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Effects of quasiactive membrane on multiply periodic traveling waves in integrate-and-fire system
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We consider the dynamics of a one-dimensional continuum of synaptically interacting integrate-and-fire
neurons with realistic forms of axodendritic interaction. The speed and stability of traveling waves are inves-
tigated as a function of discrete communication delays, distributed synaptic delays, and axodendritic delays
arising from the spatially extended nature of the model neuron. In particular, dispersion curves for periodic
traveling waves are constructed. Nonlinear ionic channels in the dendrite responsible for a so-calledquasi-
active bandpass response are shown to significantly influence the shape of dispersion curves. Moreover, a
kinematic theory of spike train propagation suggests that period-doubling bifurcations of a singly periodic
wave can occur in dendritic systems with a quasiactive membrane. The explicit construction of period-doubled
solutions is used to confirm this prediction.
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I. INTRODUCTION

Traveling waves of activity have been experimentally o
served in many neural systems. Examples include thala
cortical regions of humans@1#, the retina of developing rab
bits @2# and mice@3#, the visual cortex of the turtle@4#, and
the olfactory system of the mollusc@5#. The functional sig-
nificance of waves in these systems is not always clear.
cidating the mechanisms of wave initiation, propagation, a
bifurcation is therefore directly relevant to determining t
functional roles that waves may take. Indeed, the propa
tion of synchronous spikes has been proposed by Abeles
mechanism for generating the precisely timed spike eve
observed in multielectrode recordings of cortical circuits@6#.

To capture the essence of a wave of spiking activity i
natural to work with perhaps the most simple spiking neu
model, namely, the integrate-and-fire~IF! model. At the net-
work level, analytical and numerical studies have alrea
shown wave behavior consistent with more detailed b
physical models~see Ref.@7# for a recent review!. In particu-
lar, we refer to the work of Golomb and Ermentrout@8–10#
and Bressloff@11,12#. Importantly, these authors have deve
oped a mathematical framework that can provide an exh
tive analysis of the speed and stability for solitary traveli
pulses. It has been shown by Bressloff that, away from
long-wavelength limit, the determination of wave stability
a highly nontrivial mathematical problem, involving the s
lution of a linear map of infinite order. Hence, almost no
ing is known about the stability of periodic waves nor of t
actual mechanisms by which periodic waves can lose sta
ity.

In this paper we address these problems within a ki
matic framework for spike train dynamics. Here the spa
evolution of spiking events is considered to be complet
determined in terms of the dispersion curve~speed as a func
1063-651X/2003/67~5!/051905~6!/$20.00 67 0519
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tion of period! for a periodic wave. The existing mathema
cal framework for constructing dispersion curves in IF n
works is therefore ideally suited to building a kinema
theory. The kinematic stability of waves in a synaptica
coupled IF network, and indeed many other spatially e
tended excitable systems, can be determined by the sig
the gradient of the dispersion curve. The identification
parameters that underlie the generation of stationary po
in the dispersion curve can therefore be used to highlight
neurophysiological features responsible for wave instabi
and bifurcation. A major result is that synaptic respons
with a bandpass nature can lead to the creation of mult
stationary points in the dispersion curve. Such bandp
characteristics of neuronal response arise naturally in s
tially extended models of neurons with dendritic trees p
sessing the so-called quasiactive membrane. The theor
the quasiactive membrane has been proposed by Koch@13#
as a model for the small signal voltage response of an ex
able neuron arising from nonlinear ionic channels embed
in the dendritic membrane. It is obtained by linearizing t
Hodgkin-Huxley equations about a steady state and may
regarded as a linear resistor-capacitor~LRC! model of nerve
tissue with an inductive element, i.e., an electrical LRC c
cuit. The analysis of dendrites with LRC resonant freque
cies has been developed by Bressloff@14#, and feeds natu-
rally into the formalism developed for the study of dispersi
curves in IF systems.

The structure of the paper is as follows. In Sec. II, w
present the model and the mathematical framework appro
ate for the construction of dispersion curves. The work
Bressloff on periodic traveling waves is extended in
straightforward manner to cover the important case of m
tiply periodic waves~which will be shown later to bifurcate
from singly periodic waves!. Also presented are the kine
matic theory of spike train propagation and the conditions
©2003 The American Physical Society05-1
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the stability of a multiply periodic spike train. Illustrations o
the theory are given in Sec. III for delayed synaptic inter
tions in a point IF model and in Sec. IV for a spatially e
tended dendritic model. In the latter case, the inclusion o
quasiactive~as opposed to purely passive! membrane is
shown to produce an oscillation in the upper branch of
dispersion curve leading to alternating regions of stabil
An explicit construction of period-doubled solutions sho
that they branch from local maxima of the dispersion cu
of the singly periodic orbit. Finally, in Sec. V, we summari
the major points of this paper and suggest natural extens
of our work.

II. ONE-DIMENSIONAL INTEGRATE-AND-FIRE
CONTINUUM

Consider a one-dimensional continuum of integrate-a
fire neurons. The dynamic equation for the membrane po
tial V(x,t) is given by

]V~x,t !

]t
52

V~x,t !

t
1S~x,t !, xPR,t>0, ~1!

wheret is the membrane time constant~hereafter set to unity
without loss of generality! andS(x,t) is the synaptic input a
position x and timet. Equation~1! is supplemented by the
reset condition such that, wheneverV(x,t)51, V(x,t1)
50. As it stands, the IF model allows for an arbitrarily hig
and therefore unphysical, firing rate. There are several w
in which to introduce some level of refractoriness into the
model such as via a large negative reset or a time-vary
threshold@15#. For simplicity, we shall adopt a simple abs
lute refractory mechanism whereby a neuron is held at
reset level for a timetR after a spiking event. The synapt
input to each neuron has the form

S~x,t !5eE
2`

` E
0

`

W~x2y!J~s!C~y,t2s!ds dy, ~2!

where e.0 is the global coupling strength andW(x)
5W(uxu) is the synaptic weight kernel~or footprint! between
neurons separated by a distanceuxu. The temporal delay ker
nel J(t) determines the shape of the postsynaptic poten
and can model axonal delays, dendritic delays, and syna
processing as discussed in previous papers~see, for example
Ref. @16#!. Neglecting the shape of an individual puls
the output spike train of each neuron is represen
as a sequence of Dirac delta functionsC(x,t)
5(mPZd(t2Tm(x)), whereTm(x) is themth firing time of
the neuron at positionx.

For aD1 periodic traveling wave, the firing time ansatz
Tm(x)5(m1kx)D1 for some wave numberk @12#. This de-
fines a wave of speedc51/(kD1). Integrating Eq.~1! be-
tween successive firing events gives

15eE
2`

`

W~x!K~kx! dx, ~3!
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K~x!5E
tR

D1
e2D1es (

mPZ
J~s1~m1x!D1!ds. ~4!

Equation ~3! implicitly defines a dispersion relationshipc
5c(D1) giving the wave speedc as a function of the period
D1. SinceK(x) is a real periodic function ofx, Fourier trans-
forms are a natural way in which to evaluate the dispers
relation. Using this approach, Eq.~3! may be written in the
computationally useful form

15e (
mPZ

AS D1 ,
2pm

D1
,D1D Ŵ~2pmk!, ~5!

where

A~P,v,D!5
e2P

D
$@ec~P,v!2ec~tR ,v!#a~v!2@es~P,v!

2es~tR ,v!#b~v!%. ~6!

Here, ec(x,y)5excos(xy), es(x,y)5exsin(xy), a(v)
5Re@ Ĵ(v)/(11 iv)#, b(v)5Im@ Ĵ(v)/(11 iv)#, and the
caret indicates Fourier transforms such that

F̂~k!5E
2`

`

e2 ikxF~x! dx. ~7!

Multiply periodic waves may be constructed in an ana
gous fashion to singly periodic ones with an appropri
choice of firing times. Instead of a wave train with a sing
period, consider a wave train with periods~interspike inter-
vals! D j , j 51, . . . ,n. Let dj 215(m51

j Dm , and then the
period of oscillation is given byD5dn21. The set ofn firing
times are defined byTm(x)5(@m/n#1kx)D1dm(n) , where
m(n)5m mod n, and @•••# takes the integer part. Th
speed of this wave is given byc51/(kD). For later conve-
nience, we shall denote a traveling wave withn distinct pe-
riods byPn . A generalization of the previous analysis lea
to a system ofn equations

15e (
mPZ

Aj S 2pm

D
,D D Ŵ~2pmk!, j 51, . . . ,n, ~8!

where

Aj~v,D!5 (
l 50

n21

cos~v@dj 212dl # !A~D j ,v,D!

2 (
l 50

n21

sin~v@dj 212dl # !B~D j ,v,D!, ~9!

and
5-2
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B~P,v,D!5
e2P

D
$@es~P,v!2es~tR ,v!#a~v!1@ec~P,v!

2ec~tR ,v!#b~v!%. ~10!

A general theory for the stability of periodic waves
developed in Ref.@11#, but requires substantial mathematic
analysis to gain any real insight. By considering pertur
tions of the firing times, and linearizing the resulting firin
time map, Bressloff characterizes the stability of traveli
waves with the use of an integro-difference equation of in
nite order. Finding the solutions of this characteristic eq
tion is a nontrivial mathematical problem. Another approa
to provide insight into the stability of traveling waves in
volves the use of direct numerical simulations. However, t
will only determine stable waves and, for a fixed wa
speed, finite-spike waves, periodic waves, and other infin
spike waves may all occur. The desire for a practical tre
ment of stability leads us to a kinematic theory of spike tr
propagation.

The kinematic formalism allows one to follow the evol
tion of the spike train without recourse to studying the f
nonlinear IF firing map. Miller and Rinzel@17# considered
impulse propagation along the Hodgkin-Huxley cable eq
tions using numerical experiments and deduced that the
nematic approximation provides a reasonable estimate
the variation in interspike intervals and the influence of d
persion during propagation. They derived the kinematic
proximation as follows. The quantitydTn11/dx is the recip-
rocal of instantaneous velocity of the pulse upstroke an
assumed to be determined by the time spent in the reco
wake of the preceding pulse. This time differs from the
terspike interval by approximately a constant so that we
express pulse velocity in terms of the interspike time. Th
we have

dTn

dx
5

1

c@Tn~x!2Tn21~x!#
, ~11!

wherec@•••# is the velocity as a function of interspike in
terval as given by the dispersion relation for periodic wa
trains. This reduces to our firing time ansatz for singly pe
odic waves when the interspike intervalTn(x)2Tn21(x) is
constant. Moreover, this framework is ideally suited for t
analysis of irregular spike trains and is easily extended to
multiply periodic case. Linear stability analysis of the kin
matic ordinary differential equations~given in the Appendix!
shows that anyP1 solution of system~11! is unstable if
c8(D1),0 and stable ifc8(D1).0. The stability of more
general Pn orbits requires thatc8(D j ).0 for all j
50, . . . ,n21.

In the following sections, we illustrate the usefulness
the above theoretical framework in determining the effects
realistic forms of synaptic and dendritic responses on
speed and stability of periodic traveling waves in spiki
neural systems. The normalized exponential@W(x)
5exp(2uxu/s)/(2s)# and square@W(x)5Q(s2uxu)/(2s)#
synaptic weight kernels are considered.
05190
l
-

-
-

h

s

e-
t-

l

-
i-
or
-
-

is
ry

-
n
,

e
-

e

f
f
e

III. SYNAPTIC PROCESSING IN A POINT
NEURON MODEL

The evolution of a postsynaptic potential~PSP! can often
be accurately described with a functional form such a
difference of exponentials or a so-calleda function. For sim-
plicity, we restrict our attention to this common form an
write J(t)5a2(t2ta)e2a(t2ta)Q(t2ta), where an addi-
tional discrete delay has been included. In this section,
will regard the neuron as a point processor that generat
PSP a timeta after the arrival of a presynaptic spike. It
also possible to include a space-dependent axonal comm
cation delay by lettingJ(t)→J(t2uxu/cs), whereuxu is the
separation of the neurons andcs the speed of an action po
tential. However, this merely leads to a shift 1/c→1/c
21/cs , so it will not be considered further. The theory of th
preceding section can be applied in a straightforward man
once the Fourier transform ofJ(t) is calculated. For our
choice of a delayeda function, this is given by

Ĵ~v!5
a2e2 ivta

~a1 iv!2
, ~12!

which has a double pole atv5 ia.
Figure 1 shows dispersion curves for the case of a squ

synaptic footprint@with Ŵ(v)5sin(sv)/(sv)]. For nonzero
communication delays, the basic shape of the dispers
curve is the same as that for zero delays, but shifted to
right. Hence, the presence of discrete communication de
acts to suppress waves of small period. Kinematic the
indicates that the upper~faster! branch is stable since it has
positive gradient~see the Appendix!.

It is also possible for dispersion curves to developbumps
of supernormal speed. An example using an exponential s
aptic footprint is presented in Fig. 2@with Ŵ(v)
51/(11s2v2)], where the stationary point in the dispersio
curve clearly has a greater speed than the long-wavele
~solitary wave! solution. Since the kinematic theory flags a
instability at precisely this point the question arises as

FIG. 1. Dispersion curves for the square synaptic footprint a
a-function distributed delay kernel. Parameter values area50.5,
e560, s510, andtR50. Solid ~dashed! lines correspond to lin-
early stable~unstable! traveling waves according to the kinemat
theory. In this and subsequent figures, the temporal units are g
in terms oft milliseconds, since we sett51, and the spatial units
are in millimeters.
5-3
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whether other solutions may branch from this instability. E
plicit construction of theP2 solution using Eqs.~8!–~10!
shows that this is true. However, for typical parame
choices we find that the emerging wave is unstable. Mo
over, for a sufficiently large choice of absolute refracto
period, the supernormal bump and the emerging unstableP2
can be lost, suggesting that a robust mechanism for stablP2
generation is not possible for this form of synaptic intera
tion. In the following section, we shall see that the inclusi
of active membrane in a spatially extended neuron model
lead to dispersion curves with a much richer structure wh
bifurcations ofP1 waves lead to stableP2 waves.

IV. DENDRITIC PROCESSING

The passive membrane properties of a neuron’s dend
tree are known to result in a diffusive spread of curre
through the system. Such a diffusive process is commo
described with the well known cable equation@18#. The
Green’s function of the cable equation provides a spatiot
poral delay distribution that may be used to model axod
dritic interactions within the framework of this paper. Rece
experiments, however, suggest that the representation of
drites in terms of purely passive membranes is an overs
plification, and that more realistic models should incorpor
some notion of active, voltage-dependent ionic channels~see
Ref. @14# for a discussion!. In general, the active channe
conductances depend nonlinearly on voltage and time. H
ever, for relatively small deviations of the membrane pot
tial from rest, Koch@13# has suggested that a linearization
the channel kinetics is appropriate. The resultingquasiactive
continuum cable model of the dendrites has a membr
impedance that displays resonantlike behavior due to the
ditional presence of inductances. Hence, for a purely pas
dendrite, the membrane impedance acts as a low-pass
and for an active dendrite as a bandpass filter.

For simplicity, we consider an unbranched model o
dendritic tree and consider only a single synapse on the
located at a distancej from the cell body~soma!. The soma

FIG. 2. Dispersion curves forP1 andP2 orbits ~periodic travel-
ing waves with one@D5D11D1# and two@D5D11D2# periods,
respectively! in a synaptically coupled network with an exponent
footprint with a50.5, e560, tR510, ands51. Solid ~dashed!
lines correspond to linearly stable~unstable! traveling waves ac-
cording to the kinematic theory, i.e., stable~unstable! for positive
~negative! gradients. BothP1 and P2 upper branches become fla
for largeD.
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itself will again be a simple IF unit. In this case, the synap
input current is given by Eq.~2!, with J(t)5G(j,t), and
G(j,t) is the Green’s function of the cable equation descr
ing the dendrite. An extensive review of the form of th
Green’s function can be found in Ref.@14,19#, where the
Fourier transform is given in the form

Ĵ~v!5
1

Dg~v!
e2g(v)j. ~13!

The diffusion coefficient of the cable isD, while the form
factorg(v) depends upon whether the dendrite is passive
quasiactive. For a purely passive cableg2(v)
5(11 ivtD)/(DtD) with tD the dendritic membrane time
constant. For a quasiactive cable@13#

g2~v!5
r a@r D1r l2v2l tD1 iv~ l 1r ltD!#

r D~r l1 iv l !
. ~14!

Here, the membrane leakage resistance and capacitance
cable of unit surface area arer D and c, respectively, with
tD5r Dc. The longitudinal resistance of a unit length
cable is given byr a . Compared to the passive form facto
the quasiactive one also incorporates the effects of a re
tance r l in series with an inductancel. In contrast to the
Green’s function of the passive dendrite, that of the qua
active one possesses an oscillatory tail. In the limitr l→`,
the passive dendritic case is recovered withDtD5r D /r a .
Resonantlike behavior in which the impedanceug(v)2/r au
has a maximum value for some nonzero frequencyvmax is
apparent in this system. The resonant frequencyvmax is
given by

vmax5$2~r l / l !21@~r l / l !42E#1/2%1/2, ~15!

provided E[(Brl
22 l 2C)/(Al2),0, where A5(tdl )2, B

5 l 21(tdr l)
222tdrl , andC5(r 1r l)

2 @13#.
The calculation of the dispersion curve for a passive d

drite also shows a correspondence with the behavior foun
Sec. III with a fast stable branch coexisting with a slo
unstable branch. However, with the inclusion of a qua
active membrane, a far more interesting dispersion curve
be obtained. In Fig. 3, we present such an example for
case of an exponential synaptic footprint. There is an ad
tional oscillatory behavior in the upper branch of the disp
sion curve for quasiactive dendrites, which arises from
bandpass nature of the membrane. This behavior beco
more pronounced asr l→0 ~i.e., as the membrane switche
from passive to quasiactive!. A similar effect can be pro-
duced by decreasingtR or l, or by increasingtd . In the
long-wavelength limit, the speed is increased for an incre
in the resonant frequency.

The stability of the periodic wave train is determined
the gradient of the dispersion curve, in accordance with
kinematic theory. The oscillatory nature of the upper bran
leads to alternating regions of stable~positive gradient! and
unstable~negative gradient! periodic traveling waves. Hence
it is possible that a quasiactive membrane can act to t
5-4
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traveling waves to specific frequency windows. These sta
regions can be made larger by increasingtd or decreasingl.
As in Sec. III, extraP2 curves appear from the local maxim
in the P1 curve. However, in this case and for gene
choices of parameter values, the emergingP2 orbits are
found to be stable over certain regions. Some examples oP2
orbits emerging from local maxima of theP1 dispersion
curve are shown in Fig. 4. The oscillatory nature of the up
branch is also apparent in theP2 branches, thus leading t
alternating bands of stable and unstableP2 traveling waves.

V. DISCUSSION

In this paper we have extended recent work on trave
waves in IF systems in two ways. First, we have shown h
to analyze waves possessing more than one period, and
ond, how to use a kinematic theory to determine wave
bility. This framework has been used to investigate the
fects of realistic forms of synaptic and dendritic process
on the propagation of waves in a one-dimensional mo
with nonlocal coupling. Importantly, neurons with a ban
pass response have been shown to have dispersion c
with a richer structure than those without it. Resonant pr
erties of neurons have been modeled using an effective
ductance, which itself can be attributed to the behavior
voltage- and time-dependent conductances in membr
near rest. It is already known that resonant behavior
subserve a specific neuronal function. For example, hair c
of a vertebrate cochlear exhibit their maximal sensitivity
some nonzero frequency, which depends on their loca
along the cochlear@20#. Moreover, rod photoreceptors o
lower vertebrates have a receptive field that increases
the temporal frequency of the stimulus@21#. The analysis
presented in this paper further suggests that a quasia
membrane can have an important role to play in shaping
firing patterns of traveling waves.

A natural extension of this work is to consider tw
dimensional sheets where it is likely that nontrivial geom
ric structures such as spirals and target patterns are t
found. The case of plane waves has been discussed in
@12#, but the generalization of a firing time ansatz to cov

FIG. 3. Dispersion curve for the exponential footprint in a sy
tem with quasiactive membrane. Parameter values:D5tD5r D

5r a5s51, e515, j50.2, l 50.2, r l50.01, andtR55. Solid
~dotted! lines correspond to linearly stable~unstable! traveling
waves according to the kinematic theory, i.e., stable~unstable! for
positive ~negative! gradients.
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other solutions has yet to be performed. Another import
question that has not been addressed in this paper is
nature of wave initiation, where some recent progress
been made@22#. Also, spike trainC in Fig. 4 suggests that a
propagating doublet is a~kinematically! stable waveform in
the long-wavelength limit. More generally, theDn21→`
limit of our work produces a traveling packet ofn spikes.
Using a combination of analysis and numerics, investigati
into the existence of this interesting class of solutions h
been performed by Osanet al. @23#.

ACKNOWLEDGMENT

The authors would like to thank M. R. Owen for helpf
discussions during the completion of this work.

APPENDIX: KINEMATIC THEORY—LINEAR STABILITY

A steadily propagating wave train is stable if under t
perturbationTn(x)→Tn(x)1un(x) the system converges t
the unperturbed solution during propagation, orun(x)→0 as
x→`. For the case of uniformly propagating travelin
waves of periodD, we insert the perturbed solution in Eq
~11!, so that to first order inun,

-

FIG. 4. The dispersion curve forP1 ~gray! andP2 ~black! trav-
eling waves in the case of quasiactive membrane and expone
synaptic footprint. Parameter values as given for Fig. 3. Solid~dot-
ted! lines correspond to linearly stable~unstable! traveling waves
according to the kinematic theory, i.e., stable~unstable! for positive
~negative! gradients.P2 branches of solution terminate at loc
maxima of theP1 dispersion curve. The spike trains undernea
show the trains produced at the points indicated.
5-5
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dun

dx
52

c8~D!

c2~D!
@un2un21#. ~A1!

Thus, a uniformly spaced, infinite wave train with periodD
is stable~within the kinematic approximation! if and only if
c8(D).0. Hence, for the dispersion curves presented h
it would seem, to a first approximation, that it is always t
faster of the two periodic branches which is stable. Note t
where there are oscillations in the upper branch~including
the bumps of supernormal speed! then it is only the wave of
smaller period which is stable.

We now consider the stability of finite nonuniform train
rather than the more involved case of general trains of i
ol

nd

d.

is

l

Sc
p:

.A

ra

05190
e,

at

-

nite extent. This allows us to make the realistic assumpt
that the speed of the leading pulse isc0 ~the speed of a
solitary pulse!, so that we may write Tn(x)5x/c0

1(k51
n Dn , n51, . . . ,N @24#. Proceeding as before we fin

the linear equations

du1

dx
50,

dun

dx
52

c8~Dn!

c2~Dn!
@un2un21#, n52, . . . ,N.

~A2!

Thus, a nonuniform train is stable if and only ifc8(Dn).0
for each n ~ignoring the zero eigenvalue associated w
translations of the leading pulse!.
,
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