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Noise-induced failures of chaos stabilization: Large fluctuations and their control
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Noise-induced failures in the stabilization of an unstable orbit in the one-dimensional logistic map are
considered as large fluctuations from a stable state. The properties of the large fluctuations are examined by
determination and analysis of the optimal path and the optimal fluctuational force corresponding to the stabi-
lization failure. The problem of controlling noise-induced large fluctuations is discussed, and methods of
control have been developed.
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INTRODUCTION

The control of chaos represents a very real and impor
problem in a wide variety of applications, ranging from ne
ron assemblies to lasers and hydrodynamic systems@1#. The
procedure used consists of stabilizing an unstable peri
orbit by the application of precisely designed small pertur
tions to a parameter and/or a trajectory of the chaotic syst
Different methods of chaos control have been suggested
applied in many different physical contexts, as well as n
merically to model systems@1#. For practical applications o
these control methods, it is important to understand h
noise influences the stabilization process, because fluc
tions are inherent and inevitably present in dissipative s
tems. The problem has not been well studied. Typically
method is developed for stabilization of the orbit witho
initially taking any account of fluctuations. Only then do th
authors check the robustness of their method by introduc
weak noise into the system@1#. Thus, in the celebrated pio
neering work of Ott, Grebogi, and York, in Ref.@2#, the
authors just noted that noise can induce failures of stabil
tion.

In several works@3,4#, methods are developed for the st
bilization of unstable orbits in the presence of noise. Th
are based on a strong feedback approach to suppress
deviation from the stabilized states. There are also meth
@5# that use noise to move the system to a desired unst
state, and then stabilize it there.

In this work we consider noise-induced failures in t
stabilization of an unstable orbit and the problem of contr
ling these failures. The method of Ott, Grebogi, and Yor
~OGY! @2# and a modification of the adaptive method~ADP!
@1# are used to stabilize an unstable point of the logistic m
We consider the small noise limit where stabilization failur
are very rare and they can therefore be considered as
fluctuations~deviations! from a stable state. We study th
properties of large deviations by determining the optim
paths and the optimal fluctuational forces corresponding
the failures. We employ two methods to determine the o
mal paths and forces. The first of these methods builds
analyzes the prehistory probability distribution@6#. The sec-
ond method considers an extended map~relative to the initial
one! which defines fluctuational paths and forces in the ze
noise limit @7,8#. Furthermore, we use the optimal paths a
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forces to develop methods of controlling the large deviatio
i.e., the noise-induced failures of stabilization@9#.

In Sec. I we describe the procedures for local and glo
stabilizations of an unstable orbit of the logistic map. T
general approach to the control of a large deviation is p
sented in Sec. II. Noise-induced failures of local and glo
stabilizations are considered in Secs. III and IV, respectiv
The results obtained are discussed in the Conclusion.

I. CHAOS STABILIZATION

For simplicity we will stabilize an unstable fixed pointx*
of the logistic map:

xn115rxn~12xn!, ~1!

where xn is a coordinate,n is discrete time andr is the
control parameter that determines different regimes of
map’s behavior~1!. The coordinate of the fixed pointx* is
defined by the condition:xn115xn , and consequently its
location depends on the parameterr:

x* 512
1

r
. ~2!

We set the parameterr 53.8, a value for which an aperiodi
~chaotic! regime is observed~1!, and the pointx* is embed-
ded in the chaotic attractor.

From the range of existing stabilization methods, w
chose to work with just two: the OGY and ADP metho
mentioned above.

To stabilize a fixed point by the OGY method, perturb
tions Dr are applied to the parameterr, leading to the map
being modified~1! in the following manner:

xn115~r 1Dr n!xn~12xn!,

Dr n5r
~2x* 21!~xn2x* !

x* ~12x* !
. ~3!

To stabilize a fixed point by the ADP method, perturb
tions Dx are applied to the map’s coordinate. The value
the perturbationDx is defined by the distance between t
current system coordinate and the coordinate of the st
lized state:
©2003 The American Physical Society02-1
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xn115rxn~12xn!1Dxn ,

Dxn5~xn2x* !. ~4!

The ADP method is simple to use in practice. Differe
modifications of the adaptive method are therefore use
many papers devoted to experiments on the control of ch

We consider two types of stabilization procedure: lo
stabilization and global stabilization.

During local stabilization, the perturbationsDr and Dx
differ from zero only if the following condition is satisfied

uxn2x* u,e. ~5!

Heree is a small value: we fixede50.01. If condition~5! is
not satisfied then stabilization is absent, i.e.,Dr 50 or Dx
50.

During global stabilization perturbations are switched
when condition~5! is satisfied for the first time, and rema
present for all future time.

So, local or global stabilization involve modifications
the initial map~1!, and thus use another map in the form~3!
or ~4!. The fixed pointx* is an attractor of the new map
After the stabilization is switched on, a trajectory of the m
tends to the fixed pointx* , and subsequently remains ther

In the presence of noise the trajectory fluctuates in
vicinity of the stabilized state, i.e., noise-induced dynam
appears. In addition, noise can induce stabilization failu
For local stabilization they imply a breakdown in conditio
~5!, and for global stabilization they correspond to an esc
of the trajectory from the basin of attraction of the fixe
point x* .

Our aim is to study these noise-induced stabilization f
ures and analyze the problem of how to suppress them.
therefore consider maps~3! and ~4! in the presence of addi
tive Gaussian fluctuations,

xn115~r 1Dr n!xn~12xn!1Djn ,

Dr n5r
~2x* 21!~xn2x* !

x* ~12x* !
, ~6!

xn115rxn~12xn!1Dxn1Djn ,

Dxn5~xn2x* !. ~7!

Here D is the noise intensity; andjn is a Gaussian random
process with zero averagêj&50, d-correlation function
^jnjn1k&5d(k), and dispersion̂ j2&51. We use a high-
speed noise generator@10#.

II. CONTROL OF LARGE FLUCTUATIONS

Large fluctuations manifest themselves as large deviat
from the stable state of the system under the action of fl
tuational forces. Large fluctuations play a key role in ma
phenomena, ranging from mutations in DNA to failures
electrical devices. In recent years significant progress
been achieved both in understanding the physical natur
large fluctuations and in developing approaches for desc
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ing them. The latter are based on the concept of optim
paths—the paths along which the system moves during la
fluctuations. Large fluctuations are very rare events dur
which the system moves from the vicinity of a stable state
a state remote from it, at a distance significantly larger th
the amplitude of the noise. Such deviations can corresp
to a transition of the system to another state, or to an ex
sion along some trajectory away from the stable state
then back again. During such deviations the system is mo
with overwhelming probability along the optimal path und
the action of a specific~optimal! fluctuational force. The
probability of motion along any other~nonoptimal! path is
exponentially smaller. In practice, therefore large fluctuatio
must necessarily occur along deterministic trajectories. T
problem of controlling large fluctuations can thus be reduc
to the task of controlling motion along a deterministic traje
tory. Consequently, the control problem can be solv
through application of the control methods developed
deterministic systems@11#.

Let us consider the control problem. Formally, the ta
that we face in controlling noise-induced large fluctuatio
consists of writing a functionalR, the extrema of which cor-
respond to optimal solutions of the control problem, i.e.,
lutions with minimal required energy@12–14#. The form of
the functionalR depends on a number of different addition
conditions related to, e.g., the system dynamics, the en
of the control force, or the time during which it is applie
@12–14#. We will follow the work @13# and consider the con
trol of large fluctuations by a weak additive determinis
control force. Weakness means here that the energy of
control force is comparable with the energy~dispersion! of
the fluctuations~see Ref.@12# for details!. In this case, the
extremal value of the functionalR for optimal control, which
moves the system from an initial statexi to a target statexf ,
takes the form@13#

Ropt~xf ,F !5S(0)~xf !6DS,

DS5~2F !F (
k5Ni

Nf

~jk
opt!2G , ~8!

wherejk
opt is the optimal fluctuational force that induces th

transition fromxi to xf in the absence of the control force
S(0) is an energy of the transition,Ni andNf are the times at
which the fluctuational forcejk

opt starts and stops@15#, andF
is a parameter defining the energy of the control force.

The optimal control forceun
opt for the given functional~8!

is defined@13# by

un
opt57~2F !1/2jn

optF (
k5Ni

k5Nf

~jk
opt!2G1/2

d~xn2xn
(0)opt!, ~9!

wherexn
(0)opt is the optimal fluctuational path in the absen

of the control force. The minus sign in expression~9! de-
creases the probability of a transition to the statexf , and the
plus sign increases the probability. It can be seen~9! that the
optimal control forceun

opt is completely defined by the opti
mal fluctuational forcejk

opt, and the optimal fluctuationa
2-2
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pathxn
(0)opt, corresponds to the large fluctuation. Therefo

to solve the control problem it is necessary, first, to de
mine the optimal pathxn

(0)opt leading from the statexi to the
statexf under the action of the optimal fluctuational forc
jk

opt. Thus, a solution of the control problem depends on
existence of an optimal path: it is obvious that the appro
described should be straightforward to apply, provided t
the optimal path exists and is unique.

We consider below an application of the approach
scribed to suppress large fluctuations in the one-dimensi
map. The large fluctuations in question are considered h
to correspond to failures in the stabilization of an unsta
orbit.

The control procedure depends on the determination
the optimal path and optimal fluctuational force and, to d
fine them, we will use two different methods. The first
based on an analysis of the prehistory probability distribut
~PPD! and the second one consists of solving a bound
problem for an extended map which defines fluctuational
jectories.

The PPD was introduced in Ref.@6# to analyze optimal
paths experimentally in flow systems. We will use the dis
bution to analyze fluctuational paths in maps. Note, tha
Refs. @16,17# it was shown that the analysis of the PPD
lows one to determine both the optimal path and the opti
fluctuational force. The essence of this first method cons
of a determination of the fluctuational trajectories cor
sponding to large fluctuations for extremely small~but finite!
noise intensity, followed by a statistical analysis of the t
jectories. In this experimental method, the behavior of
dynamical variablesxn and of the random forcejn are
tracked continuously until the system makes its transit
from an initial statexi to a small vicinity of the target stat
xf . Escape trajectoriesxn

esc reaching this state, and the corr
sponding noise realizationsjn

esc of the same duration, ar
then stored. The system is then reset to the initial statexi and
the procedure is repeated. Thus, an ensemble of traject
is collected and then the fluctuational PPDpn

h is constructed
for the time interval during which the system is monitore
This distribution contains all information about the tempo
evolution of the system immediately before the trajecto
arrives at the final statexf . The existence of an optimal es
cape path is diagnosed by the form of the PPDpn

h : if there is
an optimal escape trajectory, then the distributionpn

h at a
given time n has a sharp peak at optimal trajectoryxn

opt.
Therefore, to find an optimal path it is necessary to build
PPD and, for each moment of timen, to check for the pres-
ence of a distinct narrow peak in the PPD. The width of
peak defines the dispersionsn

h of the distribution and it has
to be of the order of the mean-square noise amplitudeAD
@6#. The optimal fluctuational force that moves the syst
trajectory along the optimal path can be estimated by a
aging the corresponding noise realizationsjn

esc over the en-
semble. Note, that investigations of the fluctuational preh
tory also allows us to determine the range of syst
parameters for which optimal paths exist.

To determine the optimal path and force by means of
second method we analyze extended maps@7,8# using the
05110
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principle of least action@8#. Such extended maps are anal
gous to the Hamilton-Jacobi equation in the theory of la
fluctuations for flow systems. For the one-dimensional m
xn115 f (xn)1Djn , the corresponding extended map in t
zero-noise limit takes the form

xn115 f ~xn!1yn /g~xn!,

yn115yn /g~xn!,

g~xn!5
] f ~xn!

]xn
. ~10!

The map is area preserving, and it defines the dynamic
the noise-free mapxn115 f (xn), if yn50. If ynÞ0 then the
coordinatexn corresponds to a fluctuational path, and t
coordinateyn to a fluctuational force. Stable and unstab
states of the initial map become saddle states of the exten
map. So, the fixed pointx* of the ADP ~7! and OGY ~6!
maps becomes a saddle point of the corresponding exte
map. Fluctuational trajectories~including the optimal one!
starting fromx* belong to unstable manifolds of the fixe
point (x* ,0) of the extended map.

The procedure for determination of the optimal paths c
sists of solving the boundary problem for the extended m
~10!:

x2`5x* , y2`50, ~11!

x`5xf , y`50, ~12!

wherex* is the initial state andxf is a target state.
To solve the boundary problem different methods can

used. For the one-dimensional maps under consideratio
simple shooting method is enough@18#. We choose an initial
perturbationl along the linearized unstable manifolds in
vicinity of the point (x* ,0) of map~10!. The procedure to
determine a solution can be as follows: looking over all p
sible valuesl, we determine a trajectory which tends to th
point (xf ,0). Note that, because these maps are irrevers
there exist, in general, an infinite number of solutions of
boundary problem. The optimal trajectory~path! has minimal
action~energy! S5(n52`

` yn
2 ; hereyn is calculated along the

trajectory, corresponding to a solution of the boundary ta

III. NOISE-INDUCED FAILURES IN LOCAL
STABILIZATION

A breakdown of condition~5! corresponds to a failure o
local stabilization, i.e., to the noise-induced escape of
trajectory from ane vicinity of the fixed pointx* . The target
statexf corresponds to the boundaries of the stabilizat
region:xf5x* 6e.

Instead of analyzing the maps~6! and~7! in thee vicinity
of the fixed pointx* , we can investigate linearized maps
the following form:

xn115axn1Djn ; ~13!
2-3
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herea is a value of derivative] f (xn)/]xn in the fixed point
x* . For map~6! the derivative is equal to zeroaOGY50, and
for map ~7! aADP520.8.

Let us investigate stabilization failure by considering t
most probable~optimal! fluctuational paths, which lead from
the pointx* to boundariesx* 6e. For linearized maps~13!
the extended map~10! can be reduced to the form:

xn115axn1
yn

a
,

yn115
yn

a
, ~14!

with the initial condition (x05x* ,y050) and the final con-
dition xf5x* 6e. It can be seen that a solution of map~14!
increases proportionally toyn5const/an @19#. This means
that, for the ADP map~7!, the amplitude of the fluctuationa
force increases slowly but that, for the OGY map~6!, the
failure arises as the result of only one fluctuation~iteration!.
Because Eq.~14! is linear, the boundary problem will have
unique solution@18#. Thus, the analysis of the linearized e
tended map~14! shows that there is an optimal path and
gives a qualitative picture of exit through the boundaryx*
6e.

Let us check the existence of the optimal paths through
analysis of the prehistory of fluctuations. To obtain exit t
jectories and noise realizations we use the following pro
dure. At the initial moment of time, a trajectory of the map
located at pointx* . The subsequent behavior of the traje
tory is monitored until the moment at which it exits from th
e region of the pointx* . The relevant part of the trajectory
just before and after its exit, are stored. The time at which
exit occurs is set to zero. Thus, ensembles of exit trajecto
and of the corresponding noise realizations are collected
PPDs are built.

To start with, we will discuss these ideas in the context
the ADP map. Figure 1~a! shows PPDs of the escape traje
tories of the ADP map, and the corresponding noise real
tions for the exit through the boundary (x* 2e) are shown in
Fig. 1~b!. The picture of exit through the other bounda
(x* 1e) is symmetrical, so we present results for one bou
ary only. It is evident~Fig. 1! that there is the only one ex
path. Note, that the path to the boundary (x* 2e) is approxi-
mately 2.8 times more probable than the path to the bou
ary (x* 1e). This difference arises from an asymmetry
the map in respect of the boundaries.

Because for each boundary there is the only one exit p
the optimal path and the optimal fluctuational force can
determined by simple averaging of escape trajectories
noise realizations, respectively. In Fig. 2 the optimal e
paths and the optimal fluctuational forces are shown for
boundaries (x* 2e) and (x* 1e). The paths and the force
coincide with a solution of the boundary problem~circles in
the Fig. 2! of the extended linear map~14!. The time depen-
dence of the dispersionsn

h of PPDs for the exit trajectorie
and noise realizations are shown in Fig. 3. As can be s
~Fig. 2! the optimal path is long, and the amplitude of t
fluctuational force increases slowly, in agreement with
05110
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analysis of the linearized map~14!. The dispersionsn
h of

both trajectories and noise realizations decreases by
struction as the boundary is achieved~Fig. 3!.

The optimal fluctuational force obtained@Fig. 2~b!# must
correspond@17# to the energy-optimal deterministic forc
that induced the stabilization failure. We have checked t
prediction and found that the optimal force induces the e
from an e region of the pointx* : we selected an initial
condition at the pointx* and included the optimal fluctua
tional force additively; as a result we observed the stabili
tion failure. If we decrease the amplitude of the force
5–10%, then the failure does not occur. It appears, theref
the deduced force allows us to induce the stabilization fail
with minimal energy~see Ref.@17# for details!.

Using the optimal path and the force we can solve
opposite task@12,13#—to decrease the probability of the st
bilization failures. Indeed, if during the motion along th
optimal path we will apply a control force with the sam
amplitude but with the opposite sign as the optimal fluctu
tional force has, then, obviously, the failure will not occu

FIG. 1. PPDsph
n of the exit trajectories~a! and noise realizations

~b! of the ADP map for the boundary (x* 2e). The thick dashed
lines indicate thee region of stabilization. The thin dashed line
connect maxima of PPDs. The noise intensity isD50.0011.
2-4
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Because we know the optimal force then, in accordance w
the algorithm@13# described above, it is necessary to det
mine the time moment when the system is moving along
optimal path. For the ADP method the optimal path is lo
enough to identify that a trajectory is moving along the o
timal path, and then to apply a control force.

In the presence of a control force the map~7! is modified,

xn115rxn~12xn!1Dxn1Djn1un ,

Dxn5~xn2x* !; ~15!

hereun is the deterministic control force.
We use the following scheme to suppress the stabiliza

failures. Initially, the control force is equal to zero (un50)
and the map is located in the pointx* ; we continuously
monitor a trajectory of the map~15! and define the time
moment when the system starts motion along the opti
path^xn&. We assume that the system moves along the o

FIG. 2. The optimal paths~a! and the optimal forces~b! for exit
through the boundary (x* 2e) ~solid line! and the boundary (x*
1e) ~dashed line! for the ADP map. Circles indicate the optima
paths and forces obtained by solving the boundary problem for
linearized extended map~14!. The optimal paths and forces used
the control procedure are marked by arrows.
05110
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mal path^xn& if it passes within a small vicinity of the co
ordinate^x23& and then within a small vicinity of̂x22& @see
the arrows in Fig. 2~a!#. Then on the following iteration we
add the control forceun52sign(jn)^jn&, n521 @see, Fig.
2~b!#.

In Fig. 4~a! dependences of the mean time^t& between
the failures on the noise intensityD are plotted in the ab-
sence, and in the presence, of the control procedure.
clear that the mean timêt& is substantially increased by th
addition of the control, i.e., stability in the face of fluctu
tions is significantly improved by the addition of the contr
scheme. The efficiency of the control procedure depends
ponentially@13# on the amplitude of the control force@Fig.
4~b!#, and there is an optimal value of the control forc
which is very close to the value@arrow in Fig. 4~b!# of the
optimal fluctuational force.

Now consider noise-induced stabilization failures for t
OGY map~6!. An analysis of the linearized map has show
that the failure occurs as the result of a single fluctuation.

e

FIG. 3. ~a! The dispersion of the exit trajectories, and~b! the
dispersion of the corresponding noise realizations for exit thro
the boundary (x* 2e) ~solid line! and the boundary (x* 1e)
~dashed line! for the ADP map.
2-5
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have checked the conclusion by an analysis of the fluc
tional trajectories of map~6!, much as we did for the ADP
map. The optimal path and the optimal force are shown
Fig. 5 for both boundaries (x* 1e) and (x* 2e). An exit
occurs during one iteration and there is no prehistory be
this iteration. It means that we cannot determine the mom
at which the large fluctuation starts and, consequently,
we cannot control the stabilization failures. The existence
a long prehistory is thus a key requirement in the contro
the large fluctuations.

We can of course decrease the probability of a failure
increasing thee region of stabilization. The maximum pos
sible increase would correspond to infinite boundaries —
which case we would be dealing with global stabilization

FIG. 4. ~a! The dependences of mean time^t& between stabili-
zation failures on noise intensityD in the absence~circles! and in
the presence~crosses! of the control. The size of the stabilizatio
region ise50.01. ~b! The dependence of the mean time^t& on the
amplitude of the control forceun is presented for the ADP method
The value of̂ t& corresponding to the optimal fluctuational force
marked by the arrow.
05110
a-

n

re
nt
at
f
f

y

n

IV. NOISE-INDUCED FAILURES OF GLOBAL
STABILIZATION

To investigate fluctuational dynamics in the global sta
lization regime, we consider the dynamics of the maps~6!
and~7! with initial conditions at the fixed pointx05x* . We
will first consider them in the absence of noise. The maps
shown on the planexn2xn11 in Fig. 6.

The map~6! @Fig. 6~a!# has three fixed points of perio
one: the pointx* '0.7368 is stable with the multiplierm
50; the pointsx2* 50 and x1* '0.5906 are unstable with
multipliers m'23.04 and m'1.8016, respectively. The
map has two attractors: the pointx* and the attractor a
infinity @20#. Their basins of attraction@Fig. 6~a!# are self-
similar ~fractal! @21,22#. The pointx1* and its preimages by
backward iteration lie on the basin boundaries of the attr
tors @23#. In the intervals xP(20.183,0.5906) andx
P(0.862,1.027) the basins of the attractors alternate and
of different length. The intervalxP(0.5906,0.862) corre-
sponds to the widest basin of the fixed pointx* . The bound-
aries of this basin are defined by the unstable pointx1* and its
preimage x1

I* . The semi-infinite intervals xP(2`,

FIG. 5. For the OGY map, the optimal path~a! and the optimal
force~b! are shown for exit through the boundary (x* 2e) ~crosses!
and the boundary (x* 1e) ~circles!.
2-6
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20.183) andxP(1.027,̀ ) correspond to basins of the a
tractor at infinity. The boundaries of the semi-infinite inte
vals are defined by the pointsx2`520.183 and x`

51.027, which correspond to the cycle of period 2.
The map~7! @Fig. 6~b!# has two fixed points: the poin

x* '0.7368 is stable with multiplierm'20.8; and the point
x1* '0.2632 is unstable with multiplierm'2.8. The map has
two attractors: the fixed pointx* and the attractor at infinity
The basins of attraction are smooth@Fig. 6~b!#. The first
boundary of the basins is the pointx1* and the second bound
ary is a preimagex1

I* of the pointx1* .
So, each of the maps has two attractors, but the struc

of their basins of attraction are qualitatively different.
We now consider these maps~6! and ~7! in the presence

of noise. Noise can induce escape from the basin of the fi
point x* , corresponding to failure of the stabilization. A

FIG. 6. The OGY map~a! and the ADP map~b! on the plane
(xn2xn11) are shown by the thick solid line. Basins of attraction
the fixed pointx* ~white regions! and the attractor at infinity~black
regions! are shown at the bottoms of the figures. The dashed l
indicate locations of the fixed points of the maps and the po
defining the basin boundaries. Escape trajectories are show
dots. The thin line in~b! corresponds to the optimal path.
05110
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before, we examine the dynamics of the escape trajecto
obtained for extremely small noise intensity in order to d
termine the optimal path and the optimal force. Fluctuatio
escape trajectories of map~7! are shown by dots on the plan
(xn2xn11) in Fig. 6~b!. As can be seen, there is one esca
path, and the escape trajectories pass through the uns
point x1* . In Fig. 7 the optimal path and the optimal forc
obtained by averaging the escape trajectories and noise
izations, respectively, are shown by crosses. The stabiliza
failure clearly possesses a long prehistory. From the poin
view of the control procedure, the presence of a large de
tion of the system coordinatêxn& at the time momentn5
21, and the smaller deviation of the fluctuational force^jn&
at the next time moment (n50), are important.This is be
cause the first fluctuation of coordinatexn can easily be iden-
tified and distinguished from nonoptimal fluctuations in t
vicinity of the stable statex* .

Next, we examine the process of escape for map~6!. Fig-
ure 8~a! shows escape trajectories superposed at the
moment when the trajectory crosses the basin boundar
the pointx2`. It is evident that there is no selected esca

s
ts
by

FIG. 7. The optimal path~a! and the optimal force~b! obtained
by experimental analysis of the PPD for the ADP map~7! ~crosses!
and by solving the boundary problem for the map~16! ~circles!.
2-7



e
il-
ed
f
.
h
le
na
th

f d

va

thin
e
to
of
ove

of

ds
can
ion

-
ne
the
rent

ise

the

ry
t-

n-
-
tur-
ay
-

the
(

n

e

o
s

KHOVANOV, KHOVANOVA, AND MCCLINTOCK PHYSICAL REVIEW E 67, 051102 ~2003!
path. The escape trajectories can be divided into sev
groups with different probabilities. With maximum probab
ity ~almost 50%! the escape trajectories follow the arrow
path in Fig. 8~a! corresponding to motion in the direction o
the pointx2` without any jumps in the opposite direction
The other paths include jumps in the opposite direction. T
width of the distribution of fluctuational paths is comparab
with the noise amplitude and there is no specific fluctuatio
force. In Fig. 6~a! the escape trajectories are shown on
plane (xn2xn11). It can be seen that, after the pointx1* , the
escape trajectories are located close to the trajectories o
terministic map, so we can suppose that after the pointx1* the
motion has the character of directed diffusion. The inter
between the pointsx1* andx2` lies within the fractal basin,

FIG. 8. 100 escape trajectories of the OGY map collected i
vicinity of ~a! the pointx2` and ~b! the pointx1* . The size of the
vicinity is defined as the mean square of noise intensityD. The
dash-dotted lines indicate the location of the boundary pointx1* and
its preimagex1

I* ; the dashed lines in~a! represent boundaries of th
basins with fractal structure, i.e., of the pointsx2` and x`. The
thick lines in~b! correspond to different escape paths; the gray d
are coordinates of escape trajectories. The noise intensity iD
50.018.
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ral

e

l
e

e-

l

and this fact implies a variety of escape paths. Indeed, wi
a small vicinity of the pointx1* there is a piece of basin of th
attractor at infinity. For escape, therefore, it is enough
bring the trajectory only to this basin. However, the size
this basin is small and a weak fluctuation can of course m
the trajectory back to the basin of pointx* and vice versa. As
a result, the trajectory can spend a long time in the vicinity
the pointx1* : it can return to the pointx* , as well as escape
from the basin of the pointx* .

Thus, the fractal structure in the basin of attraction lea
to complex behavior of the escape trajectories; they
spend a long time in the fractal basin; motion in the direct
of the attractor at infinity has the largest probability.

Investigations of escape from the pointx* to the vicinity
of the pointx1* have shown@Fig. 8~b!#, that there is no spe
cific path within this interval, so that we cannot determi
the optimal path or the optimal force using an analysis of
escape trajectories. It is possible to select several diffe
favored paths@thick lines in the Fig. 8~b!#, but dispersion of
the trajectories for each of them is much larger than the no
intensity used.

We now determine the escape optimal paths and
forces by solving the boundary problems~11! and ~12! for
the extended maps:

xn115 f ~xn!1yn /g~xn!,

yn115yn /g~xn!,

f ~xn!5~r 1Dr n!xn~12xn!,

g~xn!5
] f ~xn!

]xn
~16!

and

xn115 f ~xn!1yn /g~xn!,

yn115yn /g~xn!,

f ~xn!5rxn~12xn!1Dxn ,

g~xn!5
] f ~xn!

]xn
, ~17!

which correspond to maps~6! and ~7!. In such a way we
have used the extended map~14! to analyze the linearized
map ~13!.

First, we consider the results of solving the bounda
problem for the extended map~16!. To do so, we use a shoo
ing method, with boundary conditions~11! and ~12!, where
xf5x1* . Since the derivativeg(xn)5] f (xn)/]xn of map~6!
at the pointx* is equal to zero, we cannot calculate eige
vectors of the point (x* ,0) of map~16!. Therefore, as a pa
rameter of the boundary problem we choose an initial per
bation y0, since it defines all the trajectories going aw
from the point (x* ,0). Four solutions of the boundary prob
lem, obtained numerically, are found to have practically
same actionS. Four escape paths and noise realizationst1

a
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2t4) of map~16! corresponding to these solutions are sho
in Fig. 9. The trajectoryt4 has the minimum activation en
ergy S'0.0115 and the energies of other trajectories
practically the same:S'0.0123. All the optimal trajectories
lie on a stable manifold of the point (x1* ,0), and the stable
manifold goes to the point (x* ,0) ~Fig. 10!. If we take into
account the fact that the noise intensity is finite during
experimental analysis of escape trajectories~Fig. 8!, then the
fluctuational trajectories of the map~6! form a wide bunch
around the optimal paths and trajectories can go along
different optimal paths at different time intervals. Thus, f
the OGY map~6!, the only way to determine optimal path
and forces is by the solution of the boundary problem for
extended map, whereas an analysis of the PPD is not
cessful.

Now, let us consider the solution of the boundary probl
for map ~17!. We have defined an unstable direction of t
point (x* ,0) and used the length of a vectorl along this
direction as a parameter of the boundary problem. Ther
just one solution for which the value of actionS50.0449,
which is slightly smaller than the valueS50.0493 calculated
by using the PPD. The corresponding optimal path and o

FIG. 9. The optimal paths~a! and optimal forces~b! obtained by
solution of the boundary problem for the OGY map. The patht1 is
marked withs; t2 , h; t3 , 3; t4 , 1.
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mal force are shown in Fig. 7 together with the path and
force found by using the PPD. It can be seen~Fig. 7!, that the
optimal paths and the forces obtained by the calculated P
and by using the extended map are practically the same

Thus, we have defined the optimal path and the optim
force corresponding to global stabilization failures, and
have compared two methods for determination of the optim
path and force: the first method being based on an exp
mental analysis of the prehistory probability distribution, a
the second one being based on solving the boundary prob
for an extended area-preserving map. The latter method
lows us to determine the optimal path and force for both
maps~6! and ~7!, whereas the experimental analysis of pr
history probability is only successful for ADP map~7!.

Because there is no unique escape path for the OGY m
it is impossible to apply the algorithm described above
controlling stabilization failures. We note, however, th
since we know the dynamics of the fluctuational trajectori
it is still possible to realize control of the fluctuations b
using another approach. For example, a control force can
added whenever the system comes to the vicinity of the p
x1* . In this case, however, the size of the vicinity and t
magnitude and form of the control force are ill defined.

For stabilization of the ADP map, the opposite situati
applies: there exist an unique optimal path and a correspo
ing optimal force. Consequently, we can realize a proced
for the control of large fluctuations. It is similar to that d
scribed above for local control. We monitor trajectories
map~7! to identify the large deviation (^xn&, n521 in Fig.
7!, and in the next iteration we add the control forceun5
2^jn&, n50. The dependences on noise intensityD of the
mean timê t& between stabilization failures in the absen
and in the presence of control are shown in Fig. 11~a!. The
dependence of̂t& on the amplitude of the control force i
shown in Fig. 11~b!. The suggested control procedure is e
dently effective.

FIG. 10. The stable manifold of the pointx1* of the OGY map.
The symbols indicate the different optimal paths, using the sa
coding as in Fig. 9.
2-9
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CONCLUSION

We have considered noise-induced failures in the sta
zation of an unstable orbit, and the problem of how to co
trol such failures. In our investigations, they correspond
large deviations from stable points. We have examined
types of stabilization, local and global, and therefore a
lyzed fluctuational deviations of different size. We ha
shown that, for local stabilization, noise-induced failures c
be analyzed effectively in terms of linearized noisy maps

Large noise-induced deviations from the fixed point
one-dimensional maps have been analyzed within the fra
work of the theory of large fluctuations. The key point of o
consideration is that the dynamics of the optimal path, a
the optimal fluctuational force, correspond directly to sta
lization failures. We have applied two approaches
experimental analysis of the prehistory probability distrib
tion and the solution of the boundary problem for extend
maps—to determine the optimal path and the optimal fl

FIG. 11. ~a! Dependences of the mean time^t& between stabi-
lization failures on noise intensityD in the absence~circles! and in
the presence~crosses! of the control. The stabilization is globa
using the ADP method.~b! Dependence of the mean time^t& on the
amplitude of the control forceun .
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tuational force, and we have compared their results. For lo
stabilization, the two approaches give the same results.
global stabilization, however, the solution of the bounda
problem enabled the optimal path and optimal fluctuatio
force to be determined for both the OGY and ADP ma
whereas investigation of fluctuations’ prehistory gave the
timal path and force for the ADP map only.

A procedure for the control of large fluctuations in on
dimensional maps has been demonstrated. It is based o
control concept developed in Ref.@13# for continuous sys-
tems. We have introduced an additional control sche
which significantly improves the stabilization of an unstab
orbit in the presence of noise. It was successful for the A
method of stabilization, and problematic for the OG
method. We have shown that the control procedure has l
tations connected with the existence of unique optimal p
and the presence of long time prehistory of large fluctuati
The relationships between the large fluctuation dynamics
the control procedures are summarized in Table I.

Our consideration of the control problem is relevant to
continuous system which has a one-dimensional curve in
Poincare´ section, e.g., the Rossler system. For such syst
we can formulate the control task as that of control at d
crete moments of time~the moments of intersection of th
Poincare´ section! by using impulsive forces. The interval
between these moments were used to calculate and to
the necessary control force. Note that a similar approac
widely used in control technology.

The main limitation of our present control approach li
in the necessity of studying the fluctuational dynamics o
given system prior to consideration of its control. Such
study can be carried out by the use of an extended map o
system, if model equations are known, and/or experiment
by the analysis of the fluctuational prehistory distributio
For local stabilization, a system model can be easily writ
down by determination of the eigenvalue of a stabilized u
stable point: there are many effective methods of doing
@24#. For global stabilization, however, there is no comp
rable method and we need to investigate the fluctuatio
prehistory. Our investigations have shown that, in this ca
we can meet problems in the determination of the con
force. Indeed, we have shown that, for global stabilization
the OGY map, there are several most-probable escape p
with practically the same energy. As the result, a real esc
path can be a combination of the different most-proba
paths, so that an escape trajectory does not necessarily fo
a defined path as for the ADP map. Furthermore, we can
determine the fluctuational force or, correspondingly,

TABLE I. The relationships between the dynamics of fluctu
tional paths and the control procedures.

Types of stabilization
ADP OGY ADP OGY
Local Local Global Global

Unique optimal path X X X
Long prehistory X X X
Successful control X X
2-10
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NOISE-INDUCED FAILURES OF CHAOS . . . PHYSICAL REVIEW E 67, 051102 ~2003!
control force, in the way discussed above where we deriv
by averaging the noise histories corresponding to fluct
tional trajectories that closely follow a unique path. So o
control procedure is then inapplicable. It is obvious that,
successful control of such systems, we must change the
trol strategy. For example, we can try to predict a fluctu
tional force locally, in contrast to the scheme describ
above where we try to know the full fluctuational dynamic
The local prediction can be based on a combination of
time prehistory analysis and reconstruction of the exten
system@25#.

Additionally, noise-induced escape through fractal bou
aries has been studied in a one-dimensional map. It
found that fluctuational motion across fractal basins ha
a,
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nonactivation character. It was also established that there
several optimal escape paths from the fixed point of the O
map ~6! whereas, for the ADP map~7!, the escape path is
unique. We infer that the existence of several paths in
OGY map~6! is connected with the fact that the stable ma
fold of the boundary point (x1* ,0) goes to the fixed poin
(x* ,0).
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