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Structural information in two-dimensional patterns: Entropy convergence and excess entropy
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We develop information-theoretic measures of spatial structure and pattern in more than one dimension. As
is well known, the entropy density of a two-dimensional configuration can be efficiently and accurately
estimated via a converging sequence of conditional entropies. We show that the manner in which these
conditional entropies converge to their asymptotic value serves as a measure of global correlation and structure
for spatial systems in any dimension. We compare and contrast entropy convergence with mutual-information
and structure-factor techniques for quantifying and detecting spatial structure.
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I. INTRODUCTION

The past decade has seen considerable advances i
understanding of general ways to detect and quantify pat
in one-dimensional systems. This work is of intrinsic a
broad interest, since it suggests different ways of view
patterns and calls attention to some of the subtleties ass
ated with pattern discovery and quantification@1#, issues
that—implicitly or explicitly—underlie much of the scien
tific enterprise.

Recently, these abstract measures of structural comple
or pattern played a key role in several applications in phys
and dynamical systems. For example, there is a grow
body of work that seeks to relate the structural complexity
a one-dimensional sequence to the difficulty one encoun
when trying to learn or synchronize to the generating proc
@2–5#. Also, complexity measures have recently been use
characterize experimentally observed structures in a clas
layered materials known as polytypes@6#.

The successes in one dimension have not been paral
by similar advances in two dimensions. Nonetheless, the
velopment of a general measure of complexity—or pattern
structure—for two-dimensional systems is a long-stand
goal. How is information shared, stored, and transmit
across a two-dimensional lattice to produce a given se
configurations? How can we quantitatively distinguish b
tween different types of ordering or pattern in two dime
sions? Though largely answered in one dimension, th
questions are open in higher dimensions.

Some recent work in this area, motivated in part by
need to characterize complex interfaces in surface scie
and geology@7–13#, has suggested a set of approaches
these questions that are similar in spirit to fractal dimensio
in the sense that these approaches involve coarse-gra
variables and then monitoring the changes that result as
coarse-graining scale is modulated. One can also use a
tifractal approach, also known as the singularity spectr
‘‘ f (a), ’’ the thermodynamic formalism, and the fluctuatio
spectrum; for reviews, see, e.g., Refs.@14–16#. All of these
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approaches can be applied to spatial structures, but they
fer several drawbacks. For one, they are not fully spatial
the sense that their calculation requires one to discard sp
information. Second, they do not directly speak to the cor
lation present in a system; rather they are more measure
entropy, disorder, and inhomogeneity.

Other recent general approaches to pattern in two dim
sions include the extension of the formal theory of compu
tion @17# and an information-theoretic approach@18# some-
what similar in spirit to that which we develop below. Se
also Ref.@19#.

In this work, we take a different approach to the quest
of pattern and structure in two spatial dimensions. Our st
ing point is theexcess entropy, an information-theoretic mea
sure of complexity that is commonly used and well und
stood in one dimension@2,20–29#. Our main goals are
several fold. First, we introduce three ways to extend
definition of excess entropy to more than one dimensi
noting that these extensions are not equivalent. Second
report results of estimating two of these forms of exce
entropy for a standard statistical mechanical system: the t
dimensional Ising model with nearest- and next-neare
neighbor interactions on a square lattice. We show that th
two forms of excess entropy are similar but not identical, t
each is sensitive to the structural changes the system un
goes, and that they are able to distinguish between diffe
patterns that have the same structure factors. Third, we
cuss some of the subtleties and challenges associated
moving from a one- to a two-dimensional informatio
theoretic analysis of pattern and structure.

II. ENTROPY AND ENTROPY CONVERGENCE
IN ONE DIMENSION

We begin by reviewing information-theoretic quantitie
applied to one-dimensional~1D! systems. This allows us to
define quantities and to fix notation that will be useful in o
discussion of two-dimensional~2D! information theory in
the subsequent section.

Let X be a random variable that assumes the valuex
PX, whereX is a finite set. We denote the probability thatX
assumes the particular valuex by Pr(x). Likewise, letY be a
random variable that assumes the valuesyPY. TheShannon
©2003 The American Physical Society04-1
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D. P. FELDMAN AND J. P. CRUTCHFIELD PHYSICAL REVIEW E67, 051104 ~2003!
entropyof the random variableX is defined by

H@X#[2 (
xPX

Pr~x!log2Pr~x!. ~1!

The entropyH@X# measures the average uncertainty, in un
of bits, associated with outcomes ofX. The conditional en-
tropy is defined by

H@XuY#[2 (
xPX,yPY

Pr~x,y!log2Pr~xuy! ~2!

and measures the average uncertainty associated with
ableX, if we know the outcome ofY. Note that Eq.~2! is the
average of2 log2Pr(xuy), averaged over the joint distribu
tion Pr(x,y). Finally, themutual informationbetweenX and
Y is defined as

I @X;Y#[H@X#2H@XuY#. ~3!

Thus,Y carries information aboutX to the extent that knowl-
edge ofY reduces one’s average uncertainty aboutX. The
above three definitions are all standard; for details, see,
Ref. @30#.

A. Block entropy and entropy density

We now examine the behavior of the Shannon entro
H(L) of a sequence of L random variables SL

5S0S1•••SL21. The total Shannon entropy of length-L
sequences—theblock entropy—is defined by

H~L !52 (
sLPA L

Pr~sL!log2Pr~sL!, ~4!

where Pr(sL) is the probability of a particularL block sL.
Pictographically, we represent this as

~5!

The entropy densityis then defined as

hm[ lim
L→`

H~L !

L
. ~6!

The above limit exists for all spatial-translation invaria
systems@30#. Equations~6! and ~4!, together, are equivalen
to the Gibbs entropy density. The entropy densityhm can be
reexpressed as the limit of a form of conditional entropy.
do so, we first define

hm~L ![H@SLuSL21SL22•••S1#. ~7!

In words,hm(L) is the entropy of a single spin conditione
on a block ofL21 adjacent spins. This can also be writt
graphically

~8!

The pictogram on the right indicates that the entropy is c
ditioned on theL21 spins directly to the right of the singl
05110
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target spin�, with the bold vertical lines denoting th
boundary where the target spin and spin block abut. One
then show that the entropy density defined in Eq.~6! can be
written as

hm5 lim
L→`

hm~L !. ~9!

For a proof that the limits in Eqs.~9! and~6! are equivalent,
see Ref.@30#. As the block lengthL grows, the terms in Eq
~9! typically converge tohm much faster than those in Eq
~6!. See, e.g., Ref.@31#, and citations therein.

B. Excess entropy

The entropy density measures the randomness or un
dictability of the system;hm is the randomness that persis
even after correlations over infinitely long blocks of va
ables are taken into account. A complementary quantity
the entropy density is theexcess entropy E@20–29#, which
accounts for how the finite-L entropy density estimate
hm(L) converge to their asymptotic valuehm . For eachL,
the system appears more random than it actually is by
amount hm(L)2hm . Summing up these entropy-densi
overestimates gives us theexcess entropy

EC[ (
L51

`

@hm~L !2hm#. ~10!

The excess entropy thus measures the amount ofapparent
randomness at smallL values that is ‘‘explained away’’ by
considering correlations over larger and larger blocks. T
subscript inEC indicates that this form of excess entropy
defined by considering how the entropy densityconvergesto
hm . Note thatEC can be infinite for systems with long-rang
correlations@2,22,28,29#.

Another expression for the excess entropy is obtained
looking at the growth of the block entropyH(L). By Eq.~6!,
we know thatH(L) typically grows linearly for largeL. The
excess entropy can be shown to be equal to the portio
H(L) that is sublinear—E is the subextensivepart. That is,
the excess entropy is defined implicitly by

H~L !5ES1hmL as L→`. ~11!

Here, the subscript inES serves as a reminder that this e
pression for the excess entropy is thesubextensivepart of
H(L).

Finally, one can show@24,28# that the excess entropy i
also equal to the mutual information between two adjac
semi-infinite blocks of variables:

EI5 lim
L→`

I @S2L•••S22S21 ;S0S1•••SL21# ~12!

~13!

The ‘‘I ’’ in the subscript indicates that this expression for t
excess entropy is given in terms of a mutualinformation.
4-2
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Note that in the pictographic version, Eq.~13!, the two semi-
infinite blocks are understood to be adjacent, as indicated
the thick vertical lines.

The three different forms for the excess entropy—EC,
ES, andEI —given above are all equivalent in one dime
sion @24,28#. We represent these different forms with distin
symbols because they arenot identical in two dimensions.

In the subsequent section, we compare our results for
excess entropies with various structure factors—stand
quantities from statistical physics used to detect perio
structure. The definition of the structure factor begins w
the two-spin correlation function

G i j [^~si2^si&!~sj2^sj&!& ~14!

5^sisj&2^s&2, ~15!

wheresi andsj denote the value of spins at different lattic
coordinates. The second equality follows from the translat
invariance of configurations. The angular brackets indica
thermal expectation value. In 2D, we will be interested
spins that are separated horizontally or vertically, but
both. ~In a scattering scenario, this corresponds to restric
ourselves to a situation in which the particles to be scatte
are incident along a line parallel to one of the axes of
lattice.! We defineG(r ) as the correlation function betwee
two spins separated, horizontally or vertically, byr lattice
sites:

G~r ![^s0sr&2^s&2. ~16!

The structure factor, then, is the discrete Fourier transfor
of the correlation functions:

S~p!5(
r 51

`

cosS 2pr

p DG~r !. ~17!

If the correlation function has a strong period-p component,
thenS(p) is large; if not,S(p) is small. The absolute mag
nitude ofS(p) is generally not interpreted; only the relativ
change as a function ofp is. In this way, the structure facto
serves as a signal of correlations in a configuration at a g
periodicity.

It is widely held that the excess entropyE serves as a
general-purpose measure of a system’s structure, regula
or memory; for recent reviews, see Refs.@2,28,29#. The ex-
cess entropy provides a quantitative measure of structure
may be applied to any 1D symbolic string. In Re
@27,32,33#, we argued thatE may be viewed as an effectiv
order parameter for 1D spin systems. In particular,
showed that the excess entropy is sensitive to periodic st
ture at any period, whereas structure factors, by construc
are sensitive to ordering at only a single spatial period.
shall return to this point below and show that the same g
eral claims hold in two dimensions as well.
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III. TWO-DIMENSIONAL ENTROPY, ENTROPY DENSITY,
AND EXCESS ENTROPY

A. Generalizing to higher spatial dimensions

Below we discuss how to extend the 1D analysis outlin
above to apply to spatial patterns in two and higher dim
sions. Before launching into definitions and formalism, w
sketch some of the philosophy and intuitions that motiv
the path we take and highlight some of the general issues
arise as one moves from 1D to 2D systems.

Patterns in two dimensions are fundamentally differe
from those in one dimension. For example, in one dimens
a natural way to scan a configuration exists: left-to-right, s
That is, each local variable is indexed in a well-defined
der. ~The information-theoretic measures discussed in
preceding section have the same values regardless of wh
the 1D configuration is scanned left-to-right or right-to-lef!

The 1D approach simply does not generalize to 2D in
unique natural way. One might be tempted to scan or par
2D configuration by taking a particular 1D path through
One would then apply 1D measures of randomness
structure to the sequences thus obtained. For example
Refs. @34,35#, a space-filling curve is used to parse a 2
configuration and, from this, the entropy density of the co
figuration is estimated.

While the 1D-path method does yield the correct entro
density, it is also clear that it projects additional spurio
structure onto the configuration. By snaking through the
tice, it is inevitable that sites, adjacent in the 2D lattic
occur far apart in the 1D sequence. As a result, long-ra
correlations appear in the latter. Thus, a 1D excess entr
~or any other 1D measure of structural complexity! adapted
in this way will capture not only properties of the 2D co
figuration, but also properties of the path. Except in spe
cases and with appropriate prior knowledge, it does not
pear possible to disentangle these two distinct source
apparent structure. These and related difficulties with the
approach have been discussed in some detail in, for exam
Refs.@22,27,36#.

Here, we seek an alternative to understanding a 2D
tern by parsing it into 1D strings. We are immediately fac
with a problem, however. There is a unique, complete ord
ing of the connected, nested subsets of a 1D lattice such
the conditional entropies of the target spin, conditioned
this sequence of subsets, are monotone decreasing. It is
ordering that makes Eq.~10! unambiguous and unique in 1D
In contrast, connected, nested subsets of a 2D lattice
have this monotonic property are not unique. This is a dir
consequence of the topological differences between one-
two-dimensional lattices. We shall see that this lack
uniqueness introduces ambiguity in extending Eq.~10! to
two dimensions; specifically, there is no natural unique
pression for the excess entropy in two dimensions.

B. Entropy density

The entropy density in two dimensions is defined in t
natural way. Consider an infinite 2D square lattice of rand
4-3
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variablesSi j whose values range over the finite setA. As-
suming that the variables are translationally invariant, the
entropy density is given by

hm5 lim
N,M→`

H~N,M !

NM
, ~18!

whereH(N,M ) is the Shannon entropy of anN3M block of
spin variables. This limit exists for a translationally invaria
system, provided that the limits are taken in such a man
that the ratioN/M remains constant and finite.

Is there a way to reexpress the 2D entropy density of
~18! as the entropy of a target variable conditioned on
block of neighboring variables, analogous to Eq.~9!? This
question was, to the best of our knowledge, first answere
the affirmative by Alexandrowicz in the early 1970s@37,38#.
Meirovitch @39,40# and later Schlijper and co-authors@41,42#
extended and applied Alexandrowicz’s work. These meth
have also been discovered independently by Eriksson
Lindgren @43,44# and Olbrichet al. @45#. Here, we briefly
summarize the central result and adapt it to our needs.

The most general approach to the conditional entropy
two dimensions proceeds as follows. Lethm(M ) denote the
Shannon entropy of the target spin conditioned on a
neighborhood template of 2M (M11) spins. Arrange the
spin template in an (M11)3(2M11) rectangle with the
target spin in the center of the rectangle’s top row and w
the top, rightmostM spins deleted from the template. A s
quence of neighborhood templates of this type is shown
Fig. 1. For example,hm(3) is the entropy of the target spi
~denoted by anX) conditioned on all the other spins in th
rightmost template of Fig. 1. The 2D entropy densityhm may
then be shown to be equal to@43,44,46,47#

hm5 lim
M→`

hm~M !. ~19!

If it is known that the interactions between spins are
finite range, then one only needs to use a shape as thic
the interaction range@37,38,41–43#. For example, in the fol-
lowing section, we consider a 2D Ising model with neare
and next-nearest-neighbor~NNN! interactions. In this case
one uses a strip with a thickness of two lattice sites;
Fig. 2.

We now slightly modify the definition of the template-siz
parameterM in the conditional single-site entropyhm(M ) so
as to apply to the scenario in Fig. 2. The cell numbers in
figure indicate the order in which individual sites are add
to the neighborhood template. For example,hm(3) now will
denote the entropy of the target spinS00 conditioned on the
three spins labeled 1 (S210), 2 (S01), and 3 (S211); that is,

FIG. 1. Neighborhood templates for 2D conditional entropi
The target spin is denoted with anX.
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hm~3!5H@S00uS210,S01,S211#. ~20!

In the M→` limit, the newhm(M ) still goes to the entropy
density, as in Eq.~19!. It is also not hard to see that thi
convergence must be monotonic

hm~M !<hm~M 8!, M.M 8. ~21!

This is a direct consequence of the fact that condition
cannot increase entropy@30#.

Two remarks about the neighborhood template in Fig
are in order. First, the strip needs to be two sites thick si
the system explored below has interactions that ext
across two lattice sites. In this case, a strip with a thickn
of two sites shields one-half of the lattice from the other.
the limit that the strip is infinitely long in the horizonta
direction, then the probability distribution of the target sp
is independent of the values of the spins beneath the s
@47#.

Second, at first blush, the numbering scheme in Fig
appears ambiguous. Spins are added to the template in o
of increasing Euclidean distance from the target spin.
example, spin 10 is a Euclidean distance 2A2 from the cen-
ter spin, whereas spin 11 is a distance of 3. Since 2A2,3,
one adds on spin 10 before 11. When there is a tie, one a
the leftmost spin. For example, spins 3 and 4 are the s
Euclidean distance from the center spin; spin 3 comes be
4 since it is to the left.

Of course, one can use alternative ordering schemes,
as adding spins in a widening spiral or some other geome
pattern. These choices do not change the result in Eq.~19!,
since this is a statement about what happens in the limit
an arbitrarily large number of spins have been added to
template. However, looking ahead, the order in which sp
are added can affect the convergence form of the 2D ex
entropy—the 2D analog ofEC of Eq. ~10!.

As noted above, the ambiguity in how the neighborho
template of conditioning variables grows is a direct result
the fact that a 2D lattice does not specify a strict ordering
its elements in the way that a 1D sequence does. Rath
2D lattice specifies a partial ordering of its elements. Th
there will always be ‘‘ties’’ in the sense just mentioned, a
so there is no unique natural way to add on the spins o
by-one based on an ordering of subsets of spin blocks.
Ref. @48# for a detailed discussion of this, albeit in a slight
different context.

Finally, the conditional Shannon entropy method for c
culating the entropy densityhm is well known and has been
successfully applied to a number of different systems;
cluding the 2D Ising model on square@42# and simple cubic

.
FIG. 2. Target spin~X! and neighborhood templates for cond

tional entropies used in our study of the 2D NNN Ising model. T
cell numbers indicate the order in which the sites are added to
template. For more discussion, see text.
4-4
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STRUCTURAL INFORMATION IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 67, 051104 ~2003!
lattices@40#, theq55 2D Potts model@42#, a 2D hard-square
lattice gas@49#, the three-dimensional fcc Ising antiferroma
net @50#, coupled map lattices@45#, Gaussian random field
@51#, polymer chain models@52#, and network-forming ma-
terials @53#. Quite recently, Meirovitch@52# estimated the
entropy for the 2D Ising ferromagnet. Remarkably, his
sults have only a 0.01% relative error at the critical tempe
ture, where one might expect the conditional entropy form
overestimate the entropy density due to long-range corr
tions missed by finite-size templates.

C. Excess entropy in two dimensions

We now turn to the question of how to extend exce
entropy to more than one dimension. We consider three p
sible approaches to excess entropy in two dimensions.
each, we begin with one of the three different forms for t
1D excess entropy.

First, consider the convergence excess entropyEC, as de-
fined in Eq. ~10!. In the preceding section, we defined
sequence of 2D entropy density estimateshm(M ) that con-
verges from above to the entropy densityhm . We can sum
these entropy density overestimates to obtain the 2D con
gence excess entropy:

EC [ (
M51

`

@hm~M !2hm#. ~22!

We shall see that this form of the excess entropy is, like
1D cousin, capable of capturing the structures or correlati
present in a 2D system. Note that this definition can dep
on the order in which spins are added on to the template
as discussed in the preceding section, there is no uniqu
dering to use to determine the sequence in which to add s
Nevertheless, our investigations have shown that any rea
able choice for ordering yields anEC that behaves qualita
tively the same as that defined in Eq.~22!.

The mutual information formEI of the excess entropy
defined in Eq.~13!, can naturally be extended by consideri
the mutual information between two adjacent infinite ha
planes:

~23!

As in Eq. ~13!, it is understood that the two semi-infinit
planes are adjacent.

Finally, one may also develop an expression for 2D s
extensive excess entropies by considering howH(M ,N)
grows withM andN. In analogy to Eq.~11!, we define three
subextensive excess entropies via

~24!

;ES1ES
x M1ES

y N1hmMN. ~25!
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Note that in an isotropic system, such as that conside
below, ES

x 5ES
y . We shall not consider these forms for th

2D excess entropy here, opting instead to focus onEC and
EI .

IV. RESULTS

A. Next-nearest-neighbor Ising systems

To test the behavior of the different forms of the exce
entropy, we estimatedEI andEC numerically for a standard
system: the 2D spin-1

2 Ising model with nearest-neighbo
~NN! and next-nearest-neighbor~NNN! interactions. We
chose this system since it is rich enough to exhibit seve
distinct structures and due to its broad familiarity. Its Ham
tonian,H, is given by

H52J1 (
^ i j ,kl&nn

Si j Skl2J2 (
^ i j ,kl&nnn

Si j Skl2B(
i j

Si j , ~26!

where the first~second! sum is understood to run over all NN
~NNN! sets of spins. Each spinSi j is a binary variable:Si j
P$21,11%. The lattice consists ofN3N spins; the spatial
indices on spin variables run from 0 toN21. We shall view
the spins as dimensionless variables and the coupling
stantsJ1 andJ2 as dimensionless parameters.

We estimated the structure factorsS(1), S(2), andS(4)
with Eq. ~17! by directly measuring the frequency of occu
rence of sisj and s in spin configurations generated by
Monte Carlo simulation that used a standard single-site M
tropolis algorithm on a lattice with periodic boundary cond
tions. That is, we sampled configurations with the canon
distributione2H(c)/T, whereH(c) is the energy of the con
figuration c and T is the temperature. We used a lattice
48348 spins. Since we are not interested here in extrac
the system’s critical properties, there is no need to go
larger system sizes.

We estimatedEC andEI from block probabilities by ob-
serving the frequency of spin-block occurrences. To estim
EC, we used a template containing 15 total spins, as sho
in Fig. 2, and marginals of this distribution for smaller tem
plate sizes. To estimateEI we calculated the mutual informa
tion of two adjacent 234 spin blocks. For eachJ1 value, we
ran our Monte Carlo simulation for up to 23105 Monte
Carlo time steps (23106 for J1,21.5) and then took data
every 20 time steps for 23104 time steps. One Monte Carlo
time step corresponds to trying to flip, on average, each s
in the lattice one time. We thus sampled'23106 template
configurations. For comparison, note that there are at m
~in the highly disordered regime! 216'33104 possible con-
figurations in a template of 16 spins.

B. Excess entropy detects periodic structure

Our results are shown in Fig. 3. The temperature was h
at T51.0, the external field atB50.0, and the next-neares
neighbor coupling atJ2521.0. Figure 3 showsS(1), S(2),
S(4), EI , andEC, as a function ofJ1P@24.0,4.0#. For all
J1 values, the temperature is relatively small compared to
average energy per spin. And so, the configurations sam
are typically the ground state with a few low-energy exci
tions.

As J1 is increased, the system moves through param
regimes in which there are significant correlations of perio
4-5
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2, 4, and 1. This is seen, for example, in the behavior of
various structure factors; the structure factors selected co
spond to periods of 2, 4, and 1 lattice sites.

Physically, whenJ1 is large in magnitude and negativ
the tendency for nearest neighbors to anti-align domina
and the system’s ground state is antiferromagnetic: a ch
erboard pattern consisting of alternating up and down sp
This pattern has a spatial period of 2. Not surprisingly,
period-2 structure factorS(2) in Fig. 3~b! shows a strong
signal in this low-J1 regime.

WhenJ1 is near zero, the NN interactions are negligib
compared to the NNN interactions. Thus, each spin orie
opposite its four next-nearest neighbors, while disregard
its four nearest neighbors. The result is that the lattice ef
tively decouples into four noninteracting sublattices. On e
of these sublattices, the spins alternate in sign, resulting
ground state with spatial period 4. Note that the period

FIG. 3. Structural changes in the the 2D NNN Ising model a
function of NN couplingJ1 as revealed by structure factors~a!
S(1), ~b! S(2), and~c! S(4), andexcess entropies~d! EI ~mutual
information! and ~e! EC ~convergence!. The temperature was fixe
at T51.0 andJ2 was held at21.0 as the NN coupling was swep
from J1524.0 to J154.0 in steps ofdJ150.01, except near the
S(1) spike atJ1'2.5 wheredJ150.005. We performed at leas
five different runs at eachJ1 in the rangeuJ1u<1.15. Note the
different scales on the vertical axes: the excess entropies are
sured in bits of apparent memory; the structure factors andJ1 are
dimensionless. For more discussion, see text.
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structure factorS(4) in Fig. 3~c! has a large value nearJ1

50, indicating this period-4 ordering.
As J1 is increased from 0, the tendency for the spins

align grows stronger. Eventually, this NN interaction ove
whelms the NNN interactions and the entire lattice starts
align. This is the familiar paramagnet-ferromagnet transiti
Above J1'2.5, the system acquires a net magnetizati
there is now an unequal number of up and down sp
whereas belowJ1'2.5 there are always, on average, equ
numbers of up and down spins. This transition is signaled
the distinct spike in the period-1 structure factorS(1) near
J1'2.5 andS(1)’s vanishing at largerJ1. @The magnetic
susceptibility x diverges at the critical point of a
ferromagnet-paramagnet transition. Sincex}S(1), one ex-
pects to see a spike inS(1) near this transition, where th
system acquires a nonzero magnetization.#

In Figs. 3~d! and 3~e! we plot the mutual-information ex
cess entropyEI and the convergence excess entropyEC ver-
susJ1 over the same parameter range. In the large and n
tive J1 regime,EI5EC51 bit, indicating that there is one bi
of information stored in the configurations. The configur
tions have a simple structure~alternating up and down spins!
and the magnitude ofE gives the information needed t
specify the spatial phase of the period-2 configuratio
WhenJ1 is large and the system undergoes the transition
ferromagnetic ordering,EI5EC50, since the configurations
consist of all aligned spins, and there is no spatial inform
tion or structure in them. In the intermediate regime (J1
'0), EI andEC are markedly larger, indicating that the sy
tem is more structured than elsewhere. We will return sho
to discuss in detail what the values ofEI andEC mean.

Note that each excess entropy is sensitive to correlat
at all periodicities, despite the fact that each is merely
single unparametrized function. In contrast, the structure
tors S(p) are a one-parameter family of functions that mu
be tuneda posteriorito find relevant periodic structure. Tha
is, the period-1 structure factorS(1) detects only the period
1 correlations nearJ152.5. Moreover,S(1) is unable to
distinguish between the period-2 and period-4 orderings
J1,23.0 andJ1'0, respectively;S(1)'1 for both period-
2 and period-4 configurations.

Since the excess entropyE is a single unparametrize
function sensitive to structure of any periodicity, it is a mo
general measure of structure and correlation than the st
ture factorsS(p). Conversely,S(p) is somewhat myopic. By
considering only two-point correlations modulated at a
lected periodicityp, S(p) misses structure that is either ap
riodic or that is due to more than two-spin correlations.
fact, E is even more sensitive and general than these ob
vations indicate.

C. E distinguishes structurally distinct ground states

Looking closely at the mutual-information excess entro
EI nearJ150 in Fig. 3~d!, one notices that the curve split
into two in the uJ1u,1.0 region. This can be seen mo
clearly in Fig. 4, in which we plotEI versusJ1 in this region.
We sampled the NN couplingJ1 every 0.01 and performed a
least five different runs at eachJ1 value. SometimesEI
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53.0 bits, whereas for other trialsEI52.0 bits. Why are
there two different values forEI on different runs? And why,
in contrast, is the period-4 structure factorS(4) the same for
all runs?

The answer is simple: there are multiple structurally d
tinct ground states. The three possible ground-state con
rations are shown in Fig. 5. Note that for each ground st
all NNN pairs of sites have opposite spin values, thus m
mizing the system’s energy. Note also that each ground s
is identical if one considers only a horizontal or vertic
slice; the repeating pattern of two up spins followed by t
down spins is the same.

After a long transient time, the system usually settles i
one of these three states. A boundary defect between
different ground states has an energy cost associated wi
As such, most boundaries are eventually destroyed. Incid
tally, the dynamics through which this removal of bounda
defects occurs is rather subtle and can be very long lived.
example, a boundary between left and right diagonal pha
costs more than a boundary between the checkerboard
one of the striped patterns. As a result, when the two dif
ent striped phases come close, the checkerboard pa
emerges between them, pushing the stripe boundaries a
from each other. Moreover, as the temperature approa
zero, we observe that there are times when the ground sta
simply not found via single-flip Metropolis Monte Carlo dy
namics. Similar phenomena have been observed in othe
tiferromagnetic Ising models; for recent work, see Re
@54–56#.

In any event, a straightforward calculation shows thatEI
53 bits for the checkerboard configuration of Fig. 5~a!,

FIG. 4. The mutual-information excess entropyEI showing the
existence of multiple period-4 ground states.

FIG. 5. The three ground states forJ1'0 andJ2,0: ~a! check-
erboard,~b! left-diagonal stripe, and~c! right-diagonal stripe.
05110
-
u-
e,
i-
te

l

o
o
it.
n-

or
es
nd

r-
ern
ay
es
is

n-
.

whereasEI52 bits for the two striped phases. Similar calc
lations show thatEC53 bits for both the checkerboard an
striped ground states. Note, however, thatS(4) is the same
for all three ground states. By construction,S(4) measures
only two-spin statistics obtained by considering correlatio
along a horizontal or a vertical direction. And so, the thr
ground states are the same if one considers only isol
horizontal or vertical slices; every slice consists of a repe
ing pattern of two up spins followed by two down spins. O
course, one can adapt the definition ofS(p) to account for
the diagonal striped phases, but this simply begs the ques
of discovering the intrinsic patterns in the first place.

Near uJ1u51, notice thatEI and EC occur in plateaus
between 2 and 3 bits and above. This indicates that the
tem has settled into one of several more structured m
stable states consisting of mixtures of the three ground sta

In summary, we see that the mutual information exc
entropyEI is capable of distinguishing between patterns t
are not distinct according to the structure factorsS(p). In
fact, we initially did not anticipate the two striped groun
states, glibly assuming that the only ground state is
checkerboard. Our results forEI , which we initially found
confusing, led us to examine the configurations more clos
and to detect the distinct ground state structures. This
turn, led us to notice the rich dynamics of the configuratio
as they wend their way towards one of the three grou
states. In short, these structural subtleties would have b
missed entirely had we relied solely on the structure facto

V. DISCUSSION AND CONCLUSION

We introduced three extensions of the excess entropy
apply to two-dimensional configurations. Each excess
tropy expression is based on a different way of viewing
one-dimensional excess entropy: the convergence exces
tropy EC measures the manner in which finite-template e
tropy density estimates converge to their asymptotic va
the subextensive excess entropyES is related to the subex
tensive forms of the block entropyH(M ,N); and the mutual
information excess entropyEI is defined as the mutual infor
mation between two halves of a configuration.

Applying two of these measures,EC andEI , to the NNN
Ising model, we have seen that these quantities capture
structural changes this system undergoes as its param
are varied. In contrast, the structure factors are sensitiv
periodic ordering of a particular period. Moreover, our r
sults show that the information excess entropyEI clearly
distinguishes between two period-4 ground states, whe
the period-4 structure factor is simply incapable of maki
such a structural distinction. Finally, the values that the
cess entropies take on are interpretable and give a quan
tive measure of the amount of structure in the system.

The picture that emerges, then, is that the various tw
dimensional excess entropies are general-purpose mea
of two-dimensional structure. This is not to suggest that
excess entropy replace structure factors or, more gener
Fourier analysis. We view the excess entropy not in com
tition with Fourier analysis, but complementary to it; th
excess entropy is designed to answer a different set of q
4-7
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tions than those addressed by Fourier components. For
ample, it has long been appreciated in dynamical syst
that power spectral analysis is of little help in revealing t
geometry of a chaotic attractor@57#. Analogously, spectra
decomposition, typically, will say little about how difficult i
is to learn or synchronize to a pattern.

Clearly, however, there is much more work to be done
develop a thorough, well understood methodology for tw
dimensional patterns. One possible approach builds on R
@4,28,58# which take a systematic look at entropy growth a
convergence by using a discrete calculus. This work pla
several complexity measures within a common framew
and leads to new measures of structure. From the study
sented above, we conclude that a similar analysis in
dimensions, using a two-dimensional discrete calculus, h
great promise. Another area for future research concerns
veloping relationships between measures of complexity o
pattern and the difficulty of learning or synchronizing to
@2–4,28#.

There are also, of course, a host of additional statist
mechanical systems, each with its own range of disti
structures, that should be similarly analyzed. Calculating
cess entropies for them will facilitate developing our und
standing of the behavior of these different quantities and m
even lead to discovering novel structural properties. A na
ral choice is calculating the behavior ofE near the critical
temperature, extracting critical exponents, and relating th
exponents to others for the well studied nearest-neigh
Ising model. It will also be of interest to calculate the vario
-

nd

d

s
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excess entropy forms for noisy Sierpinsky carpets and
like; this will allow for direct comparison with calculation
of the measures of inhomogeneity put forth in Refs.@11,12#.

Ultimately, these different measures of structure—tho
presented here and those developed by other authors—
be judged not solely by their ability to shed light on existin
well understood model systems such as the NNN Is
model considered here. Instead, the broader concern is
to use these information-theoretic quantities to capture st
ture and patterns in systems that are less well underst
Equally important is the question of establishing relatio
ships between information-theoretic measures of struct
complexity and other quantities, including: physical me
sures of structure and correlation; computation-theor
properties; and the difficulty of learning a pattern.

ACKNOWLEDGMENTS

We thank Kristian Lindgren, Susan McKay, and Ka
Young for helpful discussions. This work was supported
the Santa Fe Institute under the Computation, Dynamics,
Inference Program via SFI’s core grants from the Natio
Science and MacArthur Foundations. Direct support w
provided from DARPA under Contract No. F30602-00-
0583. D.P.F. thanks the Department of Physics and
tronomy at the University of Maine for their hospitality. Th
Linux cluster used for the simulations reported here was p
vided by Intel Corporation through its support of SFI’s Ne
work Dynamics Program.
B

m

is,
@1# J.P. Crutchfield, Physica D75, 11 ~1994!.
@2# W. Bialek, I. Nemenman, and N. Tishby, Neural Comput.13,

2409 ~2001!.
@3# I. Nemenman, Ph.D. thesis, Princeton University, 2000~un-

published!.
@4# J.P. Crutchfield and D.P. Feldman, Adv. Complex Syst.4, 251

~2001!.
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