PHYSICAL REVIEW E 67, 051803 (2003
Conformational properties of bottle-brush polymers
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General and renormalized perturbation theories are used to study the conformational properties of a bottle-
brush molecule, composed of multiarmed polymer stars grafted regularly onto a flexible backbone. The end-
to-end distances of the backbone and of an arm of the middle star are calculated within the first order of
perturbation theory. For the high grafting densities of stars, the calculated expressions are generalized with the
help of the scaling arguments to give the equivalent power laws. According to these laws, the molecule may
adopt a sequence of three different conformatitar-rod-coi) as the length of the backbone grows.
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[. INTRODUCTION side chains, the numerical self-consistent field calculation
[17] as well as the simple variational approddid], provide
Cylindrical comb copolymer brushes, or bottle-brush mol-the two-dimensional exponent= 3/4 (characteristic of a cy-
ecules, have been attracting much experimefital8] and  lindrical conformation in the power law dependence be-
computationa[9—14] attention. Such molecules consist of a tween the size of a side chain and its length. This corre-
flexible backbone grafted densely with either flexible or rigidsponds to the physical situation where each side chain is
side chains. The high grafting density of side chains implieconfined to a narrow disk created by the neighboring chains
that the number of the backbone segmdntsonfined be- and can wander only in directions perpendicular to the back-
tween the adjacent points of grafting, is much smaller tharbone. Computer simulation®,10,14 show, however, that
the degree of polymerizatioN of a side chain. In the pres- the size of a side chain obeys the scaling law with the three-
ence of excluded volume interactions, the grafted chains trgdimensional exponent= 3/5 (characteristic of a star confor-
to avoid strong overlapping, which induces a significant in-mation, although some author§l1-13 report slightly
crease in the stiffness of the backbone. As a result, the bottléarger values ofv. This suggests that the side chains are
brush molecule can be found in three different conformafound at the crossover between their three-dimensional and
tional states depending on the backbone’s molecular weightjuasi-two-dimensional configurations. Therefore, in the
If the size of the backbone is much smaller than that of goresent work, we go beyond the self-consistent field analysis
side chain, the bottle-brush molecule effectively represents and study the complete conformational behavior of the comb
star, in which the number of arms is equal to the total numbecopolymer brushes.
of the grafted chains. As the length of the backbone grows, We consider a bottle-brush molecule with a fully flexible
but remains smaller than a certain crossover value, the shaackbone and side chains of the same chemical composition,
of the molecule changes gradually from a sphere into a stifplaced in a very good solvent so that the excluded volume
cylinder. The radius of such a cylinder is given by the size ofcorrelations are significant. The number of side chafps,
the grafted chains, while its length grows proportionally toattached to each point of branching is taken to be arbitrary,
the backbone’s molecular weight. Finally, when the size ofi.e., f=1. We treat such a system withienormalizedper-
the backbone is sufficiently large, the grafted chains are neurbation theory as discussed in RET9] (see Appendix A
longer a restriction on the backbone’s folding and it adopts dor a brief summary. In the following sections we construct
highly swollen coil-like conformation. We should note that a first-order perturbation theory for the end-to-end distance
such a rich conformational behavior can only be observed aéf the backbone and of a central side chain in the bottle-
high grafting densities of the side chains, i.e., wiegN. brush molecule. This perturbation theory is then renormal-
For L~N the backbone chain always remains flexible andized in order to remove the divergencies caused by the high
only slightly extended due to the excluded volume interac-degrees of polymerization of the linear chains. The calcu-
tions of the side chains. lated first-order corrections depend on the grafting density of
The cylindrical conformations of the bottle-brush mol- the side chains and parameteand remain small for the
ecules have been studied in detail within a self-consistengufficiently low values of these parameters. In this case, the
field approach[15-17. In this analysis, the backbone is first-order corrections give the correct estimates of the addi-
modeled as a semiflexible chain characterized by its persigional swelling of the linear chains comprising the molecule,
tence and contour lengths. The grafting of side chains inwhich is due to the mutual connectivity of these chains.
creases the original persistence length of the backbone, amtbwever, when parametetd/L andf are large, the calcu-
this increase can be determined by comparing the free enelated expressions diverge and cannot be used directly to es-
gies of the fully stretched and the slightly bent brushegimate the examined end-to-end distances. At this point, we
[15,16. With regard to the conformational properties of the employ the scaling arguments to transform the first-order
corrections into equivalent power laws.
A discussion of the resulting scaling relationships and
*Electronic address: nad28@cam.ac.uk crossovers between them is contained in Secs. llI D, 1V, and
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segmentdi,,k;} and{i,,k,} being separated by a distance
r. We will be concerned with the Fourier transform of

P(r{iy.ki}.{iz.ka}),
P(0,{i1,K1},{i2,Ko})

1
= Zf Dlrlexdia- (rgi, k=i, k,}) 1€XH—V).

(4)

The function P(q) is often used to calculate the mean-
squared distancB? between the labeled segments,

d
R?= —2d— P(0)|qo- ®)
FIG. 1. Schematic representation of a bottle-brush molecule 9q

studied in this paper. A specific choice ofii,,k;} and{i,,k,} defines the scale on

V. In addition, in Sec. V we present a scaling argument towhich the molecule is considered. In the two interesting
obtain the persistence length of a long bottle-brush molecul _aS_GE,{’\Iﬂlig,kf_Oé, {IE2=(|;),|<2; Ké}esaggt'#;;%k;: dog{’
and compare our result with other predictions of the sam 12=L( : ).kz=0}, Eq.(S) provi ! t !
quantity[15,20,21. or the_d|ame_ter and the extent of a bottle-pr_ush molecule. _As
” a starting point, we calculate these quantities by expanding
Egs.(4) and(5) to the first order in powers g8.. Each term
. DESCRIPTION OF THE MODEL in such an expansion can be depicted as a diagram and can

In this work a bottle-brush molecule is modeled by be calculated using the Feynman rules. We will first consider

stars, each containinyflexible chains of lengttN, grafted R to illustrate the method.
regularly with intervals oL segments onto a flexible back-

bone of lengthL(M —1) (see Fig. 1 Since we assume the Ill. GENERAL AND RENORMALIZED PERTURBATION
presence of excluded volume correlations, we apply the THEORIES FOR THE END-TO-END DISTANCE
model of a self-repelling Gaussian chain to describe each of OF A SIDE CHAIN

the linear chains comprising the molecidme backbone and
fM side chains The partition function of the entire mol-
ecule takes the form Let G(q) denote the path integral in E¢),

G(d,{i1,Ke}.{i2.Ka})

A. The Feynman rules

z- | pirlext—vir ) @

. - . :f Dlrlexdia- (ri, k)= i, k1) 1€XP(—=V).
where subscript labels polymer segments within the linear

chaink. In Eqg. (1) we denote (6)
L(M-1) drig fM dryig Then Eq.(4) can be rewritten in the form
p[r]= 11 2drei L 2\di2 2 : :
i=0 (477' ) k=1 1=0 (47T| ) P( { k } { k }) G(q,{|1,kl},{|2,k2}) (7)
L I L 1 I ’ = H . .
q b 202 G(Ol{llikl}l{|21k2})
and
If the perturbation series fd&(q) is known,
—-V)= 1—(4ml?)92 Pk T
exp=V)= 11 (1= (am1*)%%Bedlry, i)~ Tipy)] G(a)=Go(q) + BGa(q) + O(52), (®
1 tM-D) it can also be defined for the functid®(q),
X ex e i21 (rio—Ti-10)°
N Go(a) Gi(d) Go(q)G1(0) )
P(q)= + - +0
1 ™M N (q) Go(o) Be GO(O) GS(O) ) (Be)
- > 2 (ig—Tio1k)? ] (©))
== G1() (0)

G
=Po(Q) +Be( Gol0) Po(Q) G;(O)) +0(B2). (9)

Parameters and B, stand for the segment size and excluded

volume, respectively, wherealss the spatial dimension. We Here py(q) is the end point distribution of an ideal chain,
can now introduce the pair correlation function

P(r,{i1,kq.}.{i2,k,}), which describes the probability of two Po(q,n)=exp —q?l%n), (10)
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(a) (b) (c) note that a single interacting polymer chain has been studied
in detail elsewher§22—-24. D, takes account of the interac-
q tions with the backbone that causes some additional swelling
P 9 of the chaink;. The corresponding swelling factor depends
q " q-k on the lengths of both chains, as well as the position of the
~a gk| - side chain along the backbone, but always remains of order
q ~ 1. DiagramD5 presents the interactions of chaky with
Tk 0 other chains within the same star, and its value is propor-
tional to f—1. It does not depend on the parameter
=L/N that defines the grafting density of stars in the bottle-
(€) brush molecule. Finally, diagram, allows for the interac-
tions of a given side chain with chains belonging to other
q 0 stars and has a dominant value in the case of high grafting
____________ density (small «). In this limit, D, is proportional to the
ratio f/a (see below that plays an important role in the
scaling properties of a bottle-brush molecule.
n With this physical interpretation, we can express the end-
to-end distributionP(q) in the form

FIG. 2. Diagrammatic representations of the zero-ofdgn(a) o
and the first-ordeD; (b), D, (c), D5 (d), D4 (e) corrections to the P(d,{0Kq}.{N,k1}) =Po(d,N){1— B.N*TD4(Q)
end-to-end distribution of a side chain.
+D2(Q,a,m1,M)+D3(Q,f)

n being the chain length. Diagrammatic representations of +D4(Q,f,a,ml,M)]+O(,8§)},

functions Go(q.{0k;}.{N,ki}) and BeG1(q,{0Kky},{N,ks}) (11)
are shown in Fig. 2note that we do not include the diagrams
mer & depicied by a sold ine, wile broken ines connec{tTeTe MEW designation@ =g?1#N and =4~ are ntro-
the intera?:tin y ’ . ; .quced; parameten, denotes the star that contains chkijn
g segments. Every diagram contains specia

points of different types, namely, segmeni6k,} and

{N,k;} marked with crosses, as well as interacting segments,
points of branching and free ends marked with dots. A solidé{

kle[f(ml—l)+l,fml].

line connecting two special points is called a propagator, an he d_etalled expressions fb(q) are given in Appenc_hx B.
each diagram contains only those propagators that affect i SunctlonsDi(q) appear to change very sllghtly for dlffe_rent
value. The calculation is performed according to the genera\(alues ofm;, and we conclude that the physical properties of

Feynman rules constructed for systems of linear chains. Thall side chains are roughly the same. We will, therefore, con-

main peculiarity of the present system is the existence Otf:entrate our attention on a chain belonging to the central star,

- : L : ._~which is characterized byn;=(M +1)/2. The correspond-
branching points whose effect is identical to that of the in-. g expressions for the end-to-end distarRe of such a

teracting segments. Following the Feynman rules, we attacl}9 . ) ) ;
a certaig mogmentum variablegto each )p;ropagator line respec hain, o.btamed from Eq¢11) and(5), are also included in
ing momentum conservation throughout. Segmeiit&, } ppendix B.

and {N,k,} carry additional external momentpand —q,

while the external momenta of free ends equal zero. Each C. Renormalized perturbation theory

propagator of lengtm and momentunk produces a factor At this stage we apply the renormalization group tech-
of Po(k,n); a broken line yields an additional factor of niques, sketched in Appendix A, to transform the end-to-end
—(4ml?)¥?B,. To obtain the final value of a diagram we distanceR, of a central side chain into the strictexpansion.
need to integrate over all internal momente’k/(2m), e simply express EqB2) of Appendix B in terms of the
then sum over variable side chains and points of interactiofenormalized parameteltg, ng, u=u* and expand the re-

and finally multiply the result by an overall factor of syt to the first order in powers af. We get
Q/(4m1%)92, Q) being the system volume.

R?=2dIZng , (12

1+ E(R1+ R,+R3+R,)+0(&?)

B. General perturbation theory 8
Let us now look at the physical meaning of the diagramgNhere

shown in Fig. 2. The simplest diagraby, of Fig. 2(a) con-

tains no broken lines and stands for the ideal approximation

Po(q) to the end-to-end distributioR(q). In turn, all dia-

grams in Figs. &)—2(e) contain a single broken line and

represent different interactions of chaig. Thus, diagram

D, incorporates the interactions of chdip with itself; we

R;=INng—1, Ry=Ry|4—_4=h(X),

— 1
R3:R3|d_4:(f_1)( |n 2_ Z),
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_ 2f c—1 _ _ T
R4=R4|d=4=c_—1jo dzfV(M+1+2z)—¥(M+c+2) 1.0 h(X)
+W(c+z)—W(1+2)]+f(c—1) 0.8
X[W(M+2c—1)—W(M+c)
0.6 -
+W¥(c)—¥(2c—1
(€)= W(2c-1)] o0
and 0.4 1
| h,(X)
h(X)=2XIn| 1 ! X
( )= n +Y —m, 0.2 1
1 _ M-1 _ dInT(2) 0.0 , . , , , . X
C:1+;, MZT, X=aM, \I’(Z):T 2 4 6 8

. . . . FIG. 3. Functionsh;(X), h,(X), andh(X) of Sec. Il C.
It is appropriate to consider the rati® /Ry, whereRyq is 1(X). (%) 0

the end-to-end distance of a given side chain when it is not

connected to other chains. In this case, the renormalized de- h (X)=(X+1)In( 1+ 1 )—Xln( 1+ l —In2
gree of polymerizatiomg drops out from Eq(12) and we 2 X+1 X
have L1 X(X+3)

R2 e 4 (X+1)(X+2)"

R—2=1+ g(R2+R3+R4)+O(82). (13

to Substituting Eq(14) back into Eq.(13) yields

The maximum value of the first-order correction, given by
Eq. (13), is essentially determined by two parameterand th e|f 1
f. For the low grafting densities of side chains, described by gz = 14 5| 3 M)+ Tha(X)+(f=1){ In2— 7 ]+h(X)

the fairly small values ot andf, the first-order correction to
remains smaller than Iwe takee=1 for d=3). In this +0(s2 a8). (15)
case, Eq(13) can be used directly to estimate the additional
swelling of a central side chain due to its interactions with
other chains in the molecule. We would like to note that, in
the particular case of=1, the first-order correction stays
quantitatively valid up toc=10. When parameters and f D. Scaling theory in the limit of high grafting densities
are large, Eq(13) becomes quantitatively irrelevant but can A gistinct property of the first-order correction, given by
be modified to give a few helpful results. Eq.(15), is its dependence on the number of stdrenly via
To conclude this section we note that, ultimately, we aréyarameteiX~ M. Functionsh;(X), h,(X), andh(X) ex-
interested in the limit of high grafting densitigeé; (orc hibit a crossover between two limiting casée<1 and
>1), when the bottle-brush molecule shows its rich confor-ys. 1 (see Fig. 3that correspond to the two scaling limits in
mational behavior. In this limit, the expression ®j can be  the behavior ofR,. If the chains comprising a bottle-brush
noticeably simplified if we substitute the functidn(z) with  molecule are ideal, conditioK<1 implies that the size of

We shall now analyze Ed15) in more detail.

its asymptotic expression, the backbone is negligibly small,
1 1 R (LM)1/2 172
‘I’(Z)=|n(2)—z+0 ;) R N2 ~ X<l
and expand the result in powers @f We find In the limit X—0, we have
_ h,(X) _
R“:f( u *hz(x”o(“))' 14 ) 202X _ o yaym -1
o (64

where
hy(X)—0, h(X)—0,

1 1
1+ —) —X2In( 1+=|—-In2,

— 2
h()=(X+1)%n| 1+ o5 5

and, therefore,
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2 e 1 (a) (b) ©
— =1+ -(fM-1)[In2->|+0(e?). (16
2 8 4
t0 0 0 0
Equation(16) reproduces the equivalent result for the end- - K" v o v
to-end distanceR} of a linear chain, which belongstoa , /% o N — 4 —_
polymer star comprised dfM such chaingcf. the expres- 9 gk q 9 gk q qa ak q

sion for Rs). The physical interpretation of this result is as FIG. 4. Diagrammatic representations of the first-order correc-
follows: when the size of the backbone is much smaller thaggng D, (a), D, (b), D (c) to the end-to-end distribution of the

that of a side chain, allM chains in a bottle-brush molecule p5ckbone.
are grafted virtually onto the same point and the molecule

appears to be a star. F&rsmall but finite, we can express R M
the end-to-end distand®, in the form —L = (fM¥5g| —], (21)
RtO Ms
Ri=kR} 1
R D here
where ) [XUS, <l
X))~
f 1 9 t, X>1.
K2:1+§ E(hl(X)—Z(InZ—Z X +fh2(X)+h(X)} const,

The value of the exponent in E1) has been chosen, in the
+0(&?). (18)  limit M<My, to reproduce the Daoud-Cotton scaling rela-

tionship for a star containingM brancheg?25],
When the total number of the grafted stévisis large, the

term proportional td/« in Eq. (18) is dominant. We should \ s
note that, in the examined case of high grafting densties R—m~(fM) : (22
<1, conditionsX~aM <1 andM>1 are compatible.

The opposite limitX>1 corresponds to the backbone |n the other limitM>Mg, Eq.(21) yields
sizesR, that are substantially larger than the size of a side
chainR,. Figure 3 shows that all functiong,(X), h,(X), R~ (M ¢) YoN35., (23)
and h(X), saturate in this limit. This suggests that, in the
case ofR;>R,, the properties of the side chains are deterWhen we take into account the higher-order terms in Eq.
mined locally: two chains will have a noticeable effect on (20), the value ofMy is expected to be different from that
each other only if they appear to be in a constant contact. Lediven by Eq.(19) and should obey the generalized condition,
Mg denote the total number of stars that are grafted within max
the reach of the side chains belonging to the central star, R ~Ri(My). (24)
characterized byn;=(M+1)/2. In the ideal bottle-brush
molecule, the value o4 can be determined from the con-
dition

Here R(M,) denotes the size of the backbone in a bottle-
brush molecule, which includdd = Mg stars. In the follow-
ing sections we calculate the backbone sikR¢M) and

present the final results for the quantitids and R{"®*.

(L(Ms—l)
2

1/2
) :2N1/2
IV. END-TO-END DISTANCE OF THE BACKBONE CHAIN

which yields The calculation of the backbone sigg is largely based

8 on the material of the preceding section. Thus, the end-to-
Mg=—, Xs=4. (19 end distributionP(q) can be written down in full analogy
o
with Eq. (11),

Equation(19) provides a very good estimate for the cross- _
over valueX, (see Fig. 3. Hence, we can rewrite E¢L5) in P(4,{0,01,{L(M=1),0})
terms of parametersandMg, =Po(q,L(M—1)){1— BN D,(Q)+Dy(Q,f,a,M)

+D3(Q,f,a,M)]+0(B2)}, (25)

R‘2—1+8fMF(M
RZ 8 "t My

+0(e?), (20)

where individual contribution®;(q) are depicted in Fig. 4.
o The diagrams in Fig. 4 allow for different interaction
where function$; andh, are essentially the same. Note that effects such as interactions of the backbone chain with
in Eq. (20) only the dominant contribution, proportional to itself (D,), interactions of the backbone chain with the side
fl/a, is included. We now make an assumption that the sunchains D,), and interactions of the side chains among
of the whole series in Eq20) has the form themselves D3). The complete expressions for quantities
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FIG. 5. Functiond;(X,a) andh,(X,a) of Sec. IV in the limit
of high grafting densitiegsx— 0.

P(q) andR, are collected in Appendix C. In particular, in the
limit of high grafting densitiesy<<1, we have

R—|2—1+ (L(M_l))sm(E_
2d12L(M—-1) Pe e e+2
f2 f )
+—2h1(X,a)+2—h2(X,a) +0(Bs).
o o
(26)
where
— 4 —1-¢l2] x _
h(X,a) d(d—Z)X de(x X)f1(x)

X
+af dxfy(x)+0(a)
0

2 X
hz(x,a)zax*lﬂgf2 fo dxfy(x)+0(1)|, X=a(M—1),

and the functiong;(x) andf,(x) are interpreted in Appen-
dix C. Similar to Eq.(15) of the preceding section, E(R6)
shows a crossover between two limiting ca¥es1 andX
<1 (see Fig. 5. In the limit X>1, the asymptotic behavior
of functionsh; andh, is equivalent and independent of

hy A X a)=3—i+0(x—8’2) (27)
1.2 e &+2 '

which results in

2 2

R|2 =1+p
€ e+2

2dI2L(M—-1)

f 2
1+ —] [L(M—1)] ’2(5—

+0(B2). (28)

Equation(28) reproduces the result for the end-to-end dis-
tance of a linear chain that consists w&EL(M—1) seg-

PHYSICAL REVIEW E67, 051803 (2003

ments, characterized by the excluded volume parameter
Bet=Be(1+ fla)?. According to the Flory argument, the
end-to-end distance of a polymer chain is given by

R(n,Be)~ BN, (29)

which yields

2/5
R~ 1+E) (LM)35, (30)

We note that, within the renormalization group approach, the
situation looks slightly more complicatedl9]. Here we
should distinguish betwee.<u* (the weak coupling re-
gion) and B.>u* (the strong coupling regionwhereu* is
defined in Appendix A. In the weak coupling region, we
come back to the Flory result for the end-to-end distance of
a polymer chain; whereas, in the strong coupling region, Eq.
(29) no longer holds and we have instead

R(H,Be)NA(,Be)I’IS/S,

whereA (B.) is some unknown function g8,. Thus, if the
ratio f/« is so large thaiB.;>u*, we should replace Eq.
(30) by

Ri~A(Be(1+fla)?)(LM)3B, (31)

We would also like to note that, although we assume every-
wherea<1, the leading asymptotics of functiohg andh,

do not depend on the value af[see Eq(27)]. This means
that all results obtained in the limi>1 are also valid when
the grafting densities of side chains are not high.

In the opposite limitX<1, it is convenient to introduce
the ratioR, /R, whereR|, is the end-to-end distance of the
free backbone chain. Since we assuam€l, we may con-
sider only the dominant contributior (f/«)? in Eq. (26),
which results in the following: expansion:

R|2 _ € 2 2
R_,20_1+9_6[f(M_1)] [1+0(X)]+0(?). (32

For small numberd§M of the side chains, the first-order
correction in Eq(32) does not exceed 1. In this case, it can
be used directly to estimate the additional swelling of the
backbone due to the presence of the grafted chains. If we
wish to consider larger molecules, the higher-order terms in
Eq. (32 should be taken into account. We suppose that the
nth term in Eq.(32) is proportional to {M)?" and the whole
series sums up to give

R~ (fM)Z(LM)3S, (33

The specific value of the exponentemains undefined in the
present approach and has to be borrowed from other theories.
If we expect Eq(33) to describe the stiff rod geometry of a
not very long backbone, as has been suggested by numerous
experimental work§l—3,6], we should assume=1/5. Then

we have

R~ fZ5L3"M~R(L)M, (34)

051803-6



CONFORMATIONAL PROPERTIES OF BOTTLE-BRUSH . .. PHYSICAL REVIEW &7, 051803 (2003

whereR(L) denotes the size of a backbone subchain, con- 3/20

fined between two adjacent points of grafting. According to R~ N3/5( ;) ~ N3/4§3/20_ 3020 (38)

Eq. (34), such a subchain is expanded by a factorf &?

rather thanf'/®, as it would be if one of its ends were free.
Thus, we can think of a bottle-brush molecule as a wor

like chain, characterized by its total lendth=R(L)M and

the persistence lenglh=R(L)M*; here we introduced the

The dependence &' on the chain lengtiN is described
nby the two-dimensional exponemt=3/4. This reflects the

physical situation in which a star is confined to the narrow
P disk created by the neighboring stars and its branches can
crossover parametad” such that E*qs(3'0).and (34) hold, \yander only in directions perpendicular to the backbone. An
respectively, foM>M* andM <M*. Similarly to the re-  jyernative way to obtain Eq38) is by matching Eqs(23)

sults of the preceding section, the crossover behavior of thg4 o4 where the backbone siz&(M.) is aiven by E
backbone chain is governed by the parameter aM, (34).(W()a’ find #&(Ms) 1s g y B9

and so

1/f —-1/4

However, the actual value of parameddi* is much larger ) , .

than that ofM (cf. Figs. 3 and band indicates that, in the Which together with Eq(23) brings us back to Eq38).

present case, we are dealing with the global crossover, which L&t Us now turn to the properties of a bottle-brush mol-

involves the molecule as a whole. If we take into account thécule as a whole. I1* is the number of stars grafted on the

higher-order terms in the renormalized perturbation theorymolecule’s persistence length, then forM>M* this mol-

Egs.(19) and (35) cease being valid and we have instead ecule can be considered as a chainMfM* cylindrical
segments, each characterized by diamdteR{"®* and lin-

1 f)yz ear sizel~1,. The excluded volume of such a segment is
Mo~ —
o

o

o ~12d, and we have for the end-to-end distance of a long
cylindrical brush

f)71 1
’ M*

(47

The values of exponentg; and y, depend on the exponent
X, defined in Eq(393). In the following section we provide an
extra argument in favor of our choice=1/5 and collect the
final results for the end-to-end distandesandR, .

RI — dl/5| é/SI 13_/5, (40)

wherel; stands for the brush’s contour length. Taking into
account the estimates

V. DISCUSSION I,~R(L)M*, It~R(L)M,

In order to make the results of the previous sections more . .
complete, let us resort to the simple mean-field analysis. ThWe obtain, from comparing Eq$30) and (40),
Flory-type calculation of the dimensions of a bottle-brush 1/f
molecule, characterized biy=1, is presented in Ref26]; M*~—<—
here we consider the general case wliga arbitrary. We a
start with the mean-field expression for the free energy )
F(R,), which determines the size of a side chain in the limitAS expected, the crossover parametdisandM* are given
of high grafting densities. It reads by different scaling relationships of Eq®9) and (41). The
resulting expression for the persistence lengthhas the

RZ  (fMN)? form
f 13/20 f 1/2
|p~N3’5< Z) ~R{"a"< ;) . (42)

t
FR)~IM g+ Be e = (36)

For a simple comb copolymer brush, i.e., a bottle-brush mol-
ecule withf=1, we are aware of three other theoretical pre-
Lan 34 dictions of the persistence length. According to Birshtein
(fM)™N (37  etal.[20], persistence length, is comparable with brush

RY4 radius, | ,~R{"**, while the scaling arguments by Fredrick-

son[21] show thatl ,~ R N8 A more recent conclusion

As shown in the first order of perturbation theoRy}* does  of the self-consistent field analysi$15] is that |
not depend on the number of stafls—a result that seems to  ~R["™N%4 The present result correspondsl to- R[“alefé
be supported by experimelt7]. To satisfy this conditionR, and falls in between these other predictions. We note, how-
in Eq. (37) should vary linearly withM, which is consistent ever, that the argument we apply to obtain the persistence
with the assumption made on the molecule’s geometry antengthl, of the long bottle-brush molecule is largely based
leads tax=1/5 in Eqg.(33). Combining Eqs(34) and(37) we  on the assumption that the molecule folds as a self-avoiding
obtain cylindrical chain. If we suppose that parts of this chain can

1/4
(41)

where we assume that the bottle-brush molecule is found in
the rodlike state and, therefor®=R{"®* [see Eq.(23)].
Minimizing Eq. (36) with respect toR; yields

max
R’[
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penetrate each other, we would find a larger valué,oh size of a side chairRr; significantly exceeds the backbone
comparison with that given by E¢42). size R;, the molecule’s structure resembles a star in which
We now comment on a few interesting properties of thethe number of arms is equal to the total number of side
scaling relationships presented here. First of all, from ahainsfM. In this regime, the side chains are swollen uni-
physical perspective, we expect each star to have an unpeormly in all directions and their size is given by the Cotton-
turbed three-dimensional core, which comprises the innerbaoud expression of E§22). The first(local) crossover ap-
most subchains of lengtN, and has a radiu§0~f1’5N§/5. pears when the size of the backbone becomes comparable
Beyond the core region a star should retrieve its global twowith that of a side chain, i.eR~R;. At this point, the
dimensional behavior, so th&. can also be estimated from swelling of the side chains drastically slows down and, as the

Eqg. (38). On the basis of this observation, we have size of the backbone grows further, the bottle-brush molecule
starts to resemble a long stiff cylinder. Inside this cylinder,
N~ LfY3, the side chains are swollen in the direction perpendicular to
the backbone, and the dependence of the chain’s size on its
R~ L3525~ R(L). length is defined by the two-dimensional exponert3/4.

The molecule starts to bend when the size of its backbone

We see that the size of the unperturbed zone is determined lekceeds the persistence lengghof the formed cylindrical
the interstar distanc&k(L), a result consistent with our brush. This marks the secorigloba) crossover, which de-
physical expectations. scribes the configurational changes of the entire cylindrical

Another supporting fact in favor of the present approachbrush as its internal structure remains unchanged. Ultimately,
is that the scaling relationship of E¢30) can also be ob- such a brush should adopt a coiled conformation when the
tained by the simple mean-field analysis. This amounts tgength of the backbone is very large.
presenting the molecule’s free energy as a function of the

backbone sizd;, ACKNOWLEDGMENT
R? (FMN+LM)? | am grateful to Professor Jean-Pierre Hansen for intro-
F(R|)”m+BeTa ducing me to this problem and for his help in revising the
' manuscript.

and minimizing it with respect t&, .
Finally, we would like to note that, in the case of high APPENDIX A: BASIC IDEAS OF THE RENORMALIZED

grafting densities, all the scaling factors that allow for the PERTURBATION THEORY

interactions of the side chains, depend on the single param-

In this appendix we present a very short summary of the
eterf/a.

renormalized perturbation theory as is explained in Rig].
Let us consider a single polymer chain consistingnof
VI. CONCLUSION segments, each characterized by its linear bizad the ex-
aFIuded volume paramete.. It is known that the general
([Perturbation theory for such a system orders in powers of
faramete= Ben®”?, where

In this paper, we have investigated the conformation
properties of a bottle-brush molecule placed in a very goo
solvent. We started by calculating the end-to-end distances
the backbone and of a central side chain to the first order of e=4—d
the general and renormalized perturbation theories. The ob-

tained expressions reveqled a complex dependenpe oN Padd is the spatial dimension. For chains with a high degree
rametersf and «, whgref is the number of s.lde_chams at- ¢ polymerizationn, parameteiW is large and the general

tached to each point of branching and is inversely hoqrhation theory diverges. The main idea consists in map-
proportional to the density of such points along the backying the given polymer chain onto a much shorter one, for
bone. Whenf~1 and a~1, the first-order terms in the \ hich the perturbation theory would be applicable. For this

renormql!zed perturbation theory provide a true estimate OI)urpose, we perform a spatial dilatation such that the el-
the additional swelling of the grafted chains and the back-ementary length transforms according to

bone. In the opposite limit of high grafting densities<1

and large values df the perturbation theory becomes quan- —lg=1/\, 0<A<L. (A1)
titatively invalid but can be generalized to give the correct

scaling laws. Naturally, the resulting scaling relationships desince the physical observables should remain invariant upon

pend on parametdronly via the ratiof/«. This is the ratio  this transformation, parametegs andn should be adjusted
between the total molecular weighN of the side chains, accordingly. The dimensional analysis yields

attached to each point of grafting, and the molecular weight
L of a backbone subchain, confined between two neighboring Be—U, Be=\°UZ,(U) (A2)
grafting points.
If the grafting density of the side chains is high and con-and
stant, the bottle-brush molecule may adopt three different
conformations as the size of the backbone grows. When the n—ng, N=\"2ngZ,(u), (A3)
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whereZ (u) andZ,(u) are the relevant renormalization fac- 1 1 e
tors. Within the so-called scheme of “dimensional regular- D3(Q)=(f—1)JO Xmfo dXo(X1+X3)
ization” and “minimal subtraction’[19], we have the fol-

lowing expressions foZ, andZ,: Qxf }
X exr( —-1],
X1+ X5
1 4
Zy(w=5|1+ gu+0(u2)>, (A4)
D4(Q)=D4(Q,M—my)+Dy(Q,m;—1),
1
Zo(w)=1— gu+0(u2). (A5)

_ _ M 1 ka+1
D4(Q,M)=f>, f dxlf dXp(X1+X,) ~ 42
It can be shown that the mapping given by E@s1)—(A5) k=170 ket

justifies the “fixed point” hypothesis that states that param- X%
eteru approaches some constant valureu* as\A—0. The X exp( -1},
limiting value u* is known up to the second order in tae X1t %
expansion and reads
where we have employed the same set of variables as in Eq.
s 21 (11). Since the scaling properties of all side chains are the
u* =—+ —e2+0(&d). (A6)  same, we will focus our attention on the central stay

4 128 =(M+1)/2. In this case combining Eqd1) and(5) yields
We can now define the excluded volume limit as a limit that
is reached if, under renormalization, parametepproaches
the fixed point so closely that it can be replaced Wy.
Clearly, the excluded volume limit requires the initial degree
of polymerizationn to be sufficiently high so that is close
to zero whenng=1. According to Eqs(A4)—(A6), in the
excluded volume limit the renormalized perturbation theory

4

R?=2dI°N 1+ﬁeN8’221 R; +0(5§)}, (B2)

where

; P i 2 1 M.
essentially amounts to expanding in povyerSeofThus, in == ’ R2=2j Xmf “dxzxi(xl+xz)—d/2—l’
the present work we perform all calculations up to the first e et2 0
order in thee expansion.
! ! 2 —dr-1
APPENDIX B: FIRST-ORDER CORRECTIONS R3=(f—l)f0 dxlfo dxoX1(X1+X2) :

TO THE END-TO-END DISTANCE R,

In this appendix we present a series of analytical expres- Mo _—
sions for the end-to—enq distance of a side chal_n. y\(e start R4=2f2 f dxlj dxzxi(xl_’_xz)fdmfl’
with Eq. (11) of the main text and calculate the individual k=1 Jo ke
diagramsD;(qg) with the help of the Feynman rules ex-
plained within. We obtain

P(9,{0Kk},{N,kq})

andM=(M—1)/2.

APPENDIX C: FIRST-ORDER CORRECTIONS

4
TO THE END-TO-END DISTANCE R
:Po(an){l—ﬁeNslzz Di(Q)+0(B2) |, |
=1 The complete expressions for the end-to-end distribution
(B1) P(q) of the backbone chain are as follows:

! P(q.{0,0} {L(M—1),0
01(Q)= [ dxa(L-xx; e Oxy 1], (@{0.0}.{L(M~1),0})

3
_ B =Po(q.L(M—1>)[1—Bel\18’221 Di(Q)+0(B2)|,
D,(Q)=Dy(Q,M—my)+D,(Q,m;—1), a
(Cy
_ _ 1 _a
DZ(Q’M):L XmJOM dXp(X1+Xp) ~ %2 where

Qx}
X | ex
X1+X2

1
- 1} Dy(Q)=[a(M—1)]*"2 fo dx; (1—x9)x; Y exp(Qxy) — 1],

051803-9



N. A. DENESYUK PHYSICAL REVIEW E67, 051803 (2003

M~1 ke 1 R,=2f(a(M—1))"17%72
D,(Q)=2f > f dxlf dXp(Xq+Xp) 92 ’
k=1 0 0

M-1 ko 1
X >, dxlxif dxo(X1+X,) 4271
&1 Jo 0

24
x| ex -1/,
X1+ Xo R3:f2(a(M_1))7175/2

M-1 1 1 M-1 1 1
D4(Q)=f2, (M—k)J dxlf dXp(X1+ Xp+ kar) ~ 92 X > aZkZ(M—k)f dxlf dx,

k=1 0 0 k=1 0 0

p< QK?a? } X (Xg+ Xo+ Kar) ~ 9271,
x| exd = |~
X1t Xot Ka In the case of high grafting densities<1, the sums ovek

in the above expressions can be substituted by integrals,
which leads to Eq(26) of the main text. We do not rewrite it
3 } here but specify function§; andf:

Combining Egs(C1) and (5) yields

RP=2dI?L(M = 1)| 1+ Be(L(M —1))8’2;1 Ri+0(53) F100 = X2 Xt 924 (24 x) 192 (14 x)1 92,

(CZ) d/ d/.
— 3—d/2 _ 3—d/2y _
where 0= 3gpt” DT o,
2 2 1
= _ 2—d/2 R o 1-d/2
1= T oo X[1—(x+1) ]+1—d/2[1 (x+1) 1.
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