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Depinning of semiflexible polymers
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We present a theoretical analysis of a simple model of the depinning of an anchored semiflexible polymer
from a fixed planar substrate int11 dimensions. We consider a polymer with a discrete sequence of pinning
sites along its contour. Using the scaling properties of the conformational distribution function in the stiff limit
and applying the necklace model of phase transitions in quasi-one-dimensional systems, we obtain a melting
criterion in terms of the persistence length, the spacing between pinning sites, a microscopic effective length
that characterizes a bond, and the bond energy. The limitations of this and other similar approaches are
discussed. We also consider the general problem of thermal depinning éhdimensions. In the case of
force-induced unbinding, it is shown that the bending rigidity favors the unbinding through a “lever-arm
effect.”
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I. INTRODUCTION an actin filament binds to a membrane through anchoring
proteins[14]. The discreteness of the binding sites allows us
For a broad category of physical problems, a free polymeto employ a different kind of thermodynamic limit that
is characterized by two lengths: the total contour lenigth avoids the inconsistencies that appear in some previous
and the persistence length, that is the correlation length of works. For fixed total length and persistence lengtith L
the tangent unit vector along its contour and is proportionak<Lp), we take the density of binding sites to infinity under
to its bending rigidity. When the persistence length is mucHhe constraint that the probability of finding such a site inside
smaller than the total length, the polymer is said to be flexthe binding region remains constant. Thus, we obtain a con-
ible and it can usually be treated as a random walk. When thénuous unbinding transition and a melting temperature
two lengths are of the same order, the polymer is said to bwhich is a function of of the persistence length, the spacing
semiflexible. Some of the most important biopolymers be-between pinning sites, a microscopic length that character-
long to the latter class. For example, the structural elementiges a bond, and the bond energy. The paper is organized as
of the cytoskeleton are microtubules, actin filaments, andollows: In Sec. I, we calculate the probability of finding a
intermediate filaments with persistence lengths of the ordepinding site of the polymer inside a smathicroscopig re-
of 6 mm[1], 17 um [2], and 2um [3], respectively. Al-  gion which characterizes a bond. We then consider the sim-
though DNA filaments usually have a total length greaterplest version of our model which is a filament with only one
than the persistence length /~50 nm), the latter is long pinning site. In Sec. Ill, we use a necklace-mofieb, 16
enough to affect their elastic propertigd. Obvious biologi-  type of approach which yields the thermal depinning transi-
cal relevance and inherent theoretical challenges havion. In Sec. IV, we discuss the effect of the bending rigidity
sparked great interest in the statistical mechanics of sempn the force-induced unbinding of semiflexible polymers in
flexible polymers in recent yeaf§]. the stiff limit. In Sec. V, we demonstrate the subtleties of this
A theoretical analysis of the unbinding of semiflexible problem comparing our model with other approaches and we
polymers from fixed surfaces or interfacdéadsorption- present our conclusions. Finally, in the Appendix, we present
desorption transitionor of two semiflexible strands from an analysis of the (%2)-dimensional problem that is very
each other is a particularly tricky problem. The main reasorsimilar to the (1 1)-dimensional one because in the weakly
is that sharp phase transitions in statistical mechanics occiending limit the transverse dimensions decouple.
only in the thermodynamic limit and the thermodynamic
limit of semiflexible polymers is ambiguous. If we keep the
persistence length fixed and take the total contour length to
infinity, we obtain a flexible polymer. If we take the persis- A widely used model that captures much of the physics of
tence length to infinity keeping the total length fixed, we semiflexible polymergexcept for their self-avoidangés the
obtain a rigid rod without any fluctuations. There have beerwormlike chain(WLC) [17], where the polymer is consid-
several studies of this subject over the past few yE&#43.  ered to be a continuous inextensible cur¢s) parametrized
In all of those works, the polymer binds to a potential well by the arc lengtls measured along its contour from a fixed
which continuouslyextends over the surfacer interface. In - end. The effective free energy of a particular conformation
this paper, we consider a simple model, where a weaklyjepends only on the bendirigurvature and is given by
bending semiflexible polymer in#41 dimensions is bound
to a fluid surfacgor interface through adiscretesequence .
of regularly placed pinning site@sticky points”) along its = EJ ds[at(S)

. CONFORMATIONAL PROBABILITY —FORMALISM

2
= —_, 1
length. Such a model resembles the physical situation, where 2)o Js @
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wheret(s) = dr(s)/ds is the tangent unit vector of the curve G(yy, 65,s|yo,09,0)
r(s) and« is the bending rigidity that is related to the per-
sistence length vid ,=2x/kgT (in two dimensions _ V3 Lp 3Ly )
The orientational probability distribution function for free Ry e (Y=Yo= 6oS)
semiflexible chains having an initial tangent vectg0)
=t, and a final tangent vecta(L)=t, is given by the path 1
integral =S(Y= Yo~ 005) (6~ 6o) + 35(6— )

] . (6)

t(L)=t H i . ;
_ _ _ v Apart from explicitly containing the persistence lendtp,
G(t,L]t,0) th(°)=to Dlis)1a(t(s)| 1)6)(4 kBT}’ Eq. (6) is identical with that obtained in Reff7]. The inter-

(2)  pretation, however, is very different. In Refd6,7],
G(Ys,0s,S|Yo,00,0) is interpreted as dimensionlesparti-

where the integration is over all fluctuating “pathig’s) sub-  tion functionindependenof the persistence length, which
ject to the fixed boundary conditions and the inextensibilityhas been eliminated by rescaliygand 6. In those refer-
constraintt(s)|=1. N is a normalization constant. There is ences, Eq(6) is expected to be valid for largeand it ap-
a formal analogy between the classical statistical mechaniggears thats is measured in units of an extra, “monomer”
of a semiflexible polymer and the quantum statistical medength. In contrast, we interpret it as a two-point conforma-
chanics of a rigid rotatof17]. If we make the correspon- tional probability distribution valid only in the weakly bend-
dencex=1, kgT=#, andL=p% in Eqgs.(1) and(2), we ing limit (s<L;). Notice thatG(ys, s,S|yo,o,0) fulfills
notice thatG(t, ,L|ty,0) corresponds to the density matrix the three fundamental properties of a two-point probability
element, in the angle representation, of a quantum rigid rodistribution; its integral oveys and 6 is 1, it becomes @
tator with moment of inertia and inverse temperatu@ As  function whens—0 and it obeys the Chapman-Kolmogorov
in the case of a density matr[48], the angular probability equation[22]. The corresponding partition function differs

P ; P <rincfrom G(Ys, 6s,S|Yo, 6p,0) by a normalization factairelated
distribution function of a free semiflexible polymer satisfies s17s»21Y0) V0 . :
a Schialinger equation in imaginary time: to the measure of the path integrtiiat should have units of

length in order to render it dimensionlegk.is similar to the
G 1 52G phase volume elementﬁ used in the statistic_a_ll mechanics
= 3) of g_ase_s). In the c.:alcullat|on of sevgral guantities, th|§ nor-
s Lp 962 malization factor is unimportant as it drops out. For this type

of problemsG(ys, 6s,S|Yo, 0o,0) itself can be considered as

where 6(s) is the angle betweet(s) and a fixed reference the partition function. However, as it will become clear be-

axis[19]. In order to obtain the complete distribution func- low, the necklace model involves a sum over powers of the

tion that in addition to the tangent vector also includes thepartition function and using a dimensionful quantity in its

position vectorG(rs,ts,S|rg,te,0), wehave to replace the  place would clearly be erroneous.

derivative in the left-hand side of E3) by the “convec- For fixedyo=6p=0, the mean square slope and trans-

tive” derivative ds+t- V, along the polymer path(s) with versezdlsplacement ofzthe free end of a filament of lerigth

) I - — 3 i

instantaneous position vectorand tangent vectar[20]. In ~ are{6;)=2L/L, and{y{)=(2/3)L°/L, as can be easily cal-

Cartesian CoordinateS, the equation reads culated from Eq(6) The pl‘Obablllty of f|nd|ng the free end
within a very small range of slopes and transverse displace-
J J g 1 &2 ments (- 6< . <6 and —e<y <e with 0<J,e<1) is
— 4 — + S -
s coseax smegy L, 762 5 .
P(&,E,L,Lp):f dgLf dyLG(yL,GL,L|0,O,O)
XG(XS,yS,05,8|X0,y0,00,0)=0, (4) - o€
whered is the local slope of the polymer with respect to the ~ E ﬁ (7)
X axis. 27 L2

In the weakly bending limitl<L ), #<1 and we sim- .
plify Eq. (4) setting sing~# and cos#~1. Since we are not Where BEA;& and the approximation holds forB
interested in the longitudinal fluctuations of the polymer<(y3/2m)L?/L,. The partition function Z5,e,L,Ly) of a
(along thex axis), we integrate the complete probability dis- Polymer which is constrained so thgp=6,=0 and —&
tribution function overx to obtain a simpler equation for the <6<, —e<y <€ while it is unconstrained in the longi-
reduced probability distribution tudinal direction is related to the probabili®(d,e,L,L )
via Z(8,€,L,Lp)=Z;(L,Lp)P(d,€,L,Lp), whereZi(L,Lp)
is the partition function of a free filament. The latter has the
G(Ys,0s,5]Y0,600,00=0. (5  propertyZ¢(L,+ Lo,Lp)=2Z¢(Lq1,Lp)Zs(L2,L,) and will be
neglected as it is not going to affect any of the observable
quantities, we are interested in.
The probability of finding both the free end and the point
at the middle confined within a very small range of slopes
— 6p) 5(y—VYo) to get and transverse displacements is

J g 1 &

as’ dy Ly ge2

Using Fourier transformationfg1], we solve Eq(5) with the
“initial”  condition  lim _ G(ys,6s,8|Yo,600,0)=5(8
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8 € 5 € \/§ |_p 2
f dﬁLf dyLJ' dﬁ,_,gj dyL/2G y|_,6’|_,L 0,0,0 ~|——B] . (8)
-0 —€ -6 —€ 2m L2

L L
YL/2,9L/2,§ G yL/210L/21§

We shall use this factorization in the calculation of the par-p(1)=2G(L/3){G(2L/3)—[G(L/3)]?}, and P(0)=G(L)

tition function of our model. —2G(LI3){G(2LI3)~[G(LI3) ]2 —[G(L/3)]3.  Collecting
We now consider the toy system of a weakly bendingterms, we obtain Z,=[G(LI3)]3(v —1)?

semiflexible polymer with its end pointss€0 ands=L) +2[G(LI3)]1G(2LI3) (v — 1)+ G(L).

bound and a pinning site in the middle=L/2). A “bound Let us define a “bubble” as a polymer segment with only

site” in our model is defined as a point of the polymer whichijts ends bound. The minimum length of a bubblelig

is constrained to fluctuate within mnicroscopicallysmall = /(N+1) and the maximum length is equal to the total

range of slopes and transverse displacements that is charagntour length of the filament. Notice that in our model, a
terized by the effective lengtB as defined above but it is pupble will always have lengtksL<L,. A “chain” is de-
free to fluctuate in the |Ongitudina| direction. The latter situ- fined as a sequence of minimal bubb{each of |ength_m)_
ation is physically realized in the case of a fluid substraterigyre 1 provides a pictorial definition of bubbles and
where the “sticky points” are free to move along a one- chains. The partition functiody is a sum that consists of all

dimensional tracKkmembrang A “pinning site” is defined  products of the form f(my)g(ny)f(my,)g(n,)- - - f(my),
as a point on the polymer which is energetically favorable tqyhere

be bound with an associated bond enedgyJ>0). The

partition function of this system with one pinning site is J3 LB
fm=5_——— (13)
Z1=[G(LI2)Pv+G(L) - [G(LI2) ], 9 T Lam
where is the statistical weight of a bubble of lengtiL,,,
3L g(n)=[f(1)]"(v—-1)""* (14)
G()=5_—B (10

I is the statistical weight of a chain of lengti.,,, and

is the conformational statistical weight of a polymer segment
of contour lengthl whose end points are bound and
=expU/kgT). The third term in Eq(9) is the “counterterm” (15
needed to prevent double counting of conformations; the . )

conformations associated wifigi(L/2)]? have already been Where[(N+1)/2] is the integer part ofN+1)/2. We have

N+1
my+ni+my+n,+---+m=N+1, 0<k< |

included inG(L). N
The average fraction of intact bonds is Zo=G(L) + fFmE(N+1— -1
=)+ X f(m)f( m)(v—1)
o ainz, (11 «
~dln(v—1)"
(=1) [(N+1)/2] 2} f(mya(n;)
This is a general expression valid for any number of pinning + 2 2 (16)
S fmymy o 9(ny

sites provided that we repla@g with the correspondingy
and we divide the right-hand side Y. The calculation of

Z,, for N>1 is the aim of Sec. IIl. The first two terms in Eq(16) represent configurations with

only one bond or no bond at all and we shall denote it by
Dy . The curly braces indicate that the sums must satisfy the

IIl. THERMAL DEPINNING TRANSITION constraint of Eq(15). As N increases, calculating the com-

The partition function of a weakly bending semiflexible

polymer with its end points§=0 ands=L) bound andN
pinning sites regularly distributed along its length formally
reads

N FIG. 1. A cartoon picture of a polymer conformation with a
= 2 v"P(n), (12 “chain” of length 3L,,, a “bubble” of length 6_,,, a “chain” of
n=0 length 2., and a “bubble” of length & .. The dots represent

pinning sites and the vertical black lines represent anchoring pro-
whereP(n) is the probability of a conformation with exactly teins, that bind the filament to the substrate. The weakly bending
n bonds(but not n+1 orn+2 or --- N bondg. For ex-  limit allows us to neglect any dire¢hard wal) interaction with the
ample, in the case of N=2, 7P(2)=[G(L/3)]°, substrate.
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binatorial factors becomes an impossible task. That is why
we use a standard trick and incorporate the constraint in the

partition function via a Kroneckeé [23]:

[((N+1)/2] = = k
Zy=Dpt+ > > D 5{N—_ (nj+my)
k=1 n=1m=1 =1
k
K [T f(m)g(n))
xexp B N=> (n+m) "
=1 J ! a(ny) '

7

3 © > 0 © 0
Where En:lEm:lenlzl' A EnkzlEmlzl' . 'Emkzl and

the auxiliary real parametg® has been introduced to make
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z-plane

o

~e

an
N

FIG. 2. The complex plane with poles az=0, z=z, and a
branch cut along the positive real axis startingatl. The contour
C can be deformed to a contour aroundand a contour around the
branch cut which closes at infinity.

sure that the partition function converges in later steps of th&/ith L2(2) being Euler’s dilogarithm functiofi24]. The in-

calculation.

tegrand in Eq.(21) has three singularities: a pole of order

We now introduce a complex representation of the Kro-N+1 atz=0; a simple pole at the solutiary of equation

neckeré which yields

1 (2=
2 0

k

(v I @5
SED i — (18
ey b
where
®j= > g(n)z", (19)
nj—l
V= > f(m)z", (20)
mj:l

with z=exd —(B8+i6)].
Since both®; and ¥, are independent qf, H}‘:1®jqu

V(20)®(20)=1; (24

and a branch cut along the positive real axis starting at
=1 due toL,(z). The contoulC encircles only the singular-
ity at the origin because of the assumptions that we had made
in deriving Eqg.(21). That is,|z| was chosen so that the series
® andW¥ converge and alspbW|<1. As shown in Fig. 2,
the contourC can be deformed into a contour that encircles
only z, clockwise and a loop that goes around the branch cut
and closes at infinity counterclockwi$@5]. At sufficiently

low temperatures, €z,<1. In the thermodynamic limit,
Dy vanishes and the partition function is determined by the
pole atzy: N~ 1nZy=—Inz,

As the temperature increases,decreases and it can be
seen from EQq.(24) that z, is shifted to the right. In the
thermodynamic limit, Eq.(11) yields Q=—[(v—1)/z]
X(dzgldv). This implies that the average fraction of intact
bonds, which is a physically observable quantity, monotoni-
cally decreasef26]. The unbinding transition occurs when
Zo—1. Therefore, the unbinding criterion i®(1)W¥(1)

=(dW)X, and since we are interested in a very large number 1. Given thatL,(1)=¢(2)~1.64, where{(z) is Ri-

of pinning sites(thermodynamic limitN—«), we approxi-
mate [N V(W )k~dW/(1-DW). Using analytic
continuation, we transform the integral ovéro a contour
integral over the complex “fugacity’z, where the contour

encircles the origire=0 in the counterclockwise direction

once and we obtain

Zy=D +i3§ dzz V! (21)
NTENT 240 Je 1-0¥’
where
f(1)(v—1)%z
R EICRE 22
and
V3 L,B
\I,_EL_%LZ(Z) (23)

emann’s{ function, we obtain

L,B
L—Z[ex;J(J/kBTC)—l]~2. (25)
m

This is the main result of this paper. The transition will be
continuous because the derivativelg{z) diverges logarith-
mically atz=1 and, therefore, the average fraction of intact
bonds vanishes continuously at the critical temperalyre
Notice that in order to obtain this transition, we need the
thermodynamic  limit where N—« and (y/3/27)

X (L,/L?)N?B which is the probability of finding a pinning
site within the binding region remains constagtl. This
implies thatB—0 that is consistent with anicroscopicef-
fective length that characterizes the bond. Of course, real
systems will have a finite number of pinning sites and the
transition will not be sharp. For a sufficiently high density of
pinning sites, however, we would expect a clear crossover
from a low temperature phase with most of the pinning sites

051108-4
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bound to a high temperature phase with most of the pinningn this approximation, the path integral is Gaussian and can
sites unbound which will be described by E@5). If we  be easily calculatefil8] yielding

allow the polymer to fluctuate in two transverse dimensions, 5 3
the depinning transition becomes discontinuous and the tran- 7. —ex foL 28)
sition temperature is given by EGA4). An analysis of the f 3Lp(kBT)2 '
(1+2)-dimensional case is presented in the Appendix. . .

From the original presentation of the necklace modelThe corresponding free energy is
[15,16, it is known that the order of the transition is deter- £2.3
mined by the scaling of the statistical weight of the bubbles F=——F—. (29
with their size; that is, the exponeain f(m)~1/m°. As we 3Ly(ksT)

show in the Appendix, in the case of weakly bending semiote that this free energy is just minus the elastic energy of
flexible polymers in #d dimensions,c=2d. For c<1, a cantilever Spring,Ue|:f2/2X, with Spring constanty

there can be no phase transition. Ferd<2, the transition =3x/L%. The latter has been obtained in a linear response
is continuous with critical exponents depending @ri-or ¢ calculation in Ref[27].
>2, the transition is discontinuous. Thet+1-dimensional Although the original “Hamiltonian”(Eqg. 26 is exten-

case that we consider here is the borderline situation betweesive, the free energ¥ of Eq. (29) is not (it grows asL?)
continuous and discontinuous transitions. The transition i®ecause Eq29) is an approximation, valid only in the short
still continuous but the critical singularities are logarithmic length scales of the weakly bending limit €L,). Given

and not algebraic. Specifically, the average fraction of intacthat the free energy of the bound state is always extensive,
bonds vanishes as1/In(T,—T) and the mean size of a given this nonextensivity leads to a “lever-arm effect” in the force-
bubble diverges as-In(T.—T). For the sake of complete- induced unbinding. That is, for a long enough total length,
ness, it is interesting to calculate the critical exponents fothe unbound state will be favorable having a lower free en-
the depinning transition intd dimensions wittd<1. Ref-  ergy. We can estimate an upper bound for this “critical”
erence 16] shows that the longitudinal correlation length  length. If 7 is the free energy density of the bound state, the
diverges aff; as ¢~ 1/(T,—T)¥(~1). Equation(6) implies  “lever-arm” critical length L, should satisfy the condition

that the mean square transverse displacement of a weakly 5 3

bending semiflexible polymer scales with the cube of the L

contour length. This scaling holds for any transverse dimen- 3Ly(kgT) "
sionality because in the weakly bending approximation the

transverse dimensions decouple. Therefore, we expect thitL= L1, the transverse fordewill always unbind the poly-
the transverse localization Iengmz<rf)1’2 will scale as mer (in equilibrium). Using the model of Sec. Ill, we have

¢, ~ &% and its critical exponent will be 3/@-2) [that is, Fo~ (ke T/Lm)[I/KeT = IN(\3LpB/L72m)]. It turns out that

be|: (30)

£ ~1/(T,—T)¥#=2)] Note that this is precisely the same 12 12

e _ 1 J3L,B Lp

as the result obtained in R¢fl2] for 2/3<d<1 using renor- Li~3 T J—kgTIn| — — . (3D
malization group(RG). Lo2m Lm

For pulling forces of the order of pico-Newton, persistence

IV. BENDING RIGIDITY AND FORCE-INDUCED length of the order oftm, and binding free energy pk, of
UNBINDING the order okgT, it turns out that |~ 10" 3(L, /L) 2L, that
is an indication of the relevance of the “lever-arm effect” to

In this Section, we consider the force-induced unbindingoiopolymers

of a weakly bending semiflexible polymer and we show that This is a phenomenon related to the “molecular leverage”

the bending rigidity facilitates the unbinding. If we apply a giscussed in Ref[28]. In both cases, the bending rigidity

transverse force to the free end of a clamped Semiﬂexm"?aciIitates the force-induced unbinding. The two phenomena,
polymer, the effective free energy of E(L.) changes by an

however, are different. We describe a situation, where a
extra term bound state with a sequence of pinned sites becomes thermo-
" KJ'Ld at(s)
f_2 0 s

dynamically unstable when the system is long enough for the
where, as in Sec. l1§(s) is the slope of the tangent vector

“lever arm” to dominate the free energy, whereas Ref|
presents an estimate of the torque induced force exerted on a
singleligand-receptor pair that turns out to be much stronger
compared to that applied in traction.
with respect to the Iongitudinal direction. The partition func- V. DISCUSSION AND CONCLUSIONS
tion of this system is a path integral over all possible confor-
mations. Slicing thé. length intoN segments each of length ~ As we mentioned in the Introduction, the unbinding of
a and using the small-angle approximation, we obtain semiflexible polymers is a particularly tricky problem be-
cause of the ambiguity of the relevant thermodynamic limit
N N and also because of a lack of exact solutions of the WLC
H;\lzi S (6-6,_)%—fa>, 6. 27) model with a binding potential. Referencks-11] actually
2a =1 i=1 deal with the unbinding oflexible polymers(with L>L )

2 L
—ff dssiné(s), (26)
0
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and consider the effect of the bending rigidity on the confor-gemeinschaft through Grant No. SFB 563.

mational properties of the adsorb@dw-temperaturgphase.

In these works, the bending rigidity enters as a perturbation APPENDIX

to the flexible(Gaussianchain and the inextensibility is ab- _ _ . o

sent. The early referencg8,7] use a somewhat inconsistent I this appendix, we consider the thermal depinning in 1

approach, where the scaling behavior of a weakly bending™2 dimensions. It is the same problem as the one we dis-

stiff filament (valid only forL <L) is artificially extended to ~ Cussed in Secs. Il and IIl with the only difference being that

apply to any length. Another serious drawback of this ap\We now allow the polymer to fluctuate in two transverse

proach is that it yields results that appear to be independesstirections { andz). Again, we have éne of anchoring sites

of the persistence length while, in principle, they should not@long thex axis). All of the steps in the calculation, which

The idea is to solve Ed5) for largeL with a binding poten-  Yields the phase transition, can be repeated with only minor

tial using scaling And@e and then invoke the necklace modifications. The reason is that in the approximation of a

model to predict the order of the unbinding transition fromWeakly bending filamentvalid for L<L), the two trans-

the scaling behavior d. The details of the necklace model Verse directions decouple. _ o

(bubbles, chains, partition function, étchowever, are not As before, the two-point conformational probability dis-

worked out. Referenci8] employs a discrete model for stiff tribution in 1+ 2 dimensions is a function of the position and

filaments where an extré@monomer”) length is introduced the slope at the two point&(rs,ts,s|ro,t,0). We param-

and turns out to be relevant for the unbinding transition. Itétrize  the  slope using the “Monge gauge™

also proposes an energy-entropy melting criterion that apt(s) =[1,7,(s),78)]/V1+ 7,(s)°+ 7(s)*. The imaginary-

plies to adsorbed phases similar to those discussed in Reféme “Schradinger” equation reads

[9,11]. Referencq12], using a RG treatment, demonstrates

the relevance of an orientation-dependent interaction field for i+t v _i r7_2+<9_2
dJs "Ly (97')2/ a72

the unbinding transition. The RG flow implies a thermody- G(rs:ts.Slro.to,0)=0.
namic limit that carries on some of the inconsistencies of (A1)
Refs. [6,7]. These inconsistencies, however, appear not to
affect the universal properties of the depinniogder of the In  the  weakly  bending  approximation, t(s)
transition, critical exponenksThe relevant results obtained ~[1,7,(s),7,(s)] and, after integrating ovet we obtain the
from our necklace-model treatment turn out to be exactly thdollowing equation for the reduced probability distribution:
same as those from the RG treatment of REZ]. Reference
[13] models a semiflexible polymer as a directed self-
avoiding random walk and it reiterates the inconsistencies of
Refs. [6,7] because the unbinding transition occurs at the
thermodynamic limit of an infinitely long walKinfinitely where G=G(Ys,Zs, Tys: 725:5|Y0,20, Ty0, 720,0). It is clear
longer than the persistence lengtiwhere one would nor-  now that the two transverse directions decouple and the so-
mally expect to recover the behavior of a flexible chain.  |ytion with the appropriate initial conditions(function in the

In conclusion, applying the necklace model, we have obgjisplacement and the slopwill be given by a product of
tained a criterion for the depinning of anchored semiflexibleyyo factors, each having the form given by E6). If we fix
polymers in the weakly bendintiff) limit. This model has the transverse displacement and the slope=e to be zero,
been extensively used to study the unbinding of flexiblethe probability of finding the free end within a very small

polymers[23,25,29,3Q This is its first detailed application range of slopes and transverse displacements, € 7,
to the unbinding of semiflexible polymers. A general and_ s —8,<T)<8,, —e€<y <€, —€<7<e,

rigorous theoretical treatment of the unbinding of semiflex-itn 0<s. . ¢ <1) is ~(3/(27r)2)L2C/L4 where C
ible polymers of arbitrary total length and persistence length y.2reys P '

in th f bi bindi al h ’5245y526y62.
In the presence of an arbitrary binding potential, has not yet A bond is now characterized by a blndlng eneﬂgynd an

been achieved. Our model suggests an alternative way {getive area C The necklace model calculation is worked
consider the thermodynamic limit for this system and . o< pefore but with a different bubble weightm)

straightens out several misconceptions of previous studies._ 2971 2~ 4 b ; ;
We have also shown how the bending rigidity facilitates(zgflt(ozw) J(LpC/LyMT). The different scaling changes Eq.

the force-induced unbinding of semiflexible polymers in the

G=0, (A2

P P P 1(02 92

—trny =t |t —
ags Yoy faz L, ,975 a2

weakly bending limit. We have estimated a critical length as 2

: : U 3 C

a function of the pulling force, the binding free energy den- = L ®(2,4,0), (A3)
sity, the persistence length, and the density of pinning sites (2m)? Lfn

above which the polymer acts as a lever-arm and unbinds. ) )
where®(z,4,0) is Euler’s polylog functioh24]. As before,

the unbinding transition occurs whan(1)d(1)=1. Taking
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Since our calculation is based on the assumption thabw is finite. This implies a finite jump in the average frac-
[3/(277)2]L,2)C/L4<1 (in the 1+ 1-dimensional case, we had tion of intact bonds as it vanishes at the transition. The tran-
[\/§/(277)]LPB/L2<1), Eq. (A4) and Eq.(25) differ only  sition is therefore, discontinuous in accord with the RG
quantitatively. The derivative ob(z,4,0) asz—1 from be-  prediction of Ref[12].
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