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Random packings of spheres and spherocylinders simulated by mechanical contraction

S. R. Williams and A. P. Philipse
Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute, University of Utrecht, Padualaan 8, 3508 TB Utrech

The Netherlands
~Received 21 October 2002; published 7 May 2003!

We introduce a simulation technique for creating dense random packings of hard particles. The technique is
particularly suited to handle particles of different shapes. Dense amorphous packings of spheres have been
formed, which are consistent with the existing work on random sphere packings. Packings of spherocylinders
have also been simulated out to the large aspect ratio ofa5160.0. Our method packs randomly oriented
spherocylinders to densities that reproduce experimental results on anisotropic powders and colloids very well.
Interestingly, the highest packing density off50.70 is achieved for very short spherocylinders rather than
spheres. This suggests that slightly changing the shapes of the particles forming a hard sphere glass could cause
it to melt. Comparisons between the equilibrium phase diagram for hard spherocylinders and the densest
possible amorphous packings have interesting implications on the crystallization of spherocylinders as a func-
tion of aspect ratio.
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I. INTRODUCTION

In nature and technology, a wide variety of amorpho
structures can be found, which consist of randomly pac
nonspherical particles. Macroscopic examples are pack
of rice, grass seed, gravel, and glass fibers in reinforced c
posite materials@1#. Also on the mesoscopic length sca
random packings are well known, such as for cellulose fib
in paper@2# and other fibrous media@3,4# and colloidal rods
in amorphous sediments@5#. The density of such packing
forms an intriguing, largely unsolved problem. The topic
random packing densities has a long and extensive his
@6–8# which, however, almost exclusively deals with th
limiting case of spheres. At first sight, this focus on sphe
may seem reasonable; one expects that nonsphericity
always complicate the packing density problem due to
additional complexity in considering particle orientations.
has also been pointed out, however, that isotropic thin r
may actually form more simple random packings beca
correlations for thin rods are much weaker than for sphe
@5#. Of course, it is desirable that an approach~or even an
explanation! for random packing densities is found, which
sufficiently general to include the effect of particle shap
The aim of this work is to introduce such an approach in
form of a simulation technique that appears to be very s
able for creating amorphous packings of spheres as we
fibers up to very high aspect ratios. The method should
readily applicable to other shapes such as disks~amor-
phously packed in three dimensions! or ellipsoids and to
packings in other dimensions.

One incentive for our work is the experimental observ
tion that packing volume fractions of randomly oriented rig
fibers, in comparison to spheres, drastically decrease
increasing particle aspect ratios@1,5,9–14# in a manner that
is invariant to the particle’s size. This trend has been repo
for rod lengths that span many orders of magnitude fr
colloidal rods in the nanometer size range@5# to chopped raw
spaghetti@13# on the centimeter scale. This size invarian
1063-651X/2003/67~5!/051301~9!/$20.00 67 0513
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clearly shows that random packing densities have a pu
geometric origin, an assessment that also forms the bas
our simulation method~see Sec. II C!. Experiments also in-
dicate that the packing volume fractionf tends to zero for
long rods as the aspect ratio increases according to
asymptotic scaling@5#,

2fa5^g&52c for a@0. ~1!

Here, a5L/D is the aspect ratio for a rigid thin rod o
lengthL and diameterD, ^g& is the average number of con
tacts experienced by a given particle, and according to
experiments the contacts per particlec is 5.460.2. This scal-
ing, first noted in Ref.@11# and discussed by several autho
@2,5,9,10#, can be explained by a simple excluded volum
argument@5# as will be further discussed in Sec. III. How
ever, alternatives to Eq.~1! have been proposed such as
exponential@15#, logarithmic@13#, and a nonanalytic@7# de-
pendence of the random rod packing density on aspect r
a. To confirm the correct scaling for thin rods, simulatio
results are needed at high aspect ratios~say a.50), which
are experimentally difficult to handle due to unwanted p
ticle flexibility and possibly particle alignment. Unfortu
nately, the simulations we are aware of only deal with sm
aspect ratios@9,16# and, moreover, produce densities that a
clearly below experimental values@5#. Thus, our first goal is
to extend simulations to higher aspect ratios with a mean
ful model of the experimental systems.

Our second goal is to investigate the opposite lim
namely, what happens if the particle shape approaches th
a sphere. The issue here is whether the Bernal random sp
packing~with a volume fractionf.0.64) is a maximum in
the packing density as a function of aspect ratio. Earlier w
of Sherwood@16# and others@17–19# suggest that sphere
may form a local minimum. However, the results@16,19#
were difficult to interpret as the limiting density for spher
was substantially below the Bernal packing density off
50.64. Clearly, this limit should at least be correct; furthe
©2003 The American Physical Society01-1



m
pe

ie
n
as
tin
e

er
t

ri-
tte
ida
tio

nd

ica
h
. I
Se
s
r

of
r
e
up
e

ul
re
br

ta
e

-
no

on
fr
tu

e

r

h

ers

lita-

In
ies,
ri-

e

en
this
ed
ay

ular
en

ues
we
ec.
or-

ound

a
o

wn
col-
en
ich
ar-
of
an

s-
rate
olli-
h
the
ch
mu-
ies
xtra
by
y.
fi-
t to

ang
of
eir
pos-

the
s a
his
isks
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plausible geometric explanation for any increase in volu
fraction, due to a small deviation from the spherical sha
needs to be formed.

Our third goal, once having random packing densit
from spheres up to very thin rods, is to make a compariso
thermodynamic systems. The Bernal sphere packing h
density that is higher than the hard sphere crystal’s mel
point of f50.545 @20#, above which the equilibrium stat
becomes a single-crystal phase. It would be interesting
know what happens at finite aspect ratios of spherocylind
Are random packings always at a higher density relative
an equilibrium crystalline phase with either positional or o
entational ordering? Such information is important to be
understand the often puzzling phase behavior of collo
rods quenched into random packings by rapid sedimenta
@21#.

The content of this paper is as follows. Sections II A a
II B briefly review existing methods to simulate random~or
granular! packings and motivate the need for a mechan
contraction technique, which is explained in Sec. II C. T
resulting random packing densities are discussed in Sec
a comparison is made to the random contact equation in
III C and to existing experimental data and equilibrium pha
behavior in Sec. III D. Implications on the glass transition a
discussed in Sec. III E.

II. METHODS FOR SIMULATING GRANULAR PACKING

A. Existing work

Simulation methods for forming granular packings
hard particles can be placed in two distinct groups. The fi
group, referred to as concurrent algorithms, involves the d
sification of a fixed number of particles. The second gro
referred to as sequential algorithms, involves progressiv
adding more particles to a fixed volume.

Concurrent algorithms have been used to obtain gran
packings of disks in two dimensions and spheres in th
dimensions. Random packings of disks are unstable to vi
tions, which cause them to crystallize@22#. However, an
amorphous packing with an area coverages off50.77 has
been achieved using an algorithm that avoids local crys
line regions@23#. Random packings of spheres have be
obtained with a variety of volume fractions 0.60,f,0.68
@24#. Volume fractions abovef50.64 require more order in
the system@24#, typically induced by further vibrational ex
ploration during the quench when the quench rate is
rapid enough or the quenching mechanism~of the particular
algorithm! is not aggressive enough. A detailed simulati
technique has recently been reported, here the effects of
tion, particle softness, and energy dissipation have been s
ied on the granular packing of spheres@25#. Under condi-
tions of finite pressure~due to gravity!, it was found that
frictional forces, in particular, could affect the final volum
fraction and coordination number of the system.

Studies employing sequential algorithms have been
ported for disks@26#, spheres@27#, ellipsoids @16#, and
spherocylinders@9#. All these studies have employed a tec
nique known as random sequential addition~RSA!. The area
coverage for disks was found to bef50.547, while for
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three-dimensional spheres a volume fraction off50.385
was found. The studies on ellipsoids and spherocylind
have been limited to aspect ratiosa such that 0.067,a
,25. While the obtained aspect ratio dependence is qua
tively similar to experimental results@5#, the volume frac-
tions are significantly less than experimental packings.
general, the RSA method obtains final packing densit
which are significantly lower than what is found from expe
ments and more realistic concurrent algorithms.

An important definition is that of a jammed state. Here w
define this ~solely for computer simulations! as the state
where any extension of computational effort, using a giv
algorithm, fails to increase the systems density. Under
definition, concurrent algorithms often produce a jamm
state while RSA does not. Obviously, this definition m
depend upon the algorithm being employed.

B. Existing methods for simulating granular packing

Several methods have been employed to simulate gran
packings. It should be pointed out, from the outset, that wh
it comes to the packing of rods or fibers, all these techniq
have some very serious shortcomings. For this reason,
have developed a technique that will be discussed in S
II C. One of the earliest methods used to obtain dense am
phous packings of hard disks and spheres was based ar
molecular dynamics@28#, using an equilibrium fluid as a
starting point. Having used this method, we will discuss
shortcoming it has in forming granular packings. When tw
particles approach each other dominantly due to their o
expansion rather than their thermal velocities, an elastic
lision will result in a postcollision separation rate, betwe
the two particles centers, which is less than the rate at wh
the particles are expanding. This results in the pair of p
ticles expanding inside each other. Including some form
inelastic collision in the event of the above occurrence c
alleviate this problem; however this will result in the sy
tem’s temperature increasing and the effective quench
decreasing. As a granular packing is approached, the c
sion rate will diverge and, in turn, so will the rate at whic
the temperature is increasing. Considering how sensitive
formation of local crystalline environments is on the quen
rate in these systems, this is a serious problem when si
lating random packings. Of course, all the particle velocit
could be equally scaled down, to compensate for the e
energy introduced in the event of an inelastic collision,
which stage the method has lost all its initial simplicit
While this is a sound simulation method, it is already dif
cult enough with spheres, we decided to make no attemp
generalize it to include rods.

A novel method used by Hinrichsen, Feder, and Jøss
@23# was to form a Voronoi tessellation around a system
disks. The disks were then all moved to the center of th
Voronoi cell and the system was squashed as much as
sible~scaling the particle positions! until a pair of disks came
into contact with each other. This was then repeated until
system could no longer be reduced in volume and thu
random packing was obtained. The motivation behind t
method was to obtain a dense amorphous packing of d
1-2
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RANDOM PACKINGS OF SPHERES AND . . . PHYSICAL REVIEW E67, 051301 ~2003!
without any crystallization processes taking place. While t
method could obviously be extended to spheres, it is no
obvious how to extend it to the case of rods.

Another method we have tried in our exploration of ra
dom rod packings is based around a Monte Carlo simulat
A standard Monte Carlo simulation is carried out to obtain
equilibrium fluid. At random intervals, the volume is re
duced, with all the particle positions being scaled until a p
of particles come into contact, and the simulation is th
continued. In the case of spheres, eventually the system
comes so congested that all particle moves are rejected
cept for a handful of rattlers~i.e., incompletely arrested
spheres! at the volume fraction off50.635. While the
method produces jammed states for spheres, the same c
be said for rods. Here we found the rate at which the sys
was compressed, reduced rapidly as the density increa
Eventually, the compression became so slow that it was
possible to devise a clear criterion as to where the simula
should be stopped.

A method in the literature, which has been used for b
spheres and short rods, is RSA@9,16,26,27#. The RSA in two
dimensions has direct relevance to the adsorption of parti
on a surface. While three-dimensional amorphous pack
have been successfully obtained using RSA, any relation
tween these packings and an experimental granular pac
is at best tenuous. A granular packing is obtained under c
ditions where the pressure compressing the system is to
dominant over any thermal fluctuations. Here the partic
are no longer able to move due to the congestion cre
after being compressed to a minimal volume by a large p
sure. In an RSA simulation, particles are placed in rand
positions and then they are never allowed to move; this i
contrast to a granular packing where highly collective re
rangements occur until congestion prohibits further mo
ment. We observed that the final RSA packing volume fr
tion is never achieved on the computer due to the slow po
law by which it is approached as a function of inserti
attempts. Another disadvantage is that in the case of l
rods, the RSA approach will no longer form an isotrop
amorphous packing. Such a packing has a very low den
due to the large excluded volume of a long thin rod. T
RSA method will always be able to insert many more ro
into an isotropic packing by finding the best possible way
align an insertion attempt. Such carefully inserted align
extra particles do not occur in granular packings due to
extreme entanglement of the particles. The RSA process
no heed to entanglement. A more realistic variation of
RSA method has been reported@29# where particles are only
added to the surface, however only short rods have b
studied.

It is clear that a new method of forming fibrous granu
packings is necessary if the simulation work currently
ported in the literature is to be significantly extended. T
method we have developed is described next. In spirit, i
similar to an existing method that has been used for poly
perse spheres@30#.

C. The mechanical contraction

In forming an amorphous packing, we are interested
what happens under conditions where the pressure on
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system dominates over any thermal fluctuations. If a ther
system is to be quenched, the quench rate must be extre
high such that the particles are forced into permanent con
with each other on a time scale where the system can
move towards a more thermodynamically favored phase
this would affect the final structure and density. Our tec
nique for obtaining amorphous packings, referred to as
‘‘mechanical contraction,’’ is based around the idea of de
sity quenching a system, which undergoes no thermal fl
tuations and it works as follows. A dilute equilibrium fluid o
spherocylinders is prepared, in a cubic cell with period
boundary conditions, using standard Monte Carlo techniq
@31#. This is used as the initial configuration for the syste
which is then squashed to obtain an amorphous packing.
volume of the cubic cell is reduced by a small amountDV
and all of the particle positions are scaled by the factor

s5S 12
DV

V D 1/3

, ~2!

while their orientations are left undisturbed. Thus, all t
particles are moved back inside the cell, however this res
in some of the particles overlapping each other. The over
ping particles are then moved outside each other in an it
tive manner~described below!. The entire process is the
repeated until the system becomes so congested tha
overlapping particles can no longer be moved outside e
other, if the system is contracted any further, and thus
final granular packing is obtained.

In order to describe how the overlapping particles are
moved from each other, we first introduce some geome
and definitions. A spherocylinder may be represented by
axis of symmetry, a line of lengthL. Consider a pair of
spherocylinders, both will possess a unique point on th
axes of symmetry such that the distance between the
points is a minimum, the vector connecting these two poi
is labeledk. If the magnitudek is less than the spherocylin
der’s diameterD, the two spherocylinders overlap. Once tw
spherocylinders are identified as overlapping the exten
the overlap is given byd5D2k. If there areC particles,
which overlap with particlei, and particlei is moved with
constant translational and rotational velocities then the sp
at which particlei is changing its overlap with the contactin
particle j may be quantified:

]k j

]t
5kj

~1!a11kj
~2!a21kj

~3!a31 l jkj
~4!a41 l jkj

~5!a5. ~3!

Here generalized coordinates have been used,n51, 2, and 3
are the Cartesian coordinates of the system andn54 and 5
are two additional Cartesian coordinates that are perpend
lar to each other and the axis of particlei. The variablesan
are the velocities of particlei, n51, 2, and 3 being the ve
locity of the particle’s center of mass andn54 and 5 being
the particle’s rotational velocity. The orientation of particlei
is given by the unit vectorp̂i and the above mentioned rota
tional velocity is equal to]p̂i /dt. The variablel j is the dis-
tance from thei th particle’s center of mass to the point o
contact with particlej along the axis of particlei. In the case
1-3
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where the contact is located on the opposite end of sph
cylinder i to that pointed to by vectorp̂i , lengthl j will take
on a negative value. The variableskj

(n) are the components o
vectork j projected on to each of the five axes. We now wr
down the following equation, which is representative of t
speeds, where a given particle is breaking contact with itsC
overlapping particles,

s5(
j 50

C

d j

]k j

]t
, ~4!

where the factord j is included in order to bias the rate
which the particles break contact in favor of those which
overlapping the most. In order to proceed, we introduc
kinetic energy–type constraint on the velocity of particlei,

a1
21a2

21a3
21ja4

21ja5
251, ~5!

wherej is an arbitrary parameter which in the case of kine
energy is simply related to the particle’s moment of inertia
Lagrange multiplier is then used in Eq.~4! with the con-
straint, Eq.~5!, to obtain the direction in which to mov
particle i in order to reduce the degree of overlap with theC
contacting particles at the maximum rate. The direction t
obtained in terms of the velocity vector with arbitrary spe
is given forn51, 2, and 3 as

an5(
j 50

C

d j

kj
~n!

kj
~6!

and forn54 and 5 as

an5
1

j (
j 50

C

d j l j

kj
~n!

kj
. ~7!

It should be pointed out that in the case of spheres the ab
procedure produces the same result as Eq.~6!, there being
only three dimensions for the direction a sphere moves
this stage, it is possible to determine which direction ea
particle in the system is to be moved. However, the ques
remains as to how far each particle is to be moved. It w
decided that each particle should move a very small dista
further than half the distance necessary to break the
contact. In the case where two particles are in contact w
each other and only each other, this results in the pair be
moved just far enough to break contact. The extra dista
was specified such that slightly larger spherocylinders wo
break contact~'1.0001 times bigger in diameter!, this
helped alleviate problems with more contacts being mad
the particles are moved and with a finite machine precis
The direction and distance each particle needs to be mov
calculated and then they are all moved. This is then repe
a large number of times until there are no more overlapp
pairs of particles. If an arbitrarily chosen cutoff number
iterations is reached without all the particles breaking c
tact, it will be deemed that the system had reached its hig
packing density. Given that the iteration cutoff number
large enough, the final result is not sensitive to its choice
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While this technique produces a good representation
granular packing for spheres and short rods, this is not
case for long rods. In the later case, the technique does
sufficiently sample rearrangements, which involve partic
sliding along their own axis of symmetry. This is overcom
by squashing the system as much as possible using the
chanical contraction technique followed by a series of Mo
Carlo moves where all move attempts are in a direction p
allel to the particles own axis of symmetry. The system
then subject to the mechanical contraction technique ag
and the process is repeated until the system can no longe
reduced in volume. In the case of short spherocylinders~as-
pect ratios less than 4.0!, this makes absolutely no differenc
In the case of very long spherocylinders~aspect ratios above
100!, it can allow further reduction of the system’s volum
by a factor greater than 2.0. Eventually, a well defined a
reproducible maximum density is obtained.

A version of the Verlet neighbor list@32#, modified for
spherocylinders, is used. The distancek between each pair o
rods is used to construct the list and the distance each en
a rod moves is then monitored in order to determine wh
the list needs to be updated. This is done when either en
a rod moves further than (r cut2D)/2, wherer cut is the cutoff
radius used to form the list.

D. Simulation details

The final configurations were analyzed using a gener
zation of the radial distribution function to handle spheroc
inders. Here, the distancek ~see Sec. II C! between the two
spherocylinders was used in place of the distance betw
the centers of a pair of spherical particles. The number
particles in a structureless system, which would be expec
to be found tangential to a spherocylinderical shell of rad
k, thicknessdk, and a lengthL equal to that of the particles
under consideration is used to normalize the distribut
function. This may easily be calculated by differentiating E
~8! with respect to the spherocylinderical shell’s radius a
then multiplying by the shell thicknessdk.

A range of aspect ratios was investigated from sphere
long spherocylinders 0<a<160.0. The number of particle
used in the simulation depended heavily on the aspect ra
This is because spherocylinders require a simulation box
is at least twice their length to satisfy the minimum ima
condition. In the case of long rods, the packed volume fr
tion asymptotes tof;1/a and the volume of each rod~with
constant diameter! asymptotes tovp;a, so that we can ex-
pect the required number of particles to be proportional
the aspect ratioN;a. In the case ofa5160.0, the necessar
number of particles wasN542 and 592.

Dilute isotropic fluids, in thermal equilibrium, were firs
prepared using a standard canonical Monte Carlo algorit
The system was then subject to the mechanical contrac
with a maximum of 103 iteration attempts andDV/V
51023. Eventually, a density was reached where all the ro
or spheres could no longer reach a state, with no overlapp
pairs, within the specified number of iteration attempts. T
value ofDV was then scaled down, typically by a factor
0.1 but sometimes a value closer to unity, depending on w
1-4
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seemed to reach the final result most expediently. Eventu
DV became so small that it was less than the least signifi
bit in the machine storage of the value forV, at this stage the
system was deemed to have reached its final volume. In
case of long rods~aspect ratioL/D>8), the system was
subject to the Monte Carlo moves along the rods axis
described above.

III. RESULTS AND DISCUSSIONS

When applied to spheres, the mechanical contrac
method forms a randomly packed configuration with a v
ume fraction off50.631 and a radial distribution function
which may be seen in Fig. 3. These results are consis
with previous studies on random packings of hard sphere
both colloidal experiments@33# and simulation@22#.

A. Aspect ratio dependence

The results obtained for spherocylinders depen
strongly on the aspect ratioa. Images~formed by ray trac-
ing! of the random packings for several aspect ratios may
seen in Fig. 1 and volume fractions, of the random packin
obtained as a function of aspect ratio are shown in Fig. 2
can be clearly seen that the very short rods pack to hig
volume fractions than the spheres, with a maximum~from
the aspect ratios studied! of f50.695 fora50.4. A qualita-
tively similar trend has been found for the RSA of sphero
@16# and Monte Carlo simulations of the pouring of elliptic
particles in two dimensions@17,18# and ellipsoids in three
dimensions@19# suggesting that small deviations in the sha
of identical spherical particles allow a more efficient am
phous packing. It is well known that an amorphous polyd
perse system of spheres packs more efficiently than

FIG. 1. Images~ray tracings! of tightly packed isotropic sphero
cylinders for several aspect ratiosa. Aspect ratios of~clockwise
from top left! a50 ~spheres!, a50.4, a540.0, anda52.0. For
a50.4, the highest packing densityf50.70 is achieved~see Fig.
2!. The packing fora52.0 is already to the right of the densit
maximum, and has a densityf50.616, which is close to that of th
random sphere packings.
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equivalent monodisperse system@30#. To understand this
consider a system of amorphously packed spheres. We
expect the interstices between the spheres to all be s
enough such that no additional spheres can be place
them. If the system is made more polydisperse, the sma
spheres may be placed where the larger ones previo
could not. So the size variation allows for more efficie
amorphous packing. Perturbing the particle shape fr
spherical has a similar affect to size variation: a short sphe
cylinder that may not fit in an interstice when orientated in
given direction may fit when the orientation is changed.
the contrary, the orientationally averaged excluded volu
@34,35# of the spherocylinder will change with the aspe
ratio and hence also affect the efficiency of the packing:

E5
6a2124a116

213a
. ~8!

Here,E5vex/vp is the excluded volume divided by the pa
ticle’s volume anda is the aspect ratio. Now Eq.~8! has a
very weak dependence on the aspect ratioa when it is small,
so the size variation effect dominates and the short sph
cylinders pack more efficiently than do the spheres. F
spheres, the aspect ratio isa50 and the reduced exclude
volume is E58, and for short spherocylinders with aspe
ratio a50.4, the excluded volume will be such thatE
58.3. For large aspect ratios,E increases strongly with as
pect ratio a and the effect of the excluded volume com
pletely dominates. At large aspect ratios, the volume fract
decreases in a manner that is inversely proportional to
aspect ratio. This dependence is also found experimen
@5,11# and predicted by the random contact scaling for lo
rods, Eq.~1! @5#. This is a direct consequence of the packi
being determined by the excluded volume per particle, wh
the average number of contacts per particle remain cons
@5#. Fitting the simulation data to Eq.~1! provides the aver-

FIG. 2. Final volume fractionsf for the amorphous packings a
a function of aspect ratioa. The solid line is a theoretical fit from
the random contact equationfa55.1 @see Eq.~1!#. The inset
shows a magnified view of the same graph at low aspect ratio.
1-5
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age contact number̂g&510.2, which agrees well the valu
of ^g&510.860.4 obtained for experimental rod packing
@5#.

We note here the use in the literature@7# of an empirical
correlation to predict trends in packing densities of no
spherical particles from the sphericity parameter,

c54.87
vp

2/3

s
~9!

which characterizes the shape of a particle with volumevp
and surface areas. For a spherec51, and for thin rods,

c51.32a21/3, a@1. ~10!

It is clear thatc predicts the wrong scaling for thin-rod pac
ing densities.

B. Radial distribution and contact numbers

In a thermal system of hard particles, on an average, th
will be no pairs of particles in contact with each other. In
granular packing, the pressure totally dominates over
thermal fluctuations. This causes pairs of particles to rem
in constant contact with each other. Calculating the ex
number of contacts from the final simulation configuration
not a trivial task. Perhaps the most straightforward appro
is to search for the number of particles within a certain d
tance of the central particle. To further investigate the va
ity of this, a generalization of the radial distribution functio
~commonly used with spherical particles! for spherocylinders
of aspect ratiosa52.0 and 80.0 is presented in Fig. 3. F
the shorter spherocylinders,a52.0, there is a sharp peak
the contact distance followed by a depletion region. Ther
also a second much smaller peak due to a pair of parti
having an additional particle between them, which is ana

FIG. 3. Generalizations of the radial distribution function f
spheres~closed circles!, spherocylinders of aspect ratiosa52.0
~open circles! and 80.0~crosses!. k is the shortest distance betwee
the two rods axes of symmetry in units of the rods diameter.
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gous to the second peak in the radial distribution function
spheres. For the longer spherocylinders,a580.0, the sharp
peak at contact is not followed by a depletion region. Rath
the function monotonically decays to the nonstructural va
of unity. That the distribution function decays to some val
approaching the nonstructural value at a distancek much less
than the rods lengthL is indicative of the system being rela
tively free from local structural alignment. This seems to
a more sensitive way of identifying a small degree of loc
alignment in long rods than the nematic order parame
What is clear from Fig. 3 is that defining any particles, whi
are within a certain distance from each other, to be in con
will be a definition that is affected by the aspect ratio. Ho
ever, from spheres to long rods there is a very sharp pea
the radial distribution function near contact. The number
contacts as a function of separation distance is shown in
4 for rods of aspect ratioa52.0 and 80.0. While the defini
tion of any particles closer than a certain distance has p
lems, it may be used as a meaningful working definitio
especially for short rods and spheres.

C. Random contact equation

The numbers of contacts per particle, determined fr
plots as in Fig. 4, as a function of the aspect ratio are sho
in Fig. 5. along with the volume fractions obtained from t
random contact equation and those obtained directly fr
the simulations. In the case of randomly positioned, non
teracting long rods, the common volume of any overlapp
rods will be insignificantly small as compared to the rod
excluded volume in an interacting system. Isotropic syste
of long rods therefore have very little structure~see Fig. 3.!.
Such weak correlations support the proposition@5# that the
overlapping rods of a noninteracting system are equivalen
the contacting rods of a corresponding random thin-
packing. This gives the random contact equation, wh
states that

FIG. 4. Number of contacts, as a function of minimum distan
between rods symmetry axisk, for spheres~squares! and rods with
aspect ratiosa52.0 ~circles! and 80.0~triangles!.
1-6
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fE5^g&5
1

N (
i

N

g i , ~11!

whereg i is the number of particles in contact with thei th
particle. In other words, for a given particle shape~fixed E!,
the density is determined by the average ofg. This average
coordination number, in turn, may be fixed by the requi
ment that a rod is immobilized~caged! by its neighbors. The
average minimal number~the caging number! of neighbors
to achieve such caging iŝg&54.79 for three-dimensiona
spheres@36#. For spherocylinders, caging numbers have
been calculated yet, though it has been shown that the lo
bound for thin rods is,̂ g&>5 @37#, with a corresponding
packing density bound offa.2.5, which incidentally is
consistent with experiments and our simulations. It has b
argued@5# that whatever the precise value forg, it will be
invariant to the aspect ration fora@1. The argument is tha
if a certain number of neighbors cage a thin rod, the cag
situation will not change as the rod is pulled out to high

FIG. 5. In Fig. 5~a!, the number of contacts as a function
aspect ratio~triangles! are shown. In Fig. 5~b!, volume fractionsf
obtained directly from the simulations are compared to those ca
lated from the average number of contacts using the random co
equation. The simulation data as presented in Fig. 1~squares! and
the random contact volume fractions~circles! are shown as a func
tion of aspect ratio.
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aspect ratios. Combining this idea with Eqs.~8! and ~11!
predicts that the volume fraction will be inversely propo
tional to the aspect ratiof;a for very long rods. This can
easily be seen by replacing the excluded volume in Eq.~11!
with the infinitely long rod expression~as used by Onsage
@34,35#!, which gives Eq.~1!. Figure 5 depicts a direct test o
Eq. ~11! with plots of both^g& andf being obtained directly
from the simulation and a second volume fractionf rc ob-
tained from Eq.~11! using the number of contacts^g& from
the simulation. Not only does this explain the behavior of t
long rods, but it also provides a qualitative insight into t
behavior of the very short rods~i.e., an alternative explana
tion of the increased volume fraction for very short sphe
cylinders!. For very short spherocylinders, the excluded v
ume depends only weakly on the aspect ratio as oppose
the number of contacts necessary to cage the spherocylin
As the aspect ratio increases, more contacts are require
cage the particle requiring a higher volume fraction. At s
higher aspect ratios, the required number of contacts plate
however the excluded volume increases significantly a
drives the volume fraction back down.

Quantitatively, the contact number for long rods obtain
directly from the simulationŝg&53 is significantly different
from that obtained from Eq.~11! ^g&510. This is due to the
rods having an effectively larger diameter due to the str
ture near contact Fig. 3.

D. Comparison to experiments

Our simulation results for the random packing densit
agree fairly well with the available experimental densitie
compiled in Fig. 6. Most experiments relate to granular ro
or fibers in the centimeter size range from a variety of m
terials such as wood@1#, metal wire@5#, and raw spaghett
@12#. Also packings of anisotropic colloids are included@5#.
The scatter in the experimental densities may be due to
tors such as wall effects, friction between particles, oc
sional local nematic ordering, and particle flexibility.

u-
act

FIG. 6. Comparison between simulation and experimental pa
ing densities compiled from Refs.@1,5,10–14,45#. The inset shows
a logarithmic plot of the same data.
1-7
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Nevertheless, the data clearly confirm that our simulat
models random packings very well. The data also exhibit
asymptotic scaling of Eq.~1!, with a value c55.460.2
which agrees with the valuec55.1 from the simulation. The
experimental data are less clear with respect to the pac
density on approach of the sphere shape. The Bernal sp
packing densityf50.64 is confirmed, but the maximum
neara50.4 has not been identified, simply because pack
data relate toa.1. It should be noted that even a sma
polydispersity in shape affects the density neara51 consid-
erably: quite monodisperse particles will be needed to
serve the density maximum in Fig. 2. For granular objec
this monodispersity is feasible; as of yet we do not ha
relevant data on cylinders or prolates. However, for obl
particles, we indeed observe a density maximum@38#.

A comparison between the known equilibrium equation
state for hard spherocylinders@39# and the granular packing
volume fractions may be seen in Fig. 7. It can readily be s
that it is possible to compress an isotropic system of sph
cylinders to a density where the nematic phase is the e
librium state. For rods having an aspect ratio ofL/D'4.0,
the granular packing density is such that the equilibri
phase is smectic. However, for larger aspect ratios, it is
possible to compress a system to a density high enoug
that the smectic phase is the equilibrium one. So if, for
ample, an experimental sample of colloidal hard rods is to
frozen into the smectic phase, it will have to do so via t
nematic phase, not straight from the isotropic phase. Am
phous systems of very short rods can be quenched to a
sity where the crystalline state is the equilibrium one. F
aspect ratios arounda'0.8, the granular packings are s
dense that the orientationally ordered solid phase is the e
librium state.

E. Glass transition

Not only does size variation allow for more efficie
amorphous packings of spheres, it also effects the glass

FIG. 7. Simulation volume fractions as presented in Fig. 1~solid
circles! shown with the known equilibrium phase diagram@39# for
spherocylinders. The solid lines show the phase boundaries.
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sition @40#. It is to be expected that a possible glass transit
volume fraction for hard spherocylinders, as a function
aspect ratioa, will have a strong correlation to the amo
phous packing volume fractions. This, incidentally, sa
nothing about whether a thermally long-lived glassy pha
can indeed be formed. In the case of identical spheres, t
is no stable glassy phase, however, this may be reme
with the introduction of a small amount of polydispersi
@41#. It seems quite likely that there will be a long-live
dense metastable phase for long rods due to the extr
tangling between them. Indeed, colloidal rods form lon
lived isotropic structures after sedimentation@42#. In the case
of shorter rods, things could depend very critically on t
aspect ratio. Here the amorphous phase may become s
due to the competition between competing equilibriu
phases as there are many phase boundaries around the
ings of short rods.

Upon undercooling, a liquid falls out of equilibrium~due
to nonergodicity! across a narrow transformation range@43#,
thus sensible operational definitions of where the glass t
sition occurs show reasonable compatibility. This is the c
even for measures based on conflicting fundamental p
ciples. For molecular glasses, the translational diffusion
couples from the viscosity, however the rotational diffusi
does not@43#. According to the tube model of Doi and Ed
wards @44#, the rotational diffusion will slow down inverse
squarely proportional to the volume fractionDL

r }f22,
which is not compatible with the expected viscous behav
of a glassy liquid. The details and even the existence o
glassy phase formed from long rods remains an open q
tion.

IV. CONCLUSIONS

The mechanical contraction method for obtaining granu
packings has been introduced. This has resulted in am
phous granular packings of spheres, which are consis
with previously used methods. Further, the method is able
handle spherocylinders out to very long aspect ratios
should be possible to study other shapes such as ellips
and disks using the methods that have been introduced in
paper. The results for the spherocylinders reproduce exis
experimental results for all available aspect ratios. The v
ume fractions of the long spherocylinders confirm the p
diction that the random packing density of thin rods is
versely proportional to the aspect ratio. In addition, t
expectation is confirmed that spatial correlations gradu
vanish with increasing aspect ratio. The random sphere p
ing density turns out to be a local minimum: the highe
density occurs at an aspect ratio ofa'0.4. The practical
implication is that a small deviation in shape from spheri
may increase the random packing density significantly w
out crystallization. If it is assumed that spherocylinders fo
a stable thermal glassy phase, it can be expected to occ
very low densities for large aspect ratios. Finally, our sim
lations clearly show that particles with a given aspect ra
have a unique random packing density: The Bernal sph
packing can be generalized to spherocylinders of arbitr
1-8
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aspect ratio with one and the same simulation method. T
indicates that these packings all follow the same geometr
principle~s!. The ~at least qualitative! applicability of Eq.
~11! suggests that the random packing density is, for all
pect ratios, the outcome of a competition between coord
tion numbers~determined by local caging effects! and ex-
cluded volumes.
r
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