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Exact solutions to nonlinear nonautonomous space-fractional diffusion equations with absorption
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We analyze a nonlinear fractional diffusion equation with absorption by employing fractional spatial deriva-
tives and obtain some more exact classes of solutions. In particular, the diffusion equation employed here
extends some known diffusion equations such as the porous medium equation and the thin film equation. We
also discuss some implications by considering a diffusion coeffi@¥mntt)=D(t)|x| ¢ (e R) and a drift
force F=—k,(t)x+k,x|x|* 1. In both situations, we relate our solutions to those obtained within the maxi-
mum entropy principle by using the Tsallis entropy.
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[. INTRODUCTION whered*/d|x|* is a Riemann-Liouville fractional derivative
[15]. For the particular case= 1, the Levy distributions are
Recently the nonlinear and fractional diffusion equationsthe solution to Eq(3). For the caser# 1, solutions and the
have received a lot of attention. In fact, they have been apeonnection between Eq@3) and the nonextensive statistics
plied in several situations such as percolation of gasebave been investigated in R¢L7].
through porous medifl], thin saturated regions in porous  The physical situations mentioned in above essentially
media [2], a standard solid-on-solid model for surface concern anomalous diffusion of the correlated typeth
growth, thin liquid films spreading under gravii§], model-  subdiffusion and superdiffusion; see R¢L8], and refer-
ing of nonMarkovian dynamical processes in protein foldingences thereinor of the Levy type (superdiffusion; see Ref.
[4], relaxation to equilibrium in a systeifsuch as polymer [19], and references thergirAnomalous correlated diffusion
chains and membranewith long temporal memory5], and  has a finite second mome(x?)«=t’ (¢>1, o=1, and 0
anomalous transport in disordered syst¢fisA representa- <o<1, respectively, correspond to superdiffusion, normal
tive nonlinear diffusion equation that is usually employed indiffusion, and subdiffusiongy=0 basically corresponds to
the above context is localization. The second type is essentially characterized by
Leévy distributions and, consequently, it has no finite second

P P P moment, i.e(x?) diverges.

Ep(x,t)Z&('D(X,p)&p(X,t)]. (1) Due to the broadness of the physical situations that these
previous equations are able to describe, it is interesting to
know more about equations related to various types of

For the particular cased(x,p)=Dvp”~ ' is sometimes re- anomalous diffusion, their properties, solutions, and connec-
ferred to as th@orous medium equatioand has been inten- tions with extensivg20] or nonextensivg9] statistics. In
sively studied in the literatur/,8] as well as its connection  thjs direction, we have, for example, complex systems such
with the nonextensive statisti¢8]. We may also have the as the displacement of a viscous fluid by a less viscous one
high-order diffusionlike equation such as the thin film equa-in a petroleum reservoir, which requires a more general ap-
tion [10] proach in order to take the nonlinear behavior of the interface
into account, and also the fractal or multifractal characteris-

P P [ P } tics of porous rocks in which the oil is immersed. In particu-

—p(X,t)=—D—{ [p(X,1)]"—p(X,t) [, (20 lar, the geostatistics of these reservoirs are well described by

dat ax ax® a fractional Brownian motion and fractional Levy motion
[21]. In order to accomplish the above situations in a unified
which contains a fourth-order derivative. It can be applied toscenario, we dedicate the present work to establish some
describe the lubrication models for thin viscous films,classes of solutions of a general nonlinear fractional diffu-
spreading droplets, and Hele-Shaw c¢llg]. In addition to ~ Sion equation with absorption; we also investigate connec-
the context mentioned above, the fractional equations havéons with the usual or generalized thermostatistics. More
also been employed to investigate the situations related to tHrecisely, we focus our attention on the following general-
anomalous diffusiof12—-14. By unifying the spatial frac- ized equation:
tional diffusion equation and the porous medium equation,

we have that —p(X t)—i D(x,t)[p(x,t)]” - [p(x,1)]"
PO g | PO OO DI e
o+ ) d
Ep(X,t)=D—&|X|#[p(X,t)], 3 —ﬁ—X{F(x)p(x,t)}Jra(t)[p(x,t)]*", 4
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wherev,y, 0,1’ ,ue R, D(x,t)=D(t)|x|?is a(dimension- Cd q2
les9 diffusion coefficient,F(x)=—dV(x)/dx is a (dimen- —®(t)"D(t) —[zp(2) = D—[p(2)]", (6)
sionles$ external force(drift) associated with the potential dz dz*
V(x), anda(t) plays the role of an absorbeni(t)<0] (or
source[ a(t)>0]) rate related to a reaction process. Thewith z=|x|/®(t). A solution to this equation may be ob-
presence of the reaction term as that in the above equatiaained if we choose
has been studied in several situations. Here, for example, we
may recall the so-called one-species coagulation, tha is,
+A—0 ormA—IA (m>1), catalytic processes in regular,
heterogeneous, or disordered syst¢2®. Another example D
is an irreversible first-order reaction of the transported sub-
stance so that the rate of removahip [23]. This extra term  hence
may also appear when a tracer undergoing radioactive decay
is transported through a porous medi[24] and in heat flow
involving heat production25]. In particular, in these situa-
tions and in solute transport through adsorbent samples,
which are usually proportional to the concentration in thewhere we have adopted the solution that satisfi¢6)=0.
solution, Eq.(4) applies. This yields

For a(t) =0, it can be verified thaf” . dxp(x,t) is time
independenthence, ifp is normalized at=0, it will remain k { x \2
so for eve). Indeed, if we write the equation in thép P(X,t)ZWGXF}] _Z(W) } 9
=0,J form and assume the boundary conditiQfis+ o,t)
—0, it can be shown thaf”_dxp(x,t) is a constant of ) o
motion. Following Ref[17], we use the Riemann-Liouville The constank can be obtained from the normalization con-
operator12,13,15,1and we work with thepositive xaxis.  dition [Z..dxp(x,t)=1. Furthermoreg=2—» and exg(x)
Later on, we will use symmetry to extend the results to the=[1+(1—a)x]"*~ @ is theg-exponential function that arises
entire real axis(we are working, in other words, with Wwithin the nonextensive thermostatistical formalism by opti-
a*~Yo|x|*~1). Also, we employ the initial condition mizing, under appropriate constraints, the entropic form
p(x,0)=5(x) and the boundary conditiop(x— *o,t)  [9,28]
—0. Note that Eq(4) recovers, for f,vy,0,v)=(2,0,0,1),

[©(1)]" d
G P0=k, @

O (t)=[(1+ »)Dkt]¥E7), )

the standard Fokker-Planck equation in the presence of a
drift. The particular cas& (x)=0 (no drift), D(x,t) =const 1‘] dxp(x,t)]4
and (u,6,y)=(2,0,0) has been considered by Spdisi Sy= 1 (10)

Other situations of &, ,y)=(2,0,0) have also been consid-
ered in Refs[26,27. The (#,y)=(0,0) case without drift
was investigated in Refl17]. Our present discussion in- Before continuing our discussion on the nonlinear frac-
volves extensions of these cases taking a wide variety dfonal diffusion equation, it is convenient to make some com-
situations into account by employing the nonlinear diffusionments about the nonextensive entroBy. This entropy
equation, the fractional diffusion equation and the mixing of(Tsallis entropy was employed for the first time in connec-
these cases. In Sec. I, we consider several situations for E¢jon with a nonextensive statistical mechanics by Tsfl§.

(4) as well as the connection of the solutions with the onedt has a real parameterthat informs us the degree of non-
obtained within the maximum entropy principle. Later on, in extensivity and in the limigg— 1 the usual entropy is recov-

Sec. lll, we present our conclusions. ered. By using Eq(10), several situations have been inves-
tigated [9] focusing formal developments as well as
applications.

Il. DIFFUSION EQUATION WITH ABSORPTION Let us now extend the above result, Eg), for a spatial

and time dependent diffusion coefficieD{x,t), i.e., we as-
sume D(x,t)=D(t)|x| ¢ (#eR), by considering a drift
term F(x,t)=—ky(t)x and a sourcegor absorbentterm
a(t)p(x,t). In this case, the solution to E) is given by

Let us start by emphasizing that an essential point of ou
discussion is the scaled solutions of the type

p(x.0)= 1 5 X 5 p(x,t)=exd [Ldta(t)]p(x.t), wherep(x,t) can be expressed
' D(t)"| D(1) in terms of the stretched exponential
for Eq. (4) which satisfy the initial and the boundary condi- R K" IX| e
tions. For example, to reobtain the case discussed by Spohn p(x,t)= D) R T 2T B1) (1D

[8], by using this ansatz, we insert E®) into Eq. (4) with
(7,0,1)=(0,0,2), F(x)=0, «a(t)=0, and D(x,t)=D
=const. This procedure leads to with
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?ﬂ = exp[ - fthkl(T)}
@ (0) 0

(1+ v+ )K" 9 _J i gt .
1+ W ot P(th)_ab(l D(t)|X| [p(x,t)]73|X|”_1[p(X,t)]

C ; +a(t)p(x,1), (15
XJ' dtD(t)exp{—f dt'[(1-v)a(t")
0 0 which unifies the corresponding ones appearing in Refs.
U(1+ v+ 0) [17,29-31. The procedure employed here is essentially the
, (12) same as used in R€f17]; besides, the case discussed there
corresponds t@(t) constant, ¢,v)=(0,0) anda(t)=0. In
this direction, we take the generic property,

—(1+v+ 0)k1(t’)]}

wherek”, which plays the same role &sn Eq. (9), may be
fixed by the normalization condition. We are interested in the
physical solutions that decay at long distances; consequently,
it must be §>—2. Furthermore, we verify, foD(t) con-
stant, that the casegtv>1, 6+v=1, andf+vr<1, re-  jth z=ax into account. This basic property holds not only

spectively, correspond to the subdiffusive, normal, and sufor the ordinary derivative, but also for all fractional opera-

peEﬁ“ﬂ”ii‘;)e regimes  for (ky(t),a(t))=(0,0), i.e. (x*)  tors, in particular, for the Riemann-Liouville one. Thus, sub-
ot L

stituting p(x,t) = exd fbdta(t)]p(x,t) in Eq. (15) and employ-
ing Eq. (5) for p(x,t), we obtain

S 5d5 .
d75g(ax):a @Q(Z) (6eR), (16)

We can also extend solutio®) by assuming nowr (x)
=—ky(t)x+kx|x|*"! and D(x,t)=D|x|~¢ without the
source term. We do not know what happens in the general d o
(a,6,v) arbitrary case, but there is a special situation for —[CI)(t)]§zd—(D(t)ZkD(t)exp{—(l—v—'y)
which the scaled solution of the type indicated in Eg). is t
still valid. This special case correspondsiteeq— 60— 2, i.e.,

a+ 0+v=0. If this condition is satisfied, we obtain X ftdt'a(t') , (17
0
1 1 kx| _ = .
p(x,)==—exp| ——{ 5| = whereé=v+ u+ 6+ vy, k is an arbitrary constant, and
d o =l —d -
— {7 Y vi e
e, | X OIZ|z (21— lp(2)] } kiylzp(2]. (18)
T New

By solving Eq.(17), we find

q_>(t)=exp[ - f;oﬁkﬁ)} [D(0)]* "0+ (14 v+ O)K'D

to_ 1
XJOdtex;{(lJr v+ G)Jodt kq(t )}

P(t)=

[P(0)]E 1+ k’fthD(T)exp{—(l—v—y)
0
1U(1+ v+ 6) B
t
X fodt a(th)
(13

, (19

}1/(5 1)

with k' =(1—¢)k. And making an integration in Eq18),
where Inx=(x""%-1)/(1-q) is theg-logarithm function(the ~ we have that
inverse function of they exponentigl andk’ is a constant
that plays a role analogous toin Eq. (9), and is to be o du—t
determined through the normalization condition. As a last z [P(Z)]ydzﬂ_l
comment, let us mention that the distributions obtained
above are precisely of the type that is obtained by optimizin
Sy with the constrain(O(|x|)))q=const, where theor-
malized gexpectation value is defined as

[p(2)]"=kzp(2)+C, (20)

Qvherec is another arbitrary constant. Also, we use the fol-
lowing general result;

oD x*(a+ bx)ﬁ]=a‘5Mx“‘5(a+ bx)A~?,
<<0(|x|>>>qEU dxO([x)[p(x)]° / H dx{p(x)1%). Mat+1=9] 21
(14
with (D{=d%dx’, é=a+B+1, a>—1, and B+a<
In this context,O is essentially the argument of gp - in —1. By definingg(x)=x*""(a+bx)?'* andA=a(1— 1/v)
the optimalp(x) (p(x)<exp{---]). — 8, and rearranging the indices, Eg1) can be rewritten as

Now, we analyze the followingvanishing drif} equation:  follows:
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INMNa+1]
d) v_ Sy\
N o L G 2]
Using this property in Eq(20) and, for simplicity, choosing
C=0, we find

a (u+0)(1+up+6)

v (1-2u-6)(1-y)

B (1-w(tuto)

v (1-2u-60)(1-y)’

_(2-w(d-y)
)

(23

PHYSICAL REVIEW E 67, 051109 (2003

We can extend the previous achievement by incorporating

a linear driftF (x) = — ky(t)x into Eq.(15). In this casep(z)
remains unchanged and we need only to changegE3).to

cb(t)=exp[—ftdtkl(t)H[an)]f1
0
(e 1
+kfodtD(t)exp[ fodt [(£—1)ky(t)
(26)

Y(¢-1)
—(l—v—y)a(t’)]H :

in whichk=(1— &)k.

Note that the above results recover those obtained in Ref. Several regions can be considered in this case. For sim-

[17] for #=0 andy=0 and in Ref.[31] for y=0. These
results allow us to write the solution in the form

Z(ut6) (I+p+0)/[(1-2p—0)(1~ )]

PXD= 3| 11pn@ P

plicity, we considera(t)=0 and illustrate two of them:
—o<u<—1-|60|—|y| with =0 and O<sy<1, and O
<u<1/2 with 0< §<1/2— u and O< y<<1/3. Let us start by
considering the region—e<u<—1—|6|—|y|. Without
loss of generality, we can choobe= — 1. Thus, the normal-

(24) ization condition
ith
" 1 St 6)(1+u+6) U[(1-2p=6)(1-)]
_F(_B) U(v+y—1) |X| f |: dz=1
— k7 =_1 _ — ) (1=p)(1+u+0)
N kF(a+1) and z GR (25 1 (1-2)
(27)
whereb is an arbitrary constarfto be taken, later on, as1
according to the specific solutions to be studlied implies
|
1+u+6
N (Wt DLt ut0) 8

2F(1+

(see Fig. 1and the second moment(s?)o<[d(t)]2. Let us

now illustrate the 68<u<1/2 region(whereb=1). In this

situation, the normalization implies

F( (1-w)(1+pu+6)
(1-2u—0)(1—v)

(ut+0)(1+u+6) ) (,u-i— 0+ 7y

(1-2u—6)(1~v) 1-vy

N=

(29

2F(1+

(see Fig. 2

We return to Eq(4) to consider two different particular
cases, namelyg=0 andu=1 for a(t)=0. Theu=2 case
was addressed in RdR9]. Let us start withu=0 and arbi-
trary v. The corresponding equation is

d

o ‘D(t)lxl"[pu,tm | [p<y,t>]de] .

(30

J 0=

(1-2u—=60)(1-y)

((M—l)(1+u+ 6) . )
(1-2pu—=06)(1—1y)

To solve it, let us go back to Eq18) and, after some sim-
plifications, we obtain

_ - z __ .
kzl*‘gﬁ(Z):[p(Z)]yfodZ[p(Z)]”, (31
whose solution is given by
’;)(Z)OC Z(1+‘9)/(1,,y) (1+'ézl—v(l+ 0)/(1—}/))1/(1—11—7),
(32)

whereC is a constant.
Let us now address the=1 case. It corresponds to the
equation
J J

Ep(x’t):ﬂxl (33

{DO|X| [ p(x,)]7" "}
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0.8 0.06

—u=-312,0=1/3,y=1/2 1 ——u=03,6=0.15,y=0.16
......... n=-7/3,0=12,vy=1/5 e =0.4,0=0.06,y=020

0.05

0.04

0.03 +

o(f) p'(x.)
o(t) p'(x.)

0.02

0.01

0.0 + I t + I + 0.00
-1.0 -0.5 0.0 0.5 1.0
[xl/@(t) xl/@(t)
FIG. 1. Behavior of®(t)p(x,t) versusx/d(t), which illus- FIG. 2. Behavior of®(t)p(x,t) versusx/d(t), which illus-

trates Eq.(24) with typical values foru, 6, andy satisfyingu<  trates Eq.(24) with typical values foru, 6, and y satisfying 0
—1-[6|—[vl, 6=0, and O< y<1. We notice that the distribution —,, <1/2 0<@<1/2- 4, and 0= y<1/3.
vanishes at the abscissa equalit@, and remains zero outside this

interval. Therefore, Eq(35) is reduced to an ordinary equation on the

o o . variable(:
To obtain its solution, it is convenient to go back to ER).

It follows that p—v—y d
PO+ =g Eg PO

kzp(2)=2""Tp(2)]"*"+C, (34) )
d w- ,
~ — =—1D|Z|"[P()] POV +H[P(OI* .
which implicitly determinesp(z), whereC is a constant. d[¢] [ [ TPO)] d|g|wl[ (0] ] [P0)]
Now, we investigate the scaling behavior for the general 3
caseu’#1 in Eq.(15) by considering the absence of exter- (37)

nal force and, for simplicity,«(t)= a=const andD(x,t)

RPE. , . The above equation is complicated to be solved analytically;
=D|x|~Y i.e., we analyze the following equation:

however, thenth moment of this distribution, when defined,

is given by
2 pk 0= DIX| Lo~ t)JV]
— P\X, ) =77 pPX, — LP(X,
at 19|X| (9|X|'“' 1 <X2n>:[deX2np(X,t) /“'pr(x,t)
+a[p(X,t)]“,. (39
=¢(t)_2“Ud§§2“7’(§)}/ U dép(é)}xcﬁ(t)_zn
To do this we consider another ansatz instead of(&yi.e.,
we employ the following ansatzi(x,t) = ¢(t)P({) with ¢ (39
= ¢(t)x. Replacing this in Eq(35) we obtain the functions
o(t) and ¢(t) as with
e()=[1+(1~p)at]VC 1), G=0, %9
yielding
H(t)= al/(€+ﬂ)[1+(1_M/)at](u'—v—y)/[(l—u’)(0+u)1_
(36) ((x—(x))z)ocd)(t)’2~t2(”7’”')’[(1’“’)(‘”“)] (40)
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for long time and (+ u')a>0. Note, in the above equa-

tion, that the diffusion can be subdiffusive normal, or super-

diffusive, depending on the value of 2¢ y—u')/[(1
—u")(0+ )], to be less, equal or greater than 1.

Let us finally mention a connection between the result
obtained for the fractional cases here and the solutions th
arise from the optimization of the nonextensive entrf@y

These distributions do not coincide for an arbitrary value of

X. However, the comparison of the asymptotic behavior
(|x|—<0) enables us to identify the type of tails. By identi-
fying the behavior exhibited in Eq24) with the asymptotic
behavior 1x|?@~1) that appears in Ref9] for the entropic
problem, we obtain

3+u—2y+6
= "1rute (42)
This relation recovers, fof=0 andy=0, the one already
established in Ref{17] and extends that obtained in Ref.
[31].

PHYSICAL REVIEW E 67, 051109 (2003

IlIl. CONCLUSIONS

In summary, we have worked on a one-dimensional gen-
eralized diffusion equatiofEg. (4)] in several situations by

considering some space and time dependent classes of exter-
al drifts and diffusion coefficients. We have shown that it

Admits exact solutions where space scales with a function of

time. In particular, we have extended the results obtained in
Refs.[17,26,27,29—3R Whenever appropriate, we have also

Yiscussed the connection with nonextensive statistics, pro-

viding (through identification of the exact or at least
asymptotic behaviojsthe relation between the entropic in-
dexq and the exponents appearing in the diffusion equation.
Finally, we hope that the results obtained here may be ap-
plied to physical systems exhibiting nontrivial forms of
anomalous diffusion.
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