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Nonexistence oH theorems for the athermal lattice Boltzmann models with polynomial equilibria
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We prove that ndd theorem exists for the athermal lattice Boltzmann equation with polynomial equilibria
satisfying the conservation laws exactly and explicitly. The proof is demonstrated by using the seven-velocity
model in a triangular lattice in two dimensions, and can be readily extended to other lattice Boltzmann models
in two and three dimensions. Some issues pertinent to the numerical instabilities of the lattice Boltzmann
method are disscussed.
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The lattice Boltzmann methdd—11] has been proven to notes the zero velocity. We then show that the required
be a viable simulation tool for turbulent floWy$2,13, mul-  strictly convex functiorh;(f;) does not exist.
tiphase[8], and multicomponenf9] flows, and particulate In general, the lattice Boltzmann equation is
suspensionfl3-16. Although historically the lattice Boltz-
mann equationNLBE) was developed from the lattice gas filx+ o, t+ 60— fix =3 (fi(x0)}), @

cellular automatg17) |t_|s now w_eII understood that the wherex is a point in a D-dimensional lattice space with a
LBE models are a special finite-difference form of the CON-|attice constants

, I ; ith linearized collisi ., i.e.,xe 6,ZP, andt is the discrete time
tinuous Boltzmann equations with linearized collision operasyin 4 time steps,, i.¢., te 8,N. The discrete velocity set

tors [7-11]. As an effective simulation tool for computa- {c} of a lattice Boltzmann model is so constructed that for
tional fluid dynamics(CFD), the LBE method has several any xe 86,7° and ¢, x+¢ 6 e 8,7°. The evolution of an

attractive features(a) linear advection term(b) exact con- | BE model defined by Eq(1) is usually decomposed into
servation laws with the necessary symmetries; @hdroad  two elementary stepg1) collision prescribed by the colli-
applications. The lattice Boltzmann method differs from allsion operatoﬂi and(Z) advection Offi from one lattice point
conventional Navier-Stokes solvers because of its kinetic orito another according t@;. This can be expressed as the
gin. The kinetic origin of the lattice Boltzmann method following:

would allow it, with suitable modifications, to be applicable

to situations where the continuum theory breaks dp®8]. collision:  f(x,t)=f(x,t)+J(f), (29
Because of its close tie to kinetic theory, one important
question is whether the lattice Boltzmann equation possesses advection:  f(x+¢é,t+ 6)=F(x,t), (2b)

an H theorem. This question has indeed attracted much at-
tention[19—37, because it is not only of theoretical impor- Where the following notation is used to denote column vec-
tance, but also of practical significance, for it is closely re-tors in spacek™ ",
lated to the stability of the LBE method. Because it is
believed that arH tri/eorem does not exist for the latice 0D =fo.f1, .o T 30 =00 31, )
Boltzmann equation with polynomial equilibrigl9,20,
much emphasis has been focused on analytic construction of
equmblna which admitH theoremg21-31], or on numerical fo(X+C 8 t+8), . .. F(xF oy, t+60]T,
entropic schemeg32].
In this paper, we shall rigorously prove thatldrtheorem  andT denotes the transpose operator.
does not exist for the lattice Boltzmann equation with poly-  Consider afinite and periodic lattice space with total
nomial equilibria. We shall also place our work in perspec-number of lattice points. The H theorem for the system of
tive, and discuss issues pertinent to the numerical stability ofq. (1) on a finite lattice space with periodic boundary con-
the LBE method, in general. ditions states that there exists a strictly convex functem
Our proof consists of two steps. First, we prove that thetropy) H=H(f) such that(i) the total entropy of the system
local entropy functiorH must be a sum of strictly convex remains intact under advection afii) J(f*¥)=0 if and
functions{h;(f;)}, of which each depends only on the dis- only if f(*¥ minimizes the entropyH(f) with some given
crete distribution function f;:=f(x,c,t), where {ci constraints. According t@), we have
=0,1,... N} is the discrete velocity set, argd always de-

f(X+CSy 1+ 8) = fo(X,t+ 5,),

g H(f(x,t+ 50)2; HE(x,1)). (3)
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at an arbitrary poinkg in the finite lattice system, and

f(x,t=0)=BeRN*"!  Vx#Xx,.

Then the sum in the right hand side of E) is
H(A)+(L—-1)H(B).

Sincec;’s are distinct, the sum in the left hand side of E3).
is

[L—(N+1)JH(B)+ >, H(B),

whereéi is B with its ith componenB; replaced byA;, the
ith component ofA. Thus, Eq.(3) becomes

> H(B)=H(A)+NH(B). (4)

For a smooth functiod, Eq. (4) implies that
9°H

Hfifj::mzo Vi#j. (5)

To show this, we choose two arbitrary unequal indicasd
j, i.e., i#j, i,je{0,1,... N}, such thatA,=B, for all
ke{i,j}. With this particular choice ofA and B, Eg. (4)
reduces to

H(A, ,BJ)+H(B| ,AJ):H(A| ,AJ)+H(B| ,BJ) V |7&],

where all other N—1) equal arguments ¢ are omitted for
conciseness. Equivalently,

11
Jo Jo Hfifj[Ai+d’(Bi_Ai)rAj+‘P(Bj_Aj)]d¢d(P:O-

In the limit of (B;,B;)—(A;,A;), it is obvious that

Hfifj(A):O. ConsequentlyH (f) must be of the form

N
H<f)=§0 hi(f), (6)

whereh;(f;) is strictly convex. We note that although E)
has been motivated by plausible arguméggaty, for the most

part, generally it has simply been taken as a key assumption

[21-31.
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wherea andb are Lagrangian multipliers due to the conser-
vation constraints

p=3 19,
i

The variation ofH="H(f)

pu= >, ¢ 7)
I

(sz)(f):Ei (8f)[h{ (f)—a—b-g]

vanishes at equilibriuni=f(®® that must satisfy

h/(feh=a+b-¢ V i, (8
wherea=a(p,u) andb=Db(p,u) are determined by the con-
servation constraints of Eqé7).

The discrete velocity sefc} for a lattice Boltzmann
model usually has the symmetry that the nonzero velocities
always come in pair with opposite directions, i.e., df
e{q} andc¢ #0, thenc,e{c}, wherec:=—c¢;. By exploit-
ing this symmetry of ¢}, from Eq.(8), we have

h (FED) + b (1% = 2a=h/ (1) + h (157, (9)
for anyi andj. In particular, ifco=0e{c}, we have

2h(FED) =h/ (D) + h( 15D, (10)
Note that up to now we have not used any properties specific
to a lattice Boltzmann model.

We proceed to prove that the strictly convex function
h;(f;) does not exist. The proof requires some knowledge of
the equilibriumf(®®. We shall only consider the equilibria
that are polynomials of the conserved quantitiesGdu for
athermal mode)s The reason is that only the polynomial-
type equilibria can enforce the conservation constraénts
actly and elicitly. This point is crucial for the lattice Boltz-
mann method to be computationally efficient and
competitive. In what follows the seven-velocity model on a
two-dimensional triangular lattic€D2Q7 model is used as
an example for the sake of concreteness yet without losing

Athermal LBE models satisfy only mass and momentumang the equilibria are usually written as

conservation. Thus, the equilibriu{®® minimizes H(f)
with the mass and momentum constraints:

H(f(e@)=min( H(f): Y fi=p, > cifi=pu].
f 1 I

Equivalently, the equilibrium distributioff®® is the solution
of the following minimization problem:

H(f)=§i: hi(fi)—a(Z fi—p)—b-(Ei) C i—pu),

generality. The discrete velocity s|i=0, 1, . .. ,8 of the
model is
(0,0, i=0
G= . e . (11)
[codi—1)m/3,sini—1)w/3], 1+#0,
9= p[(1~ ) —u?], (129
1
fled=5plat26 - ut4(c-u)*—u?, (12b)

wherei#0, and the lattice units 06,=1 and §;=1 have
been used. The parameter 0<a<1, is the fractional den-
sity of moving particles, which in turn determines the sound
speed of the modelcf = ).

For this model, wheng,u)=(1,0), Eq. (10) becomes
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2h4(1—a)=h{(al6)+h"(al6) fori#0. (13

Suppose that there exists one other statei\# (1,0) such
thatpc-u#0, and

fEV=p[(1-a)—Uw?]=(1—a),

1 1
fe9=Zplat2g-ura(c-u?-u=ca. (14
Consequently,
2 1 2
f%‘q)Z fi(eq)_ §pCi U= ga— §pCI -u,
and Eq.(10) becomes
2hy(1—a)=h/(al6)+h-al6—2pc-u/3) for i+O0.
The above equality and E¢L3) immediately lead to
h{(al6)=h{al6—2pc-u/3) for i#0. (15
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h/(3/4)=h/(1/12) for i+0.

Again, this contradicts the strict convexity assumptior,af
Hence, we have proven the nonexistence of a let#heo-
rem for the D2Q7 model.

Comments regarding the proof are in order at this point.
Let us summarize the conditions under which we accomplish
the proof: (a) the LBE model is in the general form of Eq.
(2); (b) the discrete velocity s€t;} has suitable symmetries;
(c) the collision operatod(f) satisfies certain conservation
constraints; andd) the equilibria{ f(*¥} are polynomials. We
should also stress that the proof does not require any specific
knowledge of the form of the collision operatd(f), and
that the key step of the progEq. (6)] does not rely on any
knowledge of the equilibridf(*¥}. But the exact values of
{fi(eq)} at two points in the space gfandu are required. For
this reason, the proof does not applied for the exponential
equilibria in whicha(p,u) andb(p,u) are not known exactly
for arbitrary valueu#0, in general. The proof is applicable
to the equilibria that are explicit functions pfandu satis-
fying the conservation constrainéxactly such as higher or-

Becausepc,-u#0, the above equality contradicts the as-der polynomials ofi than the second order. The proof can be

sumption thaifrl' is strictly increasingfor h; to be strictly

convex.
It remains to find a statep(u) satisfying Eqs.(14) and

pCi-u#0 fori+#0 simultaneously. Note that the flow veloc-

ity u can be orthogonally decomposed a$= uﬁ+ uf ,
whereuy:=¢-u andu, :=|u—uyc|, andg is the unit vector
parallel toc;. From Eqgs.(14), we observep andu; depend
onu, only throughu? . Therefore, ifp(u?) anduj(u®) are
monotonic in a neighborhood op(u)=(1,0), p andu; can
be uniquely expressed in terms laﬁ (the implicit function
theorem. From Eqs.(14), we have

| 2a—1
Ju? “2(1-a)

#0
2 1
utl,

if a#1/2. Thus, in the neighborhood opu)=(1,0), we
are guaranteed to find a state, ) to satisfyc;-us0 for i
#0 and Eqs(14) simultaneously.

Whena=1/2, the equilibria of Eqs(12) become

1
fE9=2p(1-20%),

1
fi(eq)zl—zp[1+4ci-u+8(ci~u)2—2u2], i#0.

At the two chosen statep=1 andu=(0,0), andp=2 and
(up,u,)=(1/2,0), Eq.(10), respectively, yields

2h)(1/2)=h{(1/12 +h{(1/12),
2hy(1/2)=h{(3/4) +h(1/12),

for i#0. Consequently, we have

readily extended to other athermal LBE models: the six-
velocity model on a triangular latticd>2Q6) and the nine-
velocity model on a square lattiog®2Q9 in two dimen-
sions, and the fifteen-velocity modd@)3Q15, the nineteen-
velocity model (D3Q19, and the twenty-seven-velocity
model (D3Q27 on a cubic lattice in three dimensions, with
the multiple-relaxation-timéMRT) model [4-6], of which
the single-relaxation-time or Bhatnagar-Gross-KroBIGK)
model[33] is a special case, or other typedliakar collision
operators.

It is important to place the present effort in the perspec-
tive of existing work[19-32. So far, previous work§20—

32] have been restricted to the lattice BGK mod&@s], and

the main effort has been focused on the construction of the
equilibria that admit arH theorem, either analyticallj21—

31] or numerically{32]. Such equilibria usually are nonpoly-
nomial types(e.g., exponentialf20]). To obtain the correct
hydrodynamics, the lowest order Taylor expansions of these
nonpolynomial equilibria must be identical to the correct
polynomial equilibria. These nonpolynomial equilibria in-
variably compromise the conservation laws, or make the col-
lision processmplicit, which can degrade not only the com-
putational efficiency, but also, given that there are only a few
discrete velocities in the LBE mode[49], the numerical
accuracy of the method, or bring in other spurious effects
[34]. The entropic LBE scheme based on numerical con-
struction of a entropy functiof82] has the severe drawbacks
of unknown numerical dissipation and heavy computational
overhead(CPU time of such a scheme in two dimensions
increases by about two orders of magnituddthough the
theoretical significance of these works are recognized, they
have hardly made any impact in practice.

Should we accept as a fact of life that Bhtheorem is
simply not a part of the lattice Boltzmann equation for good
reasons, then we must deal with the numerical instability
associated with the LBE method by other means. The rem-
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edies we offer here must not only be effective, but also comfind that the best remedy for this problem is to use the hybrid
putationally efficient. Such remedies should be based on odattice Boltzmann method that solves the mass and momen-
understanding of the origifor the causesof the instability.  tum conservation laws by the MRT-LBE method, and the
Due to the simple algebraic strucuture of the existing athertemperature equation by finite difference or other techniques
mal and thermal lattice Boltzmann models, certain eigenvalf35].
ues of the linearized collision operator coalesce spuriously. In conclusion, we have proven that BEitheorem does not
For the athermal cases, such coalescences occuikrear  exist for the athermal lattice Boltzmann models with polyno-
in the wave numbek space, so that the athermal LBE mod- mial equilibria satisfying the conservation laws exactly and
els are prone to numerical instability initiated by small-scaleexplicitly. We discuss some issues pertinent to the numerical
fluctuations. This effect is further amplified in the lattice instabilities of the lattice Boltzmann methods, and suggest
BGK schemes which may over-relax all the modes with aremedies such as the MRT and hybrid lattice Boltzmann
single parametet when 7<<1. This problem can be effec- scheme$35] that can mitigate the numerical instabilities ob-
tively mitigated if the MRT model§4—6] are used, and with  served in the LBE simulations. The extension of the proof to
careful implementations to suppress compressible effétts the thermal LBE models with polynomial equilibria is under
As for the thermal LBE models, the numerical instability way by the authors.
is @ much more severe problem. It has been shown recently
that the energy mode and shear mode of the linearized colli- L.S.L. would like to thank Professor D. d’Hunmis, Pro-
sion operator of the thermal LBE models coalesce spuriouslfessor A. J. Wagner, and Dr. R. Rubinstein for insightful
in a wide range of wave numbeksalong certain directions discussions and comments. The partial support from the
[35]. This coupling is highly anisotropic and cannot be elimi- Deutsche Forschungsgemeinsclifit W.A.Y.) and from the
nated by increasing the number of discrete velocities. ThigJnited States Air Force Office for Scientific Research under
means the thermal LBE models are prone to instabilities du&rant No. F49620-01-1-014@or L.S.L.) are gratefully ac-
to fluctuations on a continuous range of scales. So far, w&nowledged.
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