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Tagged particle motion in a dense liquid: Feedback effects from the collective dynamics
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The nature of the tagged particle motion in the strongly correlated state of a dense liquid is studied with the
self-consistent mode-coupling model. The tagged particle time correlation functioncs(q,t) is computed by
taking into account the nonlinear feedback effects on its dynamics from the coupling with density fluctuations.
We consider the two cases where~a! the short-time dynamics is diffusive resembling colloidal system and~b!
the short-time dynamics is Newtonian as in an atomic system. The non-Gaussian parametera2(t) is evaluated
using the fourth- and second-order spatial moments of the van Hove self-correlation functionGs(r ,t). We
observe a two-peaked structure ofa2(t) for both ~a! and ~b! types of dynamics. We also compare other
characteristic aspects of tagged particle dynamics such as the mean square displacement, non-Gaussian nature
of Gs(r ,t), and fraction of mobile particles. A qualitative comparison is drawn between the theoretical results
with the experimental and computer simulation results on colloids.
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I. INTRODUCTION

The intriguing relaxation features of the various dynam
correlation functions characterizing the dense liquid st
have posed active research grounds in recent years. T
solve the underlying mechanisms responsible for the non
ponential relaxations, there has been an upsurge of rese
activity to correlate the structural and dynamical heteroge
ities in a supercooled system. This has been primarily ba
upon the experimental observations@1–6# and the analysis o
the computer simulated many-body dynamics@7–12#. In
such studies, the nonexponential relaxation characteri
the supercooled liquids has been often linked to dynamic
correlated regions in the system. The heterogeneous dist
tion of the relatively mobile and immobile regions has a
been found to be responsible for the violation of the Sto
Einstein law in fragile glass formers@13#. In Ref. @14#, the
dynamical heterogeneities were shown to be directly resp
sible for the decoupling of relaxation and diffusion mech
nisms in a supercooled system. This was done through
analysis of the four-point correlation functions obtained fro
the computer simulation data of the binary Lennard Jo
systems. A purely theoretical approach was used in Ref.@15#
as a link to understand the origin of the characteristic n
exponential relaxation in a realistic framework of mod
coupling theory~MCT!. Various aspects of dense liquid dy
namics, especially with respect to the existence of dynam
heterogeneities for a hard-sphere system were prese
there. Two different time regimes where the heterogene
dynamics manifest the most, emerged from this study@15#.
The computer simulation of colloidal system@12# also de-
picted such a two-peak structure of the dynamical hetero
neity parameter. The shorter of these time scales was fo
to be independent of density variation and was analogou
the results of low-density fluids obtained using the kine
theory models@16–18#. This represented the effects of co
related dynamics in the initial stages of relaxation in a ma
body system.

In the present work, we make an extension of this th
retical approach to study similar aspects in the syste
1063-651X/2003/67~5!/051505~11!/$20.00 67 0515
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evolving via the Brownian dynamics. Here we refer to
system as~a! ‘‘colloidal’’ in which the tagged particle dy-
namics in the short-time is diffusive and~b! ‘‘atomic’’ in
which the short-time behavior corresponds to phononlike
cillatory modes. The atomic systems consist of the usual
croscopic particles and a colloidal suspension comprise
mesoscopic particles, i.e., much larger sized, suspended
medium of microscopic particles. Due to the large size d
ference between the colloid and the solvent particles, ther
a complete separation of the relaxation time scales. This
sults in a ‘‘free’’ diffusive motion of the colloid particle in
the short-time regime, till it starts interacting with other su
particles and the dynamic correlations start building up@19#.
A relevant question in the analysis of the dynamics is, h
the nature of microscopic dynamics in a system affect
various relaxation mechanisms in a supercooled liquid.
tensive light-scattering experiments on sterically stabiliz
colloids @20,21# and computer simulation of stochastic d
namics for binary charged colloidal systems in the sup
cooled state@12,22# have been conducted in this contex
Direct comparison of the corresponding relaxations in coll
dal and atomic systems have also been conducted num
cally using the stochastic and molecular dynamics simu
tions @23,24#. Most of such studies have been direct
specifically toward evaluating the correlation functions a
testing whether there is any universality in the asympto
dynamics irrespective of the nature of microscopic dyna
ics. The general conclusion being drawn@23,24# is that the
microscopic dynamics mainly determines the earlyb relax-
ation regime. The atomic systems are characterized by p
non excitations in the initial time range that leads to a fas
decay of the correlations as compared to the relaxation in
colloids during the same time range. Thea relaxation has
been found to be similar in both the systems as regards
stretching exponent@23,24#, however, the relaxation time o
the atomic system is, in general, smaller than that of
corresponding colloidal system.

In the present paper, we use the self-consistent MCT
theoretically evaluate the comparative nature of correla
dynamics in dense colloidal and atomic systems. This is d
©2003 The American Physical Society05-1
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here especially to determine the dynamical heterogene
that characterize the higher-order cooperative effects of
namics. The self-consistent MCT has been developed@25–
27# and used extensively in the last two decades to un
stand varied dynamical phenomenon typical of
undercooled system. Various characteristic features of
dense liquid state dynamics observed in experimental s
ies, such as the two-step relaxation process, divergenc
relaxation times, are obtained within this theory. This is a
result of the nonlinear feedback mechanism from the c
pling of density fluctuations enhancing the viscosity. T
collective density correlation function is used to evaluate
laxation of the tagged particle correlation function@28,15#.
The standard form of the MCT equations obtained for
atomic systems does not refer to diffusive motion in t
short-time limits. However, in a simplified form of the MC
equations, the collective density correlations have the lo
time behavior similar to the Brownian dynamics~Ref. @29#!,
and will be used for colloids in the present work.

In Sec. II, we briefly discuss the definition of the no
Gaussian parametera2(t) and how it signifies the higher
order correlation effects. In Sec. III, we describe the stand
theoretical framework of self-consistent mode-coupli
theory, and the scheme of evaluatinga2(t). Various aspects
of the dynamical equations for the colloidal and atomic s
tems are discussed here. We present the results in Se
where we illustrate the different dynamical properties
tagged particle motion. We analyze the dynamic variation
the mean square displacement as obtained from this mo
The non-Gaussian nature ofGs(r ,t) is also illustrated and
compared with the corresponding Gaussian distribution
the timetp2—corresponding to the peak ofa2(t). Using this
treatment, we identify the fraction of ‘‘mobile’’ particles@8#
at tp2, which indicate the strong departure from Gauss
behavior. A discussion of these results concludes the pap
Sec. V.

II. THE NON-GAUSSIAN PARAMETER

The single-particle dynamics@18# in a fluid is described
by the self-part of the van Hove correlation function

Gs~ urW12rW2u,t !5V^d„rW12RW ~ t !…d„rW22RW ~0!…&, ~2.1!

whereRW (t) is the position of the tagged particle at timet in
a system of volumeV. It is a measure of how the nature o
spatial correlation of the tagged particle with its initial po
tion evolves with time. When the microscopic dynamics
Newtonian, the very short time scales correspond to the
particle limit. TheGs(r ,t) can be evaluated analytically i
this limit @18# and is represented by a narrow Gaussian d
tribution, Gs(r ,t)5(pv0

2t2)23/2exp@2(r/v0t)
2#, where v0 is

the thermal velocity of the particles. In a colloidal syste
the Brownian dynamics lead to a diffusive behav
@Gs(r ,t)}exp(2r2/2D0

st)# in the short-time range,D0
s being

the short-time diffusion coefficient. In the very long-tim
limit, the motion of the tagged particle becomes diffusiv
both in the Newtonian and in the Brownian dynamics and
Gaussianspatial variation ofGs(r ,t) is obtained. However
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over the intermediate time ranges, the complex dynamic
the dense supercooled state lead to a deviation ofGs(r ,t)
from the Gaussian behavior. This deviation is indicative
the corresponding nonexponential time relaxation of the c
relation functions and its quantification constitutes an imp
tant step toward our understanding of the basic relaxatio
mechanisms in a dense liquid. In the computer simulat
studies, the evaluation of distinct van Hove correlation fun
tion @22# has provided novel insights in the cooperative d
namics of supercooled liquids in the intermediate time
gimes of relaxation. Donatiet al. @9# have found regions of
stringlike correlated motion in the liquid in these time sca
where the deviation from the Gaussian behavior maximiz
Such results point towards the possibility of the structu
and dynamical heterogeneities being self-consistently res
ing due to the correlated dynamics.

Rahman@7# first defined the non-Gaussian deviations
Gs(r ,t) and hence its Fourier transform,cs(q,t), in terms of
the parametersa2(t), a3(t) as

cs~q,t !5e2q2r1(t)F11
1

2!
a2~ t !@q2r1~ t !#22

1

3!
@a2~ t !

23a3~ t !#@q2r1~ t !#32 . . . G , ~2.2!

such that the leading term is Gaussian. Herea2(t) is defined
as the non-Gaussian parameter,a2(t)52r2(t)/@r1(t)#2 and
rn(t) are expressible in terms of the spatial moments
Gs(r ,t), defined as^r 2n(t)&5*drWr 2n(t)Gs(r ,t). For ex-
ample, the second moment represents^r 2(t)& for n51,
which is the mean square displacement of the particle fr
the origin in time t. By comparing this equation with the
cumulant expansion ofcs(q,t) in q,

cs~q,t !5 (
n50

`

~21!n
q2n

~2n11!!
^r 2n&, ~2.3!

thern(t) can be expressed in terms of^r 2n(t)& @18#. Follow-
ing which, thea2(t) is expressible in the standard form a

a2~ t !5
3^r 4~ t !&

5^r 2~ t !&2
21. ~2.4!

This definition ensures thea2(t) to vanish in the limit of a
Gaussian distribution ofGs(r ,t). The presence of higher
order moments ina2(t) represents cooperative effects in d
namics.

III. THE SELF-CORRELATION FUNCTION

The dynamical evolution of the characteristic correlati
functions is obtained here using the self-consistent MCT. T
theoretical framework is mainly based on the systems g
erned by the Newtonian dynamics. In Ref.@29#, the stochas-
tic equation for the dynamics of collective density fluctu
tions were developed in a projector operator formalism. T
Smoluchowski operator is used to describe the dynamics
mode-coupling approximations is applied to finally arrive
5-2
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the equation in the long-time limit. This equation is same
the corresponding limit of the dynamical equation for dens
fluctuation in an atomic system. In an analogous treatm
we compute the colloidal dynamics using the long-time lim
of the collective and tagged particle dynamical equations
the Newtonian system. We consider these with appropr
identification of the characteristic time scale and short-ti
transport in both the systems. This treatment correctly p
duces the short-time diffusive nature of tagged particle m
tion in a colloidal system.

The standard MCT is mainly formulated in terms of t
correlation between the collective density fluctuations in
system. The Fourier transform of the density autocorrela
function normalized with respect to its equal time value
defined as

c~q,t !5
^dr* ~qW ,t !dr~qW ,0!&

^dr* ~qW ,0!dr~qW ,0!&
, ~3.1!

where qW is the wave vector and the densityr(qW ,t)
5( i 51

N eiqW •RW i (t), RW i(t) being the position of thei th particle at
time t. The tagged particle dynamics are determined in te
of the self-correlation function or the incoherent scatter
function, given by

cs~q,t !5^drs~qW ,t !drs~2qW ,t !&, ~3.2!

where rs(q,t)5eiqW .RW a(t) is the Fourier transform of the
tagged particle density. For the atomic system, thecs(q,t)
is evaluated as a numerical solution of the second-o
integro differential equation@28,30#,

c̈s~q,t !1S tv0

s D 2Fq2cs~q,t !1m21ċs~q,t !

1E
0

t

dt8Gs
mc~q,t2t8!ċs~q,t8!G50. ~3.3!

Here,v0 is the average thermal speed of the particles, w
vectors are expressed in dimensionless form (q[qs) where
the unit of length is the hard-sphere diameters, and time is
expressed in units oft. We definet such that a direct com
parison of the Newtonian dynamics with that of the colloid
system can be illustrated. The time scale of relaxation
colloids is usually measured@21,31# in terms of the short-
time diffusion coefficientD0

s , ast5s2m/D0
s with m being a

constant. In order to compare with the experimental res
we definem51/24 as in Ref.@21#. In the case of the atomic
system, we obtain Eq.~3.3! by identifying the short-time
diffusion in terms of the bare transport coefficientGs

B , as
D0

s5v0
2/Gs

B . From the Enskog kinetic theory, the Bare-pa
Gs

B for the hard-sphere Newtonian dynamics is given byGs
B

52/3 in units of inverse Enskog collision timetE

51/@4Apg(s)nv0s2#, wheren is the average number den
sity andg(s) is the contact value of the radial distributio
function.
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The mode-coupling contributionGs
mc(q,t) in Eq. ~3.3!

takes into account the effect of coupling between the coll
tive and the tagged particle motion. It is expressed in units
v0

2/s2 as

Gs
mc~q,t !5

1

n*
E dkW

~2p!3
cs~ uqW 2kW u,t !Vs~qW ,kW !c~k,t !.

~3.4!

Here the vertex function is obtained in terms of the sta
fluid properties as@28# Vs(qW ,kW )5(q̂.kW )2@ c̃(k)#2S(k). The
average number density of the liquid is expressed here
dimensionless form asn* 5ns3. The static structure facto
is denoted asS(k) and c̃(k)5nc(k), c(k) being the
Ornstein-Zernike direct correlation function.

In the long-time limit, the second derivative term is ig
nored in Eq.~3.3! to obtain

ċs~q,t !1mFq2cs~q,t !1E
0

t

dt8Gmc
s ~q,t2t8!ċs~q,t8!G50.

~3.5!

This shows a diffusive relaxation forcs(q,t) in the short-
time limit as expected for a colloidal system. Therefore,
will consider this equation for computing the tagged parti
dynamics for this system. In Eq.~3.5!, as mentioned above
the unit of timet is identified with respect to the short-tim
diffusion coefficientD0

s . This time scalet is generally mea-
sured in the light-scattering studies of colloids@21# (t
;0.0215 sec).

The dynamical evolution ofcs(q,t) is coupled with the
corresponding relaxation of the collective density fluctu
tions c(q,t), through the mode-coupling kernelGs

mc(q,t)
@Eq. ~3.4!#. We use the extended mode-coupling model@26#
for obtaining this crucial input to the theory. The Lapla
transformed equation governing the relaxation ofc(q,t) in
this model@26# is expressed as

c~q,z!5
z1 iGR~q,z!

z22Vq
21 iGR~q,z!@z1 iq2g~q,z!#

, ~3.6!

whereVq5qv0 /AS(q) corresponds to a characteristic m
croscopic frequency for the liquid state dynamics a
GR(q,z) is the renormalized longitudinal viscosity. This
obtained using nonlinear fluctuating hydrodynamics by
appropriate treatment of the nonlinear coupling between c
rent and density fluctuations characterizing a compress
fluid @26,27#. The memory function

GR~q,z!5GB~q!1E
0

`

dtGmc~q,t !eizt, ~3.7!

whereGB(q) is the Bare part or the contribution due to th
initial uncorrelated collisions in the liquid. The mode
coupling partGmc(q,t) accounts for the memory effects du
to the correlated motion in the dense liquid, which beco
significant over intermediate and long time scales. It is o
tained within the one-loop approximation@26,32# as a bilin-
ear coupling between the density fluctuations@32#,
5-3
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Gmc~q,t !5
1

2n* q2E dkW

~2p!3
c~k,t !V~qW ,kW !c~ uqW 2kW u,t !

~3.8!

in units of v0
2/s2, such that a self-consistent equation is o

tained forc(q,t) from Eq. ~3.6!. The vertex function in Eq.
~3.8!,

V~qW ,kW !5S~k!S~ uqW 2kW u!@~ q̂.kW !c̃~k!2q̂.~qW 2kW !c̃~ uqW 2kW u!#2.
~3.9!

In Eq. ~3.6!, the functiong(q,z) represents the cutoff func
tion that is responsible for keeping the system ergodic a
densities. We use the expression obtained for this functio
the one-loop approximation~ @27,32#!. In the present work,
we have usedg(q,t) with a factord in order to consider the
finite wave-vector generalization. This determines
strength ofg(q,t) and thus the time scale ofa relaxation
such that consistency with the experimental results can
obtained by appropriately fixing the single parameterd. The
simple version of the mode-coupling model@25# results if
g(q,z) is ignored in Eq.~3.6!, or equivalently if one setsd
50. An ergodic to nonergodic dynamic transition results
the simple model at a critical packing fractionwc'0.516
@25,32# (w5pn* /6) where the dynamic correlations free
at a nonzero value. The molecular dynamics studies@33# and
the light-scattering experiments of colloids@20# showed that
the dynamics became increasingly slow with density ri
However, the conclusion on the occurrence of a sharp t
sition is not forthcoming. These light-scattering results@20#
were exhaustively analyzed in Ref.@34# within a phenom-
enological model of the extended MCT@35# to show that
even up to the highest density, the relaxation time of
correlation functions remained finite. In the present work,
have considered both the simple and the extended m
coupling models.

To numerically evaluate the dynamical variation
cs(q,t), we first inverse-Laplace transform Eq.~3.6! to ob-
tain the time evolution of thec(q,t) as a second-order inte
grodifferential equation for the Newtonian dynamics@32#.
The Bare contribution to the generalized longitudinal visc
ity is obtained from the Enskog kinetic theory asGB(x)
5(2/3tE)@12 j 0(x)12 j 2(x)#. Herej l is the spherical Besse
function of orderl andx5qs. The corresponding equatio
for the Brownian dynamics is obtained by ignoring t
c̈(q,t) term ~as similarly done for the self-correlation func
tion! and is explicitly given by

ċ~q,t !1m8q2F E
0

t

dt8Gmc~q,t2t8!ċ~q,t8!

1@S~q!#21c~q,t !1E
0

t

dt1g~q,t2t1!S c~q,t1!

m8

1E
0

t1
dt2Gmc~q,t12t2!c~q,t2!D G50. ~3.10!

The unit of timet is defined in terms ofD0
s , as described

earlier. Herem85mD0 /D0
s , whereD0 refers to the short-
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time transport coefficient identified asD05v0
2/GB for the

collective density fluctuations of the Brownian dynami
case. In the present work, we have fixed this ratiom8 as 1/24.
The experimental studies of colloids show that the sta
properties like the structure factorS(k) are similar to that of
a hard-sphere liquid. Therefore, we use the Percus Ye
solution for S(k) in both the Newtonian and the Brownia
system.

A. Evaluation of the non-Gaussian parameter

We evaluate thecs(q,t) in the small wave-vector range
such that it can be equated to the cumulant expansion@Eq.
~2.3!# truncated atO(q4). The second and fourth spatial mo
ments^r 2(t)& and^r 4(t)&, are thus obtained on curve-fittin
@12cs(q,t)#/q2 to a linear form with respect toq2. The
slope is 1

6 ^r 4(t)& and the intercept is given by
2 1

120^r 4(t)&. From this, we calculatea2(t) from Eq. ~2.4!.
To evaluatecs(q,t) in the smallq range, the memory

functionGs
mc(q,t) is expressed as an expansion inq given by

Gs
mc~q,t !5G0~ t !1q2G2~ t !1q4G4~ t !1•••, ~3.11!

by using the Taylor series expansions ofcs(uqW 2kW u,t) and
Vs(qW ,kW ) in Eq. ~3.4!. The coefficientsG2n(t) involve the
wave-vector integrals of second- and higher-orderq deriva-
tives of cs(q,t) andc(q,t). These are given by

G0~ t !5
2

3E dkk4c̃ 2~k!S~k!cs~k,t !c~k,t ! ~3.12!

and

G2~ t !5E dkk4c̃ 2~k!S~k!F 2

15k
cs8~k,t !1

1

5
cs9~k,t !Gc~k,t !,

~3.13!

wherecs8(k,t)5(]/]k)cs(k,t). To evaluatea2(t), theq ex-
pansion@Eq. ~3.11!# is truncated atO(q2), i.e., one needs to
compute onlyG0(t) andG2(t). To calculate the higher-orde
non-Gaussian effects likea3(t) will require the quantity
G4(t) in Eq. ~3.11! to be evaluated. This is expressed
terms of even higher-orderk derivatives that are difficult to
obtain numerically with sufficient accuracy.

In the atomic system characterized by the Newtonian
namics, the tagged particle moves as a free particle for v
short time in a straight line trajectory, and hence its proba
ity of being at a positionrW in time t can be expressed simpl
as d(rW2vW t) @18#. Using the Maxwellian distribution for
the velocity vW , the Gs(r ,t) is obtained as Gs(r ,t)
5(pv0

2t2)23/2exp@2(r/v0t)
2#. So, in thet→0 limit, Gs(r ,t)

is a Gaussian function anda2(t) should vanish identically in
this limit. The correct short-time behavior isa2(t)→0 as
;t8 @16#. The present theoretical model, however, does
produce this short-time limit ofa2(t) and is mainly formu-
lated to take into account the correlated dynamical effect
5-4
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dense liquid systems. Dynamical equation~3.3! is obtained
@28# within a generalizedhydrodynamiccontext. It is not
valid for time scales lesser than the average collision time
the present model, the dynamic equation for the tagged
ticle momentum densitygW s would contain a damping term
even in thet→0 limit which is certainly not the free-particle
dynamics. On taking the corresponding limit in Eq.~3.3!, we
find a2(t) tends towards a negative constant value22/3 as
t→0 @36#. Here, it is worth noting that the evaluation o
a2(t) for the low-density fluids in the kinetic theory approx
mation@16–18# also does not produce the correct short-tim
limit. Although these are based on a microscopic treatm
of the collision processes, these predict thata2(t)→0 as;t,
rather than the correct variation;t8 @18#. For the case of the
Brownian dynamics, however, in the limitt→0, Eq. ~3.5!
reduces to a diffusive equation, hence thea2(t) vanishes as
t→0.

B. Asymptotic limit of a2„t… beyond wc in simple MCT

The long-time limit ofa2(t) should identically be zero a
the tagged particle motion becomes totally diffusive in
ergodic liquid. However, in the simple MCT model@25#, an
ergodic to nonergodic transition occurs in the system a
critical packing fractionwc . This is marked by the freezing
of the density and single particle correlations. Thus beyo
wc , c(q,t)→ f (q) and cs(q,t)→ f s(q) in the dynamic
asymptotic limit. The final diffusive relaxation ofcs(q,t)
that causesa2(t) to vanish, never occurs beyondwc in this
model. As a consequence,a2(t) also becomes a nonzer
constanta2

0 , in the long-time limit at densities beyondwc .

Evaluation of a2
0

The self-correlation function can be expressed
cs(q,t)5 f s(q)1c̃s(q,t) where c̃s(q,t)→0, as t→` for
w.wc . In this case, the Laplace transform of Eq.~3.3! re-
duces to

f s~q!5
Gs

mc~q,t→`!

q2v0
21Gs

mc~q,t→`!
. ~3.14!

Now in the smallq limit, expansion~3.11! is used to approxi-
mate Gs

mc(q,t→`) in terms of the asymptotic values o
G0(t) and G2(t). It is important to indicate here that th
asymptotic limits ofG0(t) and G2(t) are nonzero constan
values forw.wc in the simple MCT model. By expressin
Eq. ~3.14! as aq expansion, and equating to cumulant expa
sion ~2.3!, the asymptotic spatial moments are obtained a

^r 2~ t→`!&56
v0

2

s2A0

, ~3.15!

^r 4~ t→`!&5120F v0
2

A0s2G 2S 11
A2

v0
2D ,
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where A0 and A2 are the long-time values ofGo(t) and
G2(t), respectively, which are obtained numerically. Usi
these, the asymptotic value ofa2(t) is evaluated as

a2
052

A2

v0
2

11. ~3.16!

However, in the extended MCT model, theGs
mc(q,t→`)

→0 and hencea2(t) vanishes in the asymptotic limit at a
densities. These long-time features ofa2(t) apply identically
to both the colloidal and the atomic systems.

IV. RESULTS

We now discuss our results for the various features
tagged particle dynamics in both the cases of Newtonian
Brownian dynamics. We evaluatea2(t) according to the
scheme defined in Sec. III A. We obtain the self-correlat
function cs(q,t) for the atomic system as the numerical s
lution of Eq. ~3.3! and that of colloidal system from Eq
~3.5!. Before going into the specific features of dynamics
both the cases, we first elaborate on the general results
find thata2(t) shows two distinct peaks—one in the sho
time b relaxation regime and the other in the long-timea
relaxation region @15#. The two-peak structure of non
Gaussian parameter has also been observed in the com
simulation study of a charged colloidal system in Ref.@12#.
In the theoretical studies of low-density fluids, kinetic theo
models were used to include the higher-order correlation
fects @16–18# in the single-particle dynamics. The peak
a2(t) calculated in these models occurred in the similar ti
range (;10tE) as observed in our results as the first peak
a2(t). We find that the position of this peak hardly chang
with density variation—a feature that was similarly found
the results obtained in the kinetic theory studies, and a
apparent in the results shown in Fig. 16 of Ref.@12#. The
second peak occurring in thea relaxation time range is a
consequence of longer-ranged correlated dynamical eff
in a dense liquid, and thus it is not observed in the low
density fluids.

In Sec. IV A, we describe the evaluation ofa2(t) in the
shorter-time region with the simple MCT model that predic
ideal glass transition. Note that, the simple or extended v
sions of MCT predict similar short-time behavior. Our resu
illustrate the significance of including the short waveleng
fluctuations in the evaluation of correlated effects over re
tively short-time scales. The comparative description of
sults for the two types of dynamics are presented in S
IV B using the extended MCT model.

A. Simple MCT model

The evaluation ofa2(t) in the MCT model involves the
numerical calculation of wave-vector integrals. Thus the
fect of fixing the upper wave-vector cutoffL in such inte-
grals is an important aspect to be considered in orde
ascertain the quantitative correctness of results. We c
ducted a detailed numerical analysis of the above equat
5-5
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especially in this regard. We separately present below
results for the Newtonian and the Brownian dynamic cas

In the short and intermediate time regimes, thea2(t) re-
sults show convergence at a largeL value ('60s). With the
choice of smallerL, however, the qualitative features o
a2(t) as discussed above remains unaltered over the w
time range in the atomic systems. The quantitative dep
dence onL is governed by the fact that whether or not t
value of upper cutoff corresponds to an extrema of the st
structure factorS(k). For cutoff values corresponding to th
maximum or minimum of theS(k), the peak ina2(t) is
comparatively larger. To investigate this feature over the
tire time range of different relaxation regimes, we conside
relatively small packing fraction,w50.500 to extract the ef-
fects of changingL on the long-time behavior ofa2(t). In
Fig. 1, we illustrate this feature ofa2(t) for Newtonian dy-
namics atw50.565 for intermediate time scales. HereL lies
in the relatively shorter range. Two curves~a! and ~b! are
evaluated withL, respectively, fixed at the maximum and
an intermediate value ofS(k), as illustrated in the inset plo
of S(k). These results show a convergence with the incre
in theL finally to a distinct peak atL'60s21. In the Fig. 2,
we illustrate the results forL550s21 ~dot-dashed! and L
560s21 ~solid! with the distinct short-time peak ina2(t).
These are of the same form as curve~a! shown in Fig. 1. To
illustrate the fact that the short-time peak ina2(t) is a result
of the correlated effect of dynamics, we evaluatea2(t) from
the linearized dynamical equation by ignoring the mod
coupling term. The result is shown at samew in the inset of
Fig. 2 that shows a simple monotonically increasing var
tion towards zero, without any indication of a peak ina2(t).

These results suggest that since the numerical solutio
the dynamical equations involves calculation of oscillato
wave-vector integrals, the upper limit of these should be
timized such that one can ignore further contributions to

FIG. 1. Non-Gaussian parametera2(t) vs t* 5t/tE for the New-
tonian system atw50.565. The inset showsS(k) at w50.565,
where the relative locations ofL values for curvesa and b are
indicated.
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integral due to cancellation. Our comparison with the fina
converged results shows that fixingL at wave vector corre-
sponding to an extremum ofS(k) is an optimum choice in
this regard. This is important since evaluatinga2(t) up to
large time scales numerically with a very largeL is compu-
tationally impractical. The wave-vector grid of size 0.1s21

was found to be optimum in terms of convergence of res
and has been used in all the calculations reported in
present work. In the simple MCT model used here to eva
atea2(t), the first peak distinctly shows up even at densit
greater thanwc , at which the correlations are frozen in th
long-time regime. In such cases, the long-time peak is
observed and thea2(t) becomes constant at a nonzero val
in t→`, as discussed in Sec. III B.

The variation ofa2(t) is primarily determined from the
structure ofG2(t) @Eq. ~3.13!#. In Fig. 3, we illustrate the
different curves ofG2(t) that determined the correspondin
a2(t) in the Fig. 2, for the differentL values. In the inset of
this figure, the normalized value ofG0(t) @Eq. ~3.12!#, de-

noted asḠ0(t), is shown which displays a simple monoton
decrease at allL values for the whole time variation. Th
structure ofG2(t), however, indicates the origin of first pea
of a2(t) as the peak on the same timescale. The initial po
tive bump inG2(t) determines the height of the first peak
the correspondinga2(t). The convergence of results wit
increase inL is also apparent from this figure.

The second or the larger time peak ina2(t) shows com-
paratively less variation with respect to change inL, since in
the longer-time regimes, the major contribution in the wav
vector integrals is from thek ranges corresponding to th
structure factor maximum. Figure 4 highlights this aspect
the non-Gaussian parameter where thea2(t) variation for
the Newtonian dynamics is illustrated up to larger tim

FIG. 2. a2(t) vs t* (t* 5t/tE) for the Newtonian system atw
50.565. The solid line is obtained withL560s21 and the dot-
dashed curve is for 50s21. The result with the linearized dynamica
equation~without the mode coupling term! is shown in the inset at
the samew.
5-6
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scales forw50.500, using the simple MCT model. The thre
curves are evaluated using different values ofL correspond-
ing to thek value of the successive maximum, intermedia
and minimum of theS(k), respectively. The shape an
height of the second peak remains almost invariant due to
L variation, however, the position of the peak shifts to larg
time scales with increase inL.

The features of the present model described above a
almost identically to the case of the Brownian dynamics.
observe a similar two-peaked structure of the non-Gaus

FIG. 3. Variation ofG2(t) ~in units ofv0
2) with t* for the New-

tonian system atw50.565. The solid line is obtained withL
560s21 and the dot-dashed curve for 50s21. The normalized

Ḡ0(t) ~dimensionless! is illustrated in the inset.

FIG. 4. Long-time peak ina2(t) vs t* for the Newtonian sys-
tem atw50.500 forL530.0 ~dotted!, 34.5 ~solid!, and 38.0~dot-
dashed!.
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parameter. However, ifL has a value which is intermediat
between two extrema ofS(k), the short-time peak is hardly
observable. Thus, for example,Ls539.8 @37# does not cor-
responds to an extrema ofS(k) and so the first peak is no
observed in this case. In Fig. 5, we illustrate the variation
a2(t) for the colloidal system with different choices forL.
The relative location of the corresponding cut-off values w
respect to the extrema ofS(k) are shown as an inset of Fig
5. These results are obtained using the simple MCT mo
for stochastic dynamics atw50.516. Here we clearly ob
serve that curvec is computed withL located in between the
extrema and no peak ina2(t) appears in this case@37#.

B. Extended MCT Results

The simple version of MCT predicts zero diffusivity eve
at densities as low aswc50.516 @25#, contradicted by the
computer simulation results@33#. In this model, for atomic
@15# as well as for colloidal systems@37# the long-time peak
in the non-Gaussian parameter is not observable for dens
beyondwc , instead it freezes to a constant value~Sec. III B!.
In contrast, the light-scattering experiments on colloids sh
a strong peak ina2(t) at densities as high asw50.572~Ref.
@31#!. This limitation of simple MCT model is overcome b
the use of the extended MCT discussed in Sec. III. In R
@15# as well, the main aspects of tagged particle dynamic
the atomic system were considered using this model. For
colloidal system, we evaluate the non-Gaussian paramet
w50.542 by using the extended model equations for
Brownian dynamics@Eq. ~3.5! and Eq.~3.10!#. We adjust the
parameterd such that the relaxation timeta characterizing
the stretched exponential-a relaxation regime ofc(q,t), is
identical to that of the corresponding data obtained by

FIG. 5. Non-Gaussian parametera2(t) vs t in units of t for the
system following the Brownian dynamics atw50.516. The results
are shown with respect to differentL values indicated asa,b,c in
the curve ofS(k) as shown in the inset.
5-7
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C. KAUR AND S. P. DAS PHYSICAL REVIEW E67, 051505 ~2003!
light scattering experiments on colloids@Fig. 5~a! of Ref.
@20#!. This matching is done at the wave vector correspo
ing to the peak of structure factor. With this criterion, o
results show a faster rate of relaxation as compared to
experimental results although the overall time scales of
laxation match. The stretching exponentb is higher than that
obtained in the experimental results by about 12%. For
rect comparison, we evaluate the Newtonian dynamics at
same packing fractionw and the parameterd as used for
calculating the dynamics of the colloid. TheL in this calcu-
lation is fixed at 25s21 as we will be mainly discussing th
long-time features. The different relaxation regimes of

normalized memory functionḠ0(q50,t) for cs(q,t) @Eq.
~3.12!# are shown in Fig. 6. In the earlyb relaxation regime,
the slow dynamics of the colloidal system~solid line! is ob-
served as compared to the faster relaxation of the Newto
system ~dot-dashed line!. During the lattera relaxation
range, both the systems show similar variation. These
tures are also observed in the computer simulation stu
reported in Refs.@23,24# where comparative studies of New
tonian and stochastic dynamics in a supercooled system
made.

1. Non-Gaussian parameter

We evaluatea2(t) for both the systems using the metho
outlined in Sec. III A. These results are shown in the Fig.
where we illustrate the Brownian dynamical results by
solid line anda2(t) for the Newtonian system as the do
dashed curve.a2(t) show the maximum at the same time f
both the systems, although the heights of the two peaks
slightly different at this time. The higher-order moments
Gs(r ,t) determininga2(t) are susceptible to changes ev
due to a slight difference of the relaxation in the correlatio
In the longer-time region, these two curves show a conve

FIG. 6. Comparison of the different relaxation regimes of n

malized memory functionḠ0(t) for the Brownian~solid line! and
the Newtonian~dot-dashed line! systems atw50.542. The timet
[t/t.
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ing trend. The results ofa2(t) obtained in the experimenta
studies of colloidal suspensions at a slightly lower dens
w50.540@31# appears at'800t, which is of the same orde
as obtained in our results of Fig. 7 ('400t). The inset
shows thea2(t) obtained from the light-scattering exper
ments reported in Ref.@31#. The peak height ofa2(t) ob-
tained from the theoretical calculation is much lower th
that obtained in the experimental data. The theoretical cur
are obtained with only asingle adjustable parameterd that
was chosen so as to match the time scale of relaxation
c(q,t) with the experimentally obtained results@20#, at a
single q value. Comparison witha2(t) obtained from the
light-scattering studies at the highest densityw50.570 @31#
has not been shown here since that will involve further co
putational effort by almost another three orders of mag
tude. The density dependence ofa2(t) obtained in the
present theoretical model is further illustrated in Fig. 8. He
we showa2(t) for the atomic system corresponding to thr
different packing fractionsw. These results are obtained u
ing the extended MCT model withd kept fixed at a value so
as to match the theoretically obtained self-diffusion coe
cient at w50.565 @15#, with that obtained from compute
simulations of one-component hard-sphere systems as
ported in Ref.@33#. a2(t) shows an increasing deviatio
from the Gaussian behavior and the approach towards
maximum deviation becomes slower with an increase in d
sity. These qualitative features have also been observe
the molecular dynamics simulation of two-component s
tems with different interaction potentials@8,38#. We show a
qualitative comparison of our results witha2(t) for the bi-
nary Lennard Jones~LJ! system in the inset of Fig. 8. Thes
data are taken from the results shown in Fig. 1 of Ref.@8#.

In Fig. 9, we have shown the conditional probability di
tribution function 4pr 2Gs(r ,t) in both the Newtonian and
the Brownian systems at the time where the second pea

-
FIG. 7. The Long-time peak ina2(t) (t[t/t), compared for the

Newtonian~dot-dashed line! and Brownian~solid line! system at
w50.542 using the extended MCT. The inset shows the co
spondinga2(t) obtained experimentally in Ref.@31# at w50.540.
5-8
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TAGGED PARTICLE MOTION IN A DENSE LIQUID: . . . PHYSICAL REVIEW E67, 051505 ~2003!
a2(t) appears~Fig. 7!. Gs(r ,t) of both the systems at thi
time are practically indistinguishable from each other a
thus illustrates again the similarity of dynamics in both s
tems in the later relaxational time range. Here, we h

FIG. 8. Comparison of thea2(t) variation at different densities
for the Newtonian system. The dashed line showsa2(t) at w
50.550, the solid line is forw50.565, and the dot-dashed curve
for w50.570. The dimensionless timet* 5t/tE , tE being the En-
skog collision time. The inset illustrates the result from Ref.@8# for
a binary LJ system at temperaturesT* 50.550 ~dashed!, T*
50.480 ~solid!, and T* 50.451 ~dot-dashed!. Here T* is the re-
duced temperature in LJ units (T* 5kBT/eAA) and time is ex-
pressed in the LJ time scaletLJ5AsAA

2 m/eAA @8#.

FIG. 9. 4pr 2Gs(r ,t) vs r * 5r /s for the two systems atw
50.542 compared with the corresponding Gaussian distribu
shown as the double dot-dashed line.tp2 is the time~in units of t)
at whicha2(t) shows the long-time peak in Fig. 7. The respect
curves of the Newtonian and the Brownian systems are almos
distinguishable.
05150
d
-
e

shown the comparison of this function with the correspon
ing Gaussian distributionGs

0(r ,t)5@3/(2p^r 2(t)&)#3/2exp
@23r2/2^r 2(t)&# by using^r 2(t)& at the position of the long-
time peak ina2(t). This is illustrated as the double do
dashed line in this figure. Beyond the distancer M ~marked in
the Fig. 9 by the arrow!, Gs(r ,t) develops a slowly decaying
tail, and thus the probability of finding the tagged particle
greater than that predicted by the correspondingGs

0(r ,t). In
the computer simulation studies of Kobet al. @8#, the par-
ticles that crossed the distancer M were labeled as ‘‘mobile’’
particles. Such highly correlated clusters of particles lead
heterogeneous distribution of mobile and relatively immob
regions in the system that pertain to have different relaxa
rates. In the present case, the fraction of ‘‘mobile’’ particl
evaluated as* r M

` dr 4pr 2Gs(r ,t) is the same in both the

cases.

2. Mean square displacement

The mean square displacement is the second momen
Gs(r ,t). The initial variation of^r 2(t)& in a Brownian sys-
tem is diffusive (̂ r 2(t)&}t) and is ballistic (̂ r 2(t)&}t2) in
the Newtonian dynamics. The time variation of the me
square displacement^r 2(t)& is a strong indicator of the in-
terplay between the collective and the tagged particle
namics in dense liquid state. We show in Fig. 10, the cro
over from short-time diffusion to long-time diffusive
behavior in the Brownian dynamics case. The intercepts
the curve show the comparative decrease in diffusion coe
cients. In the inset of Fig. 10, we have compared the ti
evolution of ^r 2(t)& for the Brownian~solid! and the New-
tonian ~dot-dashed! dynamics. The different increasing rate
of ^r 2(t)& are evident from this figure, shown in a log-lo

n

n-

FIG. 10. Mean square displacement^r 2(t)& ~ in units of s2) vs
time t[t/t for the Brownian system atw50.542. Dashed and dot
ted lines show the short- and the long-time diffusive motion, resp
tively. The inset shows the comparison for the Newtonian~dashed!
and the Brownian~solid! systems at the samew.
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C. KAUR AND S. P. DAS PHYSICAL REVIEW E67, 051505 ~2003!
plot. Over intermediate times, a plateaulike region appe
which demonstrates the so-called cage effect during wh
the tagged particle is trapped in a cage formed due to
collective motion of the surrounding particles. This is o
served in both the types of dynamics and corresponds to
late b relaxation regime. With progress of time, the partic
comes out of the cage and shows a subdiffusive beha
(^r 2(t)&}ta,a,1). Finally, its motion becomes purely dif
fusive (a51) in the very long-time regime. Stronger th
jamming of the supercooled liquid is, slower is these cro
over process and hence the increase in density leads
decrease ina in a given time window@15#. The variation of
^r 2(t)& in thea relaxation time scale also merge for both t
cases.

V. DISCUSSION

The main thrust of this work is to present a comparison
the heterogeneous dynamics in the atomic~Newtonian! and
the Brownian systems in the supercooled state. We prese
detailed account of the computation ofa2(t) within the
mode-coupling theory framework. The calculation ofa2(t)
involves evaluating wave-vector integrals over the structu
and self-correlation functions and the respectivek deriva-
tives. The present work illustrates the relevance of prope
including the short wavelength fluctuations in such integra
such that a convergence is obtained in the results. We fo
the existence of a double peak structure of the non-Gaus
parameter for both the systems following the Newtonian@15#
and the stochastic dynamics. This is indicative of the ch
acteristic two-step relaxation process of the correlation fu
tions in dense liquid states. The computer simulation stud
on charged colloidal liquids@12# in supercooled state re
ported such astructuredvariation of the non-Gaussian pa
rameter. Qualitatively similar results from the molecular d
namics simulation of soft-sphere alloys were also reporte
Ref. @38#. However, the computer simulation studies of t
Lennard Jones binary mixtures in Ref.@8# show a smoothly
rising single peak of the non-Gaussian parameter. In
case,a2(t) increases during theb relaxation range and start
decaying towards zero in thea relaxation regime. The firs
peak as seen in our model for a one-component hard-sp
system is not observed there. These facts clearly point
wards a need for a thorough probe in the shorter-time
.
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gimes. The short-time peak represents the effect of correl
dynamics in the shorter time scales. It is not observed if
mode-coupling effects in the dynamical equations are
nored. This short-time peak observed in our model occ
over the same time scale as observed in the kinetic the
models@16–18#. With the increase in density, correlated m
tions persist up to larger time scales and hence the sec
peak ina2(t) has been generally observed in dense liq
state. This is observed both theoretically, as in our mod
and in computer simulation studies@8,12#.

In the present model, we find that the van Hove se
correlation function is a monotonically decreasing functi
for the colloidal systems~Fig. 9!. However, in computer
simulation of stochastic dynamics characterizing charg
colloids, the probability 4pr 2Gs(r ,t) shows a two-peaked
spatial variation@22#. This has been related to ‘‘hopping
processes@22# that restore ergodicity in the supercoole
state. We do not observe the second peak in the corresp
ing result for the Brownian system. The present work
based on the theoretical model that includes the ergodi
restoring mechanisms only in the collective density dyna
ics @Eq. ~3.6!# @26# and not in the tagged particle relaxatio
@Eq. ~3.3! and~3.5!#. The inclusion of these in the theory wi
presumably produce more realistic results for the tagged
ticle dynamics. The comparison ofa2(t) obtained for the
colloidal system in this model with the corresponding res
of the light-scattering experiments@31# on the colloidal sus-
pension shows that the longer-time peak ina2(t) occurs on
similar time scales. However, we find that the height of t
peak is much shorter than that seen in experiment, imply
that the type of relaxation is different quantitatively. No r
sults in the shorter-time regime are reported in the exp
mental study@31#. A better comparison would be with th
computer simulation studies done with the stochastic dyn
ics on hard-sphere systems comprising identical partic
where the higher-order properties such asa2(t) are also
evaluated.
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@23# H. Löwen, J.P. Hansen, and J.N. Roux, Phys. Rev. A44, 1169

~1991!.
@24# T. Gleim, W. Kob, and K. Binder, Phys. Rev. Lett.81, 4404

~1998!.
@25# U. Bengtzelius, W. Go¨tze, and A. Sj¨olander, J. Phys. C17,

5915 ~1984!.
@26# S.P. Das and G.F. Mazenko, Phys. Rev. A34, 2265~1986!.
@27# S.P. Das, Phys. Rev. A36, 211 ~1987!.
@28# T.R. Kirkpatrick and J.C. Nieuwoudt, Phys. Rev. A33, 2658

~1986!.
05150
@29# G. Szamel and H. Lo¨wen, Phys. Rev. A44, 8215~1991!.
@30# G.F. Mazenko, S. Ramaswamy, and J. Toner, Phys. Rev. A28,

1618 ~1983!.
@31# T.C. Mortensen and W. van Megen, inSlow Dynamics in Com-

plex Systems, edited by M. Tokuyama and I. Oppenheim, AI
Conf. Proc. No. 469~AIP, Woodbury, NY, 1999!, p. 3.

@32# S.P. Das, Phys. Rev. A42, 6116~1990!.
@33# L.V. Woodcock and C.A. Angell, Phys. Rev. Lett.47, 1129

~1981!.
@34# S. Srivastava and S.P. Das, J. Chem. Phys.116, 2529~2002!.
@35# J. Yeo and G.F. Mazenko, J. Non-Cryst. Solids172-174, 1

~1994!; Phys. Rev. E51, 5752~1995!.
@36# In the t→0 limit, the Eq. ~3.3! reduces to a linearized form

from whichcs(q,t) can be obtained in an analytical form. Th
cumulant expansion of this uptilO(q4) gives thea2(t) whose
t→0 limit is obtained as22/3.

@37# M. Fuchs, W. Go¨tze, and M.R. Mayr, Phys. Rev. E58, 3384
~1998!.

@38# B. Bernu, J.P. Hansen, Y. Hiwatari, and G. Pastore, Phys. R
A 36, 4891~1987!.
5-11


