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Effects of quasiactive membrane on multiply periodic traveling waves in integrate-and-fire systems
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We consider the dynamics of a one-dimensional continuum of synaptically interacting integrate-and-fire
neurons with realistic forms of axodendritic interaction. The speed and stability of traveling waves are inves-
tigated as a function of discrete communication delays, distributed synaptic delays, and axodendritic delays
arising from the spatially extended nature of the model neuron. In particular, dispersion curves for periodic
traveling waves are constructed. Nonlinear ionic channels in the dendrite responsible for a soucadied
active bandpass response are shown to significantly influence the shape of dispersion curves. Moreover, a
kinematic theory of spike train propagation suggests that period-doubling bifurcations of a singly periodic
wave can occur in dendritic systems with a quasiactive membrane. The explicit construction of period-doubled
solutions is used to confirm this prediction.
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[. INTRODUCTION tion of period for a periodic wave. The existing mathemati-
cal framework for constructing dispersion curves in IF net-
Traveling waves of activity have been experimentally ob-works is therefore ideally suited to building a kinematic
served in many neural systems. Examples include thalamdheory. The kinematic stability of waves in a synaptically
cortical regions of humand], the retina of developing rab- coupled IF network, and indeed many other spatially ex-
bits [2] and mice[3], the visual cortex of the turtle4], and  tended excitable systems, can be determined by the sign of
the olfactory system of the mollug&]. The functional sig- the gradient of the dispersion curve. The identification of
nificance of waves in these systems is not always clear. Elyparameters that underlie the generation of stationary points
cidating the mechanisms of wave initiation, propagation, andn the dispersion curve can therefore be used to highlight the
bifurcation is therefore directly relevant to determining theneurophysiological features responsible for wave instability
functional roles that waves may take. Indeed, the propagaand bifurcation. A major result is that synaptic responses
tion of synchronous spikes has been proposed by Abeles asaxth a bandpass nature can lead to the creation of multiple
mechanism for generating the precisely timed spike eventstationary points in the dispersion curve. Such bandpass
observed in multielectrode recordings of cortical circiif  characteristics of neuronal response arise naturally in spa-
To capture the essence of a wave of spiking activity it istially extended models of neurons with dendritic trees pos-
natural to work with perhaps the most simple spiking neurorsessing the so-called quasiactive membrane. The theory of
model, namely, the integrate-and-fil&) model. At the net- the quasiactive membrane has been proposed by Kigh
work level, analytical and numerical studies have alreadyas a model for the small signal voltage response of an excit-
shown wave behavior consistent with more detailed bio-able neuron arising from nonlinear ionic channels embedded
physical modelgsee Ref[7] for a recent review In particu-  in the dendritic membrane. It is obtained by linearizing the
lar, we refer to the work of Golomb and Ermentr¢8t10] Hodgkin-Huxley equations about a steady state and may be
and Bressloff11,12. Importantly, these authors have devel- regarded as a linear resistor-capac{tdRC) model of nerve
oped a mathematical framework that can provide an exhausissue with an inductive element, i.e., an electrical LRC cir-
tive analysis of the speed and stability for solitary travelingcuit. The analysis of dendrites with LRC resonant frequen-
pulses. It has been shown by Bressloff that, away from theies has been developed by Bress|dff], and feeds natu-
long-wavelength limit, the determination of wave stability is rally into the formalism developed for the study of dispersion
a highly nontrivial mathematical problem, involving the so- curves in IF systems.
lution of a linear map of infinite order. Hence, almost noth-  The structure of the paper is as follows. In Sec. Il, we
ing is known about the stability of periodic waves nor of the present the model and the mathematical framework appropri-
actual mechanisms by which periodic waves can lose stabilte for the construction of dispersion curves. The work by
ity. Bressloff on periodic traveling waves is extended in a
In this paper we address these problems within a kinestraightforward manner to cover the important case of mul-
matic framework for spike train dynamics. Here the spatialtiply periodic wavegwhich will be shown later to bifurcate
evolution of spiking events is considered to be completelyfrom singly periodic waves Also presented are the kine-
determined in terms of the dispersion cuctgpeed as a func- matic theory of spike train propagation and the conditions for
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the stability of a multiply periodic spike train. lllustrations of where

the theory are given in Sec. Il for delayed synaptic interac-

tions in a point IF model and in Sec. IV for a spatially ex- A

tended dendritic model. In the latter case, the inclusion of a K(X)ZJ’ e*AleSE J(s+(m+x)A;)ds. (4
quasiactive(as opposed to purely passjvenembrane is R meZ

shown to produce an oscillation in the upper branch of the ] o ] ) ) ) ]
dispersion curve leading to alternating regions of stability. Equation(3) implicitly defines a dispersion relationship
An explicit construction of period-doubled solutions shows=C(A1) giving the wave speedas a function of the period
that they branch from local maxima of the dispersion curvel1. SinceK(x) is a real periodic function of, Fourier trans-
of the singly periodic orbit. Finally, in Sec. V, we summarize forms are a natural way in which to evaluate the dispersion
the major points of this paper and suggest natural extensiori§lation. Using this approach, E(B) may be written in the

of our work. computationally useful form
II. ONE-DIMENSIONAL INTEGRATE-AND-FIRE 2mm “
CONTINUUM 1= EmEz A Al.—Al A1 |W(2mk), 5
Consider a one-dimensional continuum of integrate-and-
fire neurons. The dynamic equation for the membrane potervhere
tial V(x,t) is given by
-P
IV (x,t) V(X,t) A(PawaA):T{[ec(va)_ec(TRyw)]a(w)_[es(va)

n . +S(x,t), xeR,t=0, (1)
—ed7r,@)]b(w)}. (6)
wherer is the membrane time constdhereafter set to unity o o
without loss of generalityandS(x,t) is the synaptic input at Here, ec(x,y).—e cosky), efxy)=e S|.n(xy), a(w)
position x and timet. Equation(1) is supplemented by the =R&J(@)/(1+iw)], b(w)=IM[J(w)/(1+iw)], and the
reset condition such that, whenev®i(x,t)=1, V(x,t") caret indicates Fourier transforms such that

=0. As it stands, the IF model allows for an arbitrarily high,

and therefore unphysical, firing rate. There are several ways . w
in which to introduce some level of refractoriness into the IF F(k)ZJ e F(x) dx. (7)
model such as via a large negative reset or a time-varying
threshold[15]. For simplicity, we shall adopt a simple abso-

lute refractory mechanism whereby a neuron is held at the Multlply. perlodlq waves may be constrgcted In an ana_tlo—
reset level for a timerg after a spiking event. The synaptic gous fashion to singly periodic ones with an appropriate

: choice of firing times. Instead of a wave train with a single

input to each neuron has the form . . L . Lo
period, consider a wave train with periodaterspike inter-

valg) Aj, j=1,...n. Letd;_;==}_;A,, and then the

period of oscillation is given by =d,_4. The set ofn firing

times are defined bSFm(x)z([m/n]Jrkx)Aerm(n), where

m(n)=m modn, and [---] takes the integer part. The

where >0 is the global coupling strength an&/(x)  speed of this wave is given by=1/(kA). For later conve-

=W(|x|) is the synaptic weight kernébr footpriny between nience, we shall denote a traveling wave witldistinct pe-

neurons separated by a distafxge The temporal delay ker- riods byP,. A generalization of the previous analysis leads

nel J(t) determines the shape of the postsynaptic potentidio & system of equations

and can model axonal delays, dendritic delays, and synaptic

processing as discussed in previous pagegs, for example 2.m .

Ref. [16]). Neglecting the shape of an individual pulse, 1:62 AJ-(—,A)W(Zwmk), i=1,...n, (8

the output spike train of each neuron is represented meZ A

as a sequence of Dirac delta function®¥(x,t)

=3 _,8(t—T™(x)), whereT™(x) is themth firing time of ~ Where

the neuron at position.

—0o0

S(x,t):eJ’: J:W(x—y)\](s)\lf(y,t—s)ds dy, (2

For aA, periodic traveling wave, the firing time ansatz is n-1
T™(x)=(m+kx)A; for some wave numbek[12]. This de- Aj(w,A)= > codw[dj_;—dDA(A},w,A)
fines a wave of speed=1/(kA;). Integrating Eq.(1) be- 1=0
tween successive firing events gives n—1

—Igo sin(w[d;_1;—dB(A},0,A), (9)

1=e f " WOOK (k) dx G and
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e P
B(P,w,A)=—1—{[efP.0) ~ey7r,w)]a(w) +[e4P,w) c
(mm/t ms)

—ey(7r,®)]b(w)}. (10

A general theory for the stability of periodic waves is
developed in Ref11], but requires substantial mathematical
analysis to gain any real insight. By considering perturba-

tions of the firing times, and linearizing the resulting firing 0 e
time map, Bressloff characterizes the stability of traveling 20 30 40 50 60 70 80 90 100
waves with the use of an integro-difference equation of infi- A1 (z ms)

nite order. Finding the solutions of this characteristic equa- ) ) i )

tion is a nontrivial mathematical problem. Another approach " 'C: 1. Dispersion curves for the square synaptic footprint and
to provide insight into the stability of traveling waves in- g':f%r(')dfz f('ftg%tfdzo(l)eI"’go:(igr(r(;::'shzzrﬁ?eitirorf‘e':esrﬁ#ﬁ‘ﬁ'n_
volves the use of direct numerical simulations. However, this ' ’ RO . pond .
will only determine stable waves and, for a fixed Waveearly stable(unstablg traveling waves according to the kinematic

d. finit ik iodi d other infinit theory. In this and subsequent figures, the temporal units are given
Speed, Tinite-spike waves, perodic waves, and Other INNNIEs, 1oy of - milliseconds, since we set=1, and the spatial units

spike waves may all occur. The desire for a practical treat q in milimeters.
ment of stability leads us to a kinematic theory of spike train

propagation. lll. SYNAPTIC PROCESSING IN A POINT
The kinematic formalism allows one to follow the evolu- NEURON MODEL
tion of the spike train without recourse to studying the full
nonlinear IF firing map. Miller and Rinzdll7] considered The evolution of a postsynaptic potenti&SH can often

impu|se propagation a|ong the Hodgkin-Hu)dey cable equabe aCCUrately described with a functional form such as a
tions using numerical experiments and deduced that the kdifference of exponentials or a so-calledunction. For sim-
nematic approximation provides a reasonable estimate fdlicity, we restrict our attention to this common form and
the variation in interspike intervals and the influence of dis-Write J(t) =a*(t—7.)e” *‘" @@ (t—r,), where an addi-
persion during propagation. They derived the kinematic aptional discrete delay has been included. In this section, we
proximation as follows. The quantityT"*/dx is the recip- ~ Will regard the neuron as a point processor that generates a
rocal of instantaneous velocity of the pulse upstroke and i§SP a timer, after the arrival of a presynaptic spike. It is
assumed to be determined by the time spent in the recoveBlso possible to include a space-dependent axonal communi-
wake of the preceding pulse. This time differs from the in-cation delay by letting)(t)—J(t—[x|/c), where|x| is the
terspike interval by approximately a constant so that we cageparation of the neurons angd the speed of an action po-
express pulse velocity in terms of the interspike time. Thustential. However, this merely leads to a shiftc/1/c
we have —1/cg, so it will not be considered further. The theory of the
preceding section can be applied in a straightforward manner
once the Fourier transform qf(t) is calculated. For our
T’ 1 choice of a delayed function, this is given by

dX [T -T" 1(x] GD

20— iwTy

wherec[ - - -] is the velocity as a function of interspike in- Iw)= L,
terval as given by the dispersion relation for periodic wave (atio)?
trains. This reduces to our firing time ansatz for singly peri- . )

odic waves when the interspike intervEl(x)— T"~1(x) is  Which has a double pole ai=ia.
constant. Moreover, this framework is ideally suited for the Figure 1 shows dispersion curves for the case of a square
analysis of irregular spike trains and is easily extended to theynaptic footprinfwith W(w) = sin(cw)/(ow)]. For nonzero
multiply periodic case. Linear stability analysis of the kine- communication delays, the basic shape of the dispersion
matic ordinary differential equatior(given in the Appendix ~ curve is the same as that for zero delays, but shifted to the
shows that anyP; solution of system(11) is unstable if right. Hence, the presence of discrete communication delays

c’(A;)<0 and stable ifc’(A;)>0. The stability of more acts to suppress waves of small period. Kinematic theory
general P, orbits requires thatc’'(A))>0 for all j indicates that the uppéfaste) branch is stable since it has a

=0,...n—1. positive gradient{see the Appendix

In the following sections, we illustrate the usefulness of It is also possible for dispersion curves to devebapnps
the above theoretical framework in determining the effects off supernormal speed. An example using an exponential syn-
realistic forms of synaptic and dendritic responses on thaptic footprint is presented in Fig. Zwith W(w)
speed and stability of periodic traveling waves in spiking=1/(1+ oc>w?)], where the stationary point in the dispersion
neural systems. The normalized exponentipiV(x) curve clearly has a greater speed than the long-wavelength
=exp(—|X/o)/(20)] and squard W(x)=0(o—|x|)/(20)]  (solitary wave solution. Since the kinematic theory flags an
synaptic weight kernels are considered. instability at precisely this point the question arises as to

(12
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c 3.5 - : - - itself will again be a simple IF unit. In this case, the synaptic
input current is given by Eq(2), with J(t)=G(¢,t), and
(mm/t ms) 3.0 1 1 G(&,1) is the Green's function of the cable equation describ-
o5 | s ] ing the dendrite. An extensive review of the form of this
o Green’s function can be found in Rdfl4,19, where the
20t Te. . . Fourier transform is given in the form
P, P, "~ llrrrs
15 |
‘o , , , , Jw)= B(a) e N@¥, (13
15 20 25 30 35 40

The diffusion coefficient of the cable 3, while the form

FIG. 2. Dispersion curves fd?, and P, orbits (periodic travel-  factor y(w) depends upon whether the dendrite is passive or
ing waves with ond A=A, +A,] and two[A=A, +A,] periods, quasiactive. For a purely passive cabley*(w)
respectively in a synaptically coupled network with an exponential =(1+iw7p)/(D7p) with 75 the dendritic membrane time
footprint with «=0.5, =60, 7r=10, ando=1. Solid (dasheid ~ constant. For a quasiactive calplis]
lines correspond to linearly stablenstable traveling waves ac-
cording to the kinematic theory, i.e., stalflenstable for positive
(negative gradients. BothP, and P, upper branches become flat yz(w): ,
for large A. ro(r+iol)

ra[rD+r|—w2I otio(l+r7m7p)]

(14

Here, the membrane leakage resistance and capacitance for a
cable of unit surface area arg and c, respectively, with
/7To="pC. The longitudinal resistance of a unit length of
cable is given byr,. Compared to the passive form factor,
the quasiactive one also incorporates the effects of a resis-
tancer, in series with an inductance In contrast to the
Green's function of the passive dendrite, that of the quasi-
_active one possesses an oscillatory tail. In the limit o,

whether other solutions may branch from this instability. Ex-
plicit construction of theP, solution using Eqs(8)—(10)
shows that this is true. However, for typical paramete
choices we find that the emerging wave is unstable. More
over, for a sufficiently large choice of absolute refractory
period, the supernormal bump and the emerging unstple
can be lost, suggesting that a robust mechanism for sigble
generation is not possible for this form of synaptic interac . - ,
tion. In the following section, we shall see that the inclusionthe passive dendritic case is recovered vl =rp /1,

of active membrane in a spatially extended neuron model Cagesonanthke behavior in which the impedarjogw)®/r|
;

lead to dispersion curves with a much richer structure whe as a maximum value for some nonzero frequengy IS
bifurcations ofP; waves lead to stable, waves. apparent in this system. The resonant frequencyy is
given by

V. DENDRITIC PROCESSING
Oma={— (1 2+ (r| /)*—E]YAY2 (15)

The passive membrane properties of a neuron’s dendritic
tree are known to result in a diffusive spread of currentprovided E=(Br?—12C)/(Al?)<0, where A=(74l)%, B
through the system. Such a diffusive process is commonly=12+ (74r|)%2—274rl, andC=(r +r,)? [13].
described with the well known cable equatiph8]. The The calculation of the dispersion curve for a passive den-
Green’s function of the cable equation provides a spatiotemdrite also shows a correspondence with the behavior found in
poral delay distribution that may be used to model axodenSec. Ill with a fast stable branch coexisting with a slow
dritic interactions within the framework of this paper. Recentunstable branch. However, with the inclusion of a quasi-
experiments, however, suggest that the representation of deactive membrane, a far more interesting dispersion curve can
drites in terms of purely passive membranes is an oversinbe obtained. In Fig. 3, we present such an example for the
plification, and that more realistic models should incorporatecase of an exponential synaptic footprint. There is an addi-
some notion of active, voltage-dependent ionic chanfsele  tional oscillatory behavior in the upper branch of the disper-
Ref. [14] for a discussion In general, the active channel sion curve for quasiactive dendrites, which arises from the
conductances depend nonlinearly on voltage and time. Howsandpass nature of the membrane. This behavior becomes
ever, for relatively small deviations of the membrane potenmore pronounced as—0 (i.e., as the membrane switches
tial from rest, KocH 13] has suggested that a linearization of from passive to quasiactiyeA similar effect can be pro-
the channel kinetics is appropriate. The resultjgsiactive  duced by decreasingg or |, or by increasingry. In the
continuum cable model of the dendrites has a membrankng-wavelength limit, the speed is increased for an increase
impedance that displays resonantlike behavior due to the adh the resonant frequency.
ditional presence of inductances. Hence, for a purely passive The stability of the periodic wave train is determined by
dendrite, the membrane impedance acts as a low-pass filtdre gradient of the dispersion curve, in accordance with the
and for an active dendrite as a bandpass filter. kinematic theory. The oscillatory nature of the upper branch

For simplicity, we consider an unbranched model of aleads to alternating regions of stalffgositive gradientand
dendritic tree and consider only a single synapse on the tregnstablgnegative gradientperiodic traveling waves. Hence,
located at a distancé from the cell body(soma. The soma it is possible that a quasiactive membrane can act to tune
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C 12 | | | ] C
(mm/t ms)10 | e e (mm/t ms)

8 L

o N oo

0 5 10 15 20
A1 (T ms) A (t ms)

tem with quasiactive membrane. Parameter vallgs: rp=rp
=r,=0=1, e=15, £=0.2, 1=0.2, r,=0.01, and7zg=>5. Solid
(dotted lines correspond to linearly stableinstablg traveling 0 50
waves according to the kinematic theory, i.e., stdblestable for B ‘

FIG. 3. Dispersion curve for the exponential footprint in a sys- A H‘

positive (negative gradients.

traveling waves to specific frequency windows. These stable 0 5 100 150 200
regions can be made larger by increasiggor decreasing. c

As in Sec. lll, extraP, curves appear from the local maxima

in the P, curve. However, in this case and for generic

choices of parameter values, the emergipg orbits are 6 = 100 1 200

found to be stable over certain regions. Some exampl&s of t(t ms)

orbits emerging from local maxima of thE, dispersion _ _

curve are shown in Fig. 4. The oscillatory nature of the upper F!G- 4. The dispersion curve fdt, (gray) andP; (black trav-
branch is also apparent in th®, branches, thus leading to eling waves in the case of quasiactive membrane and exponential

alternating bands of stable and unstaBletraveling waves. SYNaptic footprint. Parameter values as given for Fig. 3. Sad-
ted) lines correspond to linearly stablenstable traveling waves

according to the kinematic theory, i.e., stalilastable for positive
V. DISCUSSION (negative gradients.P, branches of solution terminate at local

. . maxima of theP, dispersion curve. The spike trains underneath
In this paper we have extended recent work on traveling . ihe trains produced at the points indicated

waves in IF systems in two ways. First, we have shown how

to analyze waves possessing more than one period, and sec- ) .

ond, how to use a kinematic theory to determine wave stgother 'solut|ons has yet to be performed._Ano'ther |mpo_rtant
bility. This framework has been used to investigate the efguestion that has not been addressed in this paper is the
fects of realistic forms of synaptic and dendritic processingature of wave initiation, where some recent progress has
on the propagation of waves in a one-dimensional modeP€en mad¢22]. Also, spike trainC in Fig. 4 suggests that a
with nonlocal coupling. Importantly, neurons with a band-Propagating doublet is &inematically stable waveform in
pass response have been shown to have dispersion curdd€ long-wavelength limit. More generally, the, ;—

with a richer structure than those without it. Resonant proplimit of our work produces a traveling packet ofspikes.
erties of neurons have been modeled using an effective ir/SiNg a combination of analysis and numerics, investigations
ductance, which itself can be attributed to the behavior ofnt0 the existence of this interesting class of solutions have
voltage- and time-dependent conductances in membran&§en performed by Osaet al. [23].

near rest. It is already known that resonant behavior can

subserve a specific neuronal function. For example, hair cells

of a vertebrate cochlear exhibit their maximal sensitivity at ACKNOWLEDGMENT

some nonzero frequency, which depends on their location The authors would like to thank M. R. Owen for helpful

along the cochleaf20]. Moreovgr, rqd photor.eceptors of. discussions during the completion of this work.

lower vertebrates have a receptive field that increases with

the temporal frequency of the stimul{i2l]. The analysis

presented in this paper further suggests that a quasiactiVRppenDIX: KINEMATIC THEORY—LINEAR STABILITY

membrane can have an important role to play in shaping the

firing patterns of traveling waves. A steadily propagating wave train is stable if under the
A natural extension of this work is to consider two- perturbationT"(x)—T"(x)+u"(x) the system converges to

dimensional sheets where it is likely that nontrivial geomet-the unperturbed solution during propagationudfx) —0 as

ric structures such as spirals and target patterns are to be—«. For the case of uniformly propagating traveling

found. The case of plane waves has been discussed in Refaves of periodA, we insert the perturbed solution in Eq.

[12], but the generalization of a firing time ansatz to cover(11), so that to first order in",
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dun c'(A) nite extent. This allows us to make the realistic assumption
—-—=- [u"—u""1]. (A1) that the speed of the leading pulsedg (the speed of a
dx 2 : :

c“(A) solitary pulsg, so that we may write T"(x)=x/c,

+3p_;A,, n=1,... N [24]. Proceeding as before we find

Thus, a uniformly spaced, infinite wave train with periad . ;
the linear equations

is stable(within the kinematic approximatiorif and only if
c'(A)>0. Hence, for the dispersion curves presented here,

1 n ’
it would seem, to a first approximation, that it is always the d_“_o du®  c'(Ap)

[u"=u""1], n=2,...N.

faster of the two periodic branches which is stable. Note that dx " dx c3(Ap)

where there are oscillations in the upper brafiicicluding (A2)
the bumps of supernormal spegehen it is only the wave of

smaller period which is stable. Thus, a nonuniform train is stable if and onlydf(A,)>0

We now consider the stability of finite nonuniform trains, for eachn (ignoring the zero eigenvalue associated with
rather than the more involved case of general trains of infitranslations of the leading pulse
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