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Theory of high-force DNA stretching and overstretching
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Single-molecule experiments on single- and double-stranded DNA have sparked a renewed interest in the
force versusextension of polymers. The extensible freely jointed cH&hCO model is frequently invoked to
explain the observed behavior of single-stranded DNA, but this model does not satisfactorily describe recent
high-force stretching data. We instead propose a m@teldiscrete persistent chajrthat borrows features
from both the FJC and the wormlike chain, and show that it resembles the data more closely. We find that most
of the high-force behavior previously attributed to stretch elasticity is really a feature of the corrected entropic
elasticity; the true stretch compliance of single-stranded DNA is several times smaller than that found by
previous authors. Next we elaborate our model to allow coexistence of two conformational states of DNA, each
with its own stretch and bend elastic constants. Our model is computationally simple and gives an excellent fit
through the entire overstretching transition of nicked, double-stranded DNA. The fit gives the first value for the
bend stiffness of the overstretched state. In particular, we find the effective bend stiffness for DNA in this state
to be about 12 nrkgT, a value quite different from either thigform or single-stranded DNA.

DOI: 10.1103/PhysRevE.67.051906 PACS nunter87.15-v

I. INTRODUCTION AND SUMMARY different, coexisting conformations of the polymer, each with
its own elastic constants. We formulate and solve this model
New single-molecule manipulation techniques haveas well(some of these results were announced in REj.
opened the mechanical properties of individual macromol-The model makes no assumptions about the elastic properties
ecules to much more direct study than ever before. For ex0f the two states, but rather deduces them by fitting to recent
amp|e’ optica|-’[rap measurements give the force-extensioﬁata on the overstretching transition in nicked, double-
relation of a single molecule of DNA, from which we can  stranded DNA. Besides giving a very good fit to the data, our
deduce the molecule’s average elastic properties by fitting tgnodel yields insight into the character of the stretched con-
a model. Part of the beauty of this procedure is that we pas®rmation of DNA. The model is flexible and can readily be
from an optical-scale measuremefthe total end-to-end adapted to the study of the stretching of polypeptides with a
length of the DNA is typically over 1um) to a nanometer- helix-coil transition.
scale conclusiorithe elastic constants of the 2-nm-diameter
DNA molecule. But by the same token, we must be careful ll. THE WORMLIKE CHAIN AND THE FREELY JOINTED
with the interpretation of our results. Fitting a physically CHAIN
inappropriate model to data can give reasonable-looking fits,
but yield values of the fit parameters that are not microscopi-
cally meaningful. A polymer is a long, linear, single molecule. The chemical
We will illustrate the above remarks by studying high- bonds defining the molecule can be more or less flexible in
force measurements of the force-extension relation fodifferent cases. The simplest model of polymer conformation
single-stranded DNA. Previous authors have fit this relatiorireats the molecule as a chain of rigid subunits, joined by
at low to moderate forces to the extensible freely jointedperfectly flexible hinges—a “freely jointed chain,” or FJC
chain(EFJQ model, obtaining as fit parameters a Kuhn seg{2]. The FIJC model is not very appropriate to double-
ment length and an enthalpic stretch modulus. We argue thatranded DNA, consisting of a stack of flat basepairs joined
to capture the microscopic physics, at least one element dfy both covalent bonds and physical interactidmgdrogen
physical realism must be added to the model, namely a norbonds and the hydrophobic base-stacking energwt for
zero link stiffness. The resulting model fits the data betteisingle-stranded DNAssDNA) it forms an attractive starting
than either the EFJC or the extensible wormlike chainpoint.
(EWLC) models, with no additional fit parameters. Including  Deviations from the FJC picture can come from a variety
the link length as an additional parameter gives a still betteof interactions among the individual monomers: Individual
fit, and also yields a much large value of the extension modueovalent bonds may have bending energies that are not small
lus than previously reported. The reason for this discrepancielative tokgT; successive monomers may have steric inter-
is that high-force effects previously attributed to intrinsic actions; and so on. To some extent, we can compensate for
stretching of the chain are, in our model, simply a part of thethe model’s omission of such interactions by choosing an
corrected entropic elasticity. effective Kuhn segment lengththat is longer than the actual
The mathematical formalism we introduce to solve ourmonomer size. Since the FJC views the polymer as a chain
model is of some independent interest, being simpler thaof perfectly stiff links, choosing a largérgives us a chain of
some earlier approaches. In particular, it is quite easy to edenger links and thus effectively stiffens the chain. Accord-
tend our model to study a linear chain consisting of twoingly, one viewsb as a fit parameter when deriving the force-

A. The freely jointed chain
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FIG. 1. The freely jointed chain consists of identical segments
of length b, joined together by free hinges. The configuration is
fully described by the collection of orientation vectdts}. {6;}
denotes the angle betwekrand the fixed directioz of the applied FIG. 2. Awormlike chain is a continuum elastic medium, whose
stretching force. configuration is described in terms of the position veatoas a

function of contour lengtts.

extension relation of the model. The fit value lotan then
depend both on the molecule under study and on its external
conditions such as salt concentration, as those conditions af- As mentioned above, double-stranded DXISDNA) is
fect the intramolecular interactions. far from being a freely jointed chain. Thus it is not surprising
To formulate the FJC, we describe a molecular conformathat while the FJC model can reproduce the observed linear
tion by associating with each segment a unit orientation vecforce-extension relation of dsDNA at low stretching force,
tor §,, pointing in the direction of theith segment, as and the observed saturation at high force, still it fails at in-
termediate values df Another indication that the model is
physically inappropriate is that the best-fit value of the Kuhn
segment length ib~100 nm, completely different from the

B. The wormlike chain

sketched in Fig. 1. In the presence of an external fdrce
along thez direction, we can define an energy functional for

the chain physical contour length per basepair of 0.34 nm.
gFJC[{E.}] b To improve upon the_FJC, we must account for the fact
=y —fz (1)  that the monomerslo resist bending. In fact, the very great
kgT i=1 keT stiffness of double-stranded DNA can be turned to our ad-

vantage, as it implies that successive monomers are con-
trained to point in nearly the same direction. Thus we can

In the absence of an external force, all configurations hav t th | i lastic bodv. it p
equal energy andneglecting self-avoidangdghe chain dis- .rea € polymer as a continuum elastic body, its configura-

plays the characteristics of a random walk. To pull the enddion described by the position(s) as a function of the
of such a chain away from each other a force has to b&elaxed-state contour length (see Fig. 2 Continuing to
applied, as extending the chain reduces its conformationdr€at the chain as inextensible gives the wormlike chajgl.

entropy. The resulting entropic elastic behavior can be sum¥he local tangent and curvature vectofsa(nd W, respec-

marized in theforce-extension relatiof3] tively) are given by
. odr(s) . di(s
2\ ot E) kel @ t(s)= d(s), wW(s)= d(s). @
Lot kgT) fb’

We temporarily assume that the chain is inextensible, ex-
the well-known Langevin function. In the limit of low pressed locally by the condition thei(s)|=1 everywhere.
stretching force, all polymer models reduce to the Hooke-law To get an energy functional generalizing Efj), we note
behaviorf=Kkgz); we define the effective spring constant that for a thin, homogeneous rod the elastic energy density is
by x=Kgg o1, OF proportional to the square of the local curvature. Adding the

external-force term from Ed1) yields

dt(s)

L i ey
ot K KeT 0 2| ds

<i> Lo, 3 eMTi(s)] JL ds|A

2
—kB—Tt(s)~z}. (5)

Expanding Eq(2) gives the effective spring constant for the Equation(5) shows that parametéris a measure of the bend

FJC as«™°=3kgT/b. The fact that the effective spring con- stiffness of the chainA is also thepersistence lengtbf the

stant is proportional to the absolute temperature illustrateghain, the characteristic length scale associated with the de-

that the elasticity in this model is purely entropic in nature. cay of tangent-tangent correlations at zero stretching force:
At high stretching force, Eq(2) gives(z/L,y—1; the

extension saturates when all the links of the chain are aligned (t(0) .E(S)>WLCNE—\SI/A_ (6)

by the external force. In reality, individual links are slightly

extensible; we will modify the model to introduce this effect The force-extension relation for the WLC was obtained

in Sec. Il C. numerically in Ref[6]; subsequently a high-precision inter-
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polation formula was given in Ref7]. At low force, the
WLC also behaves such as an ideal spring, with effective
spring constanf8]

3kgT
WLC _
K 2A @

Thus a WLC with stiffness parametek yields a force- . . o .

extension relation that at low force matches the FJC Wwith FIG. 3. The discrete persistent chain, viewed as a FJC with an

=2A. additional term in the energy proportional to the square of the polar
The remarks at the start of this section make it clear thaf"9le® between successive segments.

the WLC is just an approximation, valid in the limit where o _ ]
the persistence lengtA is much longer than the physical DNA, which is intermediate between these extremes, yields a

monomer |engt}'(and Wldth When these conditions are not better fit to the data than either the FJC or the WLC, with no

met, the picture of the molecule as a thin, continuous, elastigeWw fit parameters. In fact, the resulting model fits high-force

body will not be accurate; short-length cutoff effects will Stretching data out t6<400 pN without invoking any non-
then enter in an essential way. linear stretch elasticity, and so h&swer parameters than

models with such nonlinear terms. Alternatively we can pro-
moteb to an independent fit parameter; then we will find that
an unbiased fit indeed chooses a value for it that is compa-
Early single-molecule stretching experiments showed thatable to the physical monomer length.
double-stranded DNA closely follows the predicted force ex- Our “discrete persistent chain{lDPC) thus models the
tension of the WLC at forces under 10 Bl Later experi- polymer as a chain composed bf segments of lengtib,
ments probing the 10 pNf<60 pN region found a linear whose conformation is again fully described by the collec-
deviation from the WLC prediction, attributable to an enthal-tjon of orientation vectorét;} (see Fig. 3 Bend resistance is
pic stretching elasticity10—-12. Adding this effect into the  taken into account by including an energy penalty at each
model introduces a second fit parameffein addition toA.  |ink proportional to the square of the angled (; 1
To lowest order inf/E this modification just amounts to
multiplying the model's(z/Ly) by the factor (& f/E); for
dsDNA, the resulting fit is very good out to 60 pN.
The situation for single-stranded DNA has been less clear. SDPC[{’t‘_}] N th N-1 A
Adding an extensibility factor to Eq2) again yields a model =Y 72+ >, — (0.2 (8
with two parametersi{ and E). Though this EFJC model kT =1 keT =12b "
yielded impressive fits to the early experimental data, recent
advances in single-molecule manipulat[d3,14 have again  The partition function for this energy functional is then given
probed higher forces, and here the agreement is not so gooly
As discussed in Sec. lll below, the previously cited values
for b and E do not give a successful extrapolation to the
regime of higher forces. Instead we will propose a model that Z£=
borrows features from both the FJC and the WLC to describe

C. Experiments

=arccod; - t;,,) between two subsequent links. The energy
functional describing this model is thus given by

N

Il | o
1Js?

N-1
e (/gD . 2| H el ,EHl)/kBT]
i=1

these data more accurately. % e—(fb/2kBT)fN-i, 9)
IIl. THE DISCRETE PERSISTENT CHAIN where
A. Model
The preceding sections have made it clear that the behav- &t tiva) __ fb i+t 2+ i(@ 12 (10
ior of a real polymer will involvebothdiscreteness and bend kgT 2kgT 1L 2b bt

stiffness. While we have seen that the corresponding effects

on the force-extension relation are interchangeable at veryindS? is the two-dimensional unit sphere.

low forces, nevertheless, higher forces will distinguish them. To computeZz, we interpret each integral in E() as a
Accordingly, we now formulate a model withoth bandA,  generalized matrix produ¢among matrices with continuous
or equivalently bothb and the low-force spring constart  indices, writing [15]

defined in Eq.(3). (Later we will add a stretch stiffness as

well.) Of course, adding a new fit parameter to a moaie! z=y. TN 1w (11)
hoc will always improve its fit to data. Our attitude is thiat '

is not really new: both the WLC and the FJC do contain it, . . .

but they correspond to unphysical limiting cases, nantely, In this formulav andeare vAectors indexed hy or, in»other
—0 andb— 3kgT/ k, respectively. We will show that instead words, are functions (t),w(t). The matrix productiv is a
taking b to correspond to the physical monomer size of ssew vector, defined by the convolution
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1
(TU)(t|):J¥2d2tJT(t|'tJ)v(tJ) (12) g /\
The matrix elements of are given by 06 / \
T(t; b)) =e 4t t)/ksT, (13 o 04
A
we will not need the explicit forms of andw below. 0.2
The force-extension relation can be obtained fr@niy g f \
differentiating with respect to the fordesee Eqs.(9) and —. T
(10]: 02
<Z> (kBT)dIZ ” 0 2z 4 6 8 10
— )= —InZ.
Lol | Lot f

Itis h that the t f trix f lati b dt FIG. 4. Comparison between the exact WLC force-extension
IS here that the transter matrix formulation can beé Us€d 1Qu,, iion and the Ritz variational approximation. The deviation

greatly simplify the calculation of the force-extension rela- |~ . i o ~ L
tion, since all that is needed to compute the logarithmic ded€V(f) 1S defined as 1009%[2(f) e 2(Nval/2(Nerece With T

rivative of Z in the limit of long chains is the largest eigen- :2'3 d'm_e?s'onlless forc.é’::.A/k.BT' bThet T;xnrrlealter;or ';dUCEd k:y
Value OfT, WhICh we will Ca” )\max: € variational approximation Is abou 0. Dala Tor the exact so-

lution were taken from Ref.7].

2\ lageN (1 T\ d . [ksT| d
Lo Lo af MAmad™=| =5 | 7 I Amax- (20+T)?
(0] (0] ~

(15) 2\27¥ %0 exg — 20— ———

— csch2w)
8¢
We will approximate\ .« USing a variational scheme. y(w)=

Following the line of argument of Ref6], we note that the \/—_27(2w+7)

leading eigenfunction off will reflect the physics of the

problem in the sense that it must be azimuthally symmetric [

and peaked in the direction of the applied force. A suitable x| Erf = (f+4{+2w)

one-parameter family of trial eigenfunctioﬁg can therefore 2N2¢

be defined by i

AW —Erf (f—4€+2w) | |. (20
v,(t)y=e“"% (16) ( N )

Under Eq.(12), thev,, have squared norms
This formula is only valid in the parameter regime where

- 2w the locus of the maximum of Eq20)] obeys
I6.2="sinh20), an | 120 obey
. . - ~ L
which allows us to approximate,,,, variationally by w*>{— Ef' (21
. vy T0,
N hax= maxy(w)zmaxW. (18 This is the region where the magnitude of the bend stiffness

A is larger than, or at most comparable to, the link lertgth
which is the relevant regime for our purposes. We maximize

Eq. (20) numerically to obtain\}, ., from which we can then

the exact solution of that model. Figure 4 plots the differencec_oznpme_tthhe forcet-?xt;ahn3|f0n rel?t'(:ﬁ by nu"n}erlcall_dlfieren-
of these force-extension curves and shows that the resul{@ lon with respect o the force. In the small force imit, we
from the variational approximation are nowhere off by moreCan do a little better based on the observation that for small

than 1%. f, o* is also small. Expanding E¢R0) to second order im

Returning to the full DPC model, the Appendix shows andf, we can analytically solve the stationarity condition
that it is possible to expresg w) in terms of the dimension- dy/dw=0 (which is now simply a quadratic equatjoand
less variables determine the small force entropic elastic behavior of our

DPC model(Fig. 5 to be

To get some idea of the quality of this variational approach
we can compare its results in the linfit—=0 (the WLC) to

T fb 7 A 19
— ) = ——+0(f?), (22)
as a combination of error functions as follows: <Ltot> xPPC ()
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FIG. 6. Fit of the extensible DPC modébolid line) to the

FIG. 5. Least-squares fisolid line) of the single-stranded DNA  single-strand DNA stretching dataircles supplied by Rief; see
stretching datdclosed circlesfrom Ref.[13] to the extensible FIC  Ref. [13]. The fit shown was obtained fds=0.17 nm, E=4.5
model. Included in the fit are the data up to a force of 100 pN.x 10° pN, L,,=3.9 um, and«PF=(3/2)(kgT/0.85 nm). In addi-
Fitting only those data points yields a Kuhn segment length tion, the dashed and dotted lines show the corresponding best fits to
=1.75 nm and a stretch moduliis=8x 10° pN, reproducing the  the extensible FIC and WLC, respectively. Al fits include the data
typical values as cited for instance in Refs3,14,17. In this graph,  points only for forces between 20 pN and 400 pN. Valuesfor
we have extrapolated this fit to the high-force range, to demonstrat@gere the EFJC, 1.269, for EWLC, 0.600; and for EDPC, 0.490 at
that the parameters as extracted from the low-force data do n@j=1523. We ignore the lowest-force points because of complica-

represent the full range of data faithfully. tions induced by hairpins and other secondary structures in the
DNA.

where the effective spring constant for the DPC model is

given by[16] and EDPC models shows up in the high-force regime, which
1 is also sensitive to the choice & Thus neglecting cutoff
ppc_ 3 KeT b ffect fitting to ch t -
(OPC=> B [ = (23) effects causes curve fitting to choose a compensating, un
2 A 2A physical, value oE.

. ) ) The best fit(in terms of)(z) is obtained for a value df
It is sometimes convenient to reexpress the paramétarsal  _5 17 nm away from both the EWLChEO) and EFJC
; DPC ; : ’
b of the DPC model in terms of™™ andb. We do this by  (— 3k, T/,=1.7 nm) limits of the model. Even though vis-

using Eq.(23): ibly the difference between the three models in the fit region
might appear marginal, the improvementy#A achieved by
3ksT (24) the DPC at just over 18% is statistically relevant. Figure 6
2kPPC also shows that the EDPC model extrapolates slightly better
to the high-force regime than to either the EFJC or the
It is straightforward to add an intrinsic stretch modulus toEWLC.
the calculation outlined above, obtaining the “Extensible Previous authors have already noted that the extensible
DPC” (or EDPQ model. We have computed the resulting FJC model does not accurately model the high-force data
force-extension curves and fitted to recent data for sSDNA[13,14], but have attributed its failure to the onset of
As mentioned earlier, holdinigfixed to the physical segment nonlinear-elasticity effects. We may expect such effects to
length of sSDNA p~0.6 nm) and fitting«°"“ andE yields  become significant when the ratfdE exceeds, say, 10%.
a slightly better fit to the data than either the FJC or theOur large fit value ofE means that we ought to be able to

b
>+

WLC, with the same number of fit parameters. trust our linear-elasticity model out to arourig=400 pN,
which is why we used only the data up to this point in our fit.
B. Fits (Carrying the fit out to still larger values éfwvould raise the

Actually parameteb neednot correspond to the physical fit value of & still further)

interbase separation, but rather to efifectiveor statistical ) ]

segment length analogous to the Kuhn segment length in a C. Relation to prior work

FJC model. Accordingly, Fig. 6 presents the results of fitting Polymer models with both finite cutoff and steric hin-
«PP€ b, and E to the data. Including the points with  drances to motion are not new. Classical examples include
<400 pN yields a good fit, with value of the stretch modulusthe rotation-isomer models, in which succeeding monomers
of around E~4500 pN, more than four times larger than are joined by bonds of fixed polar angle but variable azi-
even the largest of the previous estimafé8,14,17. We  muthal anglg3]. Models of this sort have had some success
interpret this discrepancy by noting that if we hod®”C  in makinga priori predictions of the persistence length of a
constant while varyind, the difference between the EFJC polymer from its structural information, but obtaining the
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force-extension relation is mathematically very difficult. —_—
Thus, for example, the authors of REE8] obtained only the

first subleading term in the low-force expansion. We are not

aware of a prior formulation of a model incorporating the
microscopic physics of both discreteness and stiffness, with a
detailed experimental test. 6

Jo

[y
[y
[y
[y
[y
[y

IV. THE OVERSTRETCHING TRANSITION

A. Background
FIG. 7. Conventions for the Ising-DPC model. We take

As first observed by Cluzett el. [10] and Smithetal. ~ +1 to correspond toB DNA, and o=—1 to correspond to
[11], the stretching of double-stranded DNA is quite differentS DNA. Each segment & DNA is longer tharB DNA by a factor
from that of ssDNA. The experiments showed that at a force- Definitions oft,d, and® are the same as before.
of around 65—70 pN the DNA sample suddenly snaps open

(an “overstretching transition; extending to almost twice  £{t;,0;}] " (o

its original contour length before entering a second entropic — 5 =~ Z [7(Ui+0i+1)+ Y(oioi+1—1)

stretching regime. This second regime clearly represents a B '

DNA configuration quite different from ordinary double- fb 1+o; 1-o0 \. -

stranded oB DNA, which has been dubbefl DNA. The + SkaT 5 + 5 §)ti'2

transition fromB DNA into S DNA is very sharp, indicating B

a high level of cooperativity. 1+o0iy1 1—0ii1 |- -
S DNA appears to have a definite helical pitth9,20, ( 2 + 2 §>ti+1'z

consistent with its being a new, double-stranded conforma-

tion. An alternative view interprets the overstretching transi- Al(l-o)(1-0is1)

tion as force-induced meltingdenaturatiop of the B DNA " 2b 4 gi

duplex [21,22. One implication of the latter view is that

S DNA should have elastic properties similar to those of two B N (I+o)(1+0oi:1) 0 )
single strands, a point to which we will return later. Tivy 7 4 (®i+2)7)-
Whatever view we take of its structural character, the (25)

sharpness of the overstretching transition is reminiscent of
another well-studied structural transition in biopolymers, th
helix-coil transition[23]. Inspired by the classic analysis of
Zimm and Bragg, this section will model tii3e— S transition
by a two-state(Ising) model living on a DPC(the “Ising-
DPC model’). We will make no assumptions about the na-

®The first line is the pure-Ising part, withakgT being the
intrinsic free energy cost of converting a single segment
from B to Sand 2ykgT being the energy cost of creating a
B—S interface. Note that we ignore a contribution to the

£ aith h I dto h bi energy functional from the first and last segments. In the
ture of eitherB or S DNA. Both are allowed to have arbi- |54 chain [imit this does not affect the outcome of our cal-
trary bend and stretch stiffnesses. Our aim is to fit theculation.

resulting force-extension curves to the available data and to The partition function for the energy function&®s)
see whether the values of the elastic constants can help ch%r[- -  oN-le/d . '
acterize the stretched stat@he other state is just double- {ti,oi}]=2Z 78t 01, b4 1,0i44), Is given by
stranded DNA, whose elastic constants are well knpwn. N—1 N—1
Z:[ H E d2fi} H e*-gi(fi 1O v{i+1v"'i+1)/kBT_
i=1 o=+1 J&? i=1
B. General Setup (26)

Figure 7 illustrates the model that we will be consideringwe will again calculateZ with the aid of the transfer matrix
in some more detail. We envision a chain consistingNof  techniqud 15], writing Eq. (26) as

links, connected by hinges that try to align the segments they

join. Each segment carries a discrete variablavhich takes Z=p TV 1w, (27)
the values+ 1. We will takeo=+ 1 to mean the segment is

in the B state andr= — 1 for theSstate. The factor by which with T now being the transfer matrix for our Ising-DPC
a segment elongates when going fr8rto Swill be called{, model, which carries an additional2 structure due to the
i.e., bS=¢b (with £>1). We assign a bend stiffness param-Ising variables. The products are thus defined as

eterA to B DNA, and a differentAS=B¢A to S DNA; B is

a dimensionless parameter wigy<1. We also assign a (TJ)ai(fi): E deZEjTUigj(fi ,f,-)vgj(fj). 28)

bend stiffnessyA to a hinge joining éB and anS segment. o==1
We can now write down the full energy functional for our
Ising-DPC model: The individual matrix elemen‘fﬂ;‘gigj are given explicitly by
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o . . ~ A A
Tyt tiy)=ex Ef(ti+ti+1)'Z—B(1—ti'ti+1)+ao

A A 1 . “ “
Ty —a(t; vti+1):ex%§f(ti+§ti+l)'z

nA oA
_F(l_ti'twl)_zy ,

A A 1. . . “
T—l,l(ti:ti+1):exﬁ{§f(§ti+ti+l)'z

_

<1—fr&+n—2y}

(1—1i-Ti41)— ap

A
b
A 1. . -
Toga(titig) =exp 5 {i(ti+tieg) -2
BA
b

where agairf=fb/kgT.

PHYSICAL REVIEW E7, 051906 (2003

@ 1/2
r _ 27 25 7i
T(Tilfj(wlfi’w()'j)_ J;Zd tI fSZd tJ( SinF(Zin))

X ew(ri{i .QT”i‘rj(’t\i ,’t\j)

v, 112 .
W, ti-z
x sinh(2w,,) e 33

it is easy to show that

y w1,w_
M= max{(l—l)z, (34
wl'w71||vw1,w_l,<p”

where V(w;,0_;) is the maximal eigenvalue of
T(wy,w_1). The following section will calculate this eigen-

value in a continuum approximation i w; ,w_,), illustrat-

ing the procedure by considering in some detail the matrix
eIementTl,l(wl,w,l). The other matrix elements can be

obtained analogously. Writing out the integrals explicitly, we
have

Once again we approximate the largest eigenvalue of the

transfer matrixT using a variational approach, choosing our
trial eigenfunctions to possess azimuthal symmetry and to be

peaked in the direction of force. This time, however, we

need a three-parameter family of trial functions:

o, 12
—F—| e“1t'Zcos
(5”'“(20)1)) ¢

le,w_l,zp(t): w_q 12 o !
—————| e“-1"Zsin
(smnzwo) ¢

(29

chosen such that their squared norm is independent of all

parameters,

1000, ollP=27. (30)

wleaofA/b

% A
sinf(2ay) ) % i€

Tl,l(wl):
Xﬂﬂqwﬂd&”NW”“ﬂ, (35

where we have introduceai= w,+ /2. Condensing notation
even further, we defineu?=a?+ (A/b)2+2a(A/b)t;-z,
which allows us to write
T o 2a)leozo—A/b
1,1(w1)=(27) SN 2oy
y jA/b+a bAd,U« eb/ZA[MZ*EA‘Z*(A/b)Z][eM_ ek,
|A/b—al aA

Equation(29) shows that once again the gives the degree
of alignment of the monomeréhow forward-peaked their (36)
probability distribution i$, whereasp describes the relative

probability of a monomer to be in the two states. The varia-

tional estimate for the maximal eigenvalue is now given by .
We could now proceed to evaluate the force-extension

relation of the Ising-DPC model, by generalizing Sec. Ill. To
simplify the calculations, however, we will first pass to a
continuum limit. To justify this step, note that Fig. 6 shows
(31) that the continuunfWLC) approximation gives an excellent
account of single-stranded DNA stretching out to forces be-
The maximization ovep can be done analytically: defin- yond those probed in overstretching experimeatsout 90
ing the 2< 2 matrix T(w;,w_4) by pN). As mentioned earlier, the continuum approximation is
also quite good for double-stranded DNA, because the lat-

C. Continuum limit

leyw,1v¢'TUw1vw,11¢

max Y(w,p)= max
w1, 0_1,¢ w1,0_1,¢

A= -
e 1060y ol

- - _ - Cosgp ter's persistence length is much longer than its monomer
Voyo 1.0 Ve .0 ;0= (€COSP,SiINE) T(wy,0_1)- sing |’ size.
(32 In the continuum limit,b is sent to zero holdindg. —t

fixed; henceN—oo. The bookkeeping is more manageable

or equivalently specifying its entries after a shift inu:
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A 2
XE,LL—B. (37)

Equation(36) then reduces to 13 i

7 e (2w)2bf+;d S 1l |
o) G20, A )2
b 2 0 ab 05
X exX| ﬁx X_ﬁ
w,e%0 (271') b 2b - 0 : :
~—— J dxe?*| 1 g a%bi2A, 0O 20 40 60 80 100
(39

FIG. 8. Least-squares fit of the Ising-DPC model to an over-

The last integral can be worked out exactly, and expandin%”emhi”g dataset48.5 kbp A DNA construct; buffer 500 mM
the result to second order mwe end up with aC_:I, 20 mM Tris,pH 8)_. Data were supplled by Bustamante and
Smith. The data shown include successive passes through the over-

A 1 stretching transition, in both directions; the pulling rate was low
> ZTl (@) enough to eliminate any significant hysteresis. Fit parameters:
270 v, 0l —43.75 nm, a=5.45 nnT!, 4=0.16, Q=0.13 nnT'!, {=1.76,

E®=1.2x10° pN, andE®=1.0x 10" pN. x?>=9.22 atN=_825;

—e%| 1+ b| — f @1 )(Cotf(Zw )_ i points with 1.1%(z/L)<1.55 were excluded from the fit.
B ksT 2A Vo 2w, |
(39) with
In a similar manner, we can obtain the following expressions P=a (L _ "’_) ( coth 2w,) — i) ,
for the other matrix elements: keT  2A
A 1 ~ I I L 1
omb g, . p i@y R__a+(l<B_T_ m) conze D=5, )
W ,0_1,¢
_ 1 g _ 12/ 2 sinfwy+ w_
_pleao 14+ b| - — 221 ot 20 ) ) . o= g@( It ) ( Moyt o 1)).
k T 2,8A 2w_4 sinh(2wq)sinh(2w_ ) witw_q
(43
A 1 ~
HZTL_l(wl,w_l) Note that the prefactor 2b/A\/8 in Eq. (42) does not con-

2b ||Uw1,w,1,¢ tribute to the force-extension result E@5), since it does not

2y U2/ . depend on the force. In terms of the individual matrix en-

_¢© ( W10_1 ) (2 S'”“‘”ﬁ“’—l)) tries, the quantity to be maximized now reddse Eq(31)]
sinh(2w;)sinh(2w_ ) w1t w_ '

40) my(wl,w_l):§<7>+R+\/<7>—R>2+492). (44)

To obtain a nontrivial continuum limit we must now
specify how parameters, ao, and y depend onb asb  Writing Q=bIn A} ,=b'max,Iny(w;,»_,), the force exten-

—0. Itis straightforward to show that the choices sion in the continuum limit is finally given by
1
ap=—3iInB+ba, y=-13In(gb) (41) < z > kBTdQ 45
— —_ . Ltotb df
work, where we holdA, «, B, andg fixed asb—0. With
these choices, the matrix ﬂbwl o . G T(w1,0_,) takes  We evaluate® by numerically maximizing Eq(44).
the form So far, we have not included stretch moduli for ®@nd
S DNA. This is easily implemented to first order fdE by
) 2b P 0O replacingf with f(1+ f/2ESB) in the matrix elements for the
T(w,,0_1)= ——=| 1+ b( ) } two states, respective[eq. (29)]. This procedure yields the-
||Uw1,w,1,¢||2 AVB e R oretical force-extension curves similar to those plotted in

(42 Figs. 8 and 9.
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17 — roughly speaking from the curvature and slope of the curve
16 | | below the transition. Similarly, the data above the transition
' fix AS=¢BA andES. The vertical jump in the curve at the
15 | | transition fixes{. The horizontal location of the jump fixes
14 | i a, and the steepness of the transition at its midpoint fixes the
) cooperativityQ [25]. Thus all of the model’'s parameters are
N 13 ] fixed by specific features of the data. Two additional, inde-
12 | i pendent features of the data now remain, namely, the round-
ing of the curve at the start and at the end of the transition.
11} il Our model predicts these features fairly successfully.
1l i Some common features emerging from the two fits de-
os L serve comment. First, both fits reproduce the known values

0 20 40 60 80 100 120 140 160 for the effective persistence length & DNA of around
£ [pN] 50 nm and its stretch modulus of about 1000 pN. Second, we
can read off the bend stiffness & DNA from our fit as
FIG. 9. Least-squares fit of the Ising-DPC model to an over-A°= B{A=12.32 nm(data from Fig. 8or 7.2 nm(data from
stretching dataset obtained from a 1w sample of EMBL3A  Fig. 9). If S DNA consisted of two unbound, single strands,
DNA in phosphate-buffered solutiofl00 mM; 80 mM N& and  we might have expecte8l® to be twice as large as the value
0.01% Tweeh from Ref. [10]. Data were supplied by Marko. AS~0.85 nm obtained by fitting the single-strand stretching
Fit parameters:x®PC=(3kgT/2)(1/52.63 nm), ay=4.82 nnt, g data with the continuum EDPC mod&dee Fig. 6 or Refs.
=0.08, 0=0.23, (=171, EB=7.3x10?pN, and ES=3 [11,14)). On the contrary, we find thahe bend stiffness of
X 10* pN. x2=2.15 atN=339, points with 1.15:(z/L)<1.5were S DNA is intermediate between that of B DNA and two single
excluded from the fit. For further discussion see Sec. IV D. strands[26]. This conclusion fits qualitatively with some of
the structural models d& DNA, in which the bases remain
In summary, our model contains the following seven pa-paired but are not stacked as BaDNA. (Of course it is

rameters. ZkBT is the free energy per unit |ength required possible that under different experimental conditions Bhe
to flip B DNA into the S state, and is measured in J/n@®. —S transition may be skipped altogether, with tBeform
measures the cooperativity of the transition and has unitgassing directly to melted DNA.

1/nm. A is the bend stiffness parameter BDNA, with Our third conclusion is thahe stretch modulus of S DNA
units nm. The dimension'ess paramqﬁés the ratio Of th$ iS Substantia”y h|gher than that Of B DNKh|S COhClusion
andS DNA bend stiffnesses£® andES are the stretch stiff- IS again consistent with the view & DNA as stabilized
nesses oB andS DNA' and are measured in pN Fina|w, mainly by its baCkboneS, which are much Straighter than in

is the dimensionless elongation factor associated witBthe B DNA; the contour length oB DNA is instead determined
_.Stransition. by weaker, base-stacking interactions.

D. Discussion of fits E. Relation to prior work

Our strategy is now as follows: first, we fit the part of the Several authors have also studied the entropic elasticity of

stretching curve well below 65 pN to a one-state continuuniwo-state chains. As soon as the overstretching transition was
model (i.e., to the EWLG, determining its effective spring discovered, Cluzel proposed a pure Ising model by analogy

constant and stretch modulus. The values thus obtained a[’% the helix-coil transitior{28]. Others then introduced en-

used as initial guesses in a fit of the full curve to the Ising- ropic elasticity, but required that both states have the same

DPC model. To improve convergence, we eliminate two Ofbending stiffness a8 DNA [29,3 or took one of the two

the parameters as follows. First, we can get an accurate valqaates _to be i_nfinitely stif[31], or_to be a FJQZLZZ' Th_e
for EB from the low force data, so we hold it fixed to this analysis of Cizeau and VioWs2] is essentially a mean-field

value during the full fit. Second, as described in Sec. llI wePProximation to the model we study here; in addition, the

can work out the low-force limit analytically, and from this authors did not quote any value for 'FISEDNA bend St'f.f'
obtain the effective spring constartas a function of the ness, presgmably bec_ause the expenr.nen.tal data available at
model parameters. We invert this relation to geds a func- that time did not permit such a determination. To the best of

tion of k and other parameters. We substitute tisolding our know.ledge, we bell.eve'our Ismg-'DPC model to be the
« fixed to the value obtained by fitting the low-force data tof|rst consistent formulation incorporating the coexistence of

an EWLC. We then fit the remaining five parametess ©, two different states with _arbltrary elastic constants. Our ap-
— s proach also is calculationally more straightforward than
a, E> and{) to the dataseft24].

some, and minimal in the sense that no unknown potential

The results of the fits obtained in this manner are CO"function needs to be choséas was the case in R429)]).
lected in Figs. 8 and 9. Our Ising-DPC hybrid model fits the

experimental data rather well, but with so many fit param- V. STATISTICAL ANALYSIS OF THE B—S TRANSITION
eters, one may ask whether the model actually makes any "
falsifiable predictions. To answer this question, we note that Using standard techniques from statistical physics, we
the data below the transition suffice to ixandEB as usual, now look at theB— S transition in some more detail. From
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the expressions for the Ising-DPC hybrid energy functional 1
(25 and the partition function26), we read off that the
average “spin”o can be obtained as “
5.7x10
0.8 - |
I =l 46 5.6x10" ]
<U>_N(9a0n _(9; ’ ( ) i
) ] ) 0.6 ;5.5’(104— = i
so that, for instance, the relative population of 8istate(or P
equivalently the probability to find an arbitrary segment in ¥, 54x10" : ‘
the Sstatg, P(S), is given by A= 0 1 2,3
04 - il
1
P(S)=5(1=(0)). (47)
. N _ 0.2 - .
Similarly, we can take the derivative of E@6) with respect
to y to determine the average nearest neighbor spin cor
relator 0 ‘ ‘ / ‘ ’
13 P O 20 40 60 80 100 120
<U|U|+1>=N&—’y|nz+1:1—2bQ@Q (48) f[PN]

The quantity{o;o;,,) can be interpreted as the fraction of  FIG. 10. P(S), the relative population of th& state, vs the
nearest neighbor pairs in the same state minus the fraction a@pplied stretching force, as calculated from E47). The inset
pairs in opposite states. Consequently, the probability of havshows that theS state has a nonzero population even at zero force.
ing a spin flip at a given site B(flip) = %(1_<Uigi+l>) and  Parameter values are those from Fig. 9.

the averagenumber of S+B domain pairs is Ny

= (N/2)P(flip). A heuristic measure of the typic&domain  €Xistence of nicks would not necessarily cause it to suffer

size is ther{33] irreversible changes in its elasticity as tracts spanning two
nicks fall off during overstretching.
L 2b(1— (o)) ET0) / ETo) Second, different groups have not agreed on whether the
L dom= P(S)=-— =l1-—= (Q—) stretching curves of the double-stranded and single-stranded
Npairs 1 <0'i0'i+1> Jda 99

DNA coincide at forces above the former’s overstretching
(49) transition[20,35. We wish to point out that even 8 DNA

We wish to highlight two points from this discussion. Were a denatured state, we still.would not necessarily expect
First, Fig. 10 shows the fraction in th@ state,P(S), as a thesg two curves to commdg. Figure 10 shows that the con-
function of the applied force, and we can see the characte}€rSion fromB to Sform continues well beyond the apparent
istic sigmoidal behavior as the system is led through thé@nd of the force plateau, continuing to affect the force-
transition. As the inset demonstrates, a small fraction is iffXtension curve. To determine whett®DNA is elastically
the Sstate even at zero force. This fraction initially decrease$imilar toB DNA, one must disentangle the two states’ con-
on increasing the stretching for¢d84]. Figure 11 plots the
typical Sdomain lengtH_ 4, versus applied stretching force. o
It demonstrates how even well above the transition $he 140 ]
state on average does not persist for long; at the high end of

the physically accessible range of forcBglomains measure 1205

about 160 nm. This figure has some significance as it illus- 'E 100 | ,
trates an important point about the role of nicks in the ex- ~. 80|

periments. Empirically, when working witlh-phage DNA _v,% 60

only around 5% of all samples are completely un-nicked
[20]. Since thex-phage genome is about 48 Kbp in length, 40 |
we can roughly estimate the probability for an arbitrary base
pair to be un-nicked iP(not)=(0.05)"48%° and conse-
quently the probability that a given paiis nicked is 0 . ' —a :
P(nick)=1—P(not)~6.2x 10" °. Given the total length of 0 =0 4 & 8 10 20

N-phage DNA, this implies we expect there to be an average fIPNI

of 6.2x10°x 48x 10°~3 nicks per sample, corresponding  FiG, 11. The typical length of a8 domainL on v the stretch-
to an average distance between nicks of the order ah®  ing force, calculated using E¢49). Parameter values are those of
considerably larger than the typic&idomain size. This ob-  Fig. 9. The asymptotic slope of the linear increase is 3.15 nmipN
servation bears on the question of the character oStbtate  Note, that even at 120 pN, the typical size of @domain is only
of DNA [21]: even if S DNA were a denatured state, the 160 nm, or about 480 basepairs.
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tributions to the stretching curve by globally fitting to a two- L 5
state model, as we have done. T(ty,t; )=exg —€+

—nl

E(Ei +Hq) 2+ 0T |
(A3)
VI. CONCLUSION

Section | summarizes our conclusions. Here we list avhere we use the dimensionless forfce fb/kgT and and

number of interesting modifications to the model as possibleatio of characteristic lengthé=A/b. Working out the sca-

extensions to this work. lar products in Eq(Al) yields
While the variational approximation used here has proved

to be adequate, still it is straightforward to replace it by the B
eigenfunction-expansion technique, which can be carried to ||ljw||2y(w):e*€f d2fif d%t, .,
arbitrary accuracy6]. Similarly, the methods of Sec. Ill can s? §2

be used to work in the full, discrete DPC model instead of 7
the continuum approximation used in Sec. IV C. It is also Xex;{ St |G+t 2+ 0T
straightforward to retain finite-length effects by keeping the 2

subleading eigenvalue of the transfer matrix. (A4)
Real DNA is not a homogeneous rod. The methods of

quenched disorder can be used to introduce sequence- . . .

dependent contributions to the transition free eneiggnd ~ D€fining an auxiliary vector

the bend stiffnes# [36]. Finally, we believe that the meth-

ods of this paper can be adapted to the study of the stretching (T o R
of individual polypeptide and polysaccharide molecyid. G=|5+w|z+ =Gy, (A5)
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f+
Ew

2 1/2
+02+7(F+2w)1;- 2) ., (A6)

N - . T ..
APPENDIX: DERIVATION OF y(), THE VARIATIONAL ||vw||2)I(w):e_efzdztiexr{ STtz
APPROXIMATION TO A jax 7
In this appendix we will derive an expression f(fw) as X f d%t, exd G g-ti.4]. (A7)
defined in Eq(18), which reads 82
S 112 =y -To Transforming to spherical polar coordinates wghas the
[vol?y(@w)=v, Tv,. (A1)

polar axis, the second integral can be worked out to give

We will assume that angle®;;,, between successive 477/G-S|.nh(53).AS|nce t-he mtegral ovds mvolve; only terms
links are small, which allows us to replaced; ;)?> containingt;-z, the integration over the azimuthal angle

—arccod(i;-1,,) by its small-angle approximation 2(1 simply yields 2r. For the polar angle, we change the inte-

~oa . . . . gration variable toG (which is a monotonic function of
—tj-ti+1). The family of trial functions we use is param- -

etrized by the single parameter; v, (t)=e“""% Further- ti-2), bringing it to the following form:

more, we will ignore the two contributions from the begin- 5

ning and the end of the chajappearing for instance in Eq. R 1672 3. 1 ([f
(9)], as they do not contribute to our result in the long-chain [va]?y(w)= ~~—exp{ - Ef— 7\ te
limit anyway. Thus the energy functional is €(f+2w) 2¢
- N-1 X f”“’”“’) dG ex G227 |sinh(G).
it fb .. . . AL [0 (Fr2+ )|
keT :_21 m(ti'ZHiﬂ‘Z)—B(l—ti‘tiu) : A8)

(A2)

The integral overG can be performed analytically, and is
According to Eq(13), the matrix elements oF are given by  most conveniently expressed in terms of error functions as
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T+ 2+ ) - in a form that is well suited for furthegmnumerical manipu-
J~ B dG exd G%/2¢]sinh(G) lations:
[€—(Tr2+w)|
i [ = . +71)2
_ € 2N -t E b~ 232730 exp — 27— M csch2w)
= \/5 rf \/_~(f+4€+2w) 87
2 2V2¢ y(w)= _ -
i \/—_€ Lw+f)
— Erf( — (?—4?+2w)) : (A9)
2v2¢ x| Erf (F+47+20)
o~ 2V2¢
This expression is valid only in the regime wheffe-f/2
+ w, which is satisfied as long as one choosesb. Note i
that the error functions have imaginary arguments. Using the —Erf (f—4¢+2w) | |. (A10)
normalization quoted in Eq17) we can now expresg(w) 2\ 2%
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