:/C,=0,7,/C parameter plane. Models in the black region els (@=0) with different8 parameters. The full lines correspond to

have no stable rest state. Models represented by parameters ab(ﬁ% exact firing rates as given by Bd.7). Top panel: type-I model

the dotted line have a subthreshold resonance. Those above tw‘?th 5=0.1. The low frequency approximation of E4.8) (dotted

dashed-dotted line have complex eigenvalées As explained in line) is shown as well as the high frequency approximati
the text, models in the gray region are of type |, whereas those in' ~ — 9 q y app 9m

the white region are of type Il. The subthreshold resonance curves A(1+1/2) (dashed ling Bottom panel: type-Il model with3

of the models corresponding to the points marked by the differenf >- The dotted line corresponds to .the 'Iay@ta.pproximgtion Eq.
symbols(circle, triangle, square, diamondre drawn in Fig. 2. (_2_0) and the she_lded area is the region in which a quiescent and a
firing state coexist.

The response amplitud&(w)| displays a peak at a finite

nonzero frequency, (Fig. 2) wheng?+28+2aB>1 with W lo

+

b
= g+g, 1+&, eXFX§+t)+Rexqg,t)_ (15

wp=\(B*+2B+2ap)?-1. (14)
The constants, b are determined by requiring thatstarts
The parameter domain whej&( w)| displays a peak at finite  from V, att=0 and ends at att=T. They are given in
frequency overlaps with domaif> («—1)%/4, where Eq. term of periodT as
(12) has complex roots but the two are differésee Fig. 3,

as noted previouslj12]. A 1 [(0_ lo )

An especially simple case is obtained for zero legk ( exp &, T)—expé_T) g+0;
=0 or a=0). The model then only depends on the dimen-
sionless ratioB= 1,9, /C. The steady state is stable f@r _eg_T<V _ lo }
>0 and Eq.(12) has complex eigenvalues f@>1/4. A " ogt+oy) )
resonant response occurs in the more restricted case, when
the time scale of the supplementary variablés sufficiently _ -1 lo
slow, for 8>2—1. The resonant peak grows wi. In b= exp &, T)—exp(é_T) 0= g+9;
particular, for 8>1, the maximal response amplification,
Q=|Z(wp)/Z(0)|, is equal toB at the peak frequency, —e§+T(V b } (16
~ \/,[—3 and the peak width is of orderdw,, . " g+gi/ |

3. Periodic firing regimes Sincew is not modified when a spike is emitted, the pe-

In order to analyze the GIF-neuron firing rate and its de-r_'Od Tis _obtal_ned by the periodicity conditiow(0)
=w(T), which gives

pendence on current, periodic firing regimegi.e., limit
cycleg are now considered. Between a reset of the potential I 0—V, [ 1+¢&, 1+&.

atv=V, and the next spike emission whenreachesf a =V, - .
period T later, the dynamics is a simple superposition of 9791 =& [1—exp§:T) 1—expé-T)

exponentials controlled by the two eigenvalugs, (17)
| The solutions of Eq(17) correspond to periodic solutions
v=—2taexgét)+bexgé t), wherev goes fromV, to ¢ during periodT, that is to neurons

g+0: periodically emitting spikes at a ratg(ly)=1/(m,T) in di-
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exists only if 15/g4 is larger than ¢+V,)/2. The period

remain below# during its motion has not been taken into (with 7, as the time unijtin the same limit is simply obtained

account in Egq(17). Among the solutions of Eq.17), only

as

those which satisfy this condition correspond to real solu-

tions. The simpler zero-leak case is analyzed first.

(@) The zero-leak casea=0). In the parameter range

0<B<1/4, the two eigenvalue§.. are real and negative,
£ <—1/2<¢,.<0. For T—+x, the slower relaxation
dominates and E(J17) can be approximately written as

IO 0_VI'

— :§+_§7 (1+&)exp(é4T).

(18)

The right-hand-sidd€rhs) of Eq. (18) is positive, so a peri-
odic state appears above the threshglfy; = 6 with a loga-
rithmically long periodT~|In(lo/g;—6)|. This is a kind of
type-I behavior, analogous to that of the usual IF neuron.

The situation is different fop>1/4 when the two eigen-
values are comple¥..=—1/2+i¢,. Then, Eq.(17) reads,
for T— + oo,

Sin(&,T)
28, |

;_0 —0=(6—V,)exp —T/2)| cog &,T) +
1
(19

The rhs in Eq.(19) oscillates and takes both positive and

oS-V
- mi[lo—01(0+V,)/2]

for B>1, (22

which corresponds to Eq20) for T¢,<1.

(b) The general non-zero-leak case#0). Whena+#0, a
similar analysis can be performed and is briefly summarized
here. WhenT— +«, Eq. (17) gives back the thresholt,
=(g+g,) 0. Two types of behavior can be distinguished by
considering how y departs from ¢+g,) 6 for T>1: (1) the
periodic state exists only for,>(g+g,)# and starts with
infinite period at the thresholty=(g+g4) 6, i.e., a type-I|
behavior, or(2) a periodic state coexists with the steady state
for some range of current below the threshdlg= (g
+04)0, i.e., a type-Il behavior. In the parameter range (
—1)?>4p8, &, _ are real and negativevith £_<¢.). For
large T, the slower relaxatioré, dominates and Eq(17)
gives

Vi
B (1+ & )expéLT).

lo
g+0;

[/
H~

e @3

negative signs fofl large while decaying to zero. Thus, so- The neuron is of type | when the prefactor of the exponential

lutions to Eq.(17) exist belowly/g,;= 6. The smallest solu-
tion T of Eq. (17) gives a potentiad (t) that remains belovd
and corresponds to a real periodic regime. So,4orl/4, a

in Eq. (23) is positive whereas it is of type Il when the
prefactor is negative.
The prefactor has the same sign as &, . It is positive

steady and a periodically firing state coexist in a range ofor <0 as well as for3>0 anda<1 and negative foB
applied currents: a type-Il behavior. The firing rate as a func=>0, a>1.

tion of applied current is displayed in Fig. 4, for several

In the parameter rangeaf1)?><4p, &, and é_ are

values of 3. The domain of coexistence and the firing-rate complex conjugates and the obtained correction in the analog

are easily estimated fg8>1. Then¢,~ /B, T~1/\/B, and
expansion of Eq(17) in inverse powers of8 gives

lo_0+Vr 0=V, &TI2

E =5 4z, cot(&,T/2) + WZT/Z) . (20

The expression within square brackets on the rhs of( Eq).
attains its minimum fo&,T= . So, for largeB, the steady

of Eq. (17) is oscillatory. This indicates the existence of pe-
riodic firing regimes below y/(g+g4) and correspond to
type-1l behavior.

The region of type-Il behavior exactly corresponds to the
parameter region delimited in R¢lL2], where after a current
step, the membrane potential overshoots before relaxing to
the new holding potential. The different regions are dis-
played in Fig. 3. It should be noted that in general the type-II
behavior does not necessarily correspond to the existence of

periodically firing state coexists with the steady-state in thecomplex roots: a difference of exponentials can provide the

interval

V,+60 (0-V,)m lo
+ +...<
2 N 91

(21)

overshoot leading to type-Il behavior.

4. Firing-rate resonance

In this section, the firing-rate modulation by a small time-
varying current is considered. The analysis is limited to the

It appears at the lower end of the interval with the finite computation of the linear response. It amounts to generaliz-

period T= /8. The lower bound Y, + 6)/2 in Eq. (21)
can easily be understood. Wh¢gh— + o, the dynamics of

ing the well-known analysis for the IF neurd@2] to the
slightly more complicated two-variable GIF model. The aim

the w variable is much slower than the dynamics of the po-is to investigate how the subthreshold resonance modifies the

tential andw simply relaxes to the average of For a con-

stantw, the dynamics ob is linear in time and the mean of

rate response function.
The neuron is submitted to the injected currdnt

v in a periodically firing state is simply the average between+1,{t). The constant curreny is sufficiently large, so that

the reset and threshold potentials. Puttimg (6+V,)/2 in

in the absence df,s(t) the neuron emits spikes periodically

Eq. (10) immediately gives that a periodically firing state at timest=nT+ty,n=...,—1,0,1 .. .. For acollection of
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neuronst, varies independently from neuron to neuron and lo a,
the spike emission probability per unit timey, is time in- W= oT o + 14¢, exd &, (t—ty)]
dependent. The effect of the small time-varying component
is to slightly displace the spike times franto t+d(t).! This b,
produces a modulation in time of the spike rate, + 1+ e exg & (t—t,)]
1 . :
r(ty=rgd1—d’(t)]. (24 +5LUn/Cwyexpliot) +c.cl. (28)

In order to obtain the rate modulation, it remains to deter-the forcing perturbs,, ,b,, ,t,. 1 —t, andw(t,), the value of

mine d(t) .for the two-yariable QIF model. With an injected w(t) at the spike time, away from their steady limit cycle
current with a small time-varying component, HG0) be-  yajyes. At linear order, one can write
comes

do a,=a+1/2[(I1r/C)aexpiwt,)+c.c],

EZ—av_ﬂW+[|0+|osc(t)]7'1/C' (25

=b+1/2 (i bexp(i wt,)+c.c.
At the linear level, the time-varying current can be decom- by=b+1/2 (17 /C)bexpliwty) +c.Cl,

posed in Fourier components and it is sufficient to consider

Elz%jc(;r)];(lllf) ?ggqls)é)r:rgyc] A particular solution to Eqgs. wW(t,)=Wo+ 1/ (17, /C)wexpiwt,)+c.c],

and
(=1/2[(I7,/C)vexpli wy) +c.q,

w=1/2 (17, /C)wyexpliwy) +c.cl), ths1—tg=T+ 12 (17,/C) Texpli wty) +c.cl.

with The nth spike timet,, and the value ofv att,, determine the
constants,, andb, in the time intervalt,,t,,,], i.e., they
1tie give a andb as linear functions ofv and T. The knowledge
vp(w)= . . , of a, andb,, in turn determines then(+ 1)th spike time and
(I+iw)(atio)+p the valuew(t, ;). This provides two supplementary equa-
tions that determinev and T.
Explicitly, one obtains

Wp(w)= (26)

(I+tiw)(atio)+B8°

1 -
£ —f [(I+& )vp+H(1+E)(1+E ) (Ww—wp)],
Functionv ,=Z(w)C/ 7, is a dimensionless form of the im- - (29)
pedanceZ(w). Between thenth spike at timet,, and the @
+1)th spike at time,,, ;, the complete solution can be writ-

ten as i 1 )
b= T [+ € Jopt (L4 £)(1+ £ ) (W-wp)].

lo (30)
+anexq§+(t_tn)]+ bnexqg—(t_tn)]

v

BCEEH
1. _ Then T is determined by the condition that the-1)th
+5 L7 /Clupexpiot) +e.cl, (27 spike occurs when reachess,
. aexp(&,T)+bexpé_T)+vexplioT
IAt this linear level, locking phenomena, which exist for any finite T=- ME,T) PE-T) - N )

amplitude around resonances, are neglected. This limits the appli- ag expé,T)+bé expé-T)

cability of the linear response in this purely deterministic setting.

The obtained response curve is nevertheless useful to describe the - Kl(W_Wp)+ KoUp» (3D
spike rate modulation as shown by Fig. 5 and to understand the
small noise limit of Eq.(6). where the two constants, and x, are given by
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(I+&)(A+E ) [expé-T)—exp &, T)]

U [ag exp £, 1)+ DE_exp £ TIIE £, (32
. _(A+E)expé-T)—(1+&)expé, T+ (&, — & )explioT) 33
2 [aé.exp(§ . T)+bé exp(E-T)][E-—&] '
This gives the evolution ofv from one spike to the next,
wexp(iwT) =N W+ uv,+[explioT)— N Iw, (34)
with
_(ag.+b&)exd (& +¢&-)T] (35
b af exp(é, T)+bé _expé_T)
aé, ) bé_ .
mexq@T)[exp(g,T)—exmwT)]+1+§7 exp & _T)[exp &, T)—expioT)]
= aE. exp £, T)+DE_expé T) (36
|
Equation(34) expressesv(t.;) (its lhs) as a function of After determining the variatioff of the interspike inter-

w(t,) and the effective forcing omw, [uvp+(1=N)Wpl,  val, the time displacement of theth spike at linear order
coming from the imposed oscillating curreiis rh9. In the  follows by summation,

absence of forcing, constan{ controls the free evolution of

small perturbations around the limit cycle: it is the discrete 7 n-1
Lyapunov exponent giving theunforced limit cycle stabil- d(t,)= 2C > {Texdio(mT+tg)]+c.c]}
ity. Equation(34) determinesv as me
. Ir T
- vpt[expioT)— N\ Jw B i
L [explioT) =N Jw, 37 5C exmw_l_)_lexp(|wtn)+c.c.. (42)

quin)_)\L

As usual, the summation is performed by supposing that the
nperturbation is created slowly, that is, by adding a small
negative imaginary part to the forcing frequensy

Substituting this expression back in E81) with formulas
(32—(36) for the constants, gives the simple expressio

of T, Finally, when the spike rate is written asg
) ag, exg£,T) +1/Zrexpot)+c.c] [Eq. (9)], the modulation amplitude
T=vp(w) XD E,T)—exfiaT) r is obtained as
bé_exp(é-T -1 r i
§-exp(-T) | 38) T_o_n__'° I (42
exp(é_T)—expiwT) re ClexpioT)—1) "’

whereT is given by Eq.(17) anda andb are given by Eq.

(16) or by the equivalent formulas whereT is explicitly given by Eq(38). Expression$38) and

(42) generalize to the two-variable GIF model, the well-

(0—V,)(1+E&,) known formula[22] for the usual IF model. It is recovered
a=-— , for B=0 when the additional variable has no influence on
(6 —&-J1—exple, T)] the membrane potential dynamics. In this case, oneéhas
0—V,)(1+ =—a andé_=—1 so thatb=0 [Eq. (39)]. Equation(38)
SR U DIC ) (39)  Wwith v,=1/(a+iw), then readsT«(1—exd(a+iw)T)/(a

[ —&:][1-expé-T)] +iw), which gives back Knight's formul§22].
Equation(42) is plotted in Fig. 5 together with the results
direct numerical simulations for two cases where the GIF
model displays subthreshold resonance. As for the usual
leaky IF model, sharp resonance peaks are seen for frequen-
C dT cies_ th_at are multiples of the firing—rate. They arise from the
T(w=0)= — —. (40)  Vvanishing of the denominator in formul@2). However, in
7 dlg this deterministic case, the GIF firing-rate resonance curve

These expressions permit a comparison of the zero frequen
limit of Eq. (38) with a direct differentiation of Eq(17) and
a check that
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FIG. 5. Firing-rate resonance curves for the deterministic two-variable GIF modebwiftd mV, V,=5 mV. The amplitudéCr/z;r
and phase of are plotted fora) o=5, 8=5, T=0.4 and(b) «=0, =10, T=0.5 (which, respectively, correspond to firing rates of 25 Hz
and 20 Hz forr; =100 ms). The solid lines represent the analytic result of(E2). The diamonds show the results of numerical simulations
of Egs. (25 and (11) with a simple Euler codedt=1.0x10 *r;) and different forcing frequencies [(a) 1,7, /C=95.5325 mV,
l,7,/C=0.2 mV and(b) 1,7, /C=85.0975 mV, |7, /C=0.2 mV]. For each frequency, the dynamics was simulated for a total time of
t=5x10r,. The modulatiorf/rS was obtained as the averab’es= 2C/(lym){exp(—iwt,)) computed over all occurring spike times.
The plotted amplitude and phase correspond to thoiérgf The modulus of the subthreshold resonance c@\& w)/ 7| =|up| is also
shown for comparisoidashed lines

has no peak at the subthreshold resonance frequency Forlimit 7;— + with T fixed,
#0, it exhibits instead a suppression around the subthresh- R
old resonance frequency. r T7y BT?

For comparison with the following sections, the limiting o C(6-V,) [ 1+ _ ; 2]' (43

- s r [1-expiwT)]

form of r when 7, is long in comparison with other time
scales is worth noting. Then, the dynamicsvwefdoes not  For any finite 1#;, the firing-rate response exhibits reso-
play a significant role in most of the driving frequency range.nance peaks centered on the firing-rate frequency and its har-
Explicit expressions can be obtained by taking the limits ofmonics. However, the firing-rate response is modified by
the above expressions wheng— +o,T—0 with /8 and  these resonances only in frequency intervals of width tending
BT fixed. Forg+0, one obtains the expression for a usual IFto zero such as/g;/7,C (in dimensional units as 7;—
neuron with leak conductanag and a resonance peak of 1o (j.e., for|wT—27n|~BT).
well-defined limiting form around the firing-rate frequency.
The limit is not uniform in a low frequency range that tends IV. STEADY AND MODULATED SPIKE RATES
to zero with; (where the slow dynamics aff does play a ' WITH NOISY INPUTS
role). The zero-leak case is special in that the firing-rate reso-
nance curve of the allied zero-leak IF model has no peak at In a number of previous studi¢$4,16,17,23—2bon neu-
the firing-rate frequenc}22]. For g=0, one obtains, in the ron firing-rates and modulation using the IF model with
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noise, it has been found convenient to transform the stochas- A. The zero-leak case

tic description of neuron dynamics into a Fokker-Planck  tha GIE model of Eq.(6,7) with zero leak §=0) is
equation for the distribution of its membrane potential. In theanalyzed in this section in the limit,— + .
present case, Eq&) and(7) give a Fokker-Planck equation

for the distributionP(v,w,t) of the membrane potential and 1. Steady firing-rate

the supplementary variabie, - . . L
The steady firing-rate is considered firgtith 1,54t)

1 =0). Whenr;— +x, the relaxation of the supplementary
P =G 9l(gu+91w—1lo=losd1))P] variablew is driven by the time average of potential and in
the steady states=(v). The membrane potential dynamics
1 A reduces to the single E@6) with w replaced by(v). The
+—du[(W=0)P]+ — 37P, (44)  steady-state distribution of the membrane potenBigiv)
1 2C thus obeys

with an absorbing boundary condition at threshold A
P(6,w,t)=0. At the reset potential =V, the distribution is (g{v)—1g)d,Ps+ i&inO, (48)
continuous, but it has a discontinuous first derivative arising

from the reinjected probability current with the absorbing boundary condition at the threshold po-

tential (Ps(6)=0) and the reinjection condition at the reset
potentialV, . Multiplication of Eq.(48) by v and integration
(49 from v =— to the threshold = ¢ directly relates the mean
steady spike rateg and the average potentiat),

&UP(U ,W,t)|v=Vr+_(9UP(U,W,t)|U=V;:&UP(U,W,t)|v=0-

The instantaneous firing-ratgt) is simply related to the
total probability current through the threshold, lo—gy(v)
re=—=——, 49
A fen =C(6-V,) 49
r(ty=—— dwa,P(68,w,t). 46 . .

® 2C2f_oc P ) (46 where expression46) for rg and boundary conditiori45)
have been used to evaluate the boundary terms.

Without the threshold condition, the stationary solution The full solution to Eq.(48) is also easily obtained and

[1,s{t)=0] of Eq. (44) is a simple Gaussian, reads
C+gm C+gm 2C(g1{v)—1o)
P(v,w)= V(9+9,)Cl/mexp — (9+91) Pv)=—-—11-exg————F——(0—v)|,
A A 60—V, A
lo \? ] V,<v<8
X| w— +—(w—v)?|;. 4 rsv
g+0: Tl( ) @7
. _ _ _ 2C(g1(v)—lo)
Finding the solution to Eq(44) with the threshold and rein- Psv)=g—1l-exp——x —(6-V)
jection boundary conditions is less easy. In the usual case of '
the IF model, the problem is similar to Kramer’s well-known 2C(g1(v)—1lo)
computation of the thermal escape from a one-dimensional X - A (Vi—v)|,

potential well[26] and reduces to solving an ordinary differ-
ential equation. In the present two-dimensional nonpotential v<V,. (50)
case, obtaining an exact solution to E44) appears to be a

difficult task even in the stationary case. Instead of attempt- The membrane potential distributidP(v) depends on
ing this, a perturbative approach is developed here in théne average membrane potent{al), which remains to be

limit where the supplementary variableevolves on a long determined. It is obtained in a self-consistent way by writing
time scale. This is a limit where subthreshold resonance is

well developed. It is also relevant for subthreshold resonance N _0+V, A
in real cells[12] since most of them show preferred frequen- (v)= . dvv Ps(v)=—5—+ 2C(gy(v)—1lo)°
cies of a few Hert45-9,27—-31 Whenw evolves slowly as (51)

compared to the membrane potentigl it stays near the

time-averaged potentigb) and the analysis of Eq44) can  The last equality can be derived by integrating the exact
be reduced to that of an effective one-variable model. Thexpression50) or again directly from Eq(48), by multiply-
analysis is first illustrated using a simple self-consistent aping it by v? and integrating fromv=— to the threshold
proach in the zero-leak casg<£0). The general case is then v= 6. The simple self-consistent quadratic equafidb has
dealt with in Sec. IV B using a direct expansion of thetwo roots, one larger and one smaller tHarg,;. Only the
Fokker-Planck Eq(44), which also provides a systematic smaller one is compatible with a normalizatfe(v) [Eq.
means of computing higher perturbative orders as shown if60)] and with a positive spike rateq. (49)]. One, there-
the Appendix. fore, obtains
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FIG. 6. Steady-state firing-rate for the zero-leaj=0) GIF
model with noisy inputs. The model parameters are5 mV, V,
=0 mV. Panelga) and(b) show the variation of the firing rate with
71 when all other parameters are fixeg= r,g9,/C). (a8 C/g;
=5ms, ly/g;=—1.5mV, A/(Cg;)=10(mV)?> (a high noise,
low current case (b) C/g;=10ms, l4/g,=4 mV, A/(Cg;)
=1(mV)? (a low noise, high current caseThe symbols are the
results of direct simulations. The large result of Eq.(53) and its
first correction, Eq.(A14), are shown for comparisodashed
lines). The firing rate of a classic IF neuron with legk gives the
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1 - 6+V, \/I 6+V, 2+ 2g9,A

<v>_2_91 0 91—2 - 0~ 91 > c |
(52)

1 \/ 0+V, > 2g;A

rs=5cr—v lo=91——| +
2C(6-V,) 2 C
6+V,

+|o_gl . (53)

WhenA =0, Egs.(52) and(53) reduce to the simple noise-
less expressiongy)=1,/g;,rs=0 forl3<g;(6+V,)/2 and
(V)= (0+V)I2rs=[1o—g.(0+V,)/2]/IC(6—-V,) for
lo/g1>(60+V,)/2. One obtains again that the noiseless neu-
ron has a periodically firing state whég/g,>(0+V,)/2,
namely, for a smaller injected current than that which is re-
quired to bring its resting potential above the thresHakl,
lo/g1>6). Moreover, forr;— +, Eq. (53) shows that as
soon as this periodic firing regime exists, it is selected by an
infinitesimal noisé.

As shown in Fig. 6, results of direct simulations of the
stochastic GIF mode(l6,7) tend toward the limiting values
(52 and(53) whenr, increases. Higher order corrections to
these lowest order estimates are obtained in the Appendix
and are also plotted in Fig. 6.

2. Spike rate modulation by a small oscillatory current:
Direct linearization

When the neuron is submitted to an additional small os-

cillatory current injection,[1,s{t)=1/2 exp{wt)+c.c] in

Eq. (44), its spike rate acquires a small modulation at the
forcing frequencyr (t)=rs+ 1ir explwt)+c.c]. The aim

here is to compute this modulation and to determine whether
and under which conditions it displays a peak at the sub-
threshold resonance frequency. We first proceed straightfor-
wardly and obtain the result for a fixed driving frequency

in the limit 7y— +o. It is then shown that the procedure
needs some refinement to capture the subthreshold resonance
for o~ g,/ C.

As discussed above, wheh— + o, the relaxation of the
supplementary variabley is driven by the time average of
the potentialw=(v) and Eq.(6) reduces to the single-
variable Fokker-Planck equation for the potential distribu-
tion,

1 A
0P=10uv) ~lo~losdD]0,P+ 0P (54

The modulation due to the small oscillatory currepi(t) is

small 7, approximation(dotted lines. (c) shows the firing rate as a obtained by linearizing Eq.54) around the steady-state so-

function of the normalized injected curreth:(IO/gl— 0)/(6

—Vr) for four noise levels. The symbols are the results of direct
numerical simulation and the lines show the analytic result of Eq. 2For finite ;, this is presumably not the case. Determining in

(53). No noise, bold lineA/(Cg;)=1(mV)?, triangles and dash-
dotted line;A/(Cg;)=5(mV)?, stars and dashed lin&y/(Cg;)
=10(mV)?, circles and dotted lingr;=100 ms and other model
parameters as ifg)].

which part of the coexistence interval, the quiescent or the periodi-
cally firing regime is preferred in the low noise limit, would require
computing and comparing the escape actions of these two attractors
[37].
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lution, seeking a probability distribution that has a small os-tonically decreasing function of frequeney and does not
cillating component at the injected current frequencydisplay any sign of the subthreshold resonance, as shown in
P(v,t)=P4(v) +1/ZT1P(v)explwt)+c.c]+---. The mod- Fig. 7. o B
ulation amplitudeﬁ’(v) obeys It can be noted.that the determlnlsnc. peak at thg flrlng-
rate frequency, which exists for small noise for any finite
[Eq.(43)], is also missed by the lowest-ordar=~ approxi-
a,Ps. mation. This is peculiar to thg=0 case and comes from the
c fact that the firing-rate resonance curve of the allied zero-
(55 leak IF model itself is special in not having a peak at the
i i ) i ) ) firing-rate frequency22] as recalled previously.
The solution to Eq(55) is easily obtained. First, comparison  The characteristic frequenay,/K appears in Eq(58),
with the steady-state E¢48) provides a particular solution \,harek denotes the dimensionless ratio
to the linear inhomogeneous E&5) equal toid,Ps/(Cw).
Second, in the present zero-leak case, the lineafdsy.has A
constant coefficients and its solution is therefore simply ob- Kse ———. (60)
tained as a superposition of exponentials &xp{ with 2C2(0-V,)?rs

A
—Ia)P-l- gl<v>—| (9 P]+?& P

For further use below, we note the spike rate and mean volt-
=X[Io—gl<v>i V(g1(v)—1g)?+2iAw], ReN.)Z0.  age expansions for frequencies small compared, t,

(56) ® w2
“IF ;
o . r= 1—|K——2<K— +}

Taking into account the boundary conditio@$) and match- C(6—-V,) rs Is
ing the function expressions in the two intervalstV,,V,
<v< i LW

v<#, one obtains oIF = [1—|2K—+ o 61)

) Cryg I
~ s
P(v)= ;{ A +(w=0)]+ E‘?vps » Vi<v<d The corresponding expansions in the opposite frequency
rangew>r¢/K read
N i [2Crg Zimla
P(U):Z A U +(Vi—0) Jtexd N 1 (v—V)] ls
C(0 V) VoK oK
1
+500Ps], v<V,. (57)
U!LF_ |7r/4 (62)
The corresponding spike rate modulation [1/2] exp(wt)
+c.c] and mean voltage amplitude are simply 3. Spike rate modulation by a small oscillatory current:
The low frequency regime
2
SF_ _iC(ﬁ’—Vr) s \/1+2i Aw B Considering the zero frequency limit provides a hint that
A ) C%(0—V,)?r? the perturbative result of EG58) does, however, not entirely

(58) describe the spike rate modulation dependence on frequency.
On one hand, whem—0, Eq. (58) gives the limiting be-

0 . havior
v'lF—J dvv P(v)
h imfF— (63
i ~E 1 w—0 C(G_Vr) .
= [(0=VIrt =5
On the other hand, the spike rate modulation induced by a

C(6—V,)? r§ i Aw very slowly changing injected current should be given by the

= A ; '—2( 9—V,)2 2 variation of the steady-state firing-rate with a change in the

constantcurrent fromlg to [5+1,54t),

i
" Col (59) . drg 1 B M)
Cw] l'Tor dlo C(G—Vr)(l 91741, (64)

The superscript IF has been added to emphasize that the

results are identical to what would have been obtained fora 1 —01(6+V,)/2
simple zero-leak IF model with injected currgr—g;(v) - 2C(6-V,) Vlo—91(6+V,)/2]%+2g,AIC]"
=C(6—V,)rs]. Therefore, modulation'"(w) is a mono- (65)
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FIG. 7. Firing-rate resonance curves in the zero-leak ¢dseModulus of the firing-rate modulatio?fl(w). (B) Phase of the firing-rate
modulation. The triangles are the results of direct numerical simulation; the lines correspond to the analytic f@8mu@ Samples of
membrane potential traces. (A) and(B), symbols are the results of direct numerical simulations, the dotted lines show the|angalytic
expressior(58), and the thick lines show the refined expresgit®). The zero-noise resultt?) is also shown for comparisddashed lines
Three different noise and injected current conditions are shdw®.02 with (a) A=0.01, 1,b=0.35; (b) A=0.1,1,=0.31; and(c) A
=0.5,1,=0.14. The other model parameters &e 1, g;=0.1, 7;=100 (units as in Fig. & As noise increases, the peak shifts from the
firing-rate frequency around 20 Hz (i) to the subthreshold resonance frequency of about 5 Hg)in

where the last two equalities follow from Eqg9) and(58). limiting proceduregsee Fig. 7. The perturbative resu(63)

Since the average membrane potenfia] depends on the s obtained by first computing the limit af(w) when r;—
injected current o, results(63) and (64) are different. The 1+ at a fixed nonzero frequency and then taking the limit
origin of the discrepancy is that they correspond to differeniw— 0. Contrary to this, Eq(64) corresponds to first setting
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=0 and then evaluating the limit cif(O) when7;— +o0, wheref)'lF is the previously computed oscillation amplitude

The two results differ becausgw) has a rapid variation [EQ. (59)]. Equation (70) self-consistently determines the

nearw=0 in a small frequency range that tends to zero wher@mplitude of the average potential oscillations

T,— +0o0, as a consequence of the fact that the subthreshold _

resonance- /g, /7,C also tends to zero in this limit. A~ ltiory & (72)
This being noted, the previous calculation can be refined Ul_l+iw71+ glf)'val '

so that it correctly interpolates between the two frequency

regimesw</g;/7,C andw> /g, /7,C. A simple approach Together with Eq(72), this also completes the determination

is presented here. A more systematic way of proceeding isf the spike rate modulation amplitud® lowest order

presented in Sec. IV B.

As previously, we consider the limit;>1 with a weak R ltior, .o
driving term but at frequencw that is arbitrarily slow. In r= ﬁr
this case, the potential has short time fluctuations but also '071 0101
slow oscillations at frequency. Averaging on a time that is 1+imr
long for the random fluctuations but short compared to the = S r'F. (73
period 27/ w of the oscillation gives 1+ior+gi[1-(6-V)r'Fl/(iCw)

where Eq.(59) has been used to obtain the second equality.

Equation(73) gives that the firing-rate modulation amplitude

is maximal at a nonzero frequenayy, . It is compared with

the results of direct numerical simulations in Fig. 7. The

analytic longr; result misses the resonance at the firing fre-

o guency that is captured by the noiseless expression(42y.

N . For low noise, this resonance is dominant and the approxi-
W(t)=vot 3 1+ion expliwt) +C.C.l. 67 mation poorly describes the numerics in this frequency

range. For higher noise, the resonance at the firing frequency
Sincew is no |0nger a f|uctuating Variab|e, E((ﬁ) reduces as disappears and the dominant modulation lies around the sub-

before to a single-variable Fokker-Planck equation threshold resonance frequency. Equati@8) then describes
the numerical data quite welsee Fig. 7 lower panéls

1 A The frequencyw,, corresponding to the maximal spike
aP==[gyw(t)—lo— Iosu(t)]avp"__&ipy (69) rate modulation can be estimated simply when the subthresh-
C 2c? old frequency is much smaller than the characteristic fre-
guencyr¢/K (which approximately corresponds to the pa-
where w(t) is given by Eq.(67). ExpandingP(v,t), as rameters chosen in Fig) ©r in the opposite case when it is

above, under the fomp(v't):ps(v)+1/2[f|f)(v)equwt) much larger. In the first case, we consider the frequency
range 1 <w<r¢/K, where the different terms of E¢73)

(v)y=vo+3[1v.expiwt)+c.cl. (66)

Integration of Eq(7) provides the corresponding expression
for w,

+c.c]+-- -, gives a modified equation fd?,
! 9 d can be expanded as folloWEq. (61)]:
P )3, P+ — 2P 1
lw E(gl<v) 0)&v Eav |r|2=|r'F(O)|2 1+ w2T2‘|
1
1 gll’}l 4K2 2
=_|1- 0, (1+Kg./rC)
C{l l+ior %Ps. (69 X1+ 5 1 2125 ...
rsmC w°T]
Equation(69) is identical to Eq.(55) except that the inho- w2
mogeneous rhs of these two linear equations differ by a con- X 1—3( Kr_ t-- (74
stant proportionality factor. The solution to E9) is there- s
fore obtained by multiplying the solution to E(p5) by the ) )
same factoxthis is also consistent with the boundary condi- — R0 1+ 4K7g;  (2rClg; +K)K (&)
tions at threshold and regetn particular, this gives the two rngC wsz Crg
relations
2
w
- —3|K—|] +---|[. 7
; =j0d Bv)=|1—- L |oF (70) ( s -
v Reery l+ion U1

This gives the peak frequency

2rC/lg;+K
3K

A ) . v g
r——E&UP(ng— 1 r-, (71) wpfr:[ V 7-1_C (76)

_1+iw7'1
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Therefore, apart from a numerical factor, the peak modulaversion of the Fokker-Planck equatiof¥). Anticipating that
tion of the spike rate coincides with the resonant subthresha does not fluctuate in the limj— +, we introduce the
old frequency+yg;/7,C. In the limit considered here, the new variablez with

spike rate resonance is, however, broader than the subthresh- .

old one. As shown by Eq.75), its width is comparable to w=w+zo B2, (80
wpf, While the subthreshold resonance peak is much sharper -

with a width ~1/7,. The phase of can be similarly ana- Wwhere the constant valwe and the powea<0 remain to be
lyzed. In the frequency range#d/&< w<r /K, the expansion determined. With this new variable, the steady-state prob-

of I reads ability distribution P¢ obeys
2
F(w):; 1 i&(i—wC/g +... ﬁu[(gv+g1W—lo)PS]+g—é’5P
C(6—V,) rClomn 1 ' T
(77 _
N :_gl{ O'Bazavps+Uﬁlﬁiailaz[(W_U)Ps]

So, the phase af decreases monotonically in this frequency
range andvanishesat the resonant subthreshold frequency 1
wp~/g1/7,C. The maximum of the phase stands at a lower + Eﬁz[z Ps]]- (82)

frequency, which is only determined, foy,— +, by the
prefactor ofr'F in Eq. (73). In the low frequency range The first two subdominant terms on the rhs of E{l) are of
~1/7,, the phase off'F coincides with the phase dfL ~ same order whemg®~pB~2"% ie., for a=—1/2 that we

+iwn)[1+ior+010F (0=0)]. Its maximum stands at choose. In order to simplify further expressions, we find it
convenient to also replaaeby the dimensionless variabje

. 1 K]Y21 with
0=[1+030 F(0=0)]2= |1+ D } —. (79
T1 Crs T1 o
_gutgw—lg 82)
The opposite case when the subthreshold frequencis Y go '

larger than the characteristic frequengyK can be analyzed _ o
in a similar way. Foro~ w,,, the firing modulation can be In these notations, the time-independent Fokker-Planck

approximately written agEq. (62)] equation finally reads
R g i \/Ts 1+ion 1 192P5 9 1 ( Py — t?Ps)
"=co-v) VoKiti(wr—g,/Ca) /2 2 Ty YT Bl T Y
It is maximal at the resonant subthreshold frequency. This is N 1 i(zp) @
also the frequency where the phaser6®) vanishes. The Boz" |’

phase maximum stands at the smaller frequemgy\/§.

where y=g,/g and we have definedy=[(g+g;)w
B. The general two-variable case —1,]/(go). With variablesy andz, the boundary conditions

It is conceptually not more difficult to analyze the general":lre imposed at the threshojg and at the reset potentig/

two-variable GIF model case than the previaus0 case. 1 - 1 -
We restrict ourselves tg>0 so that the model is stable Yo=—(g 0+gw—1g), y,=—(g V,+gw—1g).
when 7> 7 (i.e., so thate=7,g/C>—1 in this limit). The 9o 9o

computation, however, involves more complicated functions

and less explicit expressions. Instead of simply repeating th‘?he boundary conditions read

previous analysis, here the appropriate generalized expres-
sions are obtained from a direct expansion of the Fokker- y*
Planck equatiorf44) in the larger, limit. We find it conve- P(ys,2)=[P(y.2)] ~ =0,
nient to introduce o=+A/Cg, which measures the '
amplitude of the fluctuations in voltage units, the time con-
stant 7=C/g, and the conductance ratip=g,/g. With -
these notations, the limit considered is that of large 2.9y
=7,0,/C at fixedo and y.

(84)

v

=—r(2), (85

1 9P 1[oP
[ (y,2)

(yg,z)=§ oy

Yo
where the square brackets denotes the discontinuity of the

1. Steady firing rate

. AR _ _
With a steady noisy injected currefite., | ,o(t) =0], the bracketed quam't‘yf(y)]y,’_“mHO{f(y’Jr €)= fyr=e)l

membrane potential distribution obeys the time-independerithe firing-rate is equal to the total rate of threshold crossing.
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With the new variables and the normalizationPothosen as il 80
JYe dyf*ZdzP(y,z)=1, it reads R
= 15 Q}; = 60
1 [ += <) B ‘N‘\'- £
r:;f dz r(z). (86) £ ok N ] 8 40
— o0 o0 AN 20
g . g
& “ (=
Wheng is large, the solution to E83) can be obtained ™ 5., _ N 20
by series expansion, [N
00 1 ‘\Il 1 ; 1 ; L ; L 5 03OI L1l 3'5 (-] I4IOI Ll I45
PS(YaZ):PO(YaZ)+,8_1/2P1(Y1Z)+,3_1P2(yvz)+ ) T, Mean input current (mV)
r(z)=ro(2)+B Y (2)+B ry(z2)+---. (87 FIG. 8. Steady-state firing rate for a leaky GIF model with

vy=1, r=C/g=20 ms, 6=20 mV, andV,=14 mV. Left panel:
The zeroth-order solution is obtained by neglecting the rhs anpendence af, on the ratio of time constants, fer=1 mV and
Eq. (83), lo/g=37 mV (curves at low firing ratgsandl,/g=238 mV (curves

at higher firing rates Circles, numerical simulations; dashed line,

Po(y,2)=2ro(2)Qo(Y), (88 analytical expression for the firing rate including the first correction

in the larger; expansion, Eqs(92) and (A31); dotted line, the
analytical expression for the firing rate in the limit=0, which is
that of a usual IF model with a leak equalde-g,. Right panelr,
as a function of the injected curreht/g for ;=100 ms for zero
where © is the usual Heaviside functior®(u)=1 for x noisg,o:l .mV andla:5 mV. Solid lines, zero-order analytic cal-
>0 and 0 otherwise. It is identical to the steady-state probculations; circles, simulations.
ability distribution for the usual leaky integrate-and-fire )
model(see, e.g., Ref17]) except that the prefactog(z) is ~ ©n P1 at second order, analogous to Ef1), imposes that
a function of the supplementary varialdénstead of a con- ro(2) is proportional tozry(z) and shows thaty(z) is a
stant and remains to be obtained as well as the boyuj]dad Gaussian. The explicit expression(a?)o as well as the first

y, that depend on the unknowm [see Eqs(80) and (84)]. nontrivial correction tor, are determined in the Appendix

These unknowns are determined by solvability conditions onsee Eqs(A28)-(A30)]. A comparison between direct nu-
higher-order equations. merical simulation results and the perturbative estimates of

The first-order correctio®,(y,z) obeys the steady-state rate is provided in Fig. 8. The largeesult
(92) is seen to describe quite accurately the numerical results
already forr, /7=5.

2 (Yo 2
Quly) =™ fy e0(u—y,)du, (89

10°P, 4 (

. Po, ol
2 oy +W(y V=—vz ot y-y)— | €0

%y 2. Spike rate modulation: Direct linearization
The integral overy on the lhs of Eq(90) from y=— to In order to obtain the instantaneous spike rate modulation
y=Y, is seen to vanish after using boundary conditig8. ~ induced by a small oscillatory current I(A(t)
Therefore, this needs to be also true for the rhs of(B0). if =1/2lexpwt)+c.c.), we consider the direct linearization of
the equation is to be solvable. That is, the time-dependent Fokker-Planck equatidd) around the
steady-state distribution.
Yo . — In variablesy,z, Eq. (44) reads
[ ayy-y)um-o. (o) .2 Eq.(49
_ PP 9
This solvability condition determinesv (and, therefore, — 7P+ 5 FJF W(y P)
Yo,Y, andy). It is equivalent to the previous self-consistent Y
equation(51), which was obtained on a more intuitive basis. P _ 9P\ 1 9
Oncew is determined, the normalization condition gives =-v J——B(ZWJF(V—Y) E) + ,EE(Z P)
the steady-state rate to lowest order i1/
1 y +oo exp2yyu) —exp 2y, u) IOSC(t)& P (93
6 - ’
ﬁ_ZZJ Qo(y)=f due v’ ’ T g go Y
0 - 0

(92) with  boundary conditions (85 [with a time-
When condition(91) is satisfied, Eq(90) can be solved dependentr(z,t)]. P(y,zt) and r(zt) are sought
without difficulty. As can be seen from the rhs of EQ0)  in the form P(y,z,t)=P3(y,z) +(2g0) ~'[1 P(y,2)exp(wt)
and explicitly given in the Appendix, the resultify(y,z) is  +c.c], r(z,t)=rs(2)+(290) 11 (z,w)expiwt)+c.c].
obtained as a linear combination Kgf(z) andzry(z) multi-  The firing rate[Eq. (86)] and its modulation are obtained by
plied by determined functions gf The solvability condition integration overz (and division byr) and are written as
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r(t)=rs+(Zga)‘1[T?(w)eer(iwt)+c.c.]. (94) independent I_inear combinations of the confluent hypergeo-
metric functions M[(1—iw7)/2,1/2~y?] and yM[1
Note that the normalization of the current in this section—iw7/2,3/2,~y?]. It is convenient to choosé,(y) propor-
makes the normalization o w) differ by a factorgo from  tional to the combination that has a fast decreasg-at

the normalization in Eq(9). Modulation P obeys at lowest %

order in 14/, ) 1 y 1-ior 1
. 1Py 0 . $2y)= ltiwr 2 20 Y
_IT(UPO+§&—y2+W(yPO):0"yPO. (95) 2
. - . 2y ot 3
At this order, thez dependence dP factors out and it can +— 1—i 5 y? (97
be written as ﬂ)
2
Po=2r4(2)QY , (96)

AE ) _ This gives the zeroth-order estimatergfo) [Eq. (94)],
whereQy’ is identical to the response of a classic IF neuron

under oscillatory drive. The functio®| can be written 1 dQ, I&O(ﬁz(y), y<y,

[17,25 as a linear combination of a particular solution to Eq. Q{f (y)=— o av 1 .
(95) plus two independent solution, and ¢, of the allied tlor Y | Bogpa(y)+ yvodo(y), Y>Vr-
homogeneous equation. The particular solution of [@§), (98
dyQo/[1+iwT], is obtained by differentiating the steady- - .

state equation to lowest ordgre., Eq.(83) with rhs equal to  The three boundary conditioni85) determine the three un-

zerd] with respect toy. Introducing Kummer's function known coefficientsxo(w), Bo(®), and yo(w) and give the
M (a,b,x) [32], functions¢,(y) and ¢,(y) can be taken as firing-rate modulation

ro [¢§<yg>+2y9¢2<y9>]exp<y§>—[qsg(yr)+2yr¢2<yr>]exrxy?>)
ltioT bo(yg)expys) — daly, ) exp(y?) '

T (w)=

(99

Again, we have added the superscript IF to emphasize thathis differs from the expected formula for very slow oscil-
the rate modulatio99) is identical to the result for a classic lations, which should be given by the adiabatic oscillations
IF model with an injected current—g,w. For further use Of the steady-state rate. Namely, from E@2) one obtains
below, we also note that integration of E§5) overy pro-
vides the identity

.~ d 0 ~F dw
limro(w)=go——=rq (0) 1_gld_lo , (102

"
i 00 dly
1= (Y= Y)lg (0)7
l+ior ’ wherew is determined by Eq(91) and depends oih, be-
(100 causey, andy, do. As before, the two formulas differ be-
cause the variation off due to the injected current is over-
where functionY(w) is defined by the first equality. looked in the direct linearization. The approach should
The obtained firing-rate modulati&n‘f(w) is plotted and  therefore be refined at low frequency as shown in the follow-
compared to the results of a direct numerical simulation ofng section.
the GIF model in Fig. 9.
The agreement is rather good at high frequency but does 3. Spike rate modulation: The low frequency regime
not capture the resonance at low frequency. Moreover, as for |n the low frequency regime, the terms coming from time
the previous zero-leak case, the zero frequency limit of Eqgjfferentiation become small and comparable to the terms of
(99) does not correspond to the result obtained by varyingjrst order in 14/8. Thus, the perturbation series has to be
the injected current in the steady-state r&@®). That is, reordered.

The adiabatic result ab=0 lead us to anticipate that, for

Ir e Ydu a slow oscillating currenitys(t)=1/2[Texpfwt)+c.c], wis
' peaked around a time-dependent oscillating value. This sug-
(101 gests a change of variables fromto z with

y ~
Y(w)EZTrOJ de ydoF=

~ y
r})F(w=0)=27r§(ey3f ae‘uzdu—eVrZJ

— oo
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7, =200 ms 7, =200 ms Again, the solution to(104) is sought of the form
P(y,z,t)=P4(y,2)+(290) "1 P(y,z)expwt)+c.c]. For
low frequenciesv~ 1/\/77, (or smalle}, the linear probabil-
ity modulation obeys to lowest order in+i3,

0.5

Amplitude
o
N

1Py o . .
> Py +W(ypo):(1_91W1)5’yP0- (105

Equation(105 only differs from the previously solved Eq.

-30 PR T SR T NN R S T

10 0 5 10 (95), in that it is evaluated ab=0 and that the rhs of the
f (Hz) . ) , ;
two equations differ by a constant proportionality factor.
7, =100 ms Therefore, one has
15
= Po=2ry(2)[1—g.W;]1Qq (Y;0=0), (106)
3 £ of - ~ SIF
E g fo=[1- 917§ (0=0), (107)
<Y ~
5: g 15 with
o
I I N T= aQO ’r\IOF(w:O) 2
030 T : T |10 _300 T N : L1 |10 0 (y,w_o)__(?_y_}_TQo(y)_l_exq_y)
f (Hz) f (Hz)

2 2
FIG. 9. Relative firing-rate modulation as a function of fre- X[ exptyy)+ Oy, —y)exyr)]. (109
quencyf=w/271;for the leaky GIF model. The amplitud&eft) and wherer, and Fo(w=0) are given by Eqs(92) and (101).
phase(right) of rl/(go rg) are shown for two different values of Formula(108) can be obtained by taking the limii—0 of
(indicated above each pahéh the strong noise regime. The peak general expressiof08) or more simply by directly solving
of the amplitude stands around the subthreshold resonance fr%q.(95) with w=0. In this case, the normalization condition
quency(about 3.5 Hz for the top panels and 5 Hz for the bottom 1o solution of the homogeneous equation can be obtained

panel3. Parameters of the input; /g=29 mV, c=5 mV yielding . . .
a steady firing rate of about 12 Hg=1. Other parameters are as in by imposing the condition

Fig. 8. Symbols, numerical simulations witk=0.03,; thick line, Vo R
analytical expression, Eq116); thin line, firing-rate modulation J' dy Q:)F(y)ZO, (109
and phase of the IF neuron, E®9). It can be noted that the linear -

approximation still gives a good fit to the data for a modulation of

about 50%. as seen here. which directly follows from Eq.(95) for o #0.

The unknown constant; is determined by a solvability

w=w+ 12T Woexpliot) +c.c]+zop Y2 (109  condition at next order. The {B correctionP, to P, obeys

This transforms the Fokker-Planck equatid) int Loy 0 )= Po 7y
is transforms the Fokker-Planck equati@dd) into > pY +W(y == ZWHy—y)E
PP 4 4+ (1—qgW —(1+i
_T(ytp+§_2+w(yp) (1 glwl)(?ypl (1 |(1)Tl)
% X(91W1)d,Po+iw7yBP,. (110
=—y i( EJF(Y—V)E) + Ei(z P) The solvability condition, obtained by integrating E410
J\ oy az| B oz overy together with Eq(106) and (109), reads
l 1+|(1) 1 ~ ~ Yo — ~ i ~
Ry (1=gywy)ayP 91W1d,P |l dyiy(y—y)Po+(1+iwr)gw,Po}=0. (111
go JB —o0
. With the previous expressiorid06) and (108), Eq. (111) is
xXexpiot)+c.c.p, (104  found to be equivalent to the following self-consistent equa-
tion for wy:
where, as before, we have also introduq;ed[(gv_%—glw . (1—gyW,) Yo ~E
—1o]/(go) and defined the corresponding constgat[ (g 9iWi=y 1+iwT ZTroj_ocdyydo (y,0=0).

+g)w—1,l/(go). (112
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7,=100ms C. Unmasking of the subthreshold resonance by noise

In high noise conditions, the firing-rate resonance curve is
peaked around the subthreshold frequency as seen in Figs.
7(C) and 9. The corresponding resonance curves in low noise
conditions with the same average firing-rdtgtained by
increasing the injected curreh$) are shown in Figs. (A)
and 10. They display a strong resonance peak at the firing-
rate frequency and peaks of lower amplitude at its harmon-
L W ics, attenuated but recognizable features of the firing-rate
0 fg_?z) 100 resonance curves in the deterministic lififompare with

Fig. 5. Figures 9 and 10 also show that the GIF response

FIG. 10. Firing-rate resonance curve in the low noise regimefo(w) at low frequencies can be either smaller than the leaky
Same parameters as in Fig. 9, except thatg=40mV, o  |F response| (hence creation of a peak around subthresh-
=1 mV, giving a background firing rate of about 42 Hz. Simula- old frequency, see Fig.)%r higher than the leaky IF re-
tions are performed with,=0.023,. The symbols correspond to sponse(hence a trough around subthreshold frequency, see
the refults of direct numerical simulations, the thick line to Eq'inset in Fig. 10. The condition that determines whether a
(117). ry [Eq. (99)] is also plotted(dashed ling and in this low peak or a trough is present can be obtained from(EL). A
n0i§e regime almost coincidgs with EG17) except in a very small peak is found forY(0)>0, while a trough is found for
region at low frequencysee insets Y(0)<0. Alternatively, this condition can be obtained from
the slope of thef-l curve, sinceY(0) is linearly related to
rf (w=0). For a slope larger than[TQ(69—V,)], a peak is

R yY(0) obtained in the firing-ral_te response, and_a trough otherwise.
91W1=m, (113 Note t.h.at WC(Q_— \_/,)] is the slope that is obtained in tlhe

high firing-rate limit in the absence of a refractory period.
Thus, the qualitative behavior of the firing-rate response at
low frequency can be obtained by an inspection of tHe
curves shown in Fig. 8. For low noise levels, the slope is
small at low firing-rateghence a peak at subthreshold fre-
~E L o . guency, then increases above its asymptotic valnence a
andrg (0=0) is given explicitly in Eq.(10D). The fiing-  yr5,gn" at subthreshold frequengyand then decreases to-
rate modulation in the low frequency regime is given by Eqs,yards its asymptotic valughe trough becomes less and less

Amplitude

Using Y(w) defined in Eq(100), one obtains

where

Y(0)=1—(y,~y,) 7§ (0=0) (114

(107 and (113 pronounced as firing-rates increasEor high noise levels,
14 the slope is always smaller than its asymptotic value, which
¢ — o7y Flw=0 11 means that a peak at subthreshold frequency is always
Fo(@)= 77 b (0=0). (119 :
1+ior+yY(0) present, but the peak should vanish at very large rates.

For the parameter values of Figs. 9 and 10, the peak of the
An expression that interpolates between the low and highiring-rate resonance curve is plotted in Fig. 11 as a function
frequency regimes is simply of the noise intensity. This clearly illustrates the peak shift
from the firing-rate frequency to the subthreshold preferred
frequency with increasing noise. Thus, noise helps to un-
cover a resonant peak at the subthreshold preferred fre-
quency in the firing-rate response. In some sense, this might

A slightly different interpolating expression was proposedbe considered as a form of stochastic resonft®g How-
in Sec. IV A 2. It is obtained by keeping theiwP,7 term  ever, this phenomenon is very different from pr&viously dis-
: ; ; NI cussed stochastic resonance phenomena in ne(sease.g.,
IAn,FEq_' (1.05)' This simply replacesQq (y;»=0) b}/ Ref.[27]). These studies considered the spectrum of the in-
o (y;w) in each step from Eq(109 to Eq. (116 and it o shike interval distributioniSI) of a neuron subjected to a

1tion :'F(w). (116

"ole) = I+ yY(0)'0

leads to the alternative formula noisy sinusoidal current as the quantity of interest. What was
ltior shown ina varie;y of models, including_ the leaky integrate-
13%w)= — i F(w), (117  and-fire neuron, is that the signal-to-noise ra8iR) of the
1tior+yY(w) transmitted frequency exhibits a peak at some positive noise

R level. Here, we have considered a very different quantity, the
with Y(w) defined by Eq.(100 and r!)F(w) given by Eq. linear response of the instantaneous firing-rate. This measure
(99). is more appropriate in the context of the transmission of an

The analytical formulas are compared to results of direcbscillatory signal at the network level. It is also one of the
numerical simulations in Figs. 9 and 10. For these parametanain quantities that determines whether a network is asyn-
values, the two formulas of Eq116) and(117) are numeri- chronous or notsee, e.g., Refl17]). The behavior of this
cally very close and describe quite well the numerical resultsmeasure is quite different from the SNR of the ISI distribu-
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2

rate is smaller than the subthreshold frequency can be
achieved, in practice, only with noise and, in this regime, the
firing-rate amplifies preferentially inputs at the subthreshold
resonant frequenchl2].

As regards the mathematical treatment of the two-variable
GIF model, the main results have been obtained perturba-
tively in the limit where the supplementary variable is slow
as compared to the membrane potential dynamics. It is worth
emphasizing that this is relevant for the description of many
real cells. From the multiple cell types that exhibit resonance
in the nervous system, most show resonance at frequencies
of a few Hertz. Neurons in the inferior olij28,29 and in
%he thalamu$30,31 show resonance at about 4 Hz. Pyrami-
dal cells in the neocortex can show resonance at 1-2 Hz at
rameters as in Fig.)9The left panel shows the rather abrupt tran- hyperpolan;ed level$S] .Or 5-20 HZ at m.ore depolarized
sition of the peak from the firing-rate frequency to the s.ubthresholcleveIS [6]. Finally, pyramidal Ce”S. n t.he hippocampus also
resonance frequendjabout 5 Hz hereas noise is increased and show resonance at IQW frequenmes_ In ’th@and(_Z—? Hz,
currentl, is decreased. The right panel shows @ealue of the  L7,8]). Such frequencies can be obtained with a time constant
resonance defined as the ratio of the modulation at the peak fr&f the “activation variable”w aroundr; ~100 ms. It is in-
quencyw,y, over the modulation at zero frequenfiy wps,)/ (0))- teresting to note that for such valueg of, .the small7/7;

For rp=10Hz, Q is less than 1 when curvé ()| has a large expansion gives a very good approximation of the reduced

negative slope at the origifdue to the high slope of they(l,) _model behaylor(see Figs. 9 and JlO.The. reduced modell

curve. itself often gives a very good approximation of the behavior
of more realistic conductance-based cgllg].

tion. In the suprathreshold firing regime, noise decreases the Other approximate treatments can probably be developed

relative size of the resonant peak at the firing frequency, i@ describe different parameter regimes. Several cells show

threshold firing regime, noise enhances in a monotonic Wa%f the hippocampus show resonance in théand (30-50

the relative size of the resonant peak at the subthreshoidZ [8]). Such frequencies are obtained with smaller time

preferred frequency, if the firing rate is kept constant as nois€onstantsr; and hence the smafl/ 7, expansion gives less

is varied. This behavior occurs in GIF neurons with sub-accurate results. However, the difference between simula-

threshold resonance, but not in IF neurons that have no sul§ons and analytical data seem to be accounted well by a

5 8

[\*]
=]

Resonant frequency (Hz)
> &

=

S (mV)

FIG. 11. Dependence on noise of locatiep;, of the peak of
firing-rate response, for three values of the background rate, 10, 2
and 50 Hz. At each noise level, currentl is adjusted to leave the
firing rate constant at the desired value, using ©§) (other pa-

threshold preferred frequency. frequency-independent multiplicative factor. It thus seems
that no qualitatively new phenomenon arises from the
V. CONCLUSIONS AND PERSPECTIVES higher-order terms, at least in the range of the values; of

investigated her¢l0—200 mg Obtaining the exact solution

In this paper, a generalized integrate-and-fire model hasf the problem would nevertheless be interesting but appears
been studied in order to shed light on the relation betweemather difficult.
subthreshold resonance and firing-rate modulation. The main features observed in simulations of more real-

It had been shown in a previous study?] using both the istic models[12] are similar to those obtained with the GIF
GIF model and conductance-based modeling that a suffimodel and can thus be described by the present analysis.
ciently large amount of noise was necessary for the subSeveral simplifying assumptions made in the formulation of
threshold resonance to be able to create a firing-rate resthe GIF model should, however, be noted. The most obvious
nance. The present study provides a detailed analysis of thenes are that the GIF model subthreshold properties are in-
phenomenon for the two-variable GIF model. For noiselesslependent of the membrane potential and that spike-
and weak noise inputs, the results of Secs. Il and IV shovgenerating dynamics is absent. Numerical results using
that the firing-rate modulation is strongest at the firing-rateconductance-based mod¢i®] show that the basic phenom-
frequency(and its harmonigsand that there is &roughin  enon is independent of these simplifications. It could none-
the response at frequencies around the subthreshold fréreless be worthwhile to try and develop a direct analysis of
guency. Contrary to this, for sufficiently noisy inputs, the these more realistic models.
results of Sec. IV show that the resonance of the firing-rate A second set of simplifications pertains not to the neuron
stands around the subthreshold frequency and the perturbdynamics itself but to the modeling of its inputs. It has been
tive results describe well the numerical data. In the presernthosen here for simplicity to consider a white noise current
paper, we have illustrated in Figs. 5, 7, 9, and 10 the situatiosource. While this could be studied in an experiment in iso-
in which the background firing rate is larger than the subdated cells or in a slice, this certainly greatly simplifies syn-
threshold preferred frequency. The two variable resonant Gllaptic inputs in at least two important respects. They are bet-
neurons are type Il and their minimal firing rate in the ab-ter modeled as conductance modifications and, furthermore,
sence of noise cannot be much smaller than the subthreshatdise is colored on the time scale of the synaptic dynamics
resonant frequency. Hence, the situation in which the firind33]. It is known that the replacement of white noise by
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colored noise can modify the response of neurons at highections will be sought in the form of a series of inverse
frequency{25]. Again, the numerical results of Réfl2] in-  powers of /3. The time-independent Fokker-Planck equa-
dicate that the qualitative phenomenon is preserved in thigon (44) for this case is
more complicated case, but a more quantitative analysis
might be worth pursuing. A P 1 9 19

_It is ce(taipl_y of great interest to understand how the_ prop- 0= E E +E 5[(glw— lo)P] +T_1 a_W[(W_U)P]-
erties of individual cells affect the collective properties of

networks of cells. The present study may help in two ways t N = e =
make progress in this direction. First, at a purely numericzﬁrhe substitutions v =w+xyA/Cg, ~and w=w

71/2 . - .
level, the IF neuron has proven very useful as the simplest 28 VA/Cg, are made, yielding the reduced-variable
spiking neuron model and it has been widely used as thEOkker-Planck equation:
elementary component of large network simulations. The

GIF neuron should provide the appropriate substitute and :£‘92_P ££ i zi—xﬁ +£i(zP)
permit the incorporation of key features of the subthreshold 2 9x%2 2 Jx \//—3 X dz| B oz '
response. In networks of inhibitory leaky integrate-and-fire (A1)

neurons, noise has previously been shown to give rise to

oscillatory modes in which neurons fire irregularly at low with ¢ defined by

rates, while the population activity oscillates at a frequency

determined by the synaptic time consta[ritg,34,39. It will C —

be interesting to investigate whether networks of cells with (=2 A—gl(91W—Io).

more realistic subthreshold dynamics, such as the GIF model

studied here, can give rise to new oscillatory modes. At aote that in this section, the normalizationzif different by
more theoretical level, the linear firing-rate response of they factor of \/g/g; from that chosen in the rest of this paper
neuron that was determined here is a key quantity in th@which is not compatible wity=0).

analysis of this question and the determination of the condi- The first correction to the firing-rate can be conveniently
tions of network OSCi”ationS, as was shown for networks Ofobtained by tak”']g various moments of EA]_) To this end'

leaky integrate-and-fire neurofis7,35 and for networks of  muyltiplying by a factorx™z" and integrating over the space
excitatory neurons with adaptation curref@§]. The results  of the x andz variables gives

of the present paper show that noise will potentially play a
strong role in shaping the synchronization properties of net- p(Z") (xg—x) +m(m— 1)<xm—22n>:mg<xm— 1z“>
works of neurons with subthreshold resonance. This should

allow for an analysis of the respective roles of intrinsic and 2m o 2n no .
synaptic dynamics in the collective behavior of large net- + \/__,B<X ") = \/_,E<X ")+ ?<X z"),
works and allow for an assessment of the functional role of
subthreshold resonance in neural systems. (A2)
where the following definitions have been used:
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APPENDIX: FIRST CORRECTION TO THE p(z" = dzZ2'—| with p=p(1),
FIRING RATE IN THE LARGE 7, EXPANSION - X Xg

The formalism of Sec. IV B can be used to obtain higher- c C
order corrections to the lowest-order results given in the Xo= \ /ﬁ(e—W) and X, = /ﬂ(vr_m_ (A3)
main text in a systematic way. This is illustrated here by A A

deriving the first correction to the steady firing-rate both for . ]

the zero-leak case and for the genegaO case. The zero- Puttingm=0 in Eq.(A2) gives

leak case is treated separately because much more explicit
expressions can be obtained. This also serves to illustrate a P

method of calculation that avoids the explicit computation of (xz"%)= \/_’E<Z ) for n=1. (Ad)
the probability distribution by focusing on its moments.

This equation(with n=1) states that, to leading ord€x)

1. The zero-leak case and the moment method ~1/JB. Forn=0, withm=1 andm=2, Eq.(A2) becomes
The aim is to calculate the first higher-order correction to
the firing-rate for the simple case gi=0. The regime of 2
) ) Simp : 9 (Xo—X)p={+ —=(2), (A5)
interest is that for which3 is large and, therefore, the cor- \/E
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(Xg=x2)p+2=24(x)+ (A6)

(<xz>
respectively. On substituting fagr, these two equations give
to zero order

2

(Xo+X;) (A7)

[=—

Using the definitions off, xy, andx,, Eq. (A7) gives a

guadratic equation fav. The root that is consistent with the
normalization condition on the probability density can be

shown to beﬁ=<v> [Eq. (52)]. As expected, this zero-order

result is equivalent to the self-consistent replacement:
—(v). The choice is made to enforce relati¢h7) to all
orders(this can be taken as a definition of shif).

From the moment equation with=1 andn=0, constant
p (which is related to the firing-ratd@s given by

{ 2 (2)
= 1+—=—].
P XO_Xr< \/E {
It remains only to obtaifz) to leading order. This can be

achieved by using the moment equati{@®) with m=1 and
m=2:

p<zn><xo—xr>=z<z”>+%ﬁ<z““>

2n o1 2n
_\/—_B<x z >+F<in>’ (A8)
P(Z”)(XS—X,Z)—F2<z”>=2§<xzn>+ i<xzn+1>
VB
2n —(x32"" 1)+2 (x2z".
VB
(A9)

On multiplying Eq.(A8) by 2 and Eq(A9) by ¢ and adding
them to eliminatep(z") using Eq.(A7), the following is
obtained:

nZ{(x3z2" Y+ 2n(x?z"" Y=

2+ 2+ %”)(z““)

+£(z”+2>+

x2z"
N @< ),
(A10)
where relation(A4) has also been used. With=0, this
equation yields
1 24z%)
)= —=——— (A11)
DB
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and withn=1,

(2+§+ )<22> Z(x3)+2(x?)— \é(f}—\%(xzz).

(A12)
The last result implies that, to zero order,
x3) o+ 2(x?
(229, 00+ 208)0) a3
(2+8)

The zero-order forms of EqA2) with m=1,2,3,4 andn
=0 can be used to obtaifx?), and(x®):

1(x3-x3
<X2>°:§<xo—x =§(XS+Xer+Xr2)
r
1(xg—xt\ 1/x3—x3 1
3y _ il o (X3,
<X >0 4(X0_Xr éz Xo— X, 4(X0 Xr)

Combining these results and noting the relation between
and the firing-rate = —g,p/2C gives

A (080t 2(x%)0)
B (2+¢%)?

1 42%

r=ro(1——

B (2+?

(A14)

as the order J3 correction to the firing-rate. The zero-order
firing-rate ro=g;/[C(x3—x?)] is equivalent to the result
given in Eq.(53).

2. The first-order correction in the general case

The starting point is the Fokker-Planck equati88). In-
serting the series expansion, E§2), in Eq. (83), gives the
successive orders iR,

LP,=0, (A15)

LP,= o, 5y oo A16
1= YZW (yy)E, (Al16)

P4
LP,=— (szL(y y)E‘f‘_(ZPO)) (AL7)

&Pz
LP3:_ [?y

where the linear operatdr is defined by

d
+(y—-y )E E(Zpl))i (A18)

1P 4

+ 3y (yP). (A19)

We note that function®; must be everodd) in z for even
(odd) ordersi. This implies that the corrections to the firing
rate at odd orders are zero, since the firing rate is obtained by
integratingP overz aty=y, [Eq. (46)].

The solution to equatiofA15) that satisfies the boundary
conditions is given by Eq89),

051916-21



BRUNEL, HAKIM, AND RICHARDSON

Po(y,2)=2ro(2)Qo(Y), (A20)

2 (Yo 2
Qo(y)=e"” fy e ®(u—y,)du, (A21)

+ oo Yo -1
ror:j I’o(Z)dZ=<2JD€Qo(Y)dy) , (A22)

— 00

wherer y(z) is determined by a solvability conditidsee Eq.
(A28) below] for the second-order EAL7).

The solution to Eq(A16) that satisfies the boundary con-

ditions is
P1(y,2)=2r1(2)Qo(y) +4v[zro(2)IQo(Y)
—1o(2)IKQo(Y)], (A23)
whereJ andK are operators defined by
JF(x) =exp( —x2) f Yexgud)f(udu,  (A24)
Kf(x)=£( (u—y)f(u)du, (A25)

andr,(z) is defined by Eq.87) and is determined by a
solvability condition on the third-order E¢A18) [Eq. (A33)
below].

The solution to Eq(A16) that satisfies the boundary con-

ditions is
Pa(y,2) =2r,(2)Qo(y) +4¥{zri(2)IQu(y)
—11(2)IKQo(y) +[2ro(2)]" I1Q0(Y)}
+874{Z%ro(2)3?Qo(y) — 2rp(2) K Qq(y)

—[zro(2)1" IKIQu(Y)} + 8771 pIKIKQy(Y),
(A26)

where

If(x)=JX f(u)du (A27)

and an additional condition must be imposed r@iz) to
satisfy the boundary conditions:

2

a°r 1 d
4YKIKQ(y )z + “J—T—4yKJQo<yg>)5<zro>=o.
(A28)
This condition gives (2):
(2)= =2 p( a ) (A29)
ro(z)= exp — ,
° V2m(Z%), 2(2%)
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()= 4yKIKQq(Yo)
07

—— —4vKJIQo(Yy)

roT

(A30)

Condition [Y¢ dyf*Zdz Py(y,z)=0 givesr,,

+ o0
r2=—47r0(IJQO(y9) j, dzzn(z)+2yr71I2KQo(Y,)

+ 27roT<22>0|32Qo(Ya))- (A31)

Thus, we still need to determing”Zdzzr,(z) to obtain
the first nonzero correction to the firing-rate. Integrating
both sides of Eq(A18) provides the solvability condition at
third order,

Yo — &Pz Jd
dey((y—y)g+5(2ﬂ))=0. (A32)

With the previous expression(#23) and (A26) for P, and

P,, this gives an inhomogeneous second-order ordinary dif-

ferential equation, which determineg(z),

°r
1
4yKIKQo(Yp) -z +

1 d
ror 4yKIQu(yo) |--(2r1)

=15 {87*KIKIKQo(Y ) +4¥(Z%)o[ 27YKIKIQu(Y )

—KIIQo(yo) I} +(2%r)| 2¥(4¥KI*Qo(Ys)

2yKJI?KQq(Yg) — 1IKQq(Ys)
<22>o

—213Qo(yp)) T4y

(A33)

Solution r,(z) is equal tory(z) times a polynomial inz
containing only terms ire®> and z. The first moment is di-
rectly obtained by integrating EgA33) twice overz,

4yKJI?Qy—213Q,

f+xdzzr1<z)=<z2>o 2y

G —4’)/KJ QO
(ZyKJzKQO—IJKQO
KJKQ,
Y=VYg
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