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Random packings of spheres and spherocylinders simulated by mechanical contraction
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We introduce a simulation technique for creating dense random packings of hard particles. The technique is
particularly suited to handle particles of different shapes. Dense amorphous packings of spheres have been
formed, which are consistent with the existing work on random sphere packings. Packings of spherocylinders
have also been simulated out to the large aspect ratia=0160.0. Our method packs randomly oriented
spherocylinders to densities that reproduce experimental results on anisotropic powders and colloids very well.
Interestingly, the highest packing density ¢ 0.70 is achieved for very short spherocylinders rather than
spheres. This suggests that slightly changing the shapes of the particles forming a hard sphere glass could cause
it to melt. Comparisons between the equilibrium phase diagram for hard spherocylinders and the densest
possible amorphous packings have interesting implications on the crystallization of spherocylinders as a func-
tion of aspect ratio.
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[. INTRODUCTION clearly shows that random packing densities have a purely
geometric origin, an assessment that also forms the basis of
In nature and technology, a wide variety of amorphousour simulation methodsee Sec. Il ¢ Experiments also in-
structures can be found, which consist of randomly packedlicate that the packing volume fractightends to zero for
nonspherical particles. Macroscopic examples are packingg@ng rods as the aspect ratio increases according to the
of rice, grass seed, gravel, and glass fibers in reinforced con@symptotic scaling5],
posite material§1]. Also on the mesoscopic length scale,
random packings are well known, such as for cellulose fibers 2¢pa=(y)=2c for a>0. 1)
in paper[2] and other fibrous medig,4] and colloidal rods
in amorphous sedimenf$§]. The density of such packings  Here,a=L/D is the aspect ratio for a rigid thin rod of
forms an intriguing, largely unsolved problem. The topic oflengthL and diameteD, () is the average number of con-
random packing densities has a long and extensive historiaCts experienced by a given particle, and according to the
[6—8] which, however, almost exclusively deals with the experiments the contacts per particlis 5.4+ 0.2. This scal-
limiting case of spheres. At first sight, this focus on spheredng, first noted in Ref{11] and discussed by several authors
may seem reasonable; one expects that nonsphericity wilR,5,9,10, can be explained by a simple excluded volume
always complicate the packing density problem due to th@rgument5] as will be further discussed in Sec. lll. How-
additional complexity in considering particle orientations. It ever, alternatives to Eq1) have been proposed such as an
has also been pointed out, however, that isotropic thin rodexponentia[15], logarithmic[13], and a nonanalytif7] de-
may actually form more simple random packings becausg@endence of the random rod packing density on aspect ratio
correlations for thin rods are much weaker than for spheres. To confirm the correct scaling for thin rods, simulation
[5]. Of course, it is desirable that an approdoh even an results are needed at high aspect rat&msy «>50), which
explanation for random packing densities is found, which is are experimentally difficult to handle due to unwanted par-
sufficiently general to include the effect of particle shapeticle flexibility and possibly particle alignment. Unfortu-
The aim of this work is to introduce such an approach in thenately, the simulations we are aware of only deal with small
form of a simulation technique that appears to be very suitaspect ratio$9,16] and, moreover, produce densities that are
able for creating amorphous packings of spheres as well aglearly below experimental valu¢S]. Thus, our first goal is
fibers up to very high aspect ratios. The method should b& extend simulations to higher aspect ratios with a meaning-
readily applicable to other shapes such as diéksior- ful model of the experimental systems.
phously packed in three dimensionsr ellipsoids and to Our second goal is to investigate the opposite limit,
packings in other dimensions. namely, what happens if the particle shape approaches that of
One incentive for our work is the experimental observa-a sphere. The issue here is whether the Bernal random sphere
tion that packing volume fractions of randomly oriented rigid packing(with a volume fraction¢=0.64) is a maximum in
fibers, in comparison to spheres, drastically decrease witthe packing density as a function of aspect ratio. Earlier work
increasing particle aspect ratifs,5,9—14 in a manner that of Sherwood[16] and otherd17-19 suggest that spheres
is invariant to the particle’s size. This trend has been reportechay form a local minimum. However, the results6,19
for rod lengths that span many orders of magnitude fromwere difficult to interpret as the limiting density for spheres
colloidal rods in the nanometer size ranf§éto chopped raw  was substantially below the Bernal packing density ¢of
spaghetti{13] on the centimeter scale. This size invariance=0.64. Clearly, this limit should at least be correct; further a
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plausible geometric explanation for any increase in volumehree-dimensional spheres a volume fraction ¢of 0.385
fraction, due to a small deviation from the spherical shapewas found. The studies on ellipsoids and spherocylinders
needs to be formed. have been limited to aspect raties such that 0.06% «

Our third goal, once having random packing densities<25. \While the obtained aspect ratio dependence is qualita-
from spheres up to very thin rods, is to make a comparison t@yely similar to experimental resultgs], the volume frac-
thermodynamic systems. The Bernal sphere packing hasgyns are significantly less than experimental packings. In
density that is higher than the hard sphere crystal's meltingeneral, the RSA method obtains final packing densities,
point of $=0.545[20], above which the equilibrium state \yhich are significantly lower than what is found from experi-
becomes a single-crystal phase. It would be interesting tQ,,tg and more realistic concurrent algorithms.
know what happens at finite aspect ratios of spherocylinders. An important definition is that of a jammed state. Here we
Are random packings always at a higher density relative todefine this (solely for computer simulationsas the state

an eq_umbnum crystallme phase W't.h elt_he'r positional or O\ vhere any extension of computational effort, using a given
entational ordering? Such information is important to better . ; . . .
Igorithm, fails to increase the systems density. Under this

understand the often puzzling phase behavior of colloidaf'9°"" . .

rods quenched into random packings by rapid sedimentatioqefm't'on_’ concurrent algonthms. often prpduce_ a jammed

[21]. state while RSA does_not. waously, this definition may
The content of this paper is as follows. Sections Il A anddePend upon the algorithm being employed.

[I B briefly review existing methods to simulate randdor

granulay packings and motivate the need for a mechanical ~ B. Existing methods for simulating granular packing

contraction technique, which is explained in Sec. IIC. The = geyeral methods have been employed to simulate granular
resulting random packing densities are discussed in Sec. llh,ckings. It should be pointed out, from the outset, that when
a comparison is made to the random contact equation in Sef.comes to the packing of rods or fibers, all these techniques
IIl'C and to existing experimental data and equilibrium phasg,5,e some very serious shortcomings. For this reason, we
b_ehawor in Sec. llI D. Implications on the glass transition arey, 5,6 developed a technique that will be discussed in Sec.
discussed in Sec. Il E. I1C. One of the earliest methods used to obtain dense amor-
phous packings of hard disks and spheres was based around
Il. METHODS FOR SIMULATING GRANULAR PACKING molecular dynamicg28], using an equilibrium fluid as a
starting point. Having used this method, we will discuss a
shortcoming it has in forming granular packings. When two
Simulation methods for forming granular packings of particles approach each other dominantly due to their own
hard particles can be placed in two distinct groups. The firsexpansion rather than their thermal velocities, an elastic col-
group, referred to as concurrent algorithms, involves the deniision will result in a postcollision separation rate, between
sification of a fixed number of particles. The second groupthe two particles centers, which is less than the rate at which
referred to as sequential algorithms, involves progressivelyhe particles are expanding. This results in the pair of par-
adding more particles to a fixed volume. ticles expanding inside each other. Including some form of
Concurrent algorithms have been used to obtain granulanelastic collision in the event of the above occurrence can
packings of disks in two dimensions and spheres in threalleviate this problem; however this will result in the sys-
dimensions. Random packings of disks are unstable to vibraem’s temperature increasing and the effective quench rate
tions, which cause them to crystalliZ€2]. However, an decreasing. As a granular packing is approached, the colli-
amorphous packing with an area coveragespef0.77 has  sion rate will diverge and, in turn, so will the rate at which
been achieved using an algorithm that avoids local crystalthe temperature is increasing. Considering how sensitive the
line regions[23]. Random packings of spheres have beerformation of local crystalline environments is on the quench
obtained with a variety of volume fractions 06@<0.68 rate in these systems, this is a serious problem when simu-
[24]. Volume fractions aboveb=0.64 require more order in lating random packings. Of course, all the particle velocities
the systenf24], typically induced by further vibrational ex- could be equally scaled down, to compensate for the extra
ploration during the quench when the quench rate is nognergy introduced in the event of an inelastic collision, by
rapid enough or the quenching mechani@hthe particular ~ which stage the method has lost all its initial simplicity.
algorithm is not aggressive enough. A detailed simulationWhile this is a sound simulation method, it is already diffi-
technique has recently been reported, here the effects of fricult enough with spheres, we decided to make no attempt to
tion, particle softness, and energy dissipation have been studeneralize it to include rods.
ied on the granular packing of sphereb]. Under condi- A novel method used by Hinrichsen, Feder, and Jgssang
tions of finite pressurédue to gravity, it was found that [23] was to form a Voronoi tessellation around a system of
frictional forces, in particular, could affect the final volume disks. The disks were then all moved to the center of their
fraction and coordination number of the system. Voronoi cell and the system was squashed as much as pos-
Studies employing sequential algorithms have been resible(scaling the particle positiopsintil a pair of disks came
ported for disks[26], spheres[27], ellipsoids [16], and into contact with each other. This was then repeated until the
spherocylinder$9]. All these studies have employed a tech-system could no longer be reduced in volume and thus a
nique known as random sequential additi®$5A). The area random packing was obtained. The motivation behind this
coverage for disks was found to hg=0.547, while for method was to obtain a dense amorphous packing of disks

A. Existing work
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without any crystallization processes taking place. While thissystem dominates over any thermal fluctuations. If a thermal
method could obviously be extended to spheres, it is not seystem is to be quenched, the quench rate must be extremely
obvious how to extend it to the case of rods. high such that the particles are forced into permanent contact
Another method we have tried in our exploration of ran-with each other on a time scale where the system cannot
dom rod packings is based around a Monte Carlo simulatiormove towards a more thermodynamically favored phase as
A standard Monte Carlo simulation is carried out to obtain anthis would affect the final structure and density. Our tech-
equilibrium fluid. At random intervals, the volume is re- nique for obtaining amorphous packings, referred to as the
duced, with all the particle positions being scaled until a pait«achanical contraction,” is based around the idea of den-
of p{;\rticles come into contact, and the simulation is thergity quenching a system, which undergoes no thermal fluc-
continued. In the casehof spl)lheres, Ieventually the system b’?L]ations and it works as follows. A dilute equilibrium fluid of
ggn:efofoac?]g%(ejﬁ?do} ?z;tﬁerg?glc ien(r;:)?:]/else{aerle r:if:;?gd eébherocylinders is prepared, in a cubic cell with periodic
p o P Y boundary conditions, using standard Monte Carlo techniques

sphere at the volume fraction of¢=0.635. While the }]. This is used as the initial configuration for the system,

method produces jammed states for spheres, the same canL = . )
be said for rods. Here we found the rate at which the systeﬁﬁ‘%"Ch is then squa_shed tc_) obtain an amorphous packing. The
lume of the cubic cell is reduced by a small amoniut

was compressed, reduced rapidly as the density increasetf _ >
Eventually, the compression became so slow that it was im@"d all of the particle positions are scaled by the factor
possible to devise a clear criterion as to where the simulation
should be stopped. (4 Av
A method in the literature, which has been used for both S Vv
spheres and short rods, is RE}16,26,27. The RSA in two
dimensions has direct relevance to the adsorption of particleshile their orientations are left undisturbed. Thus, all the
on a surface. While three-dimensional amorphous packinggarticles are moved back inside the cell, however this results
have been successfully obtained using RSA, any relation béa some of the particles overlapping each other. The overlap-
tween these packings and an experimental granular packingng particles are then moved outside each other in an itera-
is at best tenuous. A granular packing is obtained under conive manner(described beloyv The entire process is then
ditions where the pressure compressing the system is totalhpeated until the system becomes so congested that the
dominant over any thermal fluctuations. Here the particle%veﬂapping partic'es can no |Onger be moved outside each
are no longer able to move due to the congestion creategher, if the system is contracted any further, and thus the
after being compressed to a minimal volume by a large presing| granular packing is obtained.
sure. In an RSA simulation, particles are placed in random | order to describe how the overlapping particles are re-
positions and then they are never allowed to move; this is ifnoved from each other, we first introduce some geometry
contrast to a granular packing where highly collective rearang definitions. A spherocylinder may be represented by its
rangements occur until congestion prohibits further moveyyis of symmetry, a line of length. Consider a pair of
ment. We observed that the final RSA packing volume fraCspherocylinders, both will possess a unique point on their
tion is never achieved on the computer due to the slow powesyes of symmetry such that the distance between the two
law by which it is approached as a function of insertionpoints is a minimum, the vector connecting these two points
attempts. Another disadvantage is that in the case of long; |abeledk. If the magnitudek is less than the spherocylin-
rods, the RSA approach will no longer form an isotropic der's diameteD, the two spherocylinders overlap. Once two
amorphous packing. Such a packing has a very low densitypherocylinders are identified as overlapping the extent of
due to the Iarg_e excluded volume qf a long thin rod. Theye overlap is given bys=D—Kk. If there areC particles,
RSA method will always be able to insert many more rodsyhich overlap with particlé, and particlei is moved with
into an isotropic packing by finding the best possible way toconstant translational and rotational velocities then the speed

align an insertion attempt. Such carefully inserted alignedy; \hich particlei is changing its overlap with the contacting
extra particles do not occur in granular packings due to thgarticlej may be quantified:

extreme entanglement of the particles. The RSA process pays

no heed to entanglement. A more realistic variation of the )

RSA method has been reportia9] where particles are only 1= kiYa,+ki?a, +k(¥az+1kiYa,+1ki>as.  (3)
added to the surface, however only short rods have been

studied.

It is clear that a new method of forming fibrous granular
packings is necessary if the simulation work currently re-
ported in the literature is to be significantly extended. Th
method we have developed is described next. In spirit, it isare the velocities of particle n=1, 2, and 3 being the ve-
similar to an existing method that has been used for polydisl-oCity of the particle’s center of m:';\ss’ and4 and 5 being
perse sphereS0]. the particle’s rotational velocity. The orientation of particle
is given by the unit vectop; and the above mentioned rota-
tional velocity is equal tap; /dt. The variabld; is the dis-

In forming an amorphous packing, we are interested irtance from theith particle’s center of mass to the point of
what happens under conditions where the pressure on thmntact with particlé along the axis of particle In the case

1/3

: @

Here generalized coordinates have been used,, 2, and 3

are the Cartesian coordinates of the systemranad and 5

are two additional Cartesian coordinates that are perpendicu-
ar to each other and the axis of parti¢leThe variables,

C. The mechanical contraction
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where the contact is located on the opposite end of sphero- While this technique produces a good representation of
cylinderi to that pointed to by vectdd;, lengthl; will take  granular packing for spheres and short rods, this is not the
on a negative value. The variablegg) are the components of case for long rods. In the later case, the technique does not
vectork; projected on to each of the five axes. We now writesufficiently sample rearrangements, which involve particles
down the following equation, which is representative of thesliding along their own axis of symmetry. This is overcome
speeds, where a given particle is breaking contact with@s by squashing the system as much as possible using the me-
overlapping particles, chanical contraction technique followed by a series of Monte
Carlo moves where all move attempts are in a direction par-
K allel to the particles own axis of symmetry. The system is
(4)  then subject to the mechanical contraction technique again
and the process is repeated until the system can no longer be
reduced in volume. In the case of short spherocylindass

ect ratios less than 4,Ghis makes absolutely no difference.

n the case of very long spherocylindéespect ratios above
a.LOO), it can allow further reduction of the system’s volume
by a factor greater than 2.0. Eventually, a well defined and
reproducible maximum density is obtained.

A version of the Verlet neighbor ligt32], modified for
spherocylinders, is used. The distafkdeetween each pair of
rods is used to construct the list and the distance each end of
a rod moves is then monitored in order to determine when
the list needs to be updated. This is done when either end of
a rod moves further tharr {,— D)/2, wherer . is the cutoff
dius used to form the list.

C
s=> 5
=

Fot

where the factors; is included in order to bias the rate at
which the particles break contact in favor of those which ar
overlapping the most. In order to proceed, we introduce
kinetic energy—type constraint on the velocity of particle

aj+as+as+éaj+taz=1, (5)

whereé is an arbitrary parameter which in the case of kinetic
energy is simply related to the particle’s moment of inertia. A
Lagrange multiplier is then used in E{) with the con-
straint, Eq.(5), to obtain the direction in which to move
particlei in order to reduce the degree of overlap with e
contacting particles at the maximum rate. The direction thu€?
obtained in terms of the velocity vector with arbitrary speed

is given forn=1, 2, and 3 as D. Simulation details

c K The final configurations were analyzed using a generali-
a,=> 5J,J_ (6)  zation of the radial distribution function to handle spherocyl-
j=0 ] inders. Here, the distande(see Sec. Il Cbetween the two

spherocylinders was used in place of the distance between
the centers of a pair of spherical particles. The number of
c particles in a structureless system, which would be expected
:EE PR ) to bg found tangential to a spherocylinderical shell of.radius
£ T K k, thicknessdk, and a length. equal to that of the particles
under consideration is used to normalize the distribution
It should be pointed out that in the case of spheres the abovignction. This may easily be calculated by differentiating Eq.
procedure produces the same result as (By.there being (8) with respect to the spherocylinderical shell's radius and
only three dimensions for the direction a sphere moves. Athen multiplying by the shell thicknestk
this stage, it is possible to determine which direction each A range of aspect ratios was investigated from spheres to
particle in the system is to be moved. However, the questiotpng spherocylinders € «=<160.0. The number of particles
remains as to how far each particle is to be moved. It wagised in the simulation depended heavily on the aspect ratio.
decided that each particle should move a very small distancdhis is because spherocylinders require a simulation box that
further than half the distance necessary to break the firgs at least twice their length to satisfy the minimum image
contact. In the case where two particles are in contact witlgondition. In the case of long rods, the packed volume frac-
each other and only each other, this results in the pair beintjon asymptotes t@~ 1/« and the volume of each rdavith
moved just far enough to break contact. The extra distanceonstant diametgrmasymptotes t@,~ «, so that we can ex-
was specified such that slightly larger spherocylinders woulgect the required number of particles to be proportional to
break contact(~1.0001 times bigger in diamejerthis  the aspect ratidl~ «. In the case ofv=160.0, the necessary
helped alleviate problems with more contacts being made asumber of particles wakl=42 and 592.
the particles are moved and with a finite machine precision. Dilute isotropic fluids, in thermal equilibrium, were first
The direction and distance each particle needs to be moved [gepared using a standard canonical Monte Carlo algorithm.
calculated and then they are all moved. This is then repeatethe system was then subject to the mechanical contraction
a large number of times until there are no more overlappingvith a maximum of 18 iteration attempts andAV/V
pairs of particles. If an arbitrarily chosen cutoff number of =10 3. Eventually, a density was reached where all the rods
iterations is reached without all the particles breaking conor spheres could no longer reach a state, with no overlapping
tact, it will be deemed that the system had reached its highegiairs, within the specified number of iteration attempts. The
packing density. Given that the iteration cutoff number isvalue of AV was then scaled down, typically by a factor of
large enough, the final result is not sensitive to its choice. 0.1 but sometimes a value closer to unity, depending on what
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FIG. 1. Imagegray tracing$ of tightly packed isotropic sphero-
cylinders for several aspect ratias Aspect ratios of(clockwise
from top lef) =0 (spherey a=0.4, «=40.0, anda=2.0. For
a=0.4, the highest packing density=0.70 is achievedsee Fig.
2). The packing fora=2.0 is already to the right of the density
maximum, and has a densi#y= 0.616, which is close to that of the
random sphere packings.

FIG. 2. Final volume fractiong for the amorphous packings as
a function of aspect ratia. The solid line is a theoretical fit from
the random contact equatioppa=5.1 [see Eq.(1)]. The inset
shows a magnified view of the same graph at low aspect ratio.

equivalent monodisperse systei®0]. To understand this,
consider a system of amorphously packed spheres. We can

, . X he i i
seemed to reach the final result most expediently. Eventualle pect the interstices between the spheres to all be smal
i

AV became so small that it was less than the least significa nough such that no additional spheres can be placed in
L . . em. If the system is made more polydisperse, the smaller
bit in the machine storage of the value ¥y at this stage the 4 POYCISp

L spheres may be placed where the larger ones previously
system was deemed to have reached its final volume. In th ould not. So the size variation allows for more efficient

case of long roddaspect ratiol/D=8), the system was amorphous packing. Perturbing the particle shape from
SUbJe?t to the Monte Carlo moves along the rods axis a§pherica| has a similar affect to size variation: a short sphero-
described above. cylinder that may not fit in an interstice when orientated in a
given direction may fit when the orientation is changed. On
IIl. RESULTS AND DISCUSSIONS the contrary, the orientationally averaged excluded volume
When applied to spheres, the mechanical contractioh34-39 of the spherocylinder will change with the aspect
method forms a randomly packed configuration with a vol-ratio and hence also affect the efficiency of the packing:
ume fraction of¢=0.631 and a radial distribution function, )
which may be seen in Fig. 3. These results are consistent _ 6a”+24a+16
with previous studies on random packings of hard spheres by 2+3a
both colloidal experimentg33] and simulatior 22].

®

Here,E=v,/v, is the excluded volume divided by the par-
ticle’s volume anda is the aspect ratio. Now E@8) has a
very weak dependence on the aspect ratighen it is small,

The results obtained for spherocylinders dependedo the size variation effect dominates and the short sphero-
strongly on the aspect ratie. Images(formed by ray trac- cylinders pack more efficiently than do the spheres. For
ing) of the random packings for several aspect ratios may bepheres, the aspect ratioas=0 and the reduced excluded
seen in Fig. 1 and volume fractions, of the random packingsyolume isE=8, and for short spherocylinders with aspect
obtained as a function of aspect ratio are shown in Fig. 2. Itatio «=0.4, the excluded volume will be such th&t
can be clearly seen that the very short rods pack to highe+8.3. For large aspect ratiok, increases strongly with as-
volume fractions than the spheres, with a maxim@m  pect ratioa and the effect of the excluded volume com-
the aspect ratios studipdf ¢=0.695 fora=0.4. A qualita-  pletely dominates. At large aspect ratios, the volume fraction
tively similar trend has been found for the RSA of spheroidsdecreases in a manner that is inversely proportional to the
[16] and Monte Carlo simulations of the pouring of elliptical aspect ratio. This dependence is also found experimentally
particles in two dimensiongl7,18 and ellipsoids in three [5,11] and predicted by the random contact scaling for long
dimensiong19] suggesting that small deviations in the shaperods, Eq.(1) [5]. This is a direct consequence of the packing
of identical spherical particles allow a more efficient amor-being determined by the excluded volume per particle, while
phous packing. It is well known that an amorphous polydis-the average number of contacts per particle remain constant
perse system of spheres packs more efficiently than afb]. Fitting the simulation data to Eql) provides the aver-

A. Aspect ratio dependence
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FIG. 4. Number of contacts, as a function of minimum distance
between rods symmetry axis for spheregsquaresand rods with
aspect ratiogr= 2.0 (circles and 80.0(triangles.

FIG. 3. Generalizations of the radial distribution function for
spheres(closed circles spherocylinders of aspect raties=2.0
(open circlesand 80.0(crosses k is the shortest distance between
the two rods axes of symmetry in units of the rods diameter.

gous to the second peak in the radial distribution function for
age contact numbery)=10.2, which agrees well the value spheres. For the longer spherocylindets; 80.0, the sharp
of (y)=10.8-0.4 obtained for experimental rod packings peak at contact is not followed by a depletion region. Rather,
[5]. the function monotonically decays to the nonstructural value

We note here the use in the literatyi of an empirical  of unity. That the distribution function decays to some value
correlation to predict trends in packing densities of non-gpproaching the nonstructural value at a distdaerich less
spherical particles from the sphericity parameter, than the rods length is indicative of the system being rela-
tively free from local structural alignment. This seems to be
a more sensitive way of identifying a small degree of local
alignment in long rods than the nematic order parameter.
What is clear from Fig. 3 is that defining any particles, which
which characterizes the shape of a particle with volurge are within a certain distance from each other, to be in contact

2/3
= 4.87% 9)

and surface area For a spherey=1, and for thin rods, will be a definition that is affected by the aspect ratio. How-
ever, from spheres to long rods there is a very sharp peak in
y=1.322"13 a>1. (100 the radial distribution function near contact. The number of

contacts as a function of separation distance is shown in Fig.
It is clear thatys predicts the wrong scaling for thin-rod pack- 4 for rods of aspect ratia=2.0 and 80.0. While the defini-

ing densities. tion of any particles closer than a certain distance has prob-
lems, it may be used as a meaningful working definition,
B. Radial distribution and contact numbers especially for short rods and spheres.

In a thermal system of hard particles, on an average, there )
will be no pairs of particles in contact with each other. In a C. Random contact equation
granular packing, the pressure totally dominates over the The numbers of contacts per particle, determined from
thermal fluctuations. This causes pairs of particles to remaiplots as in Fig. 4, as a function of the aspect ratio are shown
in constant contact with each other. Calculating the exacin Fig. 5. along with the volume fractions obtained from the
number of contacts from the final simulation configuration israndom contact equation and those obtained directly from
not a trivial task. Perhaps the most straightforward approacthe simulations. In the case of randomly positioned, nonin-
is to search for the number of particles within a certain disteracting long rods, the common volume of any overlapping
tance of the central particle. To further investigate the validvods will be insignificantly small as compared to the rod’s
ity of this, a generalization of the radial distribution function excluded volume in an interacting system. Isotropic systems
(commonly used with spherical particjdsr spherocylinders  of long rods therefore have very little structus=e Fig. 3.
of aspect ratiosr=2.0 and 80.0 is presented in Fig. 3. For Such weak correlations support the propositish that the
the shorter spherocylindera=2.0, there is a sharp peak at overlapping rods of a noninteracting system are equivalent to
the contact distance followed by a depletion region. There ishe contacting rods of a corresponding random thin-rod

also a second much smaller peak due to a pair of particlesacking. This gives the random contact equation, which
having an additional particle between them, which is analostates that
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. FIG. 6. Comparison between simulation and experimental pack-

ing densities compiled from Refgl,5,10—14,4% The inset shows
a logarithmic plot of the same data.

0.8

-
®
o %81 .. aspect ratios. Combining this idea with Ed8) and (11)
R predicts that the volume fraction will be inversely propor-
% tional to the aspect ratigp~ « for very long rods. This can
0z - R easily be seen by replacing the excluded volume in(Ef).

with the infinitely long rod expressiotas used by Onsager
. 2 " [34,35), which gives Eq(1). Figure 5 depicts a direct test of
Eq. (11) with plots of both(v) and ¢ being obtained directly
from the simulation and a second volume fracti¢p ob-
tained from Eq.(11) using the number of contac{y) from
o the simulation. Not only does this explain the behavior of the
FIG. 5. In Fig. a), the number of contacts as a function of 10Ng rods, but it also provides a qualitative insight into the
aspect ratidtriangles are shown. In Fig. @), volume fractionsp ~ Pehavior of the very short rodge., an alternative explana-
obtained directly from the simulations are compared to those calcuion of the increased volume fraction for very short sphero-
lated from the average number of contacts using the random contagylinders. For very short spherocylinders, the excluded vol-
equation. The simulation data as presented in Figsquaresand  ume depends only weakly on the aspect ratio as opposed to
the random contact volume fractiofsircles are shown as a func- the number of contacts necessary to cage the spherocylinder.
tion of aspect ratio. As the aspect ratio increases, more contacts are required to
cage the particle requiring a higher volume fraction. At still
1 N higher aspect ratios, the required number of contacts plateaus
¢E:<7>:NZ Vi, (11 however the excluded volume increases significantly and
: drives the volume fraction back down.
Quantitatively, the contact number for long rods obtained
directly from the simulationéy) =3 is significantly different

L : . from that obtained from Eq11) (y)=10. This is due to the

the density is determined by the averageyofThis average : . .

- . x - _rods having an effectively larger diameter due to the struc-
coordination number, in turn, may be fixed by the require- o rear contact Fig. 3
ment that a rod is immobilizetaged by its neighbors. The T
average minimal numbsdithe caging numberof neighbors
to achieve such caging isy)=4.79 for three-dimensional
sphereq36]. For spherocylinders, caging numbers have not Our simulation results for the random packing densities
been calculated yet, though it has been shown that the loweigree fairly well with the available experimental densities,
bound for thin rods is{y)=5 [37], with a corresponding compiled in Fig. 6. Most experiments relate to granular rods
packing density bound otha>2.5, which incidentally is or fibers in the centimeter size range from a variety of ma-
consistent with experiments and our simulations. It has beeterials such as wooffl], metal wire[5], and raw spaghetti
argued[5] that whatever the precise value for it will be [12]. Also packings of anisotropic colloids are includid.
invariant to the aspect ration fer>1. The argument is that The scatter in the experimental densities may be due to fac-
if a certain number of neighbors cage a thin rod, the cagingors such as wall effects, friction between particles, occa-
situation will not change as the rod is pulled out to highersional local nematic ordering, and particle flexibility.

0.0 1

T T u Y — T T T T T T
-20 0 20 40 60 80 100 120 140 160 180

where y; is the number of particles in contact with tin
particle. In other words, for a given particle shafired E),

D. Comparison to experiments
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0.8 sition[40]. It is to be expected that a possible glass transition
volume fraction for hard spherocylinders, as a function of
] \'- Crystal aspect ratioa, will have a strong correlation to the amor-

fiée -\ phous packing volume fractions. This, incidentally, says
E— nothing about whether a thermally long-lived glassy phase
% can indeed be formed. In the case of identical spheres, there
is no stable glassy phase, however, this may be remedied
with the introduction of a small amount of polydispersity
[41]. It seems quite likely that there will be a long-lived
dense metastable phase for long rods due to the extreme
tangling between them. Indeed, colloidal rods form long-
lived isotropic structures after sedimentat[d2]. In the case

of shorter rods, things could depend very critically on the
aspect ratio. Here the amorphous phase may become stable

0.4 - .
Nematic

0.2

Isotropic

0.0 - : - y T : . g T due to the competition between competing equilibrium
0 10 20 30 40 .
phases as there are many phase boundaries around the pack-
o ings of short rods.

FIG. 7. Simulation volume fractions as presented in Fi¢sdlid Upon undercooling, a liquid falls out of equilibriutdue

circles shown with the known equilibrium phase diagri@®] for 0 honergodicity across a narrow transformation rarigé,
spherocylinders. The solid lines show the phase boundaries. ~ thus sensible operational definitions of where the glass tran-

sition occurs show reasonable compatibility. This is the case
Nevertheless, the data clearly confirm that our simulationeven for measures based on conflicting fundamental prin-
models random packings very well. The data also exhibit thginjes. For molecular glasses, the translational diffusion de-
asymptotic scaling of Eq(1), with a valuec=5.4+0.2 .o ples from the viscosity, however the rotational diffusion
which agrees with the value=5.1 from the simulation. The 4qaqg nof43]. According to the tube model of Doi and Ed-

experimental data are less clear with respect to the paCkir\Qlards[M], the rotational diffusion will slow down inverse
density on approach of the sphere shape. The Bernal spheg uarely proportional to the volume fractioR! o g2

packing density¢=0.64 is confirmed, but the maximum o . . . :
neara= 0.4 has not been identified, simply because packin hich is not _cor_npatlble W'th. the expected viscous behavior
f a glassy liquid. The details and even the existence of a

data relate toa>1. It should be noted that even a small | h ¢ df | d .
polydispersity in shape affects the density nearl consid- glassy phase formed from long rods remains an open ques-

erably: quite monodisperse particles will be needed to obtion-
serve the density maximum in Fig. 2. For granular objects,
this monodispersity is feasible; as of yet we do not have IV. CONCLUSIONS
relevant data on cylinders or prolates. However, for oblate
particles, we indeed observe a density maxin®a).

A comparison between the known equilibrium equation of

The mechanical contraction method for obtaining granular
packings has been introduced. This has resulted in amor-

: : hous granular packings of spheres, which are consistent
state for hard spherocylindef89] and the granular packing P’ ; ;
ool fractionsp Ty ge see[n ir]1 Fig. 7. It%an readﬁy be Sgeejslwth previously used methods. Further, the method is able to

that it is possible to compress an isotropic system of spher andle spherocylinders out to very long aspect ratios. It

; . : ; should be possible to study other shapes such as ellipsoids
cylinders to a density where the nematic phase is the equ?— . : . S
librium state. For rods having an aspect ratiold ~ 4.0, and disks using the methods that have been introduced in this

the granular packing density is such that the equilibriumpaper. The results for the spherocylinders reproduce existing

phase is smectic. However, for larger aspect ratios, it is no?xperimental results for all available aspect ratios. The vol-
' ' ' e fractions of the long spherocylinders confirm the pre-

possible to compress a system to a density high enough ¢ iction that the random packing density of thin rods is in-

that the smectic phase is the equilibrium one. So if, for ex- ersely proportional to the aspect rafio. In addition, the

ample, an experimental sample of colloidal hard rods is to be

frozen into the smectic phase, it will have to do so via theexpectatlon is confirmed that spatial correlations gradually

nematic phase, not straight from the isotropic phase. AmoryaniSh Wi.th increasing aspect ratio. The_ “?‘”dom spher_e pack-
phous systems of very short rods can be quenched to a del fngfnsolgz t?smgt (;L:]t :; Zitar;?galygcl)ngmljrnr}e th;eacfl!ggle st
sity where the crystalline state is the equilibrium one. For. oIty oceu pect ratic or=1.4. practical
aspect ratios around~0.8, the granular packings are so |mpI|(;at|on is that a small dewquon in Shap‘? frpm spherlpal
dense that the orientationally ordered solid phase is the equriTJay Increase Fhe rand.om packing density S|gn|f|pantly with-
librium state out crystallization. If it is assum(_ed that spherocylinders form

' a stable thermal glassy phase, it can be expected to occur at
very low densities for large aspect ratios. Finally, our simu-
lations clearly show that particles with a given aspect ratio
Not only does size variation allow for more efficient have a unique random packing density: The Bernal sphere

amorphous packings of spheres, it also effects the glass trapacking can be generalized to spherocylinders of arbitrary

E. Glass transition
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aspect ratio with one and the same simulation method. This
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