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Stochastic phase resetting of two coupled phase oscillators stimulated at different times
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A model of two coupled phase oscillators is presented, where the oscillators are subject to random forces and
are stimulated at different times. Transient phase dynamics, synchronization, and desynchronization, which are
stimulus locked(i.e., tightly time locked to a repetitively administered stimyjusre investigated. Complex
coordinated responses, in terms of a noise-induced switching across trials between qualitatively different
responses, may occur when the two oscillators are reset close to an unstable fixed point of their relative phases.
This can be achieved with an appropriately chosen delay between the two stimuli. The switching of the
responses shows up as a coordinated cross¢tid) response clustering of the oscillators, where the two
oscillators produce two different pairs of responses. By varying noise amplitude and coupling strength we
observe a stochastic resonance and a coupling-mediated resonance of the CT response clustering, respectively.
The presented data analysis method makes it possible to detect such processes in numerical and experimental
signals. Its time resolution is enormous, since it is only restricted by the time resolution of the preprocessing
necessary for extracting the phases from experimental data. In contrast, standard data analysis tools applied
across trials relative to stimulus onset, such as CT averdgihgre an ensemble of poststimulus responses is
simply averaged CT standard deviation, and CT cross correlation, fail in detecting complex coordinated
responses and lead to severe misinterpretations and artifacts. The consequences for the analysis of evoked
responses in medicine and neuroscience are significant and are discussed in detail.
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[. INTRODUCTION ensemble of responses. The relevant criterion here is a ste-
reotypical time course of the phases or the phase differ-
Synchronization abounds in physi¢§], chemistry[2], ence relative to stimulus onset across trials.
biology [3], neuroscienc@4], and medicing5,6]. In the past We apply this approach to study transient stimulus-locked
years, numerous studies addressed the stochastic phase syhase dynamics, synchronization, and desynchronization in
chronization of periodic oscillatoff2,1] and chaotic oscilla- two coupled phase oscillators, which are subject to random
tors[7] in physics[1,8], chemistry[9], and biology[10,11.  forces and stimulated at different times. In a previous study
Various dynamical properties of stationary synchronizationon two coupled and simultaneously stimulated phase oscilla-
processes have been revealed, such as stochastic resonatmes it has been shown that complex coordinated responses
of phase synchronizatigri2]. The majority of these studies occur, provided the stimuli are appropriately chof&®,17.
were dedicated to stationary synchronization processeSor example, an antiphase reset of in-phase synchronized
evolving on a long time scale, for tinte~. In this context oscillators causes a noise-induced switching between quali-
stochastic phase synchronization was defined as the appetatively different responses relative to stimulus onset. For
ance of one or more prominent peaks in the distribution othis, however, the two phase-dependent stimuli have to be of
the phase difference during a sufficiently long observatiora particular form. If the stimulus of oscillator(added to the
[7,13). Put otherwise, the hallmark of phase synchronizatiorright-hand side of the evolution equation of the phasads,
is the tendency of the oscillators to maintain a stable phase.qg.,S;(#1) =1 coss, the stimulation mechanism of oscilla-
relationship. tor 2 has to take the complementary fo®p( i) =cos(
On the other hand, in physics and biology there is a larget ), where the phase shift af in the argument causes the
number of important dynamical processes that are caused lantiphase resdsee below.
pulsatile stimuli. Such processes are transient and act on If both oscillators model identical units, such as identical
short time scales. In particular, they violate-ac as well as  oscillatory neurons, it might be difficult to realize such
a quasistationarity assumption. To cope with stimulus-locke@omplementary stimuli experimentally. In this paper, we
transient dynamics of this kind, we use an approach based @how that the noise-induced switching between qualitatively
stochastic phase resetti§,16,17: Stimulus-locked phase different responses may emerge in a much more general set-
dynamics or stimulus-locked synchronization means that &ng. We may stimulate identical oscillators with identical
particular transient dynamics of the phases or of th@  stimuli and produce such complex responses, provided we
phase difference is stimulus locked, i.e., tightly locked instimulate the oscillators at different times with an appropri-
time to a repetitively delivered stimulus. More precisely, sto-ately chosen delay. From an experimental point of view,
chastic stimulus-locking of the phase dynamics and stochasarying the delay between two stimuli is trivial compared to
tic stimulus-lockedh:m phase synchronization are character-modifying the stimulation mechanism.
ized by the presence of one or more prominent peaks in the We shall see that stimulation at different times and stimu-
distribution of the phases and of tlrem phase difference lation with antiphase stimuli have several features in com-
across ftrials at each timerelative to stimulus onset in an mon. For example, in both cases we observe a stochastic
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resonance that causes the noise-induced switching between Tk
different responses across trials. On the other hand, only in  (a) l
the case of stimulation at different times strong enough cou- ‘
pling may prevent the oscillators from such complex re-

sponses. In this case, we even observe a pronounced
coupling-mediated resonance of the noise-induced switching.

The study of stimulus-induced transient responses of os- it
cillators by itself is an interesting topic. Furthermore, it has 0'27
several significant applications in various fields of physics o2 o 02 0a 08 08
and natural sciences. The investigation of transient short- 7 Time [arb. units]
term brain responses evoked by sensory stimuli is a key ap- Tk +tqel

proach for the study of cerebral information processing and
diagnosig 6]. For this purpose, we may apply three standardOS

data analysis methods across trials. the stimulus of oscillator 2 is delayed by (b). Both stimuli are of

(_i) A StimUIus'IOCk?d response _Of a neuronal_population iSequal duration. Thereforéy is also the delay between the offsets
typically analyzed with a cross-tridCT) averaging, where  of the two stimuli. This pair of stimuli is administered at random
an ensemble of poststimulus responses is averaged acrQffies r, ,

trials relative to stimulus ons¢fi4,15. The interactions of

the oscillators are typically guessed by phenomenologicallyair of stimuli is administered as illustrated in Fig. 1: Oscil-
studying such CT averaged responses, e.g., by comparingtor 1 is stimulated first, while the onset of the stimulus of
changes of peak latencies or amplitudes under varying comyscillator 2 is delayed byy=0. We assume that the dura-
d|t|q_ns. _ ) tion of both stimuli is the same. Accordingly, is also the
(if) To determine how stereotypical the responses are, Wgelay between the offsets of the two stimuli. An extension to
may calculate a standard deviation across trials relative t@timuli of different duration is straightforward and is dis-

stimulus onset. o ~ cussed in Sec. X. Switching on and off the stimulus of oscil-
(iii) To detect linear correlations in an ensemble of pairgator j is modeled by

of responses, we may use a CT cross correlation, i.e., a cross

correlation calculated across all trials at each timelative 1: stimulusis on at timet

to stimulus onset. Xi(0=10. stimulusis off at timet,
Instead of these CT standard analysis techniques, we use a

stochastic phase resetting analy§isl6,17. For this, we de- wherej=1,2 andX,(t) =X,(t+tg4). The random forceg,

termine the time-dependent distributions of the phases and @ind F, are the Gaussian white noise fulfilling=;(t))=0

the n:m phase difference calculated across trials for e.aclgmd“:j(t) Fi(t))=D & 8(t—1) with constant noise ampli-
time t relative to stimulus onset, and evaluate these distribuy,qe p. Equation(1) may serve as a minimal model for two

tions statistically. In this way it is possible to detect the gjectrically stimulated neuroris] or as a minimal model for
npise-induced switching between differen_t responses acroggo neuronal populations affected by sensory stimuli as ex-
trials. In contrast, the CT standard techniques—CT averags|ained below. We set the amplitude of both oscillators equal
ing, CT standard deviation, and CT cross correlation—leady 1 and define the signal of thgh phase oscillator as

to misinterpretations and even artifacts. Our results have se-

vere consequences, since the CT standard methods are used X;j(t)=cosy;(t). ()

for the analysis of evoked responses in neuroscience and

medicine. The gold standard for the extraction of stimulus- ||| cROSS-TRIAL ANALYSIS BASED ON STOCHASTIC

locked responses, the CT averaging, is even a major tool for PHASE RESETTING

diagnosis[6]. We shall discuss in detail how we can avoid

artifacts originating from CT averaging by applying the pro- ~We introducenormalized phases

posed data analysis techniques. )

$i(t)="— mod =12 @

FIG. 1. Time course oiX; from Eq. (2) during stimulation.
cillator 1 is stimulated first at timg,.=0 (@), while the onset of

Toy « v o sT)

()

Il. STOCHASTIC MODEL

We consider a model given by two phase oscillators Withand thenormalized cyclic m phase difference

phases/y, i, and constant amplitudes governed by Ny (t) — my(t)
¢nm(t)=——>_——— mod 1. (5)
= o;—Ksin(¢j— o) + X;(0)S; () +Fj (1), (D)

The goal of our analysis is to detect whether in an ensemble
where j,k=1,2 andj#k. The eigenfrequencies read, ,  of responses to the stimulus there are epochs during which
=w* y/2 with detuningy. The stimuli are modeled by phases¢,, ¢, and/or the phase differenag, ,, display a
27-periodic, time-independent functionss;(;) = S;(¢; stereotypical, tightly stimulus-locked time course. For this, at
+21). In several fields of the natural sciences, and typicallyrandom timesr, 75, . . . ,7, we deliver a series dfidentical
in biology, the effect of a stimulus is phase depend8htA  pairs of stimuli shown in Fig. 1. In particular, in each pair of
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stimuli the time delayt 4 between the onsets of the first and stimulus & stimulus &1
second stimulus is kept constant throughout the whole series. of oscillator 1 of oscillator 1
The length of the interstimulus intervals is randomized ac- @ onset | | offset onset | | offset
cording to 1l - \ -
g 0 : ] : ]
Tk+1~ Tk= twint Lk (6) —1N\/‘\W\/\/%. ‘ ‘ ”"N\NVW\}
(b) 88 90 92 94 96
wheret,;, is constant and large compared to the stimulation o IF H i ‘ i ]
duration as well as the time scale of the transient dynamics. & _?N\/\/ th -MW
9

{\ is uniformly distributed irf 0,27/ w]. To each stimulus we
attach an identical time windoyt,,t,] (t,<O, t,>0, Fig.
2). Each window has a time axig, so thatt’ e[t,,t,],
where the onset of the stimulus in each window lieg'in

=0. The window lengtti,—t, is smaller than the length of

the interstimulus intervalst{—t,<t,;,), but is large com-
pared to the time scale of the transient dynamics.
For the sake of simplicity let us drop the primetin and

keep in mind that from now on,denotes the time axis of the
window. To study the dynamics of the ensemble of stimulus- >

locked responses for each time[t,,t,], we introduce the
time-dependentross-trial (CT) distributionsof the normal-
ized phases from Ed4) and the cyclio:m phase difference
from Eq. (5) by

{6t 1)hk=1,.. .1 {eamt+mlk=1,.. ). ()

The time course of; and ¢, r, is perfectly stimulus locked
at timet if the corresponding CT distributions from E)
are Dirac-like distributions, i.e.¢;(t+ 1) = ¢;(t+7) and
enm(t+ 7)) =@ m(t+7) foralli,k=1,... . Onthe other
hand, if ¢; and ¢, ,, are not at all stimulus locked at tintg

0

E=g =1

¥ - ]

9

S T
<SRRI
X A S SN

r——

1
0 92 94 96

T T T Time [arb. units]
Tette Tk Tetits

FIG. 2. The scheme illustrates the cross-trial analysis, where a
series ofl identical pairs of stimuli from Fig. 1 is administered at
random timesr;, 75, ..., . Each pair consists of a stimulus ad-
ministered to oscillator Xwith onsetr,) followed by a stimulus
administered to oscillator 2 after a constant delgy (with onset
T+ t4e), Wherety, here equals half a period of the oscillation.
Onsets and offsets of the stimuli of oscillator 1 are indicated by
solid vertical lines, whereas onsets and offsets of the stimuli of
oscillator 2 are denoted by dashed vertical lines, respectively. An

these distributions are uniform. The extent of stimulus lock-igentical time window[t,,t,] (with t,<0, t,>0) is attached to

ing of ¢; and ¢, i, is quantified for each timeby means of
the time-dependenstimulus-locking indices\{"(t) of ¢,
given by

1.
)‘J(V)(t)zl_kzl eX[L[iV27T¢>j(Tk+t)]’v ®)

and then:m stimulus locking indices (/) (t) of ¢, , given
by

—|

o ()=

|
kE eXﬂ:in’ITQDnYm(Tk‘l't)]‘, 9
=1

where |y| denotes the modulus of, and » is an integer
[16,17. A" (t) and o{!}(t) detect whethekp;’s or @y 'S
CT distribution from Eq.(7) at timet has» peaks that are
equally spaced i 0,1] (modulo 1) and fulfill Os)\}”)(t)
<1, 0<o{)(t)<1 forte[t,,t,] and for all integerv.

Let us consider the three leading indices=1,2,3) in
four different situations.

(i) If the distribution{ ¢; (t+ 7y) }x—1
form, then)\j(V)(t)=0 forv=1,2,3.

(i) One pronounced peak of the distributiof,(t
+7)}k-1,.. s at imet corresponds to larga{"(t) for v

| at timet is uni-

each stimulus and indicated by a shaded region at the top of each
panel. The signals;(t)=cog2md(t)] and x,(t) =cog2mp,(t)]

from Eq.(3) are shown in@) and(b). The corresponding phases

and ¢, from Eq. (4) are displayed in(c) and (d). The normalized
cyclic 1:1 phase difference; ; from Eq.(5) is shown in(e). Note,
¢11,=0 and ¢; ;=1 are identical, so that continuous variations
arounde; ;=0 appear as abrupt jumps between 0 and 1. The traces
shown are obtained by numerical integration of model equdfipn
with parameters as in Fig. 4. In this paper, the model given by Eq.
(1) is numerically solved with Euler’s technique and a time step of
0.001. To pick up transients completely, in all simulations presented
below both mean interstimulus duration and window lertgtht,
are~2.5 times larger than that shown here.

antiphase peaks of the distributidp;(t+ 7y) fx—1, ..
time t are specifically detected with the time-dependamt
tiphase CT clustering index of thé¢hjoscillator defined by

a;()=APt) —A D) (10

[17]. —1=ay(t)<1 is fulfilled for all timest, where the two
Dirac-like symmetric antiphase peaks are relatedxf(t)

=1. a; detects symmetric CT antiphase response clustering
which is stimulus locked in timésee, Ref.[17]). Analo-
gously, we introduce thantiphase clustering index of the n

=1,2,3. (i) Two pronounced antiphase peaks of the distri-m phase difference by putting

bution {¢;(t+ 7)}k=1,.. ) at timet are characterized by
large A{?(t) and smallx{"(t) for »=1,3. Two symmetric

Sam(t) =)=l (D), (11)
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where &, (t) detects two symmetric antiphase peaks of the

d|str|but|on{qon m(t+ 7 k=1, ..
(iv) Three equally spaced peaks of the distributje(t
+ Tk)}k 1,...) attimet correspond to IargE(3)(t) and small

)\(V) and o ”) are the modulus of theth Fourier mode of
the CT dlstrlbutlons from Eq(7) (see, Ref[5]). Similar to
Eq. (8), Z,(t)= 1713} _,exdivé(t)] is used to detect
equally spaced phase-locked clusters in a populatidrosf
cillators with phases,, ..., [5,18,28.

In addition to the indices defined by Eq8)—(11), we use

indices based on the Shannon entropy in order to quantify

the deviation of the distribution$e;(t+ 7i)fk—1, .|
{enm(t+7)}k=1, . ) from a uniform one. Accordingly, the
time-dependent entropy basstimulus-locking indexu;(t)
of ¢; reads

Smax_ Sj (t)

Sm ax

()= : (12
whereS;(t) = —EN 1piln p; is the entropy of the distribution
{#j(t+7)}k=1,. ., at timet, and p; denotes the relative
frequency of finding¢;(t+ 7) within the ith bin. Sy.x
=InN is the entropy of a uniform distribution, wheng
=ex{d0.626+0.4In(—1)] is the optimal number of bins,
andl is the number of stimuli administerdd9]. 0= u;(t)
<1 holds for allt, whereu;(t) =0 corresponds to a uniform
distribution (no stimulus locking at time t, whereasu;(t)
=1 corresponds to a Dirac-like distributidperfect stimulus
locking) at timet.

Analogously, the time-dependent entropy basedn
stimulus-locking indexy, n(t) of ¢, is given by

Smax_ Sn,m(t)
Smax ’

where S, ,(t) is the entropy of the distributiof ¢, (t
+ 7) tk=1,..., at timet. The entropy based index fas,
from Eq. (13) has been introduced in Rdfk], whereas the
entropy based index fap; from Eq.(12) is introduced here.

pn,m(t): (13
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IV. MOTION IN A DOUBLE-WELL POTENTIAL

Let us consider the dynamics of model equatidbnwith-
out noise by setting; from Eq.(2) equal to zero. With Egs.
(5) and(1) we immediately obtain the evolution equation of
the phase difference, ; as

= Ky 2 F 14
@1,1—5_;5“"( meq) +F(1), (14

which we cast into the form
©11=G(@1)+F(1). (15)

The random forced=(t)=F,(t)—F,(t) are the Gaussian
white noise fulfilling (F(t))=0 and (F(t) F(t))=D&(t
—1)/7 with constant noise amplitud®/ . G(e1y) is a
short form for the deterministic terms of the right-hand side
of Eq. (14).

First, we focus on the behavior occurring without noise,
i.e., for D=0. In this case, the dynamics is governed by a
potential

f11
V(p11)=— L G(§)d¢, (16)
with constantc, where
dV(e11
=——"" 1
P11 deg g 17
A suitable choice of yields
y K
Viep1)= oy 11T 2005(277"!?1,1)- (18)

The dynamics of Eq(14) corresponds to an overdamped
motion of a particle in the potential (¢, 1) (Fig. 3). ¢11
moves in such a way thaf(¢, 1) is minimized, ande; ;
stops only whenV/d¢, ; vanishegsee Ref[1] and Chap. 9
in Ref.[24]). The maximum of the potential is an unstable

We use the first and the 99th percentile of the prestimulufixed point We denote the value @f; ; at whichV is maxi-

distributions  of the locking indices{\{" (t)}c[t_ -
{oWn(Oeerorr {2 (Oher o and {pnm(D}icre,of as

confidence levels in order to determine whether a stimulu Aim
causes a significant increase or decrease of the correspondl%,
locking index. For example, an increase or a decrease of th8L.1

stimulus locking of¢; at timet is considered significant,

prowded)\(l)(t) is greater than the 99th or smaller than the

first percent|le of{)\( (D}tere 0, respectively. Significant

stimulus-locked in-phase synchronrzatlon or desynchroniz

tion at timet occurs, prowdedr m(t) exceeds the 99th or
falls below the first percentile o{fcrn m(t)}te[t o The dif-

mal by ¢7'7". For ¢; 1= ¢7'7 a minimal perturbation is suf-

ficient to makeqoll move either to the right or to the left

émnlmum of V. The particle relaxes into the right or left

um depending on whether, ; is greater or less than
respectively.

Studying the poststimulus dynamics @f ;, thus, means
considering an initial condition problem of E@Ll4): The
stimulus putsp; ; on a particular value, which ig, ;s initial

value of the poststimulus period. Starting at that initial value,
a-

P, relaxes towards a stable state. By placipg, to the
rlght or to the left ofp'Y", the stimulus completely deter-

mines whetherp; ; moves to the right or to the left mini-

ferences between the listed indices will be explained belowmum.

In this paper, we restrict ourselves to the simplest case with When noise is added,

n=m=1. The stimulus-locked dynamics of tmem phase

i.e., fob>0, the situation
changes. We are no longer able to predict the trajectory of

difference (with n and/orm #1) has to be taken into ac- the particle. Rather we can only describe its dynamics in a

count, e.g., if the oscillators interact via aom coupling
consisting of terms such as smf —my).

probabilistic sense. For example, by means of a Fokker-
Planck equation we can determine the time course of the
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administered with a delay of half a mean period of the oscil-
lators:tye=T/2= 7/ w in Fig. 1?

We assume the coupling to be strong enough compared to
the noise amplitud®, so that without stimulation the two
oscillators spontaneously synchronize in phfB@s. 49)
and 4h)]. The stimulation intensity is assumed to be large
compared to the coupling strengthand to the noise ampli-
tude D (K<I, D<I). The two stimuli may have different
intensity parameters, what matters is that the intensity pa-
rameters are large with respectKoandD. This guarantees
‘ ‘ ‘ ‘ ‘ ‘ ) ‘ that the two strong stimuli quickly reset the oscillators:

-2 0 02 04 06 08 1 12 When the first stimulus is ovet); has been shifted close to
©1,1 ¢%®¥~0.36[Fig. 4(a)]. Likewise, after the offset of the sec-
ond stimuluse, has also been reset #7'?~0.36[Fig. 4(e)].

FIG. 3. PotentialV from Eq. (18) is plotted for two different  { —T/2 is the delay between the offsets of the two stimuli.
values of the detuning: y=0 (thick line), y=0.5 (thin line).  Therefore, after the offset of the first stimulus, oscillator 1
Local maxima ofV are indicated by dots, respectively. runs through half a period until stimulation of oscillator 2 is

- ] ] over, too. Consequently, at the end of the stimulation, in total
probability densityp(¢a1,t), wherep(ey1,t)de119iVeS US  an antiphase reset is achieved, ig,, is set to 0.5[Fig.
the probability of finding¢;, in the interval [¢; 1,01, 4(g)].
+dey 4] (see Ref[1] and Chap. 9 in Ref24]). The impact The reset of the oscillators’ phases is reflected by an in-
qf noise after s'timu_lation is obvious: The overdamped MO+ ease of the locking inde)xj(l) [Fig. 4b)]. Due to this reset
tion of the particle is perturbed by random forces and bey,q gscillators undergo a transition from an in-phase synchro-
haves in a way that has been studied in detail in the contexti; ation to a particularly strong antiphase synchronization
of diffusion in a double-well potentialsee, Chap. 9 in Ref. ;5 5 transient desynchronization in betwéeigs. 4g) and
[24]). The dynamics fot— is no longer totally determined 4] After the stimulation, both oscillators relax back to the
by the initial state, which means that the division into thréegame jn-phase synchronization as before stimulation. During
different scenariosi.e., staying at the unstable maximum or s rejaxation they pass through a desynchronization that
moving into the right or left minimumis no longer valid. |a5t5 |onger than the desynchronization during stimulation
For sufficiently large noise amplitude the particle may endgince K <. In the course of the desynchronization during

up in the right well although it started left fromy'? and  5ng after stimulation the trajectories @f; , form two

vice versa. “branches” that converge to and diverge frogy ,=0.5
[Fig. 4g)]. The two branches occur for the following reason.
V. TRANSIENT RESPONSE CLUSTERING, When the particleimeaning¢, ;) is placed on top of the
SYNCHRONIZATION, AND DESYNCHRONIZATION maximum of the potentia¥/ from Fig. 3, it moves down to

either the left or the right minimum. Note, in the simulation

We can place the particle on top of the poten¥aby  shown in Fig. 4 we have nonvanishing noise. The antiphase

simultaneously delivering two stimuli with position of the two branches of the trajectories¢gf, coin-
cides with a local maximum oF$%) from Eq. (9) [Fig. 4()],

Suy)=lcosi,  Sy(yp) =l codipptm), (19 4 ocal minimum ofel [Fig. 4h)], and, thus, a local maxi-

mum of &, ; from Eq. (11) [Fig. 4()].

where both stimuli have identical onsets and offsdtg, ( After the stimulation the trajectories of both, and ¢,

=0 in Fig. 1. For| large enough compared to the coupling form two antiphase clusters across trials, respectively. This

strengthK, the first stimulus reset$; to ¢** whereas the shows up in the locking indices from EqE) and (10):

second stimulus reset, to ¢+ [16,17. In general, While MY relaxes to zero)(?) reincreasegFigs. 4b) and

such an antiphase reset can be achieved with stimuli of flrﬂ(c)] According|y, aISOaJ- reincreases and even exceeds its

order, i.e., stimuli containing only terms with cgg(and  9oth prestimulus percentilgigs. 4d) and 4f)]. This indi-

sin(), only provided the phase difference of the argumentsates that the distributiof;(t,+ ) }x=1, ., has two an-

of the two stimuli is sufficiently close tar, such asSy(#1  tiphase peak§Figs. 4a) and 4e)]. With further increase in

+6)=1cos@t6) and S(ih2) =1 cosflpt 6+m) with con-  time the clustering ofp;’s trajectories vanishes due to the

stanté [16,17). noise.

The question now is, whether we can compensate a phase The intimate relationship between the branchingegf,
shift of 7 in the arguments of, and S, by a delaytse  and the antiphase CT response clusteringgofhas been
corresponding to half a period of the oscillators. Put otherstudied in detail for an antiphase reset achieved with simul-
wise: Can an antiphase reset be achieved with two stimuli ofaneously delivered stimuli with phase shift afas defined
first order by Eq. (19) [16,17: In those trials whenp, ; runs through

the upper or the lower brancks; predominantly belongs to
Si(g1)=1cosyy, Sy(ihz)=1cod i) (200 either one of its clusters, respectively. This relationship holds
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i
Time [arb. units] Time [arb. units]

FIG. 4. Strong stimuliS;(#4) =1 cosy, and S,(¢,) =1 cosy, from Eq. (1) administered with a delay of half a mean period of the
oscillators 4= T/2= 7/ w) cause an antiphase reset. CT distributions from(Bgare shown as time-dependent histograms péind ¢, 4
calculated across trials for each timeelative to stimulus onset within the time windol, ,t,], {d1(t+ 7)}k=1, .. ) In (@), {Po(t
+ 1) k=1, .1 IN (€, {e11(t+7)}k=1, .. 1 In (9 (O is black and maximal values are whitélorizontal arrows indicate antiphase peaks of

in Fig. 2, onsef(at t=0) and offset of the stimulus of oscillator 1 are indicated by solid vertical lines, whereas onset and offset of the
stimulus of oscillator 2 are denoted by dashed vertical lines. Prestimulus intery@J, poststimulus intervakt>0. Significance levels,
dotted lines in(b) and(c) denote the 99th percentile of the prestimulus distribut{od.é)(t)}te[,5’0[. In (d), (f), and(h)—(j) upper and lower
dotted lines indicate the 99th and the first percentile of the corresponding prestimulus distribution in the [inténgal Note, only a part

of the time window([t,,t,]=[—5,5.5 is displayed for the sake of clarity. Parameters of Hy. K=1.5, o=6m, y=0.04, D=0.5, |

=30, t,in=11[see, Eq(6)], stimulus duration=0.3, number of stimull =200. Results are stable with respect to variationk lxdtween

50 and 2000 and more.

also in the case of an antiphase reset achieved with stimuthore than 20 cyclegigs. 5c) and Ji)]. The corresponding
administered at different times. In our case this means that iantiphase branching af; ;'s trajectories shows up as local
those trials whenp, ; runs through the upper brangde-  minimum of ¢{*) from Eq. (9) [Fig. 5(f)], combined with a
noted byu in Fig. 4g)], the corresponding, is in the upper  |ocal maximum of the antiphase clustering ind&y, of the
peak of its CT distributiorfmarked by the upper arrow in .y phase difference from Eq11) [Fig. 5(k)].

Fig. 4@)]. By the same token, in those trials with , run- In contrast, when no antiphase reset is performed, i.e.,
ning through the lower brancH in Fig. 4@)], ¢, is con- \yhent_  is not close to 0.5, 1.5T, and 2.9, the CT re-
tained in the lower peak of its CT distributigfower arrow sponse clustering does not occur. In this case, h(fﬁhand

in Fig. 4@]. We shall come back to this point below. )\1(2) from Eq. (8) relax to zero[Figs. b), 5(), and h)],
without any reincrease of{) [Fig. 5e)]. Since\{" relaxes
more slowly compared m}z), the antiphase clustering in-
dexa; from Eq.(10) undergoes a negative transient before it
To demonstrate the impact of the type of reset on thdinally tends to zero. A uniform distribution is connected
poststimulus dynamics we vary the delgy, between the with «;=0.
two stimuli (see Fig. 1, while the stimuliS; andS, are kept Also for greater delays, such &g, close to 3.5, 4.5T,
fixed and are given by Eq20). tg is varied between 0 and 5.5T etc., the CT response clustering occurs. Though less
3T, whereT=2m/w is the mean period of the oscillators. pronounced, the CT response clustering can even be ob-
For tge close to 0.9, 1.5T, and 2.9, an antiphase reset is served for values of the delay uptg=9.5T (not shown, in
achieved, which leads to a CT response clustering with itgrder to avoid a packed figure
typical signature described in the preceding sectioft’ Figure 5 demonstrates the differences between the two
from Eq. (8) quickly relaxes to zergFigs. §b) and §h)],  sorts of locking indices, one being designed for detecting
Whereas)\fz) reincreasegFig. 5e)], so that also the an- specific features, like one peak or two antiphase peaks, of the
tiphase CT clustering index; of both oscillators from Eq. CT distributiongEgs.(8)—(11)], the other being based on the
(10) reincreases and displays a distinct transient lasting oveBhannon entropyEgs. (12) and (13)]. Remarkably, the Sh-

VI. IMPACT OF THE DELAY BETWEEN
THE TWO STIMULI
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FIG. 5. (Color) The delayt 4 between the stimuls, (1) =1 cosyy andS,(,) =1 cosy, from Fig. 4 is varied between 0 and 3where
T=2w/w is the mean period of the oscillatofsompare Fig. L Except forty, all other parameters are as in Fig. 4. Ons¢t=0) and
offset(indicated by vertical green linef oscillator 1 are kept fixed, whereas onfeft sloping blue ling¢ and offsef(right sloping blue ling
of oscillator 2 are shifted according tg,. CT averaged signals from Et@1) and locking indices from Eq$8)—(13), x; in (a), AP in (b),
ay in (©), py in (@, AP in (e), o in (), x5 in (@), \§Y in (h), az in (i), ez in (), 8400 (K), andpy 1 in (). A is very similar ton{?).

annon based indiceg; [Figs. 9d) and §j)] from Eq. (12 average of signak; from Eq.(3) of the jth phase oscillator,
behave very similar to\l(l) [Figs. 5b) and 5h)] from Eq.  we use the stimulus onset as trigger. With this, theross-
(8). In particular,u; does not detect antiphase peaks of thetrial averaged signabf the jth oscillator reads
CT distribution {¢(t+ 7 ) }k=1,...; IN @ SL(Jzﬁ;icient way: 1
There is no re-increase gf; as observed fox;~’ [Figs. T':(d) Xj(t)= "= > Xj(Ti+t). (22)
and §e)]. Consequentlyu; does not capture the antiphase =]
response clustering. Likewise, the Shannon entropy based ) ) ) o
index p, 1 [Fig. 5(1)] from Eq. (13) does not detect the an- The assumption behind the trlggered averaging is that a re-
tiphase branching ap, ;s trajectories. In contrast, the latter SPONSex; can be decomposed into a stereotypical evoked
does not escape detection when the indioéjﬁ and &, responsee; y\{hlch foIIovys the_st|mulus with a constant de-
[Figs. 5f) and 5k)] Egs.(9) and (11) are used. lay, and additive Gaussian noige, so that

In summary, indicegu; andplvli,.which are baseq on the Xj(mt ) =€) + & (m+t) (22)
Shannon entropy, are not sensitive enough to pick up the
antiphase CT response clustering and the CT antiphasglds[14,15. In such a case averaging improves the signal-

branching ofe, ;. to-noise ratio byyl, where the number of responsetypi-
cally equals 20—-300, and(t)—e;(t) for | —o [14,15.
VIl. COMPARISON WITH THE STANDARD Obviously, the assumption from E@2) is violated by
CROSS-TRIAL ANALYSIS the stochastic model given by E@), because the oscillators

In this section we apply univariate and bivariate standard€'form an ongoing oscillation, the stimulation effect de-

cross-trial analysis techniques to the simulations shown iif€Nds on the phase of the oscillator, and the model's noise is
Figs. 4 and 5. not simply added to the signaf;, but is inherent in the

dynamics. Anyhow, the simple model defined by Eiy)
shares basic features with stimulated brain activity.

(i) Ongoing oscillations abound in the brdi?Q].

The gold standard in neuroscience and medicine for ex- (i) Evoked responses result from reorganizing part of
tracting stimulus-locked responses of an oscillator is CT avthese ongoing oscillations, especially by resetting their phase
eraging relative to stimulus onsgt4,15. To compute a CT dynamics[21,22. For example, auditory stimuli cause an

A. Cross-trial averaging
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(a) 1 averaged signals of those trials whegse; runs through the
- ‘ 1HES ‘ ‘ ‘ N upper and the lower branch by andx?, respectively:
\& W\/\/\I 1
b ER— o 1 2 3 4 5 — 1 -5 1
®) X =7 2 x(nctt), =7 2 x(nctb),
.?v—i1 AF T T T T J I kKeU ! ! | kel !
B VAN (23
B, 1A A
(©) -2 -1 0 1 2 3 4 5 . .
’ ‘ where U and L denote the subsets of trials for which

¢14(to+ 7¢) is in the upper and lower brancheg; (to
+7)=<0.5 for ke U and ¢, 4(to+ 7)>0.5 for ke L. (Be-
d 2 i 0 1 2 3 4 5 cause of the graphics program used, in Fi@)4he y axis
1 ‘ T ‘ ‘ ‘ runs downwards, so that the values @f ; in the upper
5o WM%W)@W branch are smaller than those in the lower branch.
I 0: s 5 s 2 . At the end of the stimulations;’ and;Jb are in phase, but
within only four poststimulus cycles the phase relationship

betweenx? andx? turns from in phase into antiphafigs.

FIG. 6. Time course.of the CT ayeraggd respon_ge(a) and>.(_2 6(b) and &d)]. According to Eq(23), ;;i and;]b are normal-
(c) from Eq.(21) belonging to the simulation from Fig. @nd Fig. ized by a factor of 1/ so that;j“(t) +;Jb(t) =7j(t) for all

5 for t4e=T/2). According to Eq.(23) selectively averaged CT . . o .

— o —5 g timest. As a further consequence of this normalization, if the
responses;’ [(b) and(d), Fhwk I.'ne] andx; [.(b) and(d), thin line] majority of trajectories ofp, 1 run through only one of the
are computed for the trajectories @f ; running through the upper branches. the corres ond%'nl CT averaged sianal is large
and the lower branches of Fig(g}, respectively. ! po 9 verag 9 g¢,

whereas the other one is small. This is what we observe in
. our case: 67% of the trajectories gf; ; run through the
evoked electroencephalograpkiEG) response mainly by upper branch, and only 33% run through the lower branch.

changing the phasebut not the amplitudesof the Fourier rq eforex@ has a larger amplitude compared to thakpf
spectrum of the spontaneous, pre-stimulus neuronal oscilla- —

tory activity [21]. Hence, Whean’1 and?? are_in antiphase Elation, they do not
(iii ) Noise is inevitably inherent in neuronal actifg3]. ~ cancel each other out, buf dominatesx;, so that a low-

Therefore, also in neuroscience it is highly questionableamplitude oscillation persists. -

whether the averaging assumption is justified. Nevertheless, A phenomenological interpretation Bf's dynamics in the

averaging is typically used for noise reduction of biological spirit of the evoked response literatui®,14] would be as

signals, such as EE®5,14] and magnetoencephalography follows: Before stimulation the oscillators are not active

(MEG) signals[15,20, as well as local field potentialeFP)  (Fig. 6), the stimulus activates them, and their response

A {
"j:::

Time [arb. units]

[4]. _ _ quickly decays to a low-amplitude oscillatigfor ty close
The effect of the antiphase CT response clusteringpf to 0.5T, 1.5T, 2.5T, etc) or their response persists during a
and ¢, on the CT averaged responsesandx is signifi-  long epoch and relaxes only slowlglsg [Figs. 5a) and

cant. In the prestimulus regior; andx, vanish because of 5(@)]- But according to Eq(1), the oscillators are perma-
the randomized stimulus administratifffigs. §a) and &c)]. nently active with constant amplitude, irrespectivet f.

The stimuli reseip, and ¢,, and hence in the course of the [N summary, with CT averaging as defined by E2q), it
. . — — . is impossible to distinguish between a mean amplitude de-
stimulationx, andx, approach a constant valliEigs. 5a)

. . crease, of the single responses and a CT response de-
and g) and @) and &c)]. In case of an antiphase reset, € correlation which is, e.g., due to an antiphase CT response

for tge close to 0.5, 1.5T, and 2.9, after stimulationx;  cjystering. Consequently, the CT averaging may lead to se-
and x, display strongly damped oscillations. In contrast,vere artifacts.

without an antiphase reset the oscillationsxpfandx. relax

slowly [Figs. 5a) and 5g)]. The strong damping of the CT B. Cross-trial standard deviation

averaged respons§§ andfz is caused by the antiphase CT

response clustering. To see this, let us focus on the S'tuat'qgtors are stereotypical, we determine the standard deviation

for\/tyglzgrfolr?s?aotreeh%(\e/\t/atlr&e antihase CT response Clusterinacross trials at each timeelative to stimulus onset with the
b P Soss-trial standard deviationf the jth oscillator defined by

of ¢; is connected with the antiphase CT branchingeef’s
trajectories. The trajectories af, ; form an upper and a 1 .

lower branch[denoted byu and | in Fig. 4(g)]. The two oj(t)= =1 E [xj(q-k+t)—xj(t)]2, (24
branches are in antiphase position at tigre 1.0, wheno ") k=1

is locally minimal, Whereasr(f{ as well asé, ; are locally o

maximal. Let us average selectively over those respoxses with the CT averaged signa; from Eg. (21), and x;(t)
that belong to the two different branches. We denote the CTcog2m¢;(t)] according to Eqs(3) and (4) . We would

To estimate whether the poststimulus signals of the oscil-
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expectp;(t) to be small when the signalg(,+t) are per- (a) .
fectly stimulus locked at timé, and large when there is no o ——
stimulus locking. e

To demonstrate important features of the CT standard de- % 02 04 06 08 1
viation (and of another CT analysis belpwve introduce ®)
noise-free, idealized responses. The latter are not generated O o ]
by the model given by Eq(1), but are simply defined in Ll 1ﬂ -------------- T l Sl
order to serve as test data. Consider an ensemble of re- © 0 02 04 06 08 1
sponses of both oscillators defined by ! ' ] R N .

Qv—tj 05 : : VV\/V\lvvvvv
dq(t+ Tk):[t‘f'sfl’k] mod 1, (25 @ [ = R 5 s y 5
¢o(t+1)=[t+Adp+eé&] mod 1, (26) & ; I UMN\{\/V””

for k=1, ..., whereA¢ is the constant mean phase dif- E I 0 1 2 8 4 5
ference between the responses of the two oscillators, and Time [arb. units]

{gj,k}[(zl is constant and normally distributed with variance
1 for j=1,2. We modify the variance of the normal distribu-
tions of the responses by varyirg Both synthetic oscilla- sponses defined by Eqs(25 and (26, dy(t+n)—[t

torshhave %n |den:1|calcf:r1t_equen(cjy e(xjndda per‘_l’odl.fN%te, fohr +eép,Imodl andg,(t+n) =[t+Ad+eéy,] with Ad=0.5 (k
each oscillator the standar eviation of the phases 1,...]). The time interval 0,1] equals one period of the syn-

¢;(t+ 7 of all responsefkfl, -+ | Is constant in time. et responsegé; WJi_1 is constant in time and normally distrib-
Furthermore, the phase differenee, ,(t+7) of all re- teq with unit variance fof=1,2. The variance of the responses is
sponsek=1, ... | is constant in time. Hence, quantities modified by varyinge: &=0.01 (solid line), £=0.4 (dashed ling
measuring the extent of the stimulus locking of the responsegnd =1 (dotted ling, so that the overall variance @f{gjyk}:(:l
of each single oscillator as well as their interdependencgeads 0.0001solid line), 0.16(dashed ling and 1(dotted ling. For
have to be constant, too. £=0, C always equals-1, except for the times when the signals
This requirement, however, is violated by the CT standard; =cos(2r¢;) vanish. A constant scattering of the phases-0)
deviationg; defined by Eq(24) [Fig. 7(a)]. Only for nearly =~ makesC smoother, so that oscillations with twice the oscillators’
vanishing variance of the responses, i.e.,falose to 0,0 frequency occur—although the phase differepge, of all pairs of
is (nearly constant in time, whereas for larger valuesegf  responses is constam; is very similar tog;. (c) and(d) ¢, andC
we observe an “artificial” oscillation o@; with a period of ~ are computed for the signals from Fig(shme format as in Fig.)4
T/2, whereT is the period of the synthetic oscillators. This Again, @z is very similar tog;.
oscillation occurs for all values af ¢ from Eq. (26). ) i . )
Accordingly, when we calculate; for the simulated data is the.cross-tnal' cross correl_atlometvye'e.rul _andxz at tlme'
from Fig. 4, we also observe an artificial oscillatipfig. t, which (to avoid a smgular!t)/by d_ef|n|t|on.|s set to zero if
7(0)]: Directly after the stimulationg; is close to zero, all responses ok, or x; vanish at timet. C is normalized:
which, of course, makes sense, since it reflects the reset. Bat1=C(t)<1 for all timest. C(t)=1 or —1 if x;(t+ 7

FIG. 7. The CT standard deviatign, from Eq.(24) (a) and CT
cross-correlatiorC from Eq. (27) (b) for synthetic antiphase re-

the poststimulus increase f is modulated by the artificial — C%(t+7) with constantc>0 or <0 for all k
oscillation already observed in the synthetic ddiay. 7(a)]. =1...1 _ o
In summary, the CT standard deviation from E2¢) can- The CT cross correlation of the synthetic stimulus-locked

not be considered as a reliable measure for stimulus lockinggSPonses from Eq$25) and (26) artificially oscillates with
of the responses of a single oscillator, since it produces artiNcreasing time, i.e., with increasing phases; although the
ficial oscillations that are not related to stimulus locked dy-Phase differencep,  remains constantFig. 7(b)]. These
namics. oscillations occur for all values of the phase differercé
[16,17.
Correspondingly, artificial oscillations are also observed
when the CT cross correlation is applied to the simulated
Let us recall what happens if we detect linear correlationslata from Fig. 4. Prior to stimulation the oscillators are syn-
between the two oscillators across trials by applying thechronized with phases that are not stimulus locked due to the
cross correlation across trials to the signals of the oscillatorsandomized stimulus administration according to Ej. C
at each time relative to stimulus ons¢tl6,17): is nearly constantly close to [IFig. 7(d)]. The stimulus
| causes an antiphase reset, so @& set close to- 1. While
the stimulus-locked poststimulus responses resynchro@ize,
2 it T Xa(t+ 7y) oscillates with twice the oscillators’ eigenfrequen@s in

C(t)= ! 27 Fig. 7(b)]. Correspondingly, the CT cross correlation defined

' ' by Eg. (27) is not an appropriate measure for stimulus-
{E Xi(H ) { E xg(t+ ) locked synchronization and desynchronization.
k=1 k=1 Also, a modification of Eq(27) performed to avoid sin-

C. Cross-trial cross correlation
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gular behavior in case all responsexgbr x, vanish at time
t does not help to get rid of the oscillatory artifactsciss-
trial sign cross correlation was introduced byT'(t)
=173, _,sgi X, (t+ ) Xo(t+ 7)1, where sgng)=—1, 0
or 1 if a<0,=0 or >0 [16,17]. Although different by defi-
nition, the CT cross correlation from EQ7) and the CT
sign cross correlatiod’(t) are very similar, at least when
applied to signals stemming from phase oscillators. They do
not only depend on the phase differengg,,, but inevitably
also on the oscillators’ absolute phasgs Thus, both mea-
sures lead to severe artifacts.

VIll. STOCHASTIC RESONANCE OF CT
RESPONSE CLUSTERING

In Sec. IV we already discussed the dynamics of the phase Time [arb. units]
difference ¢, ; in the absence of noiseD(=0). Depending (e) ® 2o
on whether the stimulus places the partigle., ¢, ;) to the 03 E i g
right or to the left of the maximum of the potentislfrom EH 02 l:/ 05
Eq. (18) located ing7'y", the particle moves into the right or 01 RS
left minimum of V (Fig. 3). For ¢; 1= ¢1'7 @ minimal per- 0 :_Ei o
turbation (even numerical noigeis sufficient to makep; ; g 10)5 ! ~ 0 ;; !

relax to one of the minima oY¥. This is the case, e.g., for
nondetuned oscillatorsy=0) subject to a perfect antiphase  FIG. 8. For the model studied in Fig. 4 the noise amplitDdis
reset(Fig. 3, thick ling. The situation is different if an an- varied between 0 and 1. The number of stimuli re4ds400,
tiphase reset is performed in detuned oscillatorg Q, Fig.  whereas all other parameters are as in Fig. 4. The time courses of
3, thin line). Since for positivey an antiphase reset places the CT averaged signa; (a) from Eq. (21) and of the locking
@11 to the right of o1'3", the particle will always reach the indicese; (b), ot} (0), and 8, (d), from Egs.(10), (9), and(11)
right minimum of v, and there will be no CT branching of are displayed. Stochastic resonance is shown &t (e) from Eq.
the trajectories ofpy ; . (28). The ratiosr (tg) (thin line) andr (t (thick line) from Eq.

To study the influence of the noise amplitude on the ex<29) are plotted inf), wheret is the end of the stimulation, i.e., the
tent of symmetric antiphase response clustering in detuneeffset of the second stimulus, atgl, is the time at which the CT
oscillators, we use théndex of maximal poststimulus an- response clusterin@nd thuss, ;) is maximal, i.e., the poststimulus

max

tiphase CT clusteringf the jth oscillator time wheno{ is minimal.x,, a,, andej™ are similar tox,, a;,

and &7, respectively.

a"=max a;(t);t e Jtg, tp] } (28
We turn to the oscillators shown in Fig. 4. Their detuning

with «; from Eq.(10). tg denotes the end of the stimulation, ¥ equals 0.04, and the delay between the first and second
i.e., the offset of the second stimul(see Fig. 1 Further-  stimulus obeydy,=0.5T. Model equation(1) is now inte-
more, to distinguish between the effects of noise during angrated numerically with noise amplitud® varying between
after stimulation, we determine the fraction of trials with 0 0 and 1(Fig. 8. For D=0 the CT averaged respong.?
<¢11<0.5 at timet with relaxes only very slowly[Fig. 8@a)], and no CT response

clustering occur§Fig. 8b)]. With increasingD we observe a

much quicker relaxation af; [Fig. 8@], and the antiphase
response clustering is reflected by an epoch with positive
(29  antiphase CT clustering index;, which is particularly
strong for values oD, around 0.4Fig. 8b)].
where the total number of trials equdlsNote, according to Stochastic resonance of symmetric cross-trial antiphase
Eq. (5 ¢, is a cyclic variable fulfilling Gs¢, ;<1 at all  response clustering is demonstrated by plotting the index of
timest. r(t) is evaluated at two different times: at tintg maximal poststimulus antiphase CT clusterjyi@axfrom Eqg.
and at timet,,5,, the time at which the maximal CT branch- (28) over D [Fig. 8€)]. Without noise, there is no response
ing of ¢, y's trajectories occurs. In other words,., is the  clustering. For intermediate values of the noise amplitudle (
poststimulus time when(l}l) from Eq.(9) is minimal. Analo-  around 0.2 the response clustering is the strongest, whereas
gously, we could also defing,,, as the poststimulus time with further increase irD the extent of response clustering
when &, ; from Eg. (11) is maximal(see Sec. ¥ More or  decreases again. A noise dependence of this kind is a hall-
fewer trajectories run through the upper branch than througmark of stochastic resonanf26].
the lower branch in Fig. @) (where 0< ¢4 1<<0.5), provided r(t), i.e., the fraction of trials with & ¢, ;<<0.5 at timet
I (tmay>0.5 orr(t,h,0<0.5, respectively. defined by Eq.(29), enables us to distinguish between the

= [number of trials with  6< ¢, 4(t+ 7)<0.5]
ry= (total number of trials
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effect of noise during stimulation and the effect after stimu-
lation. Without noise, the stimulus always places the particle
to the left of 0.5:r(tg)=1 [Fig. 8f)]. Moreover, without
noise, the particle always relaxes into the left minimunyof

I (tmay =21. Thus, the stimulus always places the particle even
to the left of the maximum of the potentigl which for the
detuned oscillators«=0.04) is slightly shifted to the left:
©7'7=0.4980 (compare Fig. B The stimulation does not
cause a perfect antiphase reset with(tg) =0.5, but a reset
with a tendency towards values @f; 1(tg) <0.5, because
both oscillators are coupled. During the period of time when
only oscillator 2 is stimulated, i.e., between the offset of the
first stimulus and the offset of the second stimulBgy. 1),
oscillator 1 adapts its phase to the phase of the stimulated

oscillator 2.  — 4 s g 10
In the presence of noise, the CT response clustering oc- Time [arb. units]
curs because of two effects of the random forces. (&) os ) 7% 4
Effect of noise in the course of the stimulatidiithout 06 g
noise the same stimulus applied to the oscillators in the same EH 04 1:/ 05
dynamical state always moves the particle to the same place 02 =
in potential V. In contrast, as a consequence of the random 0 S
forces the trajectory of, ; is no longer predictable. Apply- 0 2 4 = % 2 4
ing the same stimulus to the same dynamical state several K K

times, leads to a noise-induced scatteringpf(tg). Hence, FIG. 9. For the model studied in Fig. 4 the coupling strergth

r(tg) decreases with increasing nojgég. 8f)]. is varied between 0 and 4. The noise amplitude re@ds0.04,
Effect of noise after the stimulatioAs already discussed \yhereas all other parameters are as in Fig. 4. The time courses of

in Sec. IV, for sufficiently large noise amplitude the particlethe CT averaged signal; (a) from Eq. (21) and of the locking
may relax into the right potential well, although it started Ieﬂindicesal (b), o2} (), and &, , (d), from Egs.(10), (9), and (11)
from_gof"f‘and vice versa. Accordingly, with increasiBigthe 4 piotted. Coupling-mediated resonance is demonstrated with
fraction r (tn,,) decreases even quicker comparedr(6:) 4™ (e) from Eq.(28). The ratios (tg) (thin line) andr (tyay) (thick
[Fig. 8&(f)]. line) from Eq. (29) are plotted in(f), wheret is the end of the
However, with further increasing noise the CT responseastimulation, i.e., the offset of the second pulse, &pg is the time

clustering finally fades away, so that the strongest CT reat which the CT response clustering is maximal, a,, and al™

sponse clustering is observed for intermediate noise amplis.e similar toxy, @y, andaM™, respectively.
tude[Fig. 8e)].

response clustering as assessed waitff* from Eq. (28)
IX. COUPLING-MEDIATED RESONANCE OF CT equals zero foK=0 and is negative foK>2 (tested forK

max

RESPONSE CLUSTERING up to 20). In betweeng; " is maximal aroundk=0.5,

) o _ where it reaches values around 0.7. Accordingly, we observe
This section is devoted to the role of the couplings. Ong (istinct resonance behavior.

one hand, without coupling{(=0) the potentiaV from Eq. A similar resonance behavior is observed for a range of
(18) (Fig. 3) is simply a line with a zero slopgor vanishing  yalues of the noise amplitude. Using, e.g., the fixed noise
detuningy) or a nonzero slopéor y+0). Hence, without  amplitude D=0.2, a value related to maximal stochastic

coupling no CT branching af, ;'s trajectories can occur. On  resonancéFig. 8), the range of coupling-mediated resonance

the other hand, in the preceding section we have seen, thg{creases towards larger values of the coupling strength, so
when the coupling strengtk is much greater than the noise {5t o™ falls below zero only folk >3.5.

amplitude, an antiphase reset can no longer be achieved by e fractionr(t) of trials with 0<¢,,<0.5 at timet

delivering two stimuli with a delay ofg=0.5. _defined by Eq(29) tells us more about the interplay of cou-
Aggm, we consider the oscillators shown in Fig. 4.. Thelrp"ng and noise. As in the preceding sectiolis evaluated at
detuningy equals 0.04, and the delay between the first andhe end of the stimulatior(at t=tg) and when the CT

second stimul_us read§e|= 0._5T. Modgl equation(1) is now branching ofe, ;'s trajectories is maximalat t=t,,), i.e.,
solved numerically with noise amplitude=0.04 and cou- \yhen the poststimulus:m stimulus locking index{1) from
pling strengthK varying between 0 and &ig. 9. ForK g4 (9) is minimal [Fig. 9(c)]. Alternatively, we could also
=0, the CT averaged responsgrelaxes only very slowly identify t=t,,,, by detecting the maximum of the poststimu-
[Fig. Aa)], and no CT response clustering is obser{d.  |us antiphase CT clustering index of then phase difference
9b)]. W@ increasingK we observe a much quicker relax- 8,1 from Eq. (11) [Fig. A(d)].

ation of x; [Fig. 9@], and a transient epoch with strong  With increasingk, more and more trajectories ¢f, ; are
antiphase CT response clustering ocdig. 9b)]. The CT  captured in the intervdl0,0.5 at the end of the stimulation,
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at timetg [Fig. 9(f)]. During the poststimulus transient, noise first Fourier mode,)\fl) and o{).: They only capture a
counteracts this effect by making, ; diffuse in double-well ~ simple reset, but not the switching dynamics, i.e., the an-
potentialV from Eq.(18). Thereforef (t,.)<r(te) for inter-  tiphase CT response clustering and the antiphase CT branch-
mediate coupling strengtliFig. 3. Note, due to the detuning ing of the trajectories ofp, ; (Fig. 5, Sec. VI. A quantity
v=0.04, the potential has a small negative mean slopegomparable to\}”, based on a wavelet transformation and
which facilitates the escape af; ; into the right potential denoted as “phase-locking factor,” has been used to study
well. However, during the period of time when only oscilla- phase resetting in EEG signals obtained from sensory stimu-
tor 2 is stimulated(between the offset of the first and the lation experiment$29,22). Our results clearly show that it is
offset of the second stimulysoscillator 1 follows oscillator  not sufficient to exclusively comput)ej(l) (Fig. 5, Sec. V.

2 the quicker the largeK. Correspondingly, with increasing Rather it is crucial to use higher-order indica$; ando{),

K finally practically all trajectories are captured in the left with »>1 [Egs.(8) and(9)], and related quantiti§€qs.(10)
potential well, so that(tg) gets close to IFig. Af)]. Fur-  and(11)], in order to cope with complex responses.
thermore, with increase in coupling strendththe wells of Response decorrelation due to transient CT antiphase re-
potential V get deeper and deeper, so that findfiyr fixed  sponse clustering is robust with respect to modifications of
noise amplitudgthe escape rate af, ; tends to zero. Ac- model equatior(1) and variations of its parameters.

cordingly, alsor (tya,) approaches [IFig. A(f)]. For values of (i) The transient dynamical phenomena studied here are
K greater thar(approximately 2, ¢, ; is captured in the left not restricted to the stimuli defined by EQO). In general,
potential well and cannot escape. Therefore, the CT responsgimuli of first order(i.e., stimuli containing terms such as
clustering vanishes, and;" tends to zero. cosy; and sinyg;) may take the form

Si()=lcog i+ 61), Sy(ihp)=1cog i+ 6,)
X. DISCUSSION (30

In this paper, | have introduced a model that makes itwith constant phase shiftg; and 6,. In this case an an-
possible to study transient stimulus-locked phase dynamicsiphase reset is achieved and, thus, a CT response clustering
synchronization, and desynchronization of two coupledoccurs for
phase oscillators, which are stimulated at different times.
Moreover, appropriate data analysis tools have been pre-
sented which enable to detect these transient dynamical pro-
cesses in simulated as well as experimental ¢aee. lI).

These different data analysis tools have been compared {Qherek is a small integer. For example, feh, =0 and 6,
standard data analysis techniques applied in a cross-trial ,+ \we observe a CT response clusteringtfg=0, T, 2T,
manner(Sec. V). CT cross correlation from Eq27) and 3T, etc., with T=27/w. Of course, also for the stimuli
CT standard deviation from E¢R4) inevitably lead to severe given by Eq.(30) the coupling strength must not be too large
artifacts, because they cause artificial oscillations that are n@fitn respect to the noise amplitude. Otherwise, a CT re-
related to any real feature of the transient processes undgponse clustering cannot occur as explained in Sec. IX. Ef-
consideratior(Fig. 7). CT averaging from E(21), the gold  fects of stimuli of higher order will be presented in a forth-
standard in evoked response studiésl4,19, may lead to  coming study.
massive misinterpretations since it cannot distinguish be- (ji) The CT response clustering is not limited to in-phase
tween transient response clustering and an overall decreaggypling. This can easily be shown by applying the transfor-
of the amplitude of the single respond@sg. 6). In particu-  mation y;—;+c; with constantc;. Effects caused by
lar, the switching between qualitatively different responsespigher-order coupling terms, such as sigj2or cos(2),
driven by intrinsic noise, escapes detection when the stang| aiso be the subject of a forthcoming paper.
dard analysis tools are applied. _ (iii) The CT response clustering also occurs in case of

Two types of indices for analyzing stimulus-locked dy- agsymmetric stimulation intensities. What matters is that a
namics have been proposed and compared to each other. Ogifnulus is able to reset its oscillator during delivery. For
sort of indices detects specific features of the CT distribups, its intensity has to be large enough compared to cou-
tions, e.g., one peak or two antiphase pedas.(8)~(1)]:  pjing strength and noise amplitude. Using weak stimuli, we
MM and 0'51"’2“ correspond to the modulus of theh Fourier  haye to be aware of the fact that in such a case the impact of
mode of the CT distributions from Eq7). In contrast, the  stimulation typically depends on the initial phafs]. To
other sort of indices is based on the Shannon entropy, angbpe with this, we may extend the data analysis from Sec. Il
analyzes the CT distributions from E() in a more general py performing it selectively for different ranges of the initial
way by comparing them with a uniform distributidiEgs. phases.

(12) and(13)]. (iv) The duration of both stimuli does not need to be

It turns out, that the indices based on the Shannon entropgentical (cf. Fig. 1). For stimuli of different lengths the rel-
are not sensitive enough to detect the switching betweeByant parametdr,, from Eq.(31) is the pause between their
qualitatively different responséSec. V). In this respect, the offsets, and not the pause between their onsets.

Shannon entropy based indices are comparable to the CT (v) An important aspect is the directionality of the cou-
averaged signa{; from Eq.(21) and the indices based on the plings. In the present model, the coupling is symmetric ac-

0,— 0
tye= (% +0.5+ k) T, (31
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cording to Eq.(1). Modifying model equatioril) by includ- . N
ing asymmetric coupling(; yields V=w;— > Kijr sin(e;— ;) + X(0) §i(¢y) + Fj(1),
j’=1

(33

= 0j =Ky sin(hj— i) + X () S;(¢hy) +Fi(1), (32 where, similar to Eq(1), o; is the eigenfrequency of theh
oscillator,Kj; is the coupling constant between tjtb and
the j"th oscillator, and5;(#;) models the stimulus acting on
wherej, k= 1,2 andj #k. A weak asymmetry of the coupling the jth oscillator. The timing of the stimuli is given b; .
has no dramatic impact on the CT response clustering. HowSimilar to Fig. 1, we assume that the delays between the
ever, a strong asymmetry of the couplings is relevant, bepulses affecting the different oscillators are constant across
cause, e.g., during the period of time when only oscillator 2rials, respectively. The random forcés are the Gaussian
is stimulatedbetween the offset of the first stimulus and thewhite noise, where (Fj(t)>=0 and (Fj(t) Fj,("f)>
offset of the second stimulus, see Fig.okcillator 1 follows =D5”,5(t—~t) with constant noise amplitud®. We can
oscillator 2, the quicker the stronger oscillator 1 is coupled tstydy a stimulus-locked transient dynamics in different ways.
oscillator 2. Asymmetries of the coupling can be revealed by (i) Univariate analysis with the indices from Ed8) and
asymmetries of the timing of the stimuli: Depending on (10): We may determinaf”) from Eq. (8) and ; from Eq.
whether oscillator 1 or oscillator 2 is stimulated first, the(lo) for each individual oscillator j=1, ... N). On the
responses are qualitatively different. This effect can even bgier hand, it may be advantageous to study transient dy-
used to detect the coupling direction and will be the subjechamics on a more macroscopic, collective level of descrip-
of a forthcoming communication. tion, especially in order to estimate the impact of stimulation

~ Letus compare the simultaneous stimulatio,&0) Us- o synchronization processes. For this, we introduce the
ing antiphase stimuli from Eq19) with the stimulation us-  ster variables

ing identical stimuli from Eq.(20) with a delay of half a \

mean periodr (tye=0.5T). Comparing the results from Sec. - 1 .

VIIl with a previous study on the simultaneous stimulation Z,(t) =Ry(1)e')= N 2 el @, (34)

[17], it turns out that in both cases a stochastic resonance =t

occurs in a similar way. However, the two types of stimula-whereR(t) and®,(t) are the corresponding real amplitude
tion differ significantly concerning the effects of varying and real phase, wheretR,(t)<1 for all timest [5,18,25.
coupling strengtiicompare Fig. 9 with Fig. 5 in Refl17]).  Cluster variables are convenient for characterizing synchro-
In case of the simultaneous stimulation with antiphasenized states of different type: Perfect in-phase synchroniza-
stimuli for vanishing coupling K=0) the amplitude ofx; tion corresponds t&; =1, whereas an incoherent state, with

from Eq. (21) slowly relaxes, and; runs through several uniformly distributed phases, is associated wi=0 (k
cycles. Sufficiently strong couplingt>0 gives rise to a =1.2,3...).R;=0 combined with largé, is indicative of
strong CT antiphase response clustering, which is related t@ k-cluster state consisting d&f distinct and equally spaced

stronalv damped oscillatory CT averaged sianals For clusters, wherg within each_ cluster all oscillators have ;imilar
strong )(/enougﬁ coupling thg antiphase ?espongseﬂjlclustering phase. Note, in the sums in Eq83) and (34) the index;’
occurs so rapidly, such that the CT averaged sigratsven runs over allN oscillators. . .

vanish (Fig. 5 in Ref. [17]). With increasing coupling .S|m|lar to Eq. @ we determine the time-dependent
strength the extent of CT response clustering continuouslytimulus-locking indicesf © by

increases. In contrast, in the case of the stimulation with 1

identical stimuli delivered with a delay ofe=0.5T, the CT (1) = T > exdivO( T +0]]. (35
response clustering vanishes when the coupling strength gets ji'=1

too large(Fig. 9). Strong enough coupling prevents from an . . o
antiphase reset and, thus, from a stochastic switching pe-Et Us assume that before stimulation the cluster is in-phase

tween different response€Sec. 1%, so that a coupling- synchronized and acts like one giant oscillatB; ¥ 0). By
mediated resonance occurs. determining\ (), we can determine whether a stimulus re-

A further important difference between the simultaneoussets the cluster. In this case, the stimulus causes a transient
stimulation ¢4=0) and the time delayed stimulationy(, increase of\{" [see Fig. 40)]. Whether the extent of syn-
=0.5T) is that the former typically causes the symmetric CTchronization within the cluster increases or decreases during
response clusterinfl6,17), whereas the latter is typically this reset can be assessed by evaluating the cross-trial aver-
associated with the asymmetric CT response clustéfiigy ~ age ofR; from Eq. (34) defined by
6). The asymmetry is due to the influence of the couplings |
during periods of asymmetric stimulation, i.e., stimulation of ﬁl(t)= E E Ry(7:+1) (36)
only one of the oscillatorgSecs. VII A and IX. | = :

To study transient stimulus-locked dynamics in a cluster
of many coupled oscillators, we can generalize the datésee Eq(21)]: A stimulus-locked increase or decrease of the
analysis presented in Sec. Il in the following way. For illus- Synchronization of the cluster as a whole corresponds to a
tration, let us consider a cluster Bfoscillators given by stimulus-locked increase or decrease Rf. In general,
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stimulus-locked transients oflacluster state can be studied tory population of neurongas discussed in Sec. VIDA
by means om(k”) and the CT averagB,. Note, in the sums Stimulation at different times is relevant for several reasons.

in Eqs.(35) and(36) the indexj’ runs over alll trials. (i) In the nervous system, sensory information is typically

I S L transmitted via parallel pathways having different conduction
('_') Bivariate a?alyr/]asdwnh th? |qd|ces gr%”; Eqs) and times[30]. In this context, model equatidd) stands for two
(11): We may apply the data analysis method from Sec. Ill t0jyterconnected brain areas that generate oscillatory activity

all possible pairs j(j’) of oscillators, where j,j’  and have sensory inputs arriving at different times, compa-
=1,... N. Especially for largeN, it might be more appro- rable, e.g., to area V1 and area V5 of the visual system.
priate to study the transient interactions on a collective level (ii) In a number of neurological diseases, for example, in
of description as described above. Furthermore, dependingultiple sclerosis conduction times may increase signifi-
on the particular application we may study the interactioncantly and impair brain function.
between different subpopulations or between the whole (iii) Varying the delaytqe and administering two qualita-
population and a particular oscillator with the bivariate tech-tively different sensory stimuli or delivering electrical
nigue from Sec. lll. For example, for the study of the inter- st|mu!| at dlffe_rent sites may serve as a k_ey approach_for
action between the whole population and a particular oscilStUdYing the interactions of different brain areas during
S . i short-term information processing.
lator j, similar to Eq.(9), we would introduce the:m phase

: : . ) Obviously, in a next step time delays of the couplin
difference between thgth oscillator and thécth cluster vari-  ormgs have):o be incorporatgd into the r%odel t00. Ping

able according tgny;(t) —mO,(t)]/(27) mod 1[see Eq. CT averaging as defined by E61) cannot distinguish
(5)]. For thisn:m phase difference we would then calculate between an overall amplitude decrease of the single re-
the n:m stimulus-locking indices defined by E¢). In this  sponses and an antiphase CT response clustering. Utilizing
way, it is possible to detect a stimulus-locked increase othe typical, phenomenological reasoning applied to interpret
decrease of the synchronization between ftie oscillator ~ averaged responsg,14], the exclusive consideration of the
and thekth cluster variable. averaged signak; from Eg. (21) may give the impression
The data analysis presented in Sec. Ill can be applied tihat the response of a brain area is diministiéd. 6). This
experimental data. For discrete signals such as timing sdypically leads to diverse speculations concerning a reduced
quences of spiking neurons the phase can be estimated wi etabolism of this particular area or an inhibition imposed

linear interpolation. In an application to continuous experi- y other, hyperactive areas. However, behind such a puta-

. . tively weak response, the stochastic phase resetting analysis
mental data also, the amplitudes of the oscillators have to bgs . . Il may reveal a coordinate switching between quali-

investigated. To this end, a relevant oscillatory sign@t),  ¢atively different, strong, and long-lasting responses.

e.g., a pgrtlcular brain 'rhyt'hm, is extracted out of a measured Tpe approach presented here may identify how responses
signal with bandpass filtering. Instantaneous phage) and  of 3 single brain area crucially depend on the interactions of
instantaneous amplitudk (t) of x;(t) can be determined by this particular area with other areas. In particular, the sto-
means of the Hilbert transforng(t) of x;(t) according to chastic phase resetting analysis may enable us to detect how
X; (1) + (1) = A (t) exeligy ()] [27]. The Hilbert transform is ~ brain areas may switch between different, coordinated re-
realized with a filter causing a phase shift o2 for all ~ SPONSes to a given stimulus. Neural populations may adapt
frequencies. Alternatively, one can use the wavelet approacii€ Strength of their interactions to the amount of intrinsic
to determine the phages]. The amplitudes\; of the oscil- noise, m_order to achieve an effective switching by means of
lators can then be averaged across trials as done i(2&y. stochastic rgsonanc{@ec. V”.I)' . .

with the signals. In this way, however, qualitatively different In the spmal cord the swnchmg_betvx(een coordinated re-
transients of the amplitudes cannot be extracted. Thus, tgPONses of different neural populations is a well-known phe-

detect a CT clustering of amplitude transients, in the spirit Of;omenog_ VIVh'(_:h IIS e_s?er;tla_ll for spinal motorti(r)]mt[l’ﬁ}]. ;
the stochastic phase resetting analy§sc. Il), similar to ' /oM & biological point of view, we can expect that elegan

Eq. (7) we can introduce CT distributions of the amplitudesco_mrm mechanisms which turn. out to be very effective in the
with {A;(t+7}_1 ., and evaluate them in a comparable spinal cord may also be used in parts of the nervous system

way as defined by Eq8) and (9) for the phases. This was that are—from the evolutionary stand.point.—your?ger, e.g., in
not necessary here, since the amplitude of the phase osciIIHle necic?r:tetxthrom a motr_e prggrr]r)aélcﬂﬁ)ow(]:t_lg)f view we m%y
tors is a constant. Note, when applied to experimental dat uspect that the assumption benin N averaging, Eg.

the time resolution of the stochastic data analysis method 2, acts as a self—fulfll_llng pr_ophecy: Laoking for the only
from Sec. Il is enormous, since it is only restricted by thestereotyped response in an inventory of responses without

sampling rate or, more precisely, by the time resolution 01using a self—consistency criterion produces artifacts, inevita-
the gregrocessing whicf? yieldsythey phageg., bandpass bly. The data analysis methods from Sec. Ill are already be-

filtering and the Hilbert transform ing applied to MEG/EEG signals and the cerebral current

Model equation(1) may be an appropriate minimal model source density.
in various fields of physics. In biophysics, neuroscience, and
medicine it may apply to simple neural nets consisting of
only a few neurons. In this case a single oscillator would This study was supported by the Volkswagen Foundation
model a single oscillatory neuron. In addition, a single oscil-(Grant No. 76761Land the German Israeli Foundati@@rant
lator may act as a simple macroscopic model for an oscillaNo. 1-667-81.1/2000
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