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Tagged particle motion in a dense liquid: Feedback effects from the collective dynamics
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The nature of the tagged particle motion in the strongly correlated state of a dense liquid is studied with the
self-consistent mode-coupling model. The tagged particle time correlation fungtiont) is computed by
taking into account the nonlinear feedback effects on its dynamics from the coupling with density fluctuations.
We consider the two cases whégg the short-time dynamics is diffusive resembling colloidal system (and
the short-time dynamics is Newtonian as in an atomic system. The non-Gaussian pataiftg¢ter evaluated
using the fourth- and second-order spatial moments of the van Hove self-correlation fuBgtiot). We
observe a two-peaked structure @§(t) for both (a) and (b) types of dynamics. We also compare other
characteristic aspects of tagged particle dynamics such as the mean square displacement, non-Gaussian nature
of G4(r,t), and fraction of mobile particles. A qualitative comparison is drawn between the theoretical results
with the experimental and computer simulation results on colloids.
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[. INTRODUCTION evolving via the Brownian dynamics. Here we refer to a
system aga) “colloidal” in which the tagged particle dy-
The intriguing relaxation features of the various dynamicnamics in the short-time is diffusive ang) “atomic” in
correlation functions characterizing the dense liquid statevhich the short-time behavior corresponds to phononlike os-
have posed active research grounds in recent years. To reHlatory modes. The atomic systems consist of the usual mi-
solve the underlying mechanisms responsible for the nonexsroscopic particles and a colloidal suspension comprises of
ponential relaxations, there has been an upsurge of researagtesoscopic particles, i.e., much larger sized, suspended in a
activity to correlate the structural and dynamical heterogenemedium of microscopic particles. Due to the large size dif-
ities in a supercooled system. This has been primarily basef@rence between the colloid and the solvent particles, there is
upon the experimental observatidis-6] and the analysis of a complete separation of the relaxation time scales. This re-
the computer simulated many-body dynami&-12. In  sults in a “free” diffusive motion of the colloid particle in
such studies, the nonexponential relaxation characterizinthe short-time regime, till it starts interacting with other such
the supercooled liquids has been often linked to dynamicallyparticles and the dynamic correlations start buildind 1.
correlated regions in the system. The heterogeneous distribé relevant question in the analysis of the dynamics is, how
tion of the relatively mobile and immobile regions has alsothe nature of microscopic dynamics in a system affect the
been found to be responsible for the violation of the Stokewarious relaxation mechanisms in a supercooled liquid. Ex-
Einstein law in fragile glass formefd 3]. In Ref.[14], the tensive light-scattering experiments on sterically stabilized
dynamical heterogeneities were shown to be directly resporeolloids [20,21] and computer simulation of stochastic dy-
sible for the decoupling of relaxation and diffusion mecha-namics for binary charged colloidal systems in the super-
nisms in a supercooled system. This was done through agooled statd12,22] have been conducted in this context.
analysis of the four-point correlation functions obtained fromDirect comparison of the corresponding relaxations in colloi-
the computer simulation data of the binary Lennard Joneslal and atomic systems have also been conducted numeri-
systems. A purely theoretical approach was used in[R&f.  cally using the stochastic and molecular dynamics simula-
as a link to understand the origin of the characteristic nontions [23,24. Most of such studies have been directed
exponential relaxation in a realistic framework of mode-specifically toward evaluating the correlation functions and
coupling theory(MCT). Various aspects of dense liquid dy- testing whether there is any universality in the asymptotic
namics, especially with respect to the existence of dynamicalynamics irrespective of the nature of microscopic dynam-
heterogeneities for a hard-sphere system were presentézs. The general conclusion being dray@8,24] is that the
there. Two different time regimes where the heterogeneousicroscopic dynamics mainly determines the eg@lyelax-
dynamics manifest the most, emerged from this stiidy}.  ation regime. The atomic systems are characterized by pho-
The computer simulation of colloidal systefi2] also de- non excitations in the initial time range that leads to a faster
picted such a two-peak structure of the dynamical heterogedecay of the correlations as compared to the relaxation in the
neity parameter. The shorter of these time scales was fountblloids during the same time range. Therelaxation has
to be independent of density variation and was analogous tbeen found to be similar in both the systems as regards the
the results of low-density fluids obtained using the kineticstretching exponeri23,24), however, the relaxation time of
theory modeld16-18. This represented the effects of cor- the atomic system is, in general, smaller than that of the
related dynamics in the initial stages of relaxation in a many-<orresponding colloidal system.
body system. In the present paper, we use the self-consistent MCT to
In the present work, we make an extension of this theotheoretically evaluate the comparative nature of correlated
retical approach to study similar aspects in the systemdynamics in dense colloidal and atomic systems. This is done
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here especially to determine the dynamical heterogeneitiesver the intermediate time ranges, the complex dynamics in
that characterize the higher-order cooperative effects of dythe dense supercooled state lead to a deviatio®f,t)
namics. The self-consistent MCT has been develd@&d  from the Gaussian behavior. This deviation is indicative of
27] and used extensively in the last two decades to undetthe corresponding nonexponential time relaxation of the cor-
stand varied dynamical phenomenon typical of anrelation functions and its quantification constitutes an impor-
undercooled system. Various characteristic features of thtant step toward our understanding of the basic relaxational
dense liquid state dynamics observed in experimental studnechanisms in a dense liquid. In the computer simulation
ies, such as the two-step relaxation process, divergence efudies, the evaluation of distinct van Hove correlation func-
relaxation times, are obtained within this theory. This is as dion [22] has provided novel insights in the cooperative dy-
result of the nonlinear feedback mechanism from the counamics of supercooled liquids in the intermediate time re-
pling of density fluctuations enhancing the viscosity. Thegimes of relaxation. Donagt al. [9] have found regions of
collective density correlation function is used to evaluate restringlike correlated motion in the liquid in these time scales
laxation of the tagged particle correlation functif?8,15.  where the deviation from the Gaussian behavior maximizes.
The standard form of the MCT equations obtained for theSuch results point towards the possibility of the structural
atomic systems does not refer to diffusive motion in theand dynamical heterogeneities being self-consistently result-
short-time limits. However, in a simplified form of the MCT ing due to the correlated dynamics.
equations, the collective density correlations have the long- Rahman[7] first defined the non-Gaussian deviations of
time behavior similar to the Brownian dynami@ef.[29]),  G4(r,t) and hence its Fourier transformi,(q,t), in terms of
and will be used for colloids in the present work. the parametera,(t), as(t) as

In Sec. Il, we briefly discuss the definition of the non-
Gaussian parameter,(t) and how it signifies the higher-
order correlation effects. In Sec. lll, we describe the standar
theoretical framework of self-consistent mode-coupling
theory, and the scheme of evaluatiag(t). Various aspects —3as()][Pp. (D)3~
of the dynamical equations for the colloidal and atomic sys- 3 ! o
tems are discussed here. We present the results in Sec. IV ) _ _ ) _
where we illustrate the different dynamical properties ofsuch that the leading term is Gaussian. Hej¢t) is defined
tagged particle motion. We analyze the dynamic variation oftS the non-Gaussian parametes(t) = 2p,(t)/[ p1(t)]* and
the mean square displacement as obtained from this modata(t) are expressible in terms of the spatial moments of
The non-Gaussian nature G(r,t) is also illustrated and Gg(r,t), defined as(r?"(t))=/[drr2"(t)Gq(r,t). For ex-
compared with the corresponding Gaussian distribution aample, the second moment represefit$(t)) for n=1,
the timet,,—corresponding to the peak af(t). Using this  which is the mean square displacement of the particle from
treatment, we identify the fraction of “mobile” particld8§]  the origin in timet. By comparing this equation with the
at t,,, which indicate the strong departure from Gaussiarcumulant expansion af(q,t) in g,
behavior. A discussion of these results concludes the paper in
Sec. V.

1 ) , 1
Lt 57 aa(O[@pa(0)12= 3yl as(t)

4 Velan=e a0

, (2.2)

* . q2n ]
ws(q,t>=nzo(—1> muz ), 2.3

Il. THE NON-GAUSSIAN PARAMETER
the p,(t) can be expressed in terms(@f"(t)) [18]. Follow-
ing which, thea,(t) is expressible in the standard form as

3(r'n)
5(r2(1))?

This definition ensures the,(t) to vanish in the limit of a
Gaussian distribution o54(r,t). The presence of higher-

The single-particle dynamidsl8] in a fluid is described

by the self-part of the van Hove correlation function
Gs(|ri—raf,t)=V(a(r;—R(1))8(r,—R(0))), (2.1 ay(t)= (2.9

whereR(t) is the position of the tagged particle at tirhi
a system of volumé/. It is a measure of how the nature of
spatial correlat?on Qf the tagged part@cle with _its initial _posi_- order moments irv,(t) represents cooperative effects in dy-
tion evolves with time. When the microscopic dynamics IS amics
Newtonian, the very short time scales correspond to the free '
particle limit. TheG4(r,t) can be evaluated analytically in
this limit [18] and is represented by a narrow Gaussian dis-
tribution, G(r,t) = (mv§t?) ~¥%exd —(rugt)?], wherev, is The dynamical evolution of the characteristic correlation
the thermal velocity of the particles. In a colloidal system,functions is obtained here using the self-consistent MCT. The
the Brownian dynamics lead to a diffusive behaviortheoretical framework is mainly based on the systems gov-
[G(r,t)xexp(—r?2D5t)] in the short-time rangelj being  erned by the Newtonian dynamics. In REZ9], the stochas-
the short-time diffusion coefficient. In the very long-time tic equation for the dynamics of collective density fluctua-
limit, the motion of the tagged particle becomes diffusive,tions were developed in a projector operator formalism. The
both in the Newtonian and in the Brownian dynamics and theSmoluchowski operator is used to describe the dynamics and
Gaussianspatial variation ofG¢(r,t) is obtained. However, mode-coupling approximations is applied to finally arrive at

Ill. THE SELF-CORRELATION FUNCTION
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the equation in the long-time limit. This equation is same as The mode-coupling contributiod’s'%(q,t) in Eqg. (3.3

the corresponding limit of the dynamical equation for densitytakes into account the effect of coupling between the collec-
fluctuation in an atomic system. In an analogous treatmentive and the tagged particle motion. It is expressed in units of
we compute the colloidal dynamics using the long-time Iimitvg/g2 as

of the collective and tagged particle dynamical equations for

the Newtonian system. We consider these with appropriate 1 dk
identification of the characteristic time scale and short-time  I's(q,t)= —*f 3
transport in both the systems. This treatment correctly pro- n (2m)
duces the short-time diffusive nature of tagged particle mo-

tion in a colloidal system. Here the vertex function is obtained in terms of the static

The standard MCT is mainly formulated in terms of the . ; SR (A V2 2
correlation between the collective density fluctuations in th%ﬂfra%fpneljz]e;ef ggﬁ]si?;;(oqf’ge E%&% [ig(léyprse(:s?édTEgre in
system. The Fourier transform of the density aUtocorrelatioraimensionless form as* =no3. The static structure factor

function normalized with respect to its equal time value is -
dofinod as P a is denoted asS(k) and S(k)=nc(k), c(k) being the

Ornstein-Zernike direct correlation function.
. = - In the long-time limit, the second derivative term is ig-
_ (8™ (a,1)dp(a,0)) (3.) Nored in Eq,(3.3) to obtain

(6p*(0.0)8p(q,0))

w(|a—K|,)V(a,k) gk, ).
(3.9

¥(q,t)

¢S(q!t)+l'l“

t
. A q2¢s(q,t)+f dr'Thda.t=7)ys(a,7') |=0.
where q is the wave vector and the density(q,t) 0 3.5
=3N 4R Ri(t) being the position of theth particle at '
time t. The tagged particle dynamics are determined in term3his shows a diffusive relaxation fap¢(q,t) in the short-
of the self-correlation function or the incoherent scatteringtime limit as expected for a colloidal system. Therefore, we

function, given by will consider this equation for computing the tagged particle
dynamics for this system. In E@3.5), as mentioned above
w9, =(8p (4,1 8ps(— G 0) 3.2 the unit of timer is identified with respect to the short-time
s\ M s\My S ’ ’ .

diffusion coefficientD3 . This time scaler is generally mea-

SR _ sured in the light-scattering studies of colloiigl] (7
where pg(q,t)=€'%Ral) is the Fourier transform of the 215 sec).

tagged particle density. For the atomic system, #h6d,t) The dynamical evolution oft(q,t) is coupled with the
is evaluated as a numerical solution of the second-ordegsrresponding relaxation of the collective density fluctua-
integro differential equatiofi28,30, tions ¥(q,t), through the mode-coupling kern&lX(q,t)
) 0o\ 2 ) N ]EEq. (;.4_)]: Wtethqse the'elxt_endte? n:ﬁdet_kfoup"n'lghm‘li_@]l
Ie(a )+ 2| | Pe(a,t) + o Live(a,t) or obtaining this crucial input to the theory. The Laplace
o transformed equation governing the relaxationygfy,t) in

this model[26] is expressed as
=0. (3.3

t
7 mc, oy, ’
+f0d7' rgu(a,t—7")¢s(q,7") z+il'%(q,2)

22— 05+irR(q,2)[z+ig%y(q,2)]’

#(0,2)= (3.6)

Here,v is the average thermal speed of the particles, wave

vectors are expressed in dimensionless foge o) where ~ WhereQ,=quo/VS(q) corresponds to a characteristic mi-
the unit of length is the hard-sphere diameterand time is ~ croscopic frequency for the liquid state dynamics and
expressed in units of. We definer such that a direct com- I (d,2) is the renormalized longitudinal viscosity. This is
parison of the Newtonian dynamics with that of the colloidalOPtained using nonlinear fluctuating hydrodynamics by an
system can be illustrated. The time scale of relaxation irRPPropriate treatment of the nonlinear coupling between cur-
colloids is usually measuref®1,31] in terms of the short- rent and density fluctuations charactenzmg a compressible
time diffusion coefficienD$, asr= o2u/D§ with u being a  fluid [26,27. The memory function

constant. In order to compare with the experimental results o ‘

we definew=1/24 as in Ref[21]. In the case of the atomic FR(q,Z)ZFB(QHJ dtl'd(q,t)e'”, (3.7
system, we obtain Eq(3.3) by identifying the short-time 0

d|ffu3|c2)n In terms of the bare transport coefficierf , as whereI'g(q) is the Bare part or the contribution due to the

0=vo/T's . From the Enskog kinetic theory, the Bare-partinitial uncorrelated collisions in the liquid. The mode-
I'S for the hard-sphere Newtonian dynamics is givenlldy  coupling partT",,{(q,t) accounts for the memory effects due
=2/3 in units of inverse Enskog collision timéz  to the correlated motion in the dense liquid, which become
=1[4Jmg(o)nvyo?], wheren is the average number den- significant over intermediate and long time scales. It is ob-
sity andg(o) is the contact value of the radial distribution tained within the one-loop approximati¢26,32 as a bilin-
function. ear coupling between the density fluctuatip8g],
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dk L time transport coefficient identified é8,=0vj/I'g for the
I'da,t)= ; zf —sw(k,t)V(q,k)zp(|q—k|,t) collective density fluctuations of the Brownian dynamics
2n*q®) (2m) 3.9 case. In the present work, we have fixed this raticas 1/24.

The experimental studies of colloids show that the static

in units ofv2/o2, such that a self-consistent equation is ob-Properties like the structure fact&(k) are similar to that of

; . a hard-sphere liquid. Therefore, we use the Percus Yevick
glr;;d fory(qt) from Eq. (3.6). The vertex function in Eq. solution for S(k) in both the Newtonian and the Brownian

o o o system.

V(4,K)=S(k)S(|g—KD[(9.K)E(k)—q.(q—K)S(|g—K]) ]2
(3.9

In Eqg. (3.6), the functiony(q,z) represents the cutoff func-
tion that is responsible for keeping the system ergodic at algu
densities. We use the expression obtained for this function i
the one-loop approximation[27,32)). In the present work,
we have used/(q,t) with a factors in order to consider the
finite wave-vector generalization. This determines th
strength ofy(q,t) and thus the time scale @i relaxation
such that consistency with the experimental results can be
obtained by appropriately fixing the single parameiefmhe
simple version of the mode-coupling mod&5] results if
v(q,2) is ignor_ed in Eq.(3.6),_or equiva_llently if one set$ _ I7%q,t)=To(t) + 2T (1) + q*T4(t) + - -+, (3.11)
=0. An ergodic to nonergodic dynamic transition results in
the simple model at a critical packing fractian.~0.516 ..
[25,37] (¢=mn*/6) where the dynamic correlations freeze by using the Taylor series expansions #f(|g—k|,t) and
at a nonzero value. The molecular dynamics stugfB8sand  V¢(q,k) in Eqg. (3.4). The coefficientsI',,(t) involve the
the light-scattering experiments of colloifi20] showed that wave-vector integrals of second- and higher-orgeleriva-
the dynamics became increasingly slow with density risetives of 5(q,t) and ¢(q,t). These are given by
However, the conclusion on the occurrence of a sharp tran-
sition is not forthcoming. These light-scattering res(i8] 2
were exhaustively analyzed in RéB4] within a phenom- Fo(t)= §f dkkc 2(k)S(k) ss(k ) w(k,t) (3.12
enological model of the extended MJB5] to show that
even up to the highest density, the relaxation time of the
correlation functions remained finite. In the present work, weand
have considered both the simple and the extended mode-
coupling models. 2 1

To numerically evaluate the dynamical variation of I‘z(t)zf dkk“Ez(k)S(k)[ﬁ Wik, 0+ gwg(k,t)}w(k,t),
¥5(q,t), we first inverse-Laplace transform E@®.6) to ob- (3.13
tain the time evolution of the(q,t) as a second-order inte- ’
grodifferential equation for the Newtonian dynami&2]. ,
The Bare contribution to the generalized longitudinal viscosWhereds(k,t) = (9/ k) ¢s(k,t). To evaluaten,(t), theq ex-
ity is obtained from the Enskog kinetic theory &g(x)  PansionEq.(3.11]is truncated aon(q?), i.e., one needs to
= (2/3te)[1—jo(X) +2j2(X)]. Herej, is the spherical Bessel compute or_1|y1“0(t) andl“_z(t). To c_alculatg the hlgher-or_der
function of orderl andx=qo. The corresponding equation Non-Gaussian effects likexs(t) will require the quantity
for the Brownian dynamics is obtained by ignoring the I'a(t) in Eq. (3.11) to be evaluated. This is expressed in

#(q,t) term (as similarly done for the self-correlation func- terms of even higher-ordder derivatives that are difficult to
tion)’ and is explicitly given by obtain numerically with sufficient accuracy.

In the atomic system characterized by the Newtonian dy-

A. Evaluation of the non-Gaussian parameter

We evaluate the)(q,t) in the small wave-vector range,
ch that it can be equated to the cumulant expanidton
r(12.3)] truncated aO(g*). The second and fourth spatial mo-
ments(r?(t)) and(r4(t)), are thus obtained on curve-fitting
1—5(q,1)]/g? to a linear form with respect tg?. The
slope is £(r*(t)) and the intercept is given by
5(r*(t)). From this, we calculate(t) from Eq.(2.4).
To evaluatey¢(q,t) in the smallg range, the memory
functionT'{'(q,t) is expressed as an expansiomjigiven by

) ol (Y b , namics, the tagged particle moves as a free particle for very
p(q,t)+u'q fodT Fnda,t—=7")¢(q,7") short time in a straight line trajectory, and hence its probabil-
ity of being at a positiom in time t can be expressed simply
t #(q,71) as 8(r—vt) [18]. Using the Maxwellian distribution for
+ (g, + f d = s ) )
[S]™ vla.t 0 md Tl)( w' the velocity v, the G4(r,t) is obtained asGq(r,t)

= (mvt?) ~%exd — (rlvgt)?]. So, in thet—0 limit, G(r,t)

is a Gaussian function ang,(t) should vanish identically in
this limit. The correct short-time behavior i8,(t)—0 as
~18 [16]. The present theoretical model, however, does not
The unit of time is defined in terms oDg, as described produce this short-time limit of,(t) and is mainly formu-
earlier. Hereu'=uDo/Dg, whereD, refers to the short- lated to take into account the correlated dynamical effects in

-0.  (3.10

+ fofldrzrmc(q,Tl_ Tz)lﬂ(qﬂ'z))
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dense liquid systems. Dynamical equati@?) is obtained where Ay and A, are the long-time values of ,(t) and
[28] within a generalizechydrodynamiccontext. It is not I',(t), respectively, which are obtained numerically. Using
valid for time scales lesser than the average collision time. Ithese, the asymptotic value af(t) is evaluated as

the present model, the dynamic equation for the tagged par-

ticle momentum densityg_jS would contain a damping term A,

even in the— 0 limit which is certainly not the free-particle a2=2—2 +1. (3.19
dynamics. On taking the corresponding limit in £§.3), we Yo

find a,(t) tends towards a negative constant vatu2/3 as

t—0 [36]. Here, it is worth noting that the evaluation of However, in the extended MCT model, tHd'(q,t— )
a,(t) for the low-density fluids in the kinetic theory approxi- —0 and hencex,(t) vanishes in the asymptotic limit at all
mation[16—18 also does not produce the correct short-timedensities. These long-time featuresagft) apply identically
limit. Although these are based on a microscopic treatmento both the colloidal and the atomic systems.

of the collision processes, these predict thgft) —0 as~t,
rather than the correct variationt® [18]. For the case of the

. . . . IV. RESULTS
Brownian dynamics, however, in the limit-0, Eq. (3.5
reduces to a diffusive equation, hence thg€t) vanishes as We now discuss our results for the various features of
t—0. tagged particle dynamics in both the cases of Newtonian and

Brownian dynamics. We evaluate,(t) according to the
scheme defined in Sec. Ill A. We obtain the self-correlation
function ¢4(q,t) for the atomic system as the numerical so-
The long-time limit ofa,(t) should identically be zero as Iution of Eg. (3.3) and that of colloidal system from Eq.
the tagged particle motion becomes totally diffusive in an(3.5). Before going into the specific features of dynamics in
ergodic liquid. However, in the simple MCT modé5], an  both the cases, we first elaborate on the general results. We
ergodic to nonergodic transition occurs in the system at dind that a,(t) shows two distinct peaks—one in the short-
critical packing fractione.. This is marked by the freezing time g relaxation regime and the other in the long-time
of the density and single particle correlations. Thus beyondelaxation region[15]. The two-peak structure of non-
oc, Y(q,t)—f(q) and ¢4(q,t)—Tfs(q) in the dynamic Gaussian parameter has also been observed in the computer
asymptotic limit. The final diffusive relaxation af4(q,t) simulation study of a charged colloidal system in H&£].
that causesy,(t) to vanish, never occurs beyong in this  In the theoretical studies of low-density fluids, kinetic theory
model. As a consequencey,(t) also becomes a nonzero models were used to include the higher-order correlation ef-

B. Asymptotic limit of a,(t) beyond ¢, in simple MCT

constanta$, in the long-time limit at densities beyong}.. fects[16—19 in the single-particle dynamics. The peak in
a,(t) calculated in these models occurred in the similar time
Evaluation of a3 range (- 10tg) as observed in our results as the first peak in

The self-correlation function can be expressed aé"?t(r:)d We'tfind th"’:,t the pc:csititon OIhthtis peak hﬁrdlly]f;har:jggs
B ~ ~ with density variation—a feature that was similarly found in
‘ﬂiq’t) _Ir:St(r?i)sZZ;(eq'E%evir;erlzci‘#g('tcrlz’atra:fo?ﬁ acl)sf tl;ao:(;) 1;(();_ the results obtained in the kinetic theory studies, and also
gucgé ‘o ’ P : apparent in the results shown in Fig. 16 of Rf2]. The
second peak occurring in the relaxation time range is a
consequence of longer-ranged correlated dynamical effects
I%q,t—x) in a dense liquid, and thus it is not observed in the lower-
(3.149  density fluids.
In Sec. IV A, we describe the evaluation a@f(t) in the
shorter-time region with the simple MCT model that predicts
Now in the smallg limit, expansion(3.11) is used to approxi- ideal glass transition. Note that, the simple or extended ver-
mate I''9(q,t—=) in terms of the asymptotic values of sions of MCT predict similar short-time behavior. Our results
T'o(t) and I'p(t). It is important to indicate here that the illustrate the significance of including the short wavelength
asymptotic limits ofl'4(t) and I',(t) are nonzero constant fluctuations in the evaluation of correlated effects over rela-
values fore> ¢, in the simple MCT model. By expressing tively short-time scales. The comparative description of re-
Eq. (3.14 as ag expansion, and equating to cumulant expan-Sults for the two types of dynamics are presented in Sec.
sion (2.3, the asymptotic spatial moments are obtained as !V B using the extended MCT model.

f = .
S(Q) qzvg+ F?C(q,t—wo)

2 A. Simple MCT model

Vo

' (3.19 The evaluation ofx,(t) in the MCT model involves the
numerical calculation of wave-vector integrals. Thus the ef-
fect of fixing the upper wave-vector cutoff in such inte-

2—>OO =6
(=) =6

Ug 2 ) grals is an important aspect to be considered in order to
(rit—o))=12 S |1+, ascertain the quantitative correctness of results. We con-
Ao Vo ducted a detailed numerical analysis of the above equations
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at)

t t
FIG. 1. Non-Gaussian parametes(t) vst* =t/tg for the New- FIG. 2. ay(t) vst* (t* =t/tg) for the Newtonian system ai
tonian system atp=0.565. The inset showS(k) at ¢=0.565, =0.565. The solid line is obtained with=600"* and the dot-
where the relative locations of values for curvesa andb are  dashed curve is for 39" 1. The result with the linearized dynamical
indicated. equation(without the mode coupling ternis shown in the inset at

. . . the samep.
especially in this regard. We separately present below the

results for the Newtonian and the Brownian dynamic cases, i . ) !
In the short and intermediate time regimes, thgt) re- integral due to cancellation. Our comparison with the finally

sults show convergence at a laryevalue (~600). With the converged results shows that fixiidg at wave vector corre-
choice of smallerA, however, the qualitative features of sponding to an extremum (k) is an optimum choice in

a,(t) as discussed above remains unaltered over the Whorf@is regard. This is important since evaluatiag(t) up to
time range in the atomic systems. The quantitative deper/2'9€ ime scales numerically with a very Ilargels.compli-
dence onA is governed by the fact that whether or not the @tionally impractical. The wave-vector grid of size 8.1

value of upper cutoff corresponds to an extrema of the statit/as found to be optimum in terms of convergence of results
structure factoiS(k). For cutoff values corresponding to the and has been used n all the calculations reported in the
present work. In the simple MCT model used here to evalu-

maximum or minimum of theS(k), the peak ina,(t) is X o "
comparatively larger. To investigate this feature over the en2t€@2(1), the first peak distinctly shows up even at densities
at which the correlations are frozen in the

tire time range of different relaxation regimes, we consider g'¢ater thanpe, : :
relatively small packing fractionp=0.500 to extract the ef- 0ng-time regime. In such cases, the long-time peak is not
fects of changing\ on the long-time behavior ak(t). In _observed and_ the,(t) b_ecomes constant at a nonzero value
Fig. 1, we illustrate this feature af,(t) for Newtonian dy- " t->, as discussed in Sec. llI B. ,

namics atp=0.565 for intermediate time scales. Hetdies The variation ofas(t) is primarily determined from the

in the relatively shorter range. Two curvés and (b) are  Structure ofl'p(t) [Eq. (3.13]. In Fig. 3, we illustrate the
evaluated with\, respectively, fixed at the maximum and at différent curves off’;(t) that determined the corresponding
an intermediate value @&(k), as illustrated in the inset plot @2(t) in the Fig. 2, for the different\ values. In the inset of

of S(k). These results show a convergence with the increas’S figure, the normalized value @f(t) [Eq. (3.12], de-

in the A finally to a distinct peak aA ~600 1. In the Fig. 2, noted ad o(t), is shown which displays a simple monotonic
we illustrate the results foh =500~ * (dot-dashepland A decrease at al\ values for the whole time variation. The
=600 (solid) with the distinct short-time peak in(t). structure ofl",(t), however, indicates the origin of first peak
These are of the same form as cufa@gshown in Fig. 1. To  of a,(t) as the peak on the same timescale. The initial posi-
illustrate the fact that the short-time peakadn(t) is a result  tive bump inI",(t) determines the height of the first peak in
of the correlated effect of dynamics, we evaluatgt) from  the correspondingr,(t). The convergence of results with
the linearized dynamical equation by ignoring the mode-ncrease inA is also apparent from this figure.

coupling term. The result is shown at sageén the inset of The second or the larger time peakadgn(t) shows com-
Fig. 2 that shows a simple monotonically increasing variaparatively less variation with respect to changeiinsince in
tion towards zero, without any indication of a peakaig(t). the longer-time regimes, the major contribution in the wave-

These results suggest that since the numerical solution ofector integrals is from thé ranges corresponding to the
the dynamical equations involves calculation of oscillatorystructure factor maximum. Figure 4 highlights this aspect of
wave-vector integrals, the upper limit of these should be opthe non-Gaussian parameter where thg€t) variation for
timized such that one can ignore further contributions to theéhe Newtonian dynamics is illustrated up to larger time
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FIG. 3. Variation ofl",(t) (in units ofv3) with t* for the New- e
tonian system atp=0.565. The solid line is obtained with FIG. 5. Non-Gaussian parametes(t) vst in units of 7 for the

=600"! and the dot-dashed curve for &0'. The normalized  system following the Brownian dynamics at=0.516. The results
I'o(t) (dimensionleskis illustrated in the inset. are shown with respect to differeAt values indicated aa,b,c in
the curve ofS(k) as shown in the inset.

scales forp=0.500, using the simple MCT model. The three
curves are evaluated using different values\oforrespond- parameter. However, i\ has a value which is intermediate
ing to thek value of the successive maximum, intermediate between two extrema &(k), the short-time peak is hardly
and minimum of theS(k), respectively. The shape and observable. Thus, for examplé,c=39.8[37] does not cor-
height of the second peak remains almost invariant due to theesponds to an extrema &k) and so the first peak is not
A variation, however, the position of the peak shifts to largerobserved in this case. In Fig. 5, we illustrate the variation of
time scales with increase if. a,(t) for the colloidal system with different choices fdr.

The features of the present model described above applihe relative location of the corresponding cut-off values with
almost identically to the case of the Brownian dynamics. Werespect to the extrema &(k) are shown as an inset of Fig.
observe a similar two-peaked structure of the non-Gaussiab. These results are obtained using the simple MCT model

for stochastic dynamics ap=0.516. Here we clearly ob-
02 e e serve that curve is computed with\ located in between the
. extrema and no peak in,(t) appears in this cad@&7].

B. Extended MCT Results

The simple version of MCT predicts zero diffusivity even
at densities as low ag.=0.516[25], contradicted by the
computer simulation resulfs83]. In this model, for atomic
[15] as well as for colloidal system87] the long-time peak
in the non-Gaussian parameter is not observable for densities
beyonde,, instead it freezes to a constant valSec. 1l B).

In contrast, the light-scattering experiments on colloids show
a strong peak imv,(t) at densities as high as=0.572(Ref.
[31]). This limitation of simple MCT model is overcome by
the use of the extended MCT discussed in Sec. Ill. In Ref.

. [15] as well, the main aspects of tagged particle dynamics in
0 J5 00 the atomic system were considered using this model. For the

10° 10 10° colloidal system, we evaluate the non-Gaussian parameter at
. ¢=0.542 by using the extended model equations for the
Brownian dynamic$Eq. (3.5 and Eq.(3.10]. We adjust the

FIG. 4. Long-time peak inv,(t) vs t* for the Newtonian sys- parameter(S such that the relaxation timea characterizing
tem ate=0.500 for A =30.0 (dotted, 34.5(solid), and 38.0(dot-  the stretched exponential-relaxation regime of/(q,t), is
dashedl identical to that of the corresponding data obtained by the

a,(t)
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) ) ) ) FIG. 7. The Long-time peak in,(t) (t=t/7), compared for the
FIG. 6. Comparison oithe different relaxation regimes of nor- Newtonian (dot-dashed lineand Brownian(solid line) system at
malized memory functiod’y(t) for the Brownian(solid line) and ¢=0.542 using the extended MCT. The inset shows the corre-
the Newtonian(dot-dashed lingsystems aip=0.542. The timet spondinga,(t) obtained experimentally in Ref31] at ¢ =0.540.
=t/7.

ing trend. The results af,(t) obtained in the experimental
studies of colloidal suspensions at a slightly lower density

[20]). This matching is done at the wave vector correspond-_ _ C
. X S ¢=0.540[31] appears at=800r, which is of the same order
ing to the peak of structure factor. With this criterion, OUr _< obtained in our results of Fig. 7~@00r). The inset

results show a faster rate of relaxation as compared to th : . . .
) : shows thea,(t) obtained from the light-scattering experi-
experimental results although the overall time scales of re: . )
. . X ments reported in Ref31]. The peak height ofr,(t) ob-
laxation match. The stretching exponghts higher than that . . S
obtained in the experimental results by about 12%. For ditalned from the theoretical calculation is much lower than
. P ya : that obtained in the experimental data. The theoretical curves
rect comparison, we evaluate the Newtonian dynamics at the

same packing fraction and the parametes as used for &€ obtained with only &ingle adjustable paramete? that
P: 9 P par: L was chosen so as to match the time scale of relaxation of
calculating the dynamics of the colloid. Thein this calcu-

lation is fixed at 25~ as we will be mainly discussing the ¥(a,0) with the experimentally obtained resufi0], at a

. . . . single g value. Comparison withe,(t) obtained from the
long-time features. The different relaxation regimes of theligh%-sc?attering studigs at the highze(:s)t density 0.570[31]

normalized memory functiod’o(q=04t) for #s(q,t) [EA.  has not been shown here since that will involve further com-
(3.12] are shown in Fig. 6. In the earl relaxation regime, putational effort by almost another three orders of magni-
the slow dynamics of the colloidal systeisplid ling) is ob-  tyde. The density dependence af(t) obtained in the
served as compared to the faster relaxation of the Newtoniagresent theoretical model is further illustrated in Fig. 8. Here
system (dot-dashed line During the lattera relaxation e showa,(t) for the atomic system corresponding to three
range, both the systems show similar variation. These feajjfferent packing fractions. These results are obtained us-
tures are also observed in the computer simulation studiqgg the extended MCT model with kept fixed at a value so
reported in Refs[23,24 where comparative studies of New- a5 to match the theoretically obtained self-diffusion coeffi-
tonian and stochastic dynamics in a supercooled system weggant at ¢=0.565[15], with that obtained from computer
made. simulations of one-component hard-sphere systems as re-
ported in Ref.[33]. a,(t) shows an increasing deviation
from the Gaussian behavior and the approach towards the
We evaluatav,(t) for both the systems using the method maximum deviation becomes slower with an increase in den-
outlined in Sec. lll A. These results are shown in the Fig. 7sity. These qualitative features have also been observed in
where we illustrate the Brownian dynamical results by thethe molecular dynamics simulation of two-component sys-
solid line anda,(t) for the Newtonian system as the dot- tems with different interaction potential8,38]. We show a
dashed curvex,(t) show the maximum at the same time for qualitative comparison of our results withy(t) for the bi-
both the systems, although the heights of the two peaks amary Lennard Joned.J) system in the inset of Fig. 8. These
slightly different at this time. The higher-order moments of data are taken from the results shown in Fig. 1 of Ref.
G4(r,t) determininga,(t) are susceptible to changes even In Fig. 9, we have shown the conditional probability dis-
due to a slight difference of the relaxation in the correlation.tribution function 4mr2Gg(r,t) in both the Newtonian and
In the longer-time region, these two curves show a convergthe Brownian systems at the time where the second peak in

light scattering experiments on colloid&ig. 5a) of Ref.

1. Non-Gaussian parameter
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FIG. 8. Comparison of the,(t) variation at different densities t

for the Newtonian system. The dashed line shawsgt) at ¢

. o )
=0.550, the solid line is fop=0.565, and the dot-dashed curve is F|G=' }O'f Mek?n ;quarg dlsplacemcéni(é)éll(zmgmt; ?jf" )d\:js
for ¢=0.570. The dimensionless tim&=t/tc, t¢ being the En- UMet=U/7forthe Brownian system ag=0.542. Dashed and dot-

skog collision time. The inset illustrates the result from R&f.for t?d lines show the short- and the Ior_lg-tlme diffusive mo_tlon, respec-
a binary L] system at temperatur@¥ =0.550 (dashed, T* tively. The |nseF shovys the comparison for the Newtor(idashegl
=0.480 (solid), and T* =0.451 (dot-dashell Here T* is the re- and the Browniar(solid) systems at the samg.
duced temperature in LJ unitsT{=kgT/ean) and time is ex-
pressed in the LJ time scatg ;= /o2 .M ean [8]. shown the comparison of this function with the correspond-
ing Gaussian distributionG2(r,t)=[3/(2m(r(t)))1¥%xp
a,(t) appearsFig. 7). Gg(r,t) of both the systems at this [—3r%/2(r?(t))] by using(r?(t)) at the position of the long-
time are practically indistinguishable from each other andime peak ina,(t). This is illustrated as the double dot-
thus illustrates again the similarity of dynamics in both sys-dashed line in this figure. Beyond the distamge(marked in
tems in the later relaxational time range. Here, we havehe Fig. 9 by the arro)y G4(r,t) develops a slowly decaying
tail, and thus the probability of finding the tagged particle is
3 — 1 - T - T - T - 1 greater than that predicted by the correspon@ﬂgr,t). In
the computer simulation studies of Kat al. [8], the par-
ticles that crossed the distancg were labeled as “mobile”
particles. Such highly correlated clusters of particles lead to a
heterogeneous distribution of mobile and relatively immobile
_ regions in the system that pertain to have different relaxation
rates. In the present case, the fraction of “mobile” particles
evaluated asf’fMdr 47r2Gg(r,t) is the same in both the

cases.

- 2. Mean square displacement

The mean square displacement is the second moment of
G4(r,t). The initial variation of(r2(t)) in a Brownian sys-
tem is diffusive (r?(t))=t) and is ballistic (r2(t))t?) in
the Newtonian dynamics. The time variation of the mean
square displacemerit?(t)) is a strong indicator of the in-
terplay between the collective and the tagged particle dy-
« namics in dense liquid state. We show in Fig. 10, the cross-

over from short-time diffusion to long-time diffusive

FIG. 9. 4mr2Gy(r,t) vs r*=r/o for the two systems ap  Dehavior in the Brownian dynamics case. The intercepts of
=0.542 compared with the corresponding Gaussian distributiodN® curve show the comparative decrease in diffusion coeffi-
shown as the double dot-dashed lig. is the time(in units of7) ~ Cients. In the inset of Fig. 10, we have compared the time
at which a,(t) shows the long-time peak in Fig. 7. The respective evolution of (r(t)) for the Brownian(solid) and the New-
curves of the Newtonian and the Brownian systems are almost intonian (dot-dashegidynamics. The different increasing rates
distinguishable. of (r?(t)) are evident from this figure, shown in a log-log
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plot. Over intermediate times, a plateaulike region appeargimes. The short-time peak represents the effect of correlated
which demonstrates the so-called cage effect during whiclklynamics in the shorter time scales. It is not observed if the
the tagged particle is trapped in a cage formed due to thenode-coupling effects in the dynamical equations are ig-
collective motion of the surrounding particles. This is ob-nored. This short-time peak observed in our model occurs
served in both the types of dynamics and corresponds to thever the same time scale as observed in the kinetic theory
late B relaxation regime. With progress of time, the particle models[16—18. With the increase in density, correlated mo-
comes out of the cage and shows a subdiffusive behavidions persist up to larger time scales and hence the second
((r?(t))=t?,a<1). Finally, its motion becomes purely dif- peak ina,(t) has been generally observed in dense liquid
fusive (@=1) in the very long-time regime. Stronger the state. This is observed both theoretically, as in our model,
jamming of the supercooled liquid is, slower is these crossand in computer simulation studi¢8,12).
over process and hence the increase in density leads to aIn the present model, we find that the van Hove self-
decrease i in a given time window15]. The variation of  correlation function is a monotonically decreasing function
(r?(t)) in the « relaxation time scale also merge for both thefor the colloidal systemgFig. 9. However, in computer
cases. simulation of stochastic dynamics characterizing charged
colloids, the probability 4r2G(r,t) shows a two-peaked
V. DISCUSSION spatial variation[22]. This has been related to “hopping”
) ) ) ) tprocesses[22] that restore ergodicity in the supercooled
The main thrust of this work is to present a comparison ofstate. We do not observe the second peak in the correspond-
the heterogeneous dynamics in the atofiNewtonian and  jng result for the Brownian system. The present work is
the Brownian systems in the supercooled state. We presentigysed on the theoretical model that includes the ergodicity
detailed account of the computation af(t) within the  restoring mechanisms only in the collective density dynam-
mode-coupling theory framework. The calculation®f(t)  jcs[Eq. (3.6)] [26] and not in the tagged particle relaxation
involves evaluating wave-vector integrals over the structura[Eq_ (3.3 and(3.5)]. The inclusion of these in the theory will
and self-correlation functions and the respectiveleriva-  presumably produce more realistic results for the tagged par-
tives. The present work illustrates the relevance of properlyjcle dynamics. The comparison af,(t) obtained for the
including the short wavelength fluctuations in such integralscojioidal system in this model with the corresponding result
Such that a ConVergence iS Obtained in the reSUItS. We four@f the |ight_scattering experimenltgl] on the colloidal sus-
the existence of a double peak structure of the non—GaussieHénsion shows that the longer-time peakais(t) occurs on
parameter for both the systems following the NewtorEsl  simijlar time scales. However, we find that the height of the
and the stochastic dynamics. This is indicative of the charpeak is much shorter than that seen in experiment, implying
acteristic two-step relaxation process of the correlation funcihat the type of relaxation is different quantitatively. No re-
tiOﬂS in dense |IqUId states. The Computer Simulation Studie§u|ts in the Shorter-time regime are reported in the experi_
on charged colloidal liquid$12] in supercooled state re- mental study{31]. A better comparison would be with the
ported such astructuredvariation of the non-Gaussian pa- computer simulation studies done with the stochastic dynam-

namics simulation of soft-sphere alloys were also reported ifyhere the higher-order properties such @gt) are also
Ref. [38]. However, the computer simulation studies of thegyg|yated.

Lennard Jones binary mixtures in RE8] show a smoothly

rising smgl_e peak of th_e non-Gaussan parameter. In this ACKNOWLEDGMENTS

casea,(t) increases during thg relaxation range and starts

decaying towards zero in the relaxation regime. The first The authors acknowledge the HahniMer Institit, Ber-
peak as seen in our model for a one-component hard-sphelia, for providing computational facilities. C.K. acknowl-
system is not observed there. These facts clearly point teedges financial support from the University Grants Commis-
wards a need for a thorough probe in the shorter-time resion, Council for Scientific and Industrial Research, India.

[1] M.T. Cicerone and M.D. Ediger, J. Chem. Phyi94, 7210 [8] W. Kob, C. Donati, S. Plimpton, P.H. Poole, and S.C. Glotzer,

(1996. Phys. Rev. Lett79, 2827(1997.
[2] K. Schmidt-Rohr and H.W. Spiess, Phys. Rev. L8, 3020 [9] C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole,
(1991); A. Heuer, M. Wilhelm, H. Zimmermann, and H.W. and S.C. Glotzer, Phys. Rev. Le80, 2338(1998.
Spiess,bid. 75, 2851(1995. [10] B. Doliwa and A. Heuer, Phys. Rev. Le80, 4915(1998.
[3] R. Bohmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescu, [11] D. Caprion, J. Matsui, and H.R. Schober, Phys. Rev. 184t.
Europhys. Lett36, 55(1996; 75, 2851(1995. 4293(2000.
[4] A. Arbe, J. Colmenero, M. Monkenbusch, and D. Richter,[12] S. Sanyal and A.K. Sood, Phys. Rev5F, 908 (1998.
Phys. Rev. Lett81, 590(1998. [13] R. Yamamoto and A. Onuki, Phys. Rev. Leifl, 4915(1998.
[5] A. Heuer and H.W. Spiess, Phys. Rev. L&2, 1335(1999. [14] S.C. Glotzer, V.M. Novikov, and T.B. Schroder, J. Chem. Phys.
[6] H. Silescu, J. Phys.: Condens. Matfidr A271 (1999. 112 509 (2000.
[7] A. Rahman, Phys. Re36, A405 (1964. [15] C. Kaur and S.P. Das, Phys. Rev. L&®, 085701(2002.

051505-10



TAGGED PARTICLE MOTION IN A DENSE LIQUID:

[16] M. Nelkin and A. Ghatak, Phys. Re%35 A4 (1964).

[17] R.C. Desai and M. Nelkin, Nucl. Sci. Eng4, 142 (1966.

[18] J.P. Boon and S. Yipylolecular Hydrodynamic¢Dover, New
York, 1991).

[19] A.V. Indrani and S. Ramaswamy, Phys. Rev. L&t 360
(1994).

[20] W. van Megen and P.N. Pusey, Phys. Revi3\5429(1991).

[21] W. van Megen, T.C. Mortensen, S.R. Williams, and J.lliehy
Phys. Rev. E58, 6073(1998.

[22] S. Sanyal and A.K. Sood, Europhys. Ledt, 361 (1996.

[23] H. Lowen, J.P. Hansen, and J.N. Roux, Phys. Re#4A1169
(199)).

[24] T. Gleim, W. Kob, and K. Binder, Phys. Rev. Le&l, 4404
(1998. )

[25] U. Bengtzelius, W. Gze, and A. Sjlander, J. Phys. A7,
5915(1984.

[26] S.P. Das and G.F. Mazenko, Phys. Re\B4\ 2265(1986.

[27] S.P. Das, Phys. Rev. 36, 211 (1987.

[28] T.R. Kirkpatrick and J.C. Nieuwoudt, Phys. Rev.38, 2658
(1986.

PHYSICAL REVIEW E67, 051505 (2003

[29] G. Szamel and H. lwen, Phys. Rev. A4, 8215(1991)).

[30] G.F. Mazenko, S. Ramaswamy, and J. Toner, Phys. R@g A
1618(1983.

[31] T.C. Mortensen and W. van Megen, $tow Dynamics in Com-
plex Systemsdited by M. Tokuyama and |. Oppenheim, AIP
Conf. Proc. No. 469AIP, Woodbury, NY, 1999 p. 3.

[32] S.P. Das, Phys. Rev. 42, 6116(1990.

[33] L.V. Woodcock and C.A. Angell, Phys. Rev. Le#t7, 1129
(1981).

[34] S. Srivastava and S.P. Das, J. Chem. Phg§, 2529(2002.

[35] J. Yeo and G.F. Mazenko, J. Non-Cryst. Solitig2-174 1
(19949; Phys. Rev. B51, 5752(1995.

[36] In thet—0 limit, the Eq.(3.3) reduces to a linearized form,
from which ¢5(q,t) can be obtained in an analytical form. The
cumulant expansion of this upt(q*) gives thea,(t) whose
t—0 limit is obtained as-2/3.

[37] M. Fuchs, W. Gtze, and M.R. Mayr, Phys. Rev. &8, 3384
(1998.

[38] B. Bernu, J.P. Hansen, Y. Hiwatari, and G. Pastore, Phys. Rev.
A 36, 4891(1987.

051505-11



