PHYSICAL REVIEW E 67, 051104 (2003

Structural information in two-dimensional patterns: Entropy convergence and excess entropy
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We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As
is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately
estimated via a converging sequence of conditional entropies. We show that the manner in which these
conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure
for spatial systems in any dimension. We compare and contrast entropy convergence with mutual-information
and structure-factor techniques for quantifying and detecting spatial structure.
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[. INTRODUCTION approaches can be applied to spatial structures, but they suf-
fer several drawbacks. For one, they are not fully spatial, in
The past decade has seen considerable advances in dbe sense that their calculation requires one to discard spatial
understanding of general ways to detect and quantify pattertiformation. Second, they do not directly speak to the corre-
in one-dimensional systems. This work is of intrinsic andlation present in a system; rather they are more measures of
broad interest, since it suggests different ways of viewingentropy, disorder, and inhomogeneity.
patterns and calls attention to some of the subtleties associ- Other recent general approaches to pattern in two dimen-
ated with pattern discovery and quantificatipt], issues sions include the extension of the formal theory of computa-
that—implicitly or explicity—underlie much of the scien- tion [17] and an information-theoretic approafd8] some-
tific enterprise. what similar in spirit to that which we develop below. See
Recently, these abstract measures of structural complexi#§lso Ref.[19].
or pattern played a key role in several applications in physics In this work, we take a different approach to the question
and dynamical systems. For example, there is a growin@f pattern and structure in two spatial dimensions. Our start-
body of work that seeks to relate the structural complexity ofing point is theexcess entropyan information-theoretic mea-
a one-dimensional sequence to the difficulty one encountegure of complexity that is commonly used and well under-
when trying to learn or synchronize to the generating processtood in one dimensiori2,20-29. Our main goals are
[2-5]. Also, complexity measures have recently been used teeveral fold. First, we introduce three ways to extend the
characterize experimentally observed structures in a class @efinition of excess entropy to more than one dimension,
layered materials known as polytypfs]. noting that these extensions are not equivalent. Second, we
The successes in one dimension have not been parallelggport results of estimating two of these forms of excess
by similar advances in two dimensions. Nonetheless, the deentropy for a standard statistical mechanical system: the two-
velopment of a general measure of complexity—or pattern oflimensional Ising model with nearest- and next-nearest-
structure—for two-dimensional systems is a |ong-standing]eighb0r interactions on a square lattice. We show that these
goal. How is information shared, stored, and transmittedwo forms of excess entropy are similar but not identical, that
across a two-dimensional lattice to produce a given set ofach is sensitive to the structural changes the system under-
configurations? How can we quantitatively distinguish be-goes, and that they are able to distinguish between different
tween different types of ordering or pattern in two dimen-patterns that have the same structure factors. Third, we dis-
sions? Though largely answered in one dimension, theseuss some of the subtleties and challenges associated with
questions are open in higher dimensions. moving from a one- to a two-dimensional information-
Some recent work in this area, motivated in part by thetheoretic analysis of pattern and structure.
need to characterize complex interfaces in surface science
and geology{7-13, has suggested a set of approaches 10 e\TROPY AND ENTROPY CONVERGENCE
these questions that are similar in spirit to fractal dimensions, IN ONE DIMENSION
in the sense that these approaches involve coarse-graining
variables and then monitoring the changes that result as the We begin by reviewing information-theoretic quantities
coarse-graining scale is modulated. One can also use a muwpplied to one-dimensionalD) systems. This allows us to
tifractal approach, also known as the singularity spectrundefine quantities and to fix notation that will be useful in our
“f(a),” the thermodynamic formalism, and the fluctuation discussion of two-dimensiondRD) information theory in
spectrum; for reviews, see, e.g., Rgfs4—-16. All of these  the subsequent section.
Let X be a random variable that assumes the vablues
e X, whereX'is a finite set. We denote the probability théat
*Electronic address: dpf@santafe.edu assumes the particular valuéoy Pr(x). Likewise, letY be a
"Electronic address: chaos@santafe.edu random variable that assumes the valyes). The Shannon
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entropyof the random variablX is defined by target spin X, with the bold vertical lines denoting the
boundary where the target spin and spin block abut. One can
- then show that the entropy density defined in Ej.can be
HIX] ;e:zf PI0IogPIX). @) written as
The entropyH[ X] measures the average uncertainty, in units h,=limh,(L). 9
of bits, associated with outcomes Xf The conditional en- Lo

tropy is defined by
For a proof that the limits in Eq%9) and(6) are equivalent,

- see Ref[30]. As the block length. grows, the terms in Eq.

H[X|Y]=_XEX2YEJ, Pr(x,y)log,Prix|y) 2) (9) typically converge tch,, much faster than those in Eq.
(6). See, e.g., Ref31], and citations therein.

and measures the average uncertainty associated with vari-

ableX; if we know the outcome oY. Note that Eq(Z) is the B. Excess entropy

average of—log,Pr(x|y), averaged over the joint distribu-

tion Pr(x,y). Finally, themutual informatiorbetweenX and

Y is defined as

The entropy density measures the randomness or unpre-
dictability of the systemh, is the randomness that persists
even after correlations over infinitely long blocks of vari-

I[X;Y]=H[X]—H[X]Y]. ©) ables are taken into account. A complementary quantity to

the entropy density is thexcess entropy E20—29, which

Thus,Y carries information abouX to the extent that knowl- accounts for how the finite- entropy density estimates

edge ofY reduces one’s average uncertainty abXufThe h,(L) converge to their asymptotic value,. For eachL,

above three definitions are all standard; for details, see, e.ghe system appears more random than it actually is by an

Ref. [30]. amount h,(L)—h,. Summing up these entropy-density
overestimates gives us tlexcess entropy

A. Block entropy and entropy density

We now examine the behavior of the Shannon entropy Ec=>, [h(L)=h,]. (10)

H(L) of a sequence ofL random variables S- L=1

=5yS;---S, 1. The total Shannon entropy of length-

sequences—thilock entropy—is defined by The excess entropy thus measures the amoumipparent
randomness at small values that is “explained away” by

_ L L considering correlations over larger and larger blocks. The
H(L)=~ LE | Pr(sHlog,Pr(s™), (4 subscript inE indicates that this form of excess entropy is
sed defined by considering how the entropy densibnvergeto
where Prégh) is the probability of a particulat. block st. h, . Note thatE can be infinite for systems with long-range

Pictographically, we represent this as correlationy 2,22,28,29.
L Another expression for the excess entropy is obtained by
H(L) = HoOIxm] . (5) looking at the growth of the block entropy(L). By Eq. (6),
we know thatH (L) typically grows linearly for largd.. The
The entropy densitys then defined as excess entropy can be shown to be equal to the portion of
H(L) that is sublinear-E is the subextensivgart. That is,
h,,= lim # ®) the excess entropy is defined implicitly by

L—o

H(L)=Es+h,L as L—o. 11
The above limit exists for all spatial-translation invariant o . )
systemd 30]. Equations(6) and (4), together, are equivalent Here, the subscript ifEs serves as a reminder that this ex-
to the Gibbs entropy density. The entropy denifycan be pression for the excess entropy is thgbextensivgart of
reexpressed as the limit of a form of conditional entropy. ToH(L)-

do so. we first define Finally, one can show24,2g that the excess entropy is
' also equal to the mutual information between two adjacent
h,(L)=H[S/|S _1S —»---S1]. (7)  semi-infinite blocks of variables:
In words, h,,(L) is the entropy of a single spin conditioned Ei=limI[S__---S_55_1;5S;---S -1] (12
on a block ofL—1 adjacent spins. This can also be written L—ee
graphically L
P = Jim I[oorT; oo (13)
hy(L) = H{®| O110O]. )

The pictogram on the right indicates that the entropy is conThe “1” in the subscript indicates that this expression for the
ditioned on thel —1 spins directly to the right of the single excess entropy is given in terms of a mutirsflormation
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Note that in the pictographic version, E43), the two semi-  Ill. TWO-DIMENSIONAL ENTROPY, ENTROPY DENSITY,
infinite blocks are understood to be adjacent, as indicated by AND EXCESS ENTROPY
the thick vertical lines.

The three different forms for the excess entrofyc+
Es, andE,—given above are all equivalent in one dimen- Below we discuss how to extend the 1D analysis outlined
sion[24,2§. We represent these different forms with distinct above to apply to spatial patterns in two and higher dimen-
symbols because they amet identical in two dimensions.  sions. Before launching into definitions and formalism, we

In the subsequent section, we compare our results for theketch some of the philosophy and intuitions that motivate
excess entropies with various structure factors—standarghe path we take and highlight some of the general issues that
quantities from statistical physics used to detect periodiGrise as one moves from 1D to 2D systems.
structure. The definition of the structure factor begins with Patterns in two dimensions are fundamenta”y different

A. Generalizing to higher spatial dimensions

the two-spin correlation function from those in one dimension. For example, in one dimension
a natural way to scan a configuration exists: left-to-right, say.
Li=((si—(si))(s;—(s}))) (14)  Thatis, each local variable is indexed in a well-defined or-

der. (The information-theoretic measures discussed in the
5 preceding section have the same values regardless of whether
=(sis)) = ()", (15 the 1D configuration is scanned left-to-right or right-to-left.
The 1D approach simply does not generalize to 2D in a
wheres; ands; denote the value of spins at different lattice unique natural way. One might be tempted to scan or parse a
coordinates. The second equality follows from the translatior2D configuration by taking a particular 1D path through it.
invariance of configurations. The angular brackets indicate &®ne would then apply 1D measures of randomness and
thermal expectation value. In 2D, we will be interested instructure to the sequences thus obtained. For example, in
spins that are separated horizontally or vertically, but noRefs. [34,35, a space-filling curve is used to parse a 2D
both. (In a scattering scenario, this corresponds to restrictingonfiguration and, from this, the entropy density of the con-
ourselves to a situation in which the particles to be scatterefiguration is estimated.
are incident along a line parallel to one of the axes of the \while the 1D-path method does yield the correct entropy
lattice) We definel’(r) as the correlation function between density, it is also clear that it projects additional spurious
two spins separated, horizontally or vertically, byattice  strycture onto the configuration. By snaking through the lat-
sites: tice, it is inevitable that sites, adjacent in the 2D lattice,
occur far apart in the 1D sequence. As a result, long-range
I'(r)=(sps;)—(s)>. (16) correlations appear in the latter. Thus, a 1D excess entropy
(or any other 1D measure of structural complexiygapted
in this way will capture not only properties of the 2D con-
figuration, but also properties of the path. Except in special
cases and with appropriate prior knowledge, it does not ap-
pear possible to disentangle these two distinct sources of
- 27r apparent structure. These and related difficulties with the 1D
S(p):rzl COE{ T) I(r). (17 approach have been discussed in some detail in, for example,
Refs.[22,27,34.
Here, we seek an alternative to understanding a 2D pat-
If the correlation function has a strong peripcsomponent,  tern by parsing it into 1D strings. We are immediately faced
thenS(p) is large; if not,S(p) is small. The absolute mag- th a problem, however. There is a unique, complete order-
nitude of S(p) is generally not interpreted; only the relative g of the connected, nested subsets of a 1D lattice such that
change as a function gfis. In this way, the structure factor o conditional entropies of the target spin, conditioned on
serves as a signal of correlations in a configuration at a givefhis sequence of subsets, are monotone decreasing. It is this
per||o_d|C|ty(.j v held that th ordering that makes E410) unambiguous and unique in 1D.
ger:elzlyéluﬁ))cl)seemetasaljr(ta ?’fe‘; Z?/z?e;r’lg(;ﬁuiiy: S r?éu;ritlﬁn contrast, conne.cted, nested subsets' of a 2[_) !atticg that
or memory: for recent reviews, see Re,28,29 Tr,1e ox- ave this monotonic property are not unique. This is a direct
' ! _— consequence of the topological differences between one- and

cess entropy p_rovidesaquantitative me_asure_of structure th?\‘/vo—dimensional lattices. We shall see that this lack of
may be applied to any 1D symbolic string. In Refs. .

: . ~"uniqueness introduces ambiguity in extending ELp) to
E)zrgg’rzysgr'avr\;eeg ?ufi(rj tthE Srgﬁ‘]y gis;g%v‘éedlr?spznrtiecfiutleg:lvsvetwo djmensions; specifically, there is nolnatural unique ex-
showed that the excess entropy is sensit.ive to periodic,strug-reSSIon for the excess entropy in two dimensions.
ture at any period, whereas structure factors, by construction,
are sensitive to ordering at only a single spatial period. We
shall return to this point below and show that the same gen- The entropy density in two dimensions is defined in the

eral claims hold in two dimensions as well. natural way. Consider an infinite 2D square lattice of random

The structure factor then, is the discrete Fourier transform
of the correlation functions:

B. Entropy density
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FIG. 2. Target spinX) and neighborhood templates for condi-
tional entropies used in our study of the 2D NNN Ising model. The
cell numbers indicate the order in which the sites are added to the
template. For more discussion, see text.

FIG. 1. Neighborhood templates for 2D conditional entropies.
The target spin is denoted with at

variablesS;; whose values range over the finite sét As-

suming that tr_]e yangbles are translationally invariant, the 2D h,(3)= H[ SodlS_10,S01,S_11]. (20)
entropy density is given by
H(N,M) In the M —co limit, the newh (M) still goes to the entropy
h,= lim —_ (18) density, as in Eq(19). It is also not hard to see that this
NM—e NM convergence must be monotonic
whereH(N,M) is the Shannon entropy of afx M block of h,(M)<h,(M"), M>M". (22)

spin variables. This limit exists for a translationally invariant
system, provided that the limits are taken in such a mannefhis is a direct consequence of the fact that conditioning
that the ratioN/M remains constant and finite. cannot increase entrof$0].

Is there a way to reexpress the 2D entropy density of Eq. Two remarks about the neighborhood template in Fig. 2
(18) as the entropy of a target variable conditioned on adre in order. First, the strip needs to be two sites thick since
block of neighboring variables, analogous to E@)? This the system explored below has interactions that extend
guestion was, to the best of our knowledge, first answered iACross two lattice sites. In this case, a strip with a thickness
the affirmative by Alexandrowicz in the early 197[&87,38. of two sites shields one-half of the lattice from the other. In
Meirovitch [39,40 and later Schlijper and co-authd#sl,42  the limit that the strip is infinitely long in the horizontal
extended and applied Alexandrowicz’s work. These methodgirection, then the probability distribution of the target spin
have also been discovered independently by Eriksson ari@ independent of the values of the spins beneath the strip
Lindgren [43,44 and Olbrichet al. [45]. Here, we briefly  [47].
summarize the central result and adapt it to our needs. Second, at first blush, the numbering scheme in Fig. 2

The most general approach to the conditional entropy irfippears ambiguous. Spins are added to the template in order
two dimensions proceeds as follows. Lte(M) denote the of increasing Euclidean distance from the target spin. For
Shannon entropy of the target spin conditioned on a 2DBexample, spin 10 is a Euclidean distancé22from the cen-
neighborhood template of 2(M+1) spins. Arrange the ter spin, whereas spin 11 is a distance of 3. Sin¢gg23,
spin template in anNI +1)X(2M + 1) rectangle with the one adds on spin 10 before 11. When there is a tie, one adds
target spin in the center of the rectangle’s top row and withthe leftmost spin. For example, spins 3 and 4 are the same
the top, rightmosM spins deleted from the template. A se- Euclidean distance from the center spin; spin 3 comes before
guence of neighborhood templates of this type is shown i since it is to the left.

Fig. 1. For exampleh ,(3) is the entropy of the target spin  Of course, one can use alternative ordering schemes, such
(denoted by arK) conditioned on all the other spins in the as adding spins in a widening spiral or some other geometric
rightmost template of Fig. 1. The 2D entropy densifymay  pattern. These choices do not change the result in(E),

then be shown to be equal [43,44,46,47 since this is a statement about what happens in the limit that
an arbitrarily large number of spins have been added to the

h,= lim h,(M). (190 template. However, looking ahead, the order in which spins
M —o0 are added can affect the convergence form of the 2D excess

entropy—the 2D analog d& of Eq. (10).

If it is known that the interactions between spins are of As noted above, the ambiguity in how the neighborhood
finite range, then one only needs to use a shape as thick &smplate of conditioning variables grows is a direct result of
the interaction rangg37,38,41-43 For example, in the fol- the fact that a 2D lattice does not specify a strict ordering of
lowing section, we consider a 2D Ising model with nearestits elements in the way that a 1D sequence does. Rather, a
and next-nearest-neighb@INN) interactions. In this case, 2D lattice specifies a partial ordering of its elements. Thus,
one uses a strip with a thickness of two lattice sites; se¢here will always be “ties” in the sense just mentioned, and
Fig. 2. so there is no unique natural way to add on the spins one-

We now slightly modify the definition of the template-size by-one based on an ordering of subsets of spin blocks. See
parameteM in the conditional single-site entrogy, (M) so  Ref.[48] for a detailed discussion of this, albeit in a slightly
as to apply to the scenario in Fig. 2. The cell numbers in thiglifferent context.
figure indicate the order in which individual sites are added Finally, the conditional Shannon entropy method for cal-
to the neighborhood template. For examiiig(3) now will culating the entropy density,, is well known and has been
denote the entropy of the target sf8g, conditioned on the successfully applied to a number of different systems; in-
three spins labeled 1S( 1), 2 (Sp1), and 3 S_44); thatis,  cluding the 2D Ising model on squalr42] and simple cubic
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lattices[40], theq=5 2D Potts mod€l42], a 2D hard-square Note that in an isotropic system, such as that considered
lattice gag49], the three-dimensional fcc Ising antiferromag- below, ES =EY . We shall not consider these forms for the
net[50], coupled map latticep45], Gaussian random fields 2D excess entropy here, opting instead to focusEgrand
[51], polymer chain modelf52], and network-forming ma- E;.

terials [53]. Quite recently, Meirovitch52] estimated the

entropy for the 2D Ising ferromagnet. Remarkably, his re- IV. RESULTS

sults have only a 0.01% relative error at the critical tempera- A. Next-nearest-neighbor Ising systems

ture, where one might expect the conditional entropy form to

overestimate the entropy density due to long-range correlaém-lr-g tes\fvéhzsgi‘;\ggr g:\éle ﬂgrer:grr;;;ﬁm;gr(g ;?:nggﬁgss
tions missed by finite-size templates. Py, ! c y

system: the 2D spig- Ising model with nearest-neighbor
(NN) and next-nearest-neighbdNNN) interactions. We
C. Excess entropy in two dimensions chose this system since it is rich enough to exhibit several

We now turn to the question of how to extend excesdistinct structures and due to its broad familiarity. Its Hamil-

entropy to more than one dimension. We consider three poégn'an’H’ is given by

sible approaches to excess entropy in two dimensions. For

each, we begin with one of the three different forms for theH=—J; > SjSu—J2 >

1D excess entropy. (i7:Khan (kD
First, consider the convergence excess entipyas de-  where the firstsecond sum is understood to run over all NN

fined in Eq.(10). In the preceding section, we defined a (NNN) sets of spins. Each spi; is a binary variableS;;

sequence of 2D entropy density estimaltegM) that con-  e{—1,+1}. The lattice consists dl XN spins; the spatial

verges from above to the entropy dendity. We can sum indices on spin variables run from 0 ko—1. We shall view

these entropy density overestimates to obtain the 2D convethe spins as dimensionless variables and the coupling con-

sjsm—B; s;, (20

nnn

gence excess entropy: stantsJ; andJ, as dimensionless parameters.
* We estimated the structure factd@®€l), S(2), andS(4)
Ec=> [h,(M)=h,]. (22)  with Eq. (17) by directly measuring the frequency of occur-
M=1

rence ofs;s; and s in spin configurations generated by a
Monte Carlo simulation that used a standard single-site Me-
opolis algorithm on a lattice with periodic boundary condi-
ons. That is, we sampled configurations with the canonical
istributione~7©'T whereH(c) is the energy of the con-
ilgurationc and T is the temperature. We used a lattice of

We shall see that this form of the excess entropy is, like it
1D cousin, capable of capturing the structures or correlation
present in a 2D system. Note that this definition can depen
on the order in which spins are added on to the template an

as Qiscussed in the pre_ceding section, there i_s no unique_ %% 48 spins. Since we are not interested here in extracting
dering to use to determine the sequence in which to add sitego system's critical properties, there is no need to go to
Nevertheless, our investigations have shown that any reasol%irger system sizes.

a_\ble choice for ordering yl_elds _aiEC that behaves qualita- We estimatecE. and E, from block probabilities by ob-
tively the same as that defined in E@2). serving the frequency of spin-block occurrences. To estimate
The mutual information formE, of the excess entropy, E., we used a template containing 15 total spins, as shown
defined in Eq(13), can naturally be extended by consideringin Fig. 2, and marginals of this distribution for smaller tem-
the mutual information between two adjacent infinite half-plate sizes. To estimaf§, we calculated the mutual informa-
planes: tion of two adjacent X 4 spin blocks. For each, value, we
M= —M— ran our Monte Carlo simulation for up to>210° Monte
Carlo time steps (X 10° for J;<—1.5) and then took data
every 20 time steps for:210* time steps. One Monte Carlo
1 1 time step corresponds to trying to flip, on average, each spin
in the lattice one time. We thus sampled x 10° template
(23 configurations. For comparison, note that there are at most
(in the highly disordered regim@'®~3x 10* possible con-
figurations in a template of 16 spins.

EI = MIIIVIEOOI N ; N

As in Eg. (13), it is understood that the two semi-infinite
planes are adjacent.

Finally, one may also develop an expression for 2D sub- B. Excess entropy detects periodic structure
extensive excess entropies by considering hid(M,N)
grows withM andN. In analogy to Eq(11), we define three
subextensive excess entropies via

Our results are shown in Fig. 3. The temperature was held
atT=1.0, the external field @&=0.0, and the next-nearest-
neighbor coupling al,= —1.0. Figure 3 show§(1), S(2),

—M— S(4), E,, andE(, as a function ofl; e[ —4.0,4.G. For all
H(M,N) = H[ N ] (24) J, values, the temperature is relatively small compared to the
average energy per spin. And so, the configurations sampled
i are typically the ground state with a few low-energy excita-
tions.
~Eg+EXM+ E§N+hMM N, (25) As J; is increased, the system moves through parameter

regimes in which there are significant correlations of periods
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5 structure factorS(4) in Fig. 3c) has a large value nedq
4 @ =0, indicating this period-4 ordering.
5(1)2 : As J, is increased from O, the tendency for the spins to
i align grows stronger. Eventually, this NN interaction over-
1 — = :___\/ whelms the NNN interactions and the entire lattice starts to
22 align. This is the familiar paramagnet-ferromagnet transition.
20 ' ® Above J;~2.5, the system acquires a net magnetization;
15 ' there is now an unequal number of up and down spins,
S(2)10 whereas belowl;~2.5 there are always, on average, equal
5 : numbers of up and down spins. This transition is signaled by
0 N the distinct spike in the period-1 structure fac&l) near
10 _— © J1~2.5 andS(1)’s vanishing at larged;. [The magnetic
8 - p susceptibility y diverges at the critical point of a
S4)s . ferromagnet-paramagnet transition. SingeS(1), one ex-
4 - ~. pects to see a spike iB(1) near this transition, where the
ﬁ—\:— —_ system acquires a nonzero magnetization.
In Figs. 3d) and 3e) we plot the mutual-information ex-
i - - (d) cess entrop¥, and the convergence excess entrépyver-

Ej 4 zZ T susJ; over the same parakljmete(; range. Ihn thﬁ large and Qega—
i — — tive J; regime,E,=E-=1 bit, indicating that there is one bit
[blts]f ~ \ of information stored in the configurations. The configura-
0 L tions have a simple structutalternating up and down spins

5 T - and the magnitude oE gives the information needed to
4 - > () specify the spatial phase of the period-2 configurations.
]_EC 3 P g WhenJ, is large and the system undergoes the transition to
[bits] 2 / \ ferromagnetic orderingz,=E<=0, since the configurations
1 ' consist of all aligned spins, and there is no spatial informa-
‘3_'4 T e > 1 tion or structure in them. In the intermediate regimh (

~0), E, andE; are markedly larger, indicating that the sys-
tem is more structured than elsewhere. We will return shortly
FIG. 3. Structural changes in the the 2D NNN Ising model as a0 discuss in detail what the values Bf and Ec mean.
function of NN couplingJ; as revealed by structure facto(a) Note that each excess entropy is sensitive to correlations
S(1), (b) S(2), and(c) S(4), andexcess entropie@) E,; (mutual  at all periodicities, despite the fact that each is merely a
information) and(e) E¢ (convergence The temperature was fixed single unparametrized function. In contrast, the structure fac-
atT=1.0 andJ, was held at-1.0 as the NN coupling was swept tors S(p) are a one-parameter family of functions that must
from J;=—4.0 toJ;=4.0 in steps 0f6J;=0.01, except near the be tuneda posteriorito find relevant periodic structure. That
S(1) spike atJ;~2.5 wheresJ;=0.005. We performed at least s, the period-1 structure fact®(1) detects only the period-
five different runs at eacl; in the range|J;|<1.15. Note the 1 correlations nead,=2.5. Moreover,S(1) is unable to

different scales on the vertical axes: the excess entropies are me@i’stinguish between the period-2 and period-4 orderings at
sured in bits of apparent memory; the structure factors Bndre J;<—3.0 andJ;~0, respectivelyS(1)~1 for both period-
dimensionless. For more discussion, see text. Zland p'eriod-4l Con,figurations

Since the excess entrody is a single unparametrized
nction sensitive to structure of any periodicity, it is a more
%’eneral measure of structure and correlation than the struc-
X . . . . ture factorsS(p). ConverselyS(p) is somewhat myopic. By
Physically, whenJ, is large in magnitude and negative, considering only two-point correlations modulated at a se-

the tendency for nearest neighbors.to anti-align' dOmin‘"‘te%cted periodicityp, S(p) misses structure that is either ape-
and the system's ground state is antiferromagnetic: a CheCl|<'|'odic or that is due to more than two-spin correlations. In

erpoard pattern consistipg of glternating up and qlown Spin%act E is even more sensitive and general than these obser-
This pattern has a spatial period of 2. Not surprisingly, the\/ati(’)ns indicate

period-2 structure facto(2) in Fig. 3b) shows a strong
signal in this lowd; regime.

WhenJ, is near zero, the NN interactions are negligible
compared to the NNN interactions. Thus, each spin orients Looking closely at the mutual-information excess entropy
opposite its four next-nearest neighbors, while disregardings, nearJd; =0 in Fig. 3d), one notices that the curve splits
its four nearest neighbors. The result is that the lattice effecinto two in the |J;|<1.0 region. This can be seen more
tively decouples into four noninteracting sublattices. On eacltlearly in Fig. 4, in which we ploE, versusl; in this region.
of these sublattices, the spins alternate in sign, resulting in We sampled the NN coupling; every 0.01 and performed at
ground state with spatial period 4. Note that the period-4dleast five different runs at each, value. Sometimeg,

2,4, and 1. This is seen, for example, in the behavior of thq;u
various structure factors; the structure factors selected corr
spond to periods of 2, 4, and 1 lattice sites.

C. E distinguishes structurally distinct ground states
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3.2 y y ; y whereasE, =2 bits for the two striped phases. Similar calcu-
at lations show thaEc=3 bits for both the checkerboard and
- - striped ground states. Note, however, tB&4) is the same
281 for all three ground states. By constructid@(4) measures
26" only two-spin statistics obtained by considering correlations
EI along a horizontal or a vertical direction. And so, the three
[bits] 24 ground states are the same if one considers only isolated
2.2} horizontal or vertical slices; every slice consists of a repeat-
ol ] ing pattern of two up spins followed by two down spins. Of
course, one can adapt the definitionS{fp) to account for
1.8 - oF 5 oF p the (_Jliagona_ll stripe(_JI phas_es, but this_simply_begs the question
) ) of discovering the intrinsic patterns in the first place.
] Near |J;|=1, notice thatE, and E¢ occur in plateaus

between 2 and 3 bits and above. This indicates that the sys-

FIG. 4. The mutual-information excess entrdpyshowing the  tem has settled into one of several more structured meta-
existence of multiple period-4 ground states. stable states consisting of mixtures of the three ground states.

In summary, we see that the mutual information excess
entropyE, is capable of distinguishing between patterns that
are not distinct according to the structure fact&®). In
fact, we initially did not anticipate the two striped ground
L ) . . states, glibly assuming that the only ground state is the
The answer is simple: there are multiple structurally d's'checkerboard. Our results @, which we initially found

tinct ground states. The three possible ground-state Conflglf:'onfusing, led us to examine the configurations more closely

rations are shown in Fig. 5. Note that for each ground Stale,ng to detect the distinct ground state structures. This, in

all NNN pairs of sites have opposite spin values, thus miniy ., jeq ys to notice the rich dynamics of the configurations
mizing t.he systems energy. Note also tha}t each ground.sta they wend their way towards one of the three ground
is identical if one considers only a horizontal or vertical states. In short, these structural subtleties would have been

slice; the_ repeating pattern of two up spins followed by WOissed entirely had we relied solely on the structure factors.
down spins is the same.

After a long transient time, the system usually settles into
one of these three states. A boundary defect between two
different ground states has an energy cost associated with it. We introduced three extensions of the excess entropy that
As such, most boundaries are eventually destroyed. Inciderpply to two-dimensional configurations. Each excess en-
tally, the dynamics through which this removal of boundarytropy expression is based on a different way of viewing the
defects occurs is rather subtle and can be very long lived. Fadne-dimensional excess entropy: the convergence excess en-
example, a boundary between left and right diagonal phaseagopy E. measures the manner in which finite-template en-
costs more than a boundary between the checkerboard af@py density estimates converge to their asymptotic value;
one of the striped patterns. As a result, when the two differthe subextensive excess entrdpy is related to the subex-
ent striped phases come close, the checkerboard pattefénsive forms of the block entrogy(M,N); and the mutual

emerges between them, pushing the stripe boundaries awgformation excess entrof, is defined as the mutual infor-
from each other. Moreover, as the temperature approachegation between two halves of a configuration.

zero, we observe that there are times when the ground state is Applying two of these measureE. andE,, to the NNN
simply not found via single-flip Metropolis Monte Carlo dy- |sing model, we have seen that these quantities capture the
namics. Similar phenomena have been observed in other agtructural changes this system undergoes as its parameters
tiferromagnetic Ising models; for recent work, see Refsare varied. In contrast, the structure factors are sensitive to
[54-58. periodic ordering of a particular period. Moreover, our re-

In any event, a straightforward calculation shows tBat  syits show that the information excess entrdpy clearly
=3 bits for the checkerboard configuration of Figa)5  distinguishes between two period-4 ground states, whereas
the period-4 structure factor is simply incapable of making
such a structural distinction. Finally, the values that the ex-
cess entropies take on are interpretable and give a quantita-
tive measure of the amount of structure in the system.

The picture that emerges, then, is that the various two-
dimensional excess entropies are general-purpose measures
of two-dimensional structure. This is not to suggest that the
excess entropy replace structure factors or, more generally,
Fourier analysis. We view the excess entropy not in compe-

FIG. 5. The three ground states fbr~0 andJ,<0: (a) check-  tition with Fourier analysis, but complementary to it; the
erboard,(b) left-diagonal stripe, andc) right-diagonal stripe. excess entropy is designed to answer a different set of ques-

=3.0 bits, whereas for other trial§,=2.0 bits. Why are
there two different values fdg, on different runs? And why,
in contrast, is the period-4 structure fac&{#) the same for
all runs?

V. DISCUSSION AND CONCLUSION
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tions than those addressed by Fourier components. For eexcess entropy forms for noisy Sierpinsky carpets and the
ample, it has long been appreciated in dynamical systemigke; this will allow for direct comparison with calculations
that power spectral analysis is of little help in revealing theof the measures of inhomogeneity put forth in Ré¢fd.,12).

geometry of a chaotic attract§b7]. Analogously, spectral Ultimately, these different measures of structure—those
decomposition, typically, will say little about how difficult it presented here and those developed by other authors—uwiill
is to learn or synchronize to a pattern. be judged not solely by their ability to shed light on existing

Clearly, however, there is much more work to be done towell understood model systems such as the NNN Ising
develop a thorough, well understood methodology for two-model considered here. Instead, the broader concern is how
dimensional patterns. One possible approach builds on Refto use these information-theoretic quantities to capture struc-
[4,28,58 which take a systematic look at entropy growth andture and patterns in systems that are less well understood.
convergence by using a discrete calculus. This work placeBqually important is the question of establishing relation-
several complexity measures within a common frameworlships between information-theoretic measures of structural
and leads to new measures of structure. From the study preemplexity and other quantities, including: physical mea-
sented above, we conclude that a similar analysis in tweures of structure and correlation; computation-theoretic
dimensions, using a two-dimensional discrete calculus, holdproperties; and the difficulty of learning a pattern.
great promise. Another area for future research concerns de-
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