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Solution of the Percus-Yevick equation for square well spherocylinders
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The Percus-Yevick equation for square-well spherocylinders has been numerically solved for some selected
orientations following a methodology proposed previously for different fluids of elongated molecules. The
equation is solved for particles of aspect ratios ranging ftdim=0.3 up toL/o=5.0, attractive ranga/o
=1.5, and packing fractions withip=0.1-0.3. The resulting pair correlation functions are checked against
isothermal-isobaric Monte Carlo simulations and good agreement is found for the short-range structure, at
intermolecular distances within one molecular diamete¢o contact for each of the selected orientations. At
larger distances, the integral equation tends to overestimate the pair correlations. The results confirm the
prediction of reference-system average Mayer-function perturbation theory for short aspect ratios, reaching the
Onsager limit for the greater aspect ratios. Some instabilities of the solution for the longest models and higher
densities are tentatively discussed in terms of their possible relation to frustration phenomena found in some
polymer and complex systems.
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I. INTRODUCTION In the present work, we have applied a relatively simple
integral equation scheme proposed in earlier works to solve
Molecular liquids are relevant for a number of scientific the Percus-YevickPY) integral equatiori13—-15, to a fluid
and technological topiddl]. These liquids are often modeled of hard-core spherocylinders with an attractive square well
by nonspherical molecules and several more or less popula®WSQ. This system constitutes an excellent touchstone for
models, ranging from site-site potentid®], to more com- recent theories of dense fluifi$6,17], but it becomes com-
pact molecular core interaction potentials of different sym-plicated to simulate under certain high density conditions
metry and varying repulsive and attractive contributions[18]. On the other hand, the SWSC can be put into relation
[3—7], have been profusely used to give account of the mowith more complicated and realistic systefi$] so that the
lecular shapes and intermolecular interactions. In order té€termination of reliable properties for this system with a
calculate structural or thermodynamic properties of dens&imple method is particularly valuable. We have solved the
fluids, the model intermolecular potential can be combined®Y equation for selected pair orientations in SWSC fluids of
with nonlinear integra] equation approacl{@$ or, alterna- different hard-core aspect ratios, while keeping the attractive
tively, implemented into a simulation framework to producerange and depth of the square-well fixed. Simultaneously, we
ensemble averag¢8]. In principle, integral equations have have performed the Monte Cari®C) simulations in the
the advantage of their mathematical compactness and offé-P-T, ensemble for the same models and thermodynamic
the possibility of obtaining information of interest about a States. In spite of the simplicity of our solution method, the
system even without knowledge of a complete solution. FoPair correlation functions obtained from theory and simula-
simple models, a purely theoretical solution is often less extion are in good agreement for all the molecular elongations
pensive in computational terms than a simulafibé]. How-  investigated, although the range of densities where we are
ever, the solution of integral equations becomes quite comable to solve the PY equation is limited. Such limitation,
plicated for nonspherical molecular liquids and it usuallyhowever, may be related to some interesting phenomena ap-
requires a greater computational effk]. Furthermore, ap- Pearing in complex systems, such as geometric frustration
proaches involved in the derivation of integral equations aré20].
often phys|ca||y not well founded and must anyway be The paper is scheduled as follows: the intermolecular Po-
checked against simulations. In fact, results reported on intential and the methods employed to solve the integral equa-
tegral equations for molecular liquids are relatively scarce, iffion and to perform the Monte Carlo simulations are pre-
comparison with the wealth of molecular simulations avail-sented in Sec. Il, whereas the theoretical results for the pair
able in the literature. This situation could be at least partiallycorrelation functions are presented and compared to the MC
reversed if rapid and simple algorithms were available forsimulations in Sec. Ill. Section IV closes the paper with a
the calculation of relevant magnitudes, such as the pair coRrief concluding discussion and a tentative interpretation of
relation functions. Indeed, there are important problemghe results.
waiting for the development of simple and quick applications
of integral equations to orientation-depending interactions Il. METHODOLOGY
[12]. A. Model fluid
The system considered here is the so-called square-well
*Corresponding author. Email address: bmarhay@dex.upo.es spherocylinder fluid. In this model, the molecules interact
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following an intermolecular potential of the spherocylin- and T-shaped configurations §§7, Yp, Yo, andyy, re-
drical symmetry(cylindrical with hemispherical capss de-  spectively, the interpolation function is given by
fined by

Y1 12,0,8,0)=Yu1(r12) +[Yp(rip) —yur(rip Isine

©, dp=<c _
ulZ(rlZawlawZ): —g, 0-<dm$)\ (1) +[yC(r12)_yP(r12)]S|na
0, dp>\, +[yr(ri2 —ye(rizIsing, (4)

where d,=d(r1»,w1,w,) is the minimum distance be- where the angles, 8, and# are defined in Fig. 1 in the same
tween the long axes of the spherocylinders, which is a funcway as in Ref[13]. Basically,« and 8 describe the relative
tion of the orientation of the molecules;, andw, and of the  orientation of the molecular directors, wheretis the angle
distance vector between their centers of magsithe depen- described by one of the directors and the vectgrjoining
dence can be reduced to four independent variables, the diie centers of mass of the pair of molecules.

tancer ;, and three anglesas well as of the molecular pa- The PY integral equation has been solved iteratively in
rameters: diameter and elongatior.. The attractive square- real space, taking as first input for the state of lowest density
well interaction is characterized by a depttand a range,,  of each aspect ratio, the Boltzmann factor of the intermolecu-
and has the same anisotropy of the hard core. For the presdat potentialu,, [Eq. (1)], g1,=exp(—Bu;,). For the subse-

investigation the well range is fixed at=1.5¢. quent thermodynamic states, the solution of the closest state
at lower density is taken as input for the iteration. Further
B. Integral equation approach technical details are described in Rf3]. We have obtained

PY solutions for the PCF of SWSC fluids with seven differ-
ent aspect ratios rangirig* =0.3—5.0, for packing fractions
7=0.10-0.30 and a fixed reduced temperatlite=kT/e
=2. A complete list of the simulated systems appears in
h(rlz,wl,wz)=C(r12,wl,w2)+(477)_1nJ h(ri3,01,03) Table I.
It is important to stress that priori one cannot necessar-
X C(F 3,00, w3)dr 3dws, (2) ily expect reliable results for any orientation by simply using
Eq. (4). The fact that such a simple interpolation is found to
whereh=g—1 andc are the total correlation function and work reasonably well under the integral symbol is probably
the direct correlation function, respectively, anddenotes due to a fortuitous cancellation of errors when the PY equa-
the number density. An additional closure relation betweeriion is used. This may also be the reason for the fact that the
the functionsc andh is necessary to solve the OZ equation. PY equation gives acceptable results in the context of the
We have employed one of the most popular relations, th@resent work, while it is usually considered worse than the

The Ornstein-ZernikdOZ) integral equation provides a
formal solution to the pair correlation functid®CH:

Percus-Yevick equation which is written as hypernetted chaifHNC) equation since the classical work
by Hendersoret al. [21,22 for the square-well fluid with
C1o=01d 1 —exXp(BU1r) | = g1~ Y12- (38)  L*=0. Application of the HNC formalism to nonspherical

system is, however, not straightforward. For instance, trouble
Here, g;, denotes the pair correlation function and,  arising from the calculation of the logarithmic term in the
=0g12eXp(Bur) = (1+hi)exp(Buyy) with B=1/(kgT). Tra-  HNC equation for nonspherical systems has been reported by
ditional methods for solving this equation for linear mol- some author$23_25’ and it is not clear whether the HNC
ecules involve an expansion in a double series of sphericalpproach should work better than the PY one for fluids of
harmonics and an iterative solution using the Fourier transe|ongated molecules. Equatio#) could be refined with the
form of Eq. (2). This approach is formally straightforward classical procedure of expanding the PCF in a double spheri-
but the expansion is very poorly convergent for systemsal harmonic or rotation matrices serig26—29 to obtain
composed of molecules of significant aspect ratio so that thiytermediate orientations, the price now being the poor con-
computation of a large number of harmonic coefficients bevergence of the series as pointed out above.
comes necessary. Moreover, the number of iterations for
states moderately close to the critical points becomes exceed-
ingly high.

Here, we pursue a more modest aim: to obtain accurate In order to assess the accuracy of the integral equation
solutions only for specific pair orientations, namely, thoseapproach described in the preceding section, the same SWSC
known as head-to-tail, parallel, crossed, and T shaped. THéuids and thermodynamical states have been investigated by
numerical solution is based on an interpolation function formeans of MC simulations in théN-P-T ensemble. In
the PCF between a definite number of orientations, as dehe simulations, a system &f,=768 particles was allowed
scribed previously for other systemi$3]. In particular, we  to equilibrate for up to & 10° cycles, and a similar number
have followed the simplest scheme possible by restricting thef cycles was employed for the averages. Each cycle in-
number of interpolating orientations just to the selected orivolves Np attempts for random displacements and/or reori-
entations under the study mentioned above. Denoting thentation of a randomly chosen particle, plus an attempt to
correlation functiory,, for the head-to-tail, parallel, crossed, change the system volume. The procedure is described in

C. Monte Carlo simulations
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TABLE I. Contact values of the pair correlation functiO®RCH as obtained from the PY equation for the square-well spherocylinder
systems considered in this work. The PCFs for the head-to-tail, parallel, crossed, and T-shaped configurations are dgrotgd byc,
and gr, respectively. The values in italics for the hard spherocylind¢8C) fluid (Ref. [13]) are included for comparison. The PY
calculation forL* =0.6, »=0.3 with an increased system temperatlife= 10 is meant to show how the behavior of the SWSC fluid

approaches that of the HSC fluid in the high-temperature limit.

L* T* 7 Out(ri2=pc) gr(r=pc) gp(r12=pc) gc(riz=pc)
0.3 2 0.1 1.69 1.68 1.80 1.77
0.3 2 0.15 1.71 1.72 1.93 1.87
0.3 2.0 0.3 1.74 1.92 2.62 2.46
0.3 0.3 3.04 3.20 4.25 3.97

0.6 2 0.3 1.77 2.10 3.62 3.22
0.6 10 0.3 2.58 2.75 4.23 3.87
0.6! 0.3 2.97 2.91 4.33 4.14

1.0 2 0.3 1.75 2.15 4.83 4.08
1.0t 0.3 2.54 2.61 5.34 4.42

1.2 2.0 0.1 1.68 1.72 2.15 2.03
1.2 2 0.15 1.69 1.78 2.57 2.34
1.2 2 0.3 1.68 2.16 541 4.46
2.0 2.0 0.1 1.66 1.73 2.42 2.21
2.0 2.0 0.15 1.63 1.78 3.07 2.67
3.0 2.0 0.1 1.63 1.73 2.80 2.37
3.0 2.0 0.15 1.49 1.74 3.82 2.88
5.0 2.0 0.1 1.28 1.65 3.56 2.46

'Hard spherocylinder fluid from Ref13].
detail elsewher¢30]. Such long simulation runs, similar to . RESULTS

previous simulations for hard spherocylindgsd| and rela-
tively expensive in computational tinieeveral days for each
state in a PC nowadaysare needed primarily due to the

A. Percus-Yevick pair correlation functions

A selection of the PCFs obtained by the Percus-Yevick

extensive averaging required to compute the PCF for specifigitegration for different SWSC fluids are shown in Figs. 2—-5.
orientations. A tolerance of 5° was employed to calculate®S expected, each of the PCFs becomes nonzero only at

each pair orientation; i.e., in the averaging process, a pair

configuration was included as head to tail 3,6
=0°-5°, as parallel ifa,=0°-5°, #=85°-90°, as
crossed if 3B=0°-5°, 6,a=85°-90°, and, finally, as T
shaped ifa=0°-5°, §,8=85°-90°, where the angle defi-
nitions are given in Fig. 1.

particle 1

L*=0.3 T*=2.0 n=0.10 L*=0.3 T*=2.0 1=0.30

PY Theory 2L » PY Theory |

parallel 1+
--=--crossed
-------- T-shaped
——-— head-tail

[=]
[=]

- NPT-MC simulation h NPT-MC simulation

pair correlation function g, (r,.)

-

0 - L 0

center of mass distance T2

FIG. 2. The pair correlation function of the square-well sphero-
cylinder system for selected relative pair orientaticipsrallel,
crossed, T-shaped and head-to}taResults forL* =0.3, T* =2,
7=0.10 (left panel$, and »=0.30 (right panel$ are shown. The

FIG. 1. The system of coordinates used in the work showing thaipper panels correspond to the Percus-Yevick equation solution and

angles appearing in E¢4).

the lower panels show the corresponding Monte Carlo simulations.
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L*=1.2 T*=2.0 n=0.10 L*=3.0 T*=2.0 n=0.10

PY Theory |

PY Theory

parallef

- -crossed
--- T-shaped
== head-tail

NPT-MC simulation |

pair correlation function g,.(r,.)

center of mass distance [

FIG. 3. Same as Fig. 2 for the SWSC fluids with=1.2, T*
=2, n=0.10(left panel$ andL* =3.0,T* =2, »=0.10(right pan-
els).

distances larger than the contact distange, for the corre-

sponding pair orientationp=1 for parallel and crossed
orientations,pc=1+L*/2 for the T-shaped orientation, and
pc=1+L* for the head-to-tail orientation, always in units
of the molecular diametes). In addition, each of the PCF

features a steplike structure within the location of the square

well for each orientation;,;,=[ pc,pc+\*]. Within this in-
terval, the PCF decreases slowly wit}y for the fluids with

small aspect ratios at low densities, whereas it does so more

rapidly at higher densities and for the fluids of more elon-
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gated molecules. A sudden fall of the PCF takes place imme- FiG. 5. Percus-Yevick pair correlation function for SWSC fluids

diately beyond the well, at;,=pc+\*, which is followed

with the indicated aspect ratios, temperatures, and packing frac-

by a shallow minimum and by a secondary maximum ations. The PY distributions shown in the upper paret €2.0, 5

larger distances.

=0.15) are physically consistent and resemble the typical behavior

Some preliminary conclusions can be advanced from af the SWSC fluid in the isotropic phase. The nonphysical negative
more detailed inspection of the PY PCFs in relation to simplevalues for the head-to-tail distribution obtained in the PY solutions

4 4

L*=3.0 T*=2.0 n=0.15 L*=5.0 T*=2.0 n=0.10

PY Theory
PY Theory

parallel
----crossed
-------- T-shaped |
—-=-=head-tail

N

=

o

NPT-MC simulation NPT-MC simulation |

pair correlation function g,,(r,,)

5 6 2
center of mass distance [

FIG. 4. Same as Fig. 2 for the SWSC fluids with=3.0, T*
=2, n=0.15(left panel$ andL* =5.0,T* =2, »=0.10(right pan-
els).

05120

at highL* and » are illustrated by the middleL =2.0, »=0.3)
and lower panelsl(* =5.0, =0.15).

perturbation theories. First of all, it can be appreciated that
the common zero-order assumption of the constancy of the
PCF for any orientation, when scaled with the distance be-
tween the repulsive cor¢82], is only acceptable for the less
anisotropic systems at low density {=0.3,7<0.1). In-
deed, for instance, the value of the PCF within the square
well is larger for the parallel and crossed configurations. In-
terestingly, the prediction of reference-system average
Mayer-function(RAM) perturbation theorief33] of an iden-
tical PCF for the parallel and crossed orientations is approxi-
mately corroborated for the shortest aspect ratios studied
L* =0.3. However, the parallel orientation is clearly favored
for longer molecules, which can be rationalized from geo-
metrical considerations and it is in consonance with the ex-
pected behavior in the Onsager limit{— ) [34]. When

the aspect ratic.* increases, the accessible volume within
the square well and around the cylindrical body of the mol-
ecule,Ve=m(A* —1)%L* %4, grows, whereas the volume
of the square-well region around the spherical ends of the

1-4
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molecule, Vg=7(A* —1)3¢%/6, remains constant. Thus, — T T T T T
molecules tend to move from the spherical to the cylindrical 28
part of the interaction and this induces a notable increase ir
the PCF of the crossed orientation and, more remarkably, of ; parallel

the parallel orientation with respect Teshaped and head-to-
O

tail orientations. In our case study, wikit = 1.5, the volume

INg
~
T

of the square well around the cylindrical core becomes domi-
nant Vo/Vg>1) whenlL*>1/3. In fact, it is apparent from
Figs. 2-5 and Table | that only for the shortest elongation,
L*=0.3 is the value of the PCF at short distances compa-9 , |
rable for the parallel and crossed configurations, whereas the
former orientation dominates in the calculations at laigtr

We found no physical solution to our Percus-Yevick ap-
proximation for the fluids with the higher aspect ratios at RS ~ ——
sufficiently high density, e.g., fdt* =2, >0.2, orL* =5, 16 head-to-tail = 1
7>0.1. In particular, in such cases the PCF of the head-to- — s
tail orientation became negative at short distances within or %9 0.5 1.0 5 20 25 3.0
in the vicinity of the square well. Figure 5 illustrates this molecular aspect ratio L=L/o

effect for the PY calculations fot*=2, »=0.3 andL* FIG. 6. Percus-Yevick values of the pair correlation function at
=5, 7=0.15, which may be compared to the physically con-the contact distance of each of the pair orientations considered in
sistent solutions foL* =2, »=0.15 (also included in Fig.  this work, for SWSC fluids of growing aspect ratio, while the pack-
5), and forL* =5, »=0.1(see Fig. 4 This limitation is not  ing fraction is kept fixed aty=0.10.

surprising, given the approximations involved in our treat-

ment and the growing internal order expected in the fluid atvithin the range of the square well, especially at low density.
increasing densities. We will return to these latter considerWhile confined by the attractive interaction, the molecular
ations in Sec. IV. In any case, the range of densities fopairs can move relatively free within the square well without
which our method provides stable results goes far beyondhange of energy, hence increasing the entropy of the system
those of the virial series approaches, typically valid at packand lowering its free energy. As a consequence, in compari-
ing fractions significantly smaller than the critical packing son to the HSC fluid, the molecules are not as much concen-
fraction, which for the systems presently under study rangesated at the contact distance in the SWSC fluid and the

CF at contact

T-shaped

[19] ».=0.16-0.18. corresponding contact PCF values are systematically smaller,
a feature that becomes, particularly, visible at the lower as-
B. Pair correlation function at the potential discontinuities pect ratios(see Table )l The calculation forL* =0.6, »

=0.3 with an increased system temperaflite= 10 included

The thermodynamics of the SWSC .ﬂu'd 1S Qgpend|ngin Table | is meant to show how the behavior of the SWSC
only on the values of the PCF at the discontinuities of thequid approaches that of the HSC fluid in the high-
square-well potential. The contact PCFs, i.e., the value of th?empergﬁjre limit 9

PCF for each model fluid at the closest distance= pc,
are presented in Table | for our case studies. The tabulated
values show that the contact values are systematically larger
for the parallel and crossed orientations than forfrshaped The PCFs obtained from the MC simulations for the same
and head-to-tail ones. In addition, the contact PCFs at a fixedases selected to illustrate our solution of the PY equation,
density present a dissimilar variation with the aspect ratio folare shown in the lower panels of Figs. 2—4. Within the sta-
each type of pair orientation. Figure 6 illustrates the evoludistical noise of simulations, the MC PCFs display a good
tion of the contact PCF with* arising from our calculations overall agreement with the PY ones. The simulations repro-
with a packing fractionp=0.10. As can be seen in the figure, duce well the form and behavior of the step in the PCF
the contact PCF increases rapidly with increadifigfor the  within the square well observed in the PY solution, and also
relatively more important orientatior{ge., the crossed and, resemble well the greater probability of the parallel configu-
even more so, the parallel orientatipn/hereas it remains ration at high density or large aspect ratios. Note that the
roughly constant for th&-shaped and the head-to-tail orien- discontinuities of the PCF associated with the square well are
tations. This kind of behavior, which is further reinforced slightly smoothed out in the MC simulations, as a conse-
with growing packing fractions, was also found for the hardquence of the 5° tolerance employed to average each of the
spherocylinder fluidHSC) [13], as can be appreciated from pair orientations(see Sec. II|¢ As expected, the closest
the values quoted in Table I. On the other hand, the introducagreement between both types of calculations are observed
tion of the square-well attractive forces in the SWSC fluidfor the shorter elongations, up to* ~1.2. For the more
reveals new elements with respect to the HSC system, espelongated models, the agreement is more qualitative.

cially at distances close to contact. Whereas, in the HSC There are also some remarkable differences between the
system the PCF decreases rapidly at distances larger th&Y and the MC distributions. In general, but especially for
contact[13], in the SWSC fluid the PCF varies more slowly high L*, the results from the PY equation overestimate the

C. Comparison to Monte Carlo simulations
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value of PCF for every orientation at short distances. In parspherical ends of the molecules with respect to the predomi-
ticular, such overestimation is apparent at distances close tmant interaction around the cylindrical part of the molecular
contact, which should have a quantitative effect on the thereores. Note that a negative value of the PCF corresponds to a
modynamics of the system, but would not alter the qualitacomplex value of the effective pair potential defined as

tive considerations developed in the preceding section. We

also remark that no attempt has been made within the scope W(rip,01,02)=—KgTINg(riz,@1,07) 5)

of the present work to obtain accurate contact values of thgnq the subsequent restriction of the available phase space in
PCF from the MC simulations. _the language of the energy landscape th¢a6}. In fact, the

The PCF from the MC simulations also shows systematipenayior observed in the PY PCF recalls what is known as
cally less structure than the PY solution at long distances. "Frustration[ZO] in some polymer and biological systefigs].
particular, the MC simulations show weaker second maximghe phenomenon of frustration is well characterized for hard
in the PCF, especially for the longer elongations here Cons'dépheres where a recent paper by Debenedetti and Truskett

* — H .

eredL*=3,5 (Figs. 2 and ® Furthermore, the minimum  137] has revived the older ideas from Speé@g]. For non-
present systematically in the PY PCF after the square wellpherical particles, the case is less documented but some
while satisfactorily reproduced in the MC simulations for spectacular examples in living systems are kng@@i. For
L*=0.3 (Fig. 2), is only appreciable for the greater aspectihese |atter systems frustration arises when, at sufficiently
ratios in the MC PCF of the parallel orientation at the_ hlgh(_arhigh density, hard bodies, typically with small attractive
co_mputed densities. Hence, even though thes_e Conglderatlpfgﬁces, tend to remain parallel, whereas contact along the
r_mght be somewhat.obscured by the_poorer S|mulat|on St.at'smajor axes(e.g., of the head-to-tail typdecomes severely
tics at the longer intermolecular distances in comparisonnfavorable.
W|t_h the shortest ones, espeC|aII_y for the hea}d—to—tan conﬁgu— The appearance of these nonphysical solutions cannot be
ration, we can draw the conclusion that the integral equatiog|ated to a transition to the formation of a liquid crystal

solutions overestimate the mutual orientation correlations bephase, which for the SWSC system are known to take place

yond the potential attractive range. at even higher densitig80], but it seems to be closer to a
metastable glassy stafd0,41. Although this comment is
IV. CONCLUSIONS meant to be purely tentative, the fact that integral equations

The results presented in this paper appeal for a reevalusometimes converge to a solution for a metastable state in-
. I : . . Stead of a true equilibrium state has been previously reported
tion of the utility of integral equations to obtain the structure X .

y 9 q [42,43. Furthermore, according to previous woifldd], the

and thermodynamic properties of complex fluids. The advaanat attractive well imposed in the SWSC interaction appar-

tage of the integral equation methodology employed here fo . : .
the treatment of the angular dependence of the PCF relies Oﬁggga\f&t&ﬁfﬁ ?age;?rlggt? fa:g:jsSgigilrfilrl:g;ﬁcznf;gga'
its less expensive computational c¢stughly one order of p '

magnitude with respect to the MC simulation. While keep- significant degree of hysteresis was found in NPT MC simu-

ing in mind the exceptions discussed in the preceding Seégélrcr)ng?icogrszenesr\r/wvastig-sfmfctlirc]: thhea;/écl?;zsic:g%e i:f%tc:ﬁi'c'
tion, on qualitative grounds the overall agreement betweef <" h — P f i L |
the Percus-Yevick and the Monte Carlo pair correlation funcParnson to the same simulations for a soft interaction r_node ’
tion and its dependence on the molecular aspect ratio an'aamely’ a soft repulsive Kihara potent{d4]. Compression

fluid density can be regarded as quite satisfactory for th h the SWSC system may eventually not alter the mtermo—
cases considered in this work. Thus, the main aim of th ecular energy and, therefore, not vary the total energy; but

work, namely, to provide information about the structure of he entropy will be diminished, exactly as in a frustrated state

the SWSC fluid through the accurate solution for specific{.‘l?]' In wncuglg, thlsdpa;rtlct:)ularlty_ofttae sqlua;_re-we}ll_p:)ten-l
pair orientations, has been fulfilled. ial would not be a disturbance in the solution of integra

On the other hand, our PY integral equation approact?qluat]!on fqr soft lcontmupus poteinuals_. Altrllough ?Omﬁ re-
only provides consistent solutions at moderate aspect ratiqssu ts kr_org |?tegra equsauons are long time known for these
and densities where the SWSC fluid displays the typical fea—atter Ind o systemél_ |, a more systematic investigation is
tures of an isotropic fluid. For sufficiently high densities andcurrently IN progress in our group.
aspect ratios, the PY solution shows a lesser degree of agree-
ment with the MC simulations and eventually becomes
physically unstable, yielding negative values for the PCF of This work was supported by the Spanish Diréoc®en-
the head-to-tail orientation in the region of the attractiveeral de Investigacio Cientifica y Tenica under Grant No.
square well. Following some of the argumentations outlinedBQU2001-3615C-02-01 and Instituto de Salud Carlos Ill un-
in Sec. lll A, the negative PCF of this particular pair orien- der Grant No. 01/1664. We also acknowledge support from
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