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Noise-induced failures of chaos stabilization: Large fluctuations and their control
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Noise-induced failures in the stabilization of an unstable orbit in the one-dimensional logistic map are
considered as large fluctuations from a stable state. The properties of the large fluctuations are examined by
determination and analysis of the optimal path and the optimal fluctuational force corresponding to the stabi-
lization failure. The problem of controlling noise-induced large fluctuations is discussed, and methods of
control have been developed.
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INTRODUCTION forces to develop methods of controlling the large deviations,
i.e., the noise-induced failures of stabilizati].

The control of chaos represents a very real and important In Sec. | we describe the procedures for local and global
problem in a wide variety of applications, ranging from neu-stabilizations of an unstable orbit of the logistic map. The
ron assemblies to lasers and hydrodynamic sysfdmdhe generallapproach to .the. control of.a large deviation is pre-
procedure used consists of stabilizing an unstable periodigented in Sec. II. Noise-induced failures of local and global
orbit by the app"cation of precise|y designed small perturbastabilizaﬂons are considered in Secs. Ill and |V, respectively.
tions to a parameter and/or a trajectory of the chaotic systend.h€e results obtained are discussed in the Conclusion.
Different methods of chaos control have been suggested and
applied in many different physical contexts, as well as nu- I. CHAOS STABILIZATION
merically to model systemd]. For practical applications of L . o . .
these control methods, it is important to understand howf ;orlsmptl.luty W? will stabilize an unstable fixed poit
noise influences the stabilization process, because fluctud" € ogIStic map:
tions are inherent and inevitably present in_dissipat_ive sys- Xns1=X(1=Xp), (1)
tems. The problem has not been well studied. Typically, a
method is developed for stabilization of the orbit withoutwhere x,, is a coordinaten is discrete time and is the
initially taking any account of fluctuations. Only then do the control parameter that determines different regimes of the
authors check the robustness of their method by introducingnap’s behavior1). The coordinate of the fixed point* is
weak noise into the systefil]. Thus, in the celebrated pio- defined by the conditionx,,;=x,, and consequently its
neering work of Ott, Grebogi, and York, in Ref2], the location depends on the parameter
authors just noted that noise can induce failures of stabiliza-
tion. e o L

In several work$3,4], methods are developed for the sta- x*=1- Y @
bilization of unstable orbits in the presence of noise. They
are based on a strong feedback approach to suppress avie set the parameter=3.8, a value for which an aperiodic
deviation from the stabilized states. There are also methodshaotio regime is observedl), and the poink* is embed-

[5] that use noise to move the system to a desired unstabféed in the chaotic attractor.
state, and then stabilize it there. From the range of existing stabilization methods, we

In this work we consider noise-induced failures in thechose to work with just two: the OGY and ADP methods
stabilization of an unstable orbit and the problem of control-mentioned above.
ling these failures. The method of Ott, Grebogi, and Yorke To stabilize a fixed point by the OGY method, perturba-
(OGY) [2] and a modification of the adaptive meth@DP)  tions Ar are applied to the parameterleading to the map
[1] are used to stabilize an unstable point of the logistic mapbeing modified(1) in the following manner:

We consider the small noise limit where stabilization failures

are very rare and they can therefore be considered as large Xnt1= (FHAM)Xn(1=X,),

fluctuations(deviationg from a stable state. We study the . N

properties of large deviations by determining the optimal Ar :r(2x — DX —xT) 3)
n .

paths and the optimal fluctuational forces corresponding to X*(1—x*)

the failures. We employ two methods to determine the opti-

mal paths and forces. The first of these methods builds and To stabilize a fixed point by the ADP method, perturba-
analyzes the prehistory probability distributip®]. The sec- tions Ax are applied to the map’s coordinate. The value of
ond method considers an extended ma&ative to the initial  the perturbatiomx is defined by the distance between the
one which defines fluctuational paths and forces in the zeroeurrent system coordinate and the coordinate of the stabi-
noise limit[7,8]. Furthermore, we use the optimal paths andlized state:
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Xns1=IXn(1—Xp) +AXp, ing them. The latter are based on the concept of optimal
paths—the paths along which the system moves during large
AXp=(Xp—X*). (4)  fluctuations. Large fluctuations are very rare events during

which the system moves from the vicinity of a stable state to
The ADP method is simple to use in practice. Differenta state remote from it, at a distance significantly larger than
modifications of the adaptive method are therefore used ithe amplitude of the noise. Such deviations can correspond
many papers devoted to experiments on the control of chaog a transition of the system to another state, or to an excur-

We consider two types of stabilization procedure: localsion along some trajectory away from the stable state and
stabilization and global stabilization. then back again. During such deviations the system is moved

During local stabilization, the perturbatiomsr and Ax  with overwhelming probability along the optimal path under
differ from zero only if the following condition is satisfied: the action of a specifi¢optima) fluctuational force. The

N probability of motion along any othgnonoptimal path is

[Xn—X*|<e. ) exponentially smaller. In practice, therefore large fluctuations
must necessarily occur along deterministic trajectories. The
problem of controlling large fluctuations can thus be reduced
to the task of controlling motion along a deterministic trajec-
tory. Consequently, the control problem can be solved
through application of the control methods developed for
deterministic systempgl1].

Let us consider the control problem. Formally, the task
that we face in controlling noise-induced large fluctuations
consists of writing a functiondR, the extrema of which cor-
respond to optimal solutions of the control problem, i.e., so-
lutions with minimal required energyl2—14. The form of

Heree is a small value: we fixed=0.01. If condition(5) is
not satisfied then stabilization is absent, i&r,=0 or Ax
=0.

During global stabilization perturbations are switched on
when condition(5) is satisfied for the first time, and remain
present for all future time.

So, local or global stabilization involve modifications of
the initial map(1), and thus use another map in the fo{@
or (4). The fixed pointx* is an attractor of the new map.
After the stabilization is switched on, a trajectory of the map

: o .
tends to the fixed poirk ,_and subse_quently remains there. the functionalR depends on a number of different additional
In the presence of noise the trajectory fluctuates in th

. - : o . tonditions related to, e.g., the system dynamics, the energy
vicinity of the stabilized state, i.e., noise-induced dynamlcsOf the control force, or the time during which it is applied

appears. In addition, noise can induce stabilization failures[.lz_u] We will follow the work[13] and consider the con-
For local stabilization they imply a breakdown in condition trol of I.arge fluctuations by a weak additive deterministic
(5), and for global stabilization they correspond to an €SCaPRoNtrol force. Weakness means here that the energy of the
of the trajectory from the basin of attraction of the fixed control force.is comparable with the energgispersion of

point x*. . . '
Our aim is to study these noise-induced stabilization fail the fluctuationssee Ref[12] for detally. In this case, the

ures and analvze the problem of how to Supbress them V;Fxtremal value of the function& for optimal control, which
y P PP - VWfoves the system from an initial stateto a target stata",

t_herefore c_0n3|der ma_r(@) and(4) in the presence of addi- takes the forn{13]
tive Gaussian fluctuations,

f =y — o(0)/yf
X 1= (1 AT p)Xo( 1= X) + Dép, Rop(x,F)=ST0x) =4S,

Ny
2x* —1)(X,— X*
Ar, = DX ©) AS=<2F>[ > g2, ®
X*(1—x*) K=N;
Xn+1=MXn(1=Xp) +AXn+ D&y, where & is the optimal fluctuational force that induces the
transition fromx' to x' in the absence of the control force;
AXp= (X —X*). 7) S is an energy of the transitiol; andN; are the times at

which the fluctuational forcé2™ starts and stopel 5], andF
Here D is the noise intensity; anél, is a Gaussian random is a parameter defining the energy of the control force.
process with zero averagg)=0, é-correlation function The optimal control forcei®” for the given functiona(8)
(€nén+r)=0(K), and dispersion£?)=1. We use a high- s defined[13] by

speed noise generatft0].
172

8(xn—x°PY - (9)

k:Nf

t__ — 1/2 t 2
Il. CONTROL OF LARGE FLUCTUATIONS Up”=+(2F) fﬁp‘{ kZN (&)
i

Large fluctuations manifest themselves as large deviations (0)opt ; _ _ _
from the stable state of the system under the action of flucwherex;”*" is the optimal fluctuational path in the absence
tuational forces. Large fluctuations play a key role in manyof the control force. The minus sign in expressi@ de-
phenomena, ranging from mutations in DNA to failures ofcreases the probability of a transition to the stdteand the
electrical devices. In recent years significant progress halus sign increases the probability. It can be sé®rthat the
been achieved both in understanding the physical nature @fptimal control forceuy™ is completely defined by the opti-
large fluctuations and in developing approaches for describmal fluctuational forcetg”, and the optimal fluctuational
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pathx(?)°' corresponds to the large fluctuation. Therefore principle of least actiori8]. Such extended maps are analo-
to solve the control problem it is necessary, first, to deterdous to the Hamilton-Jacobi equation in the theory of large
mine the optimal paﬂx(O)opt leading from the statg' to the fluctuations for flow systems. For the one-dimensional map
N - . i
statex’ under the action of the optimal fluctuational force Xn+1=T(Xn) + D&, the corresponding extended map in the

&P, Thus, a solution of the control problem depends on thg€ro-noIse limit takes the form
existence of an optimal path: it is obvious that the approach _¢ Iy
described should be straightforward to apply, provided that Xn+1= T (Xn) +Yn/9(n),
the optimal path exists and is unique.

We consider below an application of the approach de- Yn+1=Yn/9(Xn),
scribed to suppress large fluctuations in the one-dimensional
map. The large fluctuations in question are considered here It (xn)
to correspond to failures in the stabilization of an unstable 9(Xn) = Xy (10
orbit.

The control procedure depends on the determination ofhe map is area preserving, and it defines the dynamics of
the optimal path and optimal fluctuational force and, to de+the noise-free mag, 1= f(X,), if y,=0. If y,#0 then the
fine them, we will use two different methods. The first is coordinatex, corresponds to a fluctuational path, and the
based on an analysis of the prehistory probability distribution;gordinatey,, to a fluctuational force. Stable and unstable
(PPD and the second one consists of solving a boundargtates of the initial map become saddle states of the extended
problem for an extended map which defines fluctuational ramap. So, the fixed point* of the ADP (7) and OGY (6)
jectories. _ _ . maps becomes a saddle point of the corresponding extended
The PPD was introduced in Refi6] to analyze optimal map. Fluctuational trajectorieéncluding the optimal onle
paths experimentally in flow systems. We will use the d'St“'starting fromx* belong to unstable manifolds of the fixed
bution to analyze fluctuational paths in maps. Note, that i’boint (x*,0) of the extended map.
Refs.[16,17] it was shown that the analysis of the PPD al-*  The procedure for determination of the optimal paths con-

lows one to determine both the optimal path and the optimag;sts of solving the boundary problem for the extended map
fluctuational force. The essence of this first method consistg; o).

of a determination of the fluctuational trajectories corre-
sponding to large fluctuations for extremely sniallt finite) X_ = x* y_.=0, (11)
noise intensity, followed by a statistical analysis of the tra-
jectories. In this experimental method, the behavior of the
dynamical variablesx, and of the random force€, are

tracked continuously until the system makes its transition

) * it fi
from an initial statex' to a small vicinity of the target state wherex® is the initial state and" Is a target state.
f . . esc . : To solve the boundary problem different methods can be
x'. Escape trajectories;*‘reaching this state, and the corre-

: . o esC . used. For the one-dimensional maps under consideration, a
sponding noise reallzatlcl)naq of the same (J.Iqrat|qn, are simple shooting method is enou@tB]. We choose an initial
then stored. The system is then reset to the initial staded

) ) _perturbationl along the linearized unstable manifolds in a
the procedure is repeated. Thus, an ensemble of trajectori inity of the point (x*,0) of map(10). The procedure to

is collected and then the fluctuational PRPis constructed determine a solution can be as follows: looking over all pos-
for the time interval during which the system is monitored. gjpe valued, we determine a trajectory which tends to the
This distribution contains all information about the temporalpoint (x',0). Note that, because these maps are irreversible
evolution of the systerr} immediately before the trajectoryihere exist, in general, an infinite number of solutions of the
arrives at the final state'. The existence of an optimal es- boundary problem. The optimal trajectapyath has minimal
cape path is diagnosed by the form of the Pﬁ{b if there is action(energy SzEﬁ:_wyﬁ; herey,, is calculated along the

an optimal escape trajectory, then the distributihat a  trajectory, corresponding to a solution of the boundary task.
given timen has a sharp peak at optimal trajecto§P".
Therefore, to find an optimal path it is necessary to build the
PPD and, for each moment of tinme to check for the pres-
ence of a distinct narrow peak in the PPD. The width of the
peak defines the dispersi@ﬂ of the distribution and it has A breakdown of conditior(5) corresponds to a failure of
to be of the order of the mean-square noise amplityBe local stabilization, i.e., to the noise-induced escape of the
[6]. The optimal fluctuational force that moves the systemirajectory from are vicinity of the fixed pointx*. The target
trajectory along the optimal path can be estimated by averstatex’ corresponds to the boundaries of the stabilization
aging the corresponding noise realizatigiis® over the en- region:x'=x* +e.

semble. Note, that investigations of the fluctuational prehis- Instead of analyzing the mag8) and(7) in the e vicinity

tory also allows us to determine the range of systenpf the fixed pointx*, we can investigate linearized maps of

X=X, V=0, (12

Ill. NOISE-INDUCED FAILURES IN LOCAL
STABILIZATION

parameters for which optimal paths exist. the following form:
To determine the optimal path and force by means of the
second method we analyze extended migh8] using the Xp+1=aX,+Dé&,; (13
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herea is a value of derivative)f(x,,)/dx, in the fixed point
x*. For map(6) the derivative is equal to zeagy=0, and
for map(7) appp=—0.8.

Let us investigate stabilization failure by considering the n 1y..-""
most probabléoptimal) fluctuational paths, which lead from “n
the pointx* to boundariex* €. For linearized map§13)

the extended mafil0) can be reduced to the form: 0
0.76
y
Xp+1=axy+ ;nv
y
Yne1= (14

with the initial condition &,=x*,y,=0) and the final con-

dition x'=x* + €. It can be seen that a solution of méi)

increases proportionally tg,=consta" [19]. This means

that, for the ADP mag7), the amplitude of the fluctuational

force increases slowly but that, for the OGY méj, the

failure arises as the result of only one fluctuati@eration. b1

Because Eq(14) is linear, the boundary problem will have a p, ;

unigue solutior{18]. Thus, the analysis of the linearized ex-  0.5{.;"

tended map14) shows that there is an optimal path and it

gives a qualitative picture of exit through the boundaty

Te. 0.005
Let us check the existence of the optimal paths through ar

analysis of the prehistory of fluctuations. To obtain exit tra-

jectories and noise realizations we use the following proce-

dure. At the initial moment of time, a trajectory of the map is

located at poinix*. The subsequent behavior of the trajec-

tory is monitored until the moment at which it exits from the

€ region of the poin*. The relevant part of the trajectory, —0.005 _15 n

just before and after its exit, are stored. The time at which the

exit occurs is set to zero. Thus, ensembles of exit trajectories FIG. 1. PPDy, of the exit trajectorie$a) and noise realizations

and of the corresponding noise realizations are collected an@) of the ADP map for the boundaryt —€). The thick dashed

PPDs are built. lines indicate thee region of stabilization. The thin dashed lines
To start with, we will discuss these ideas in the context ofconnect maxima of PPDs. The noise intensityis 0.0011.

the ADP map. Figure (&) shows PPDs of the escape trajec-

tories of the ADP map, and the corresponding noise realizas,

tions for the exit through the boundary*(— €) are shownin ;" raiectories and noise realizations decreases by con-

Fig. 1(b). The picture of exit through the other boundary struction as the boundary is achievéig. 3.

* H H =
(x* + €) is symmetrical, so we present results for one bound The optimal fluctuational force obtaindBig. 2(b)] must

ary only. It is evident(Fig. 1) that there is the only one exit ) 0
. . correspond[17] to the energy-optimal deterministic force
path. Note, that the path to the boundaxy ) is approxi OIt_hat induced the stabilization failure. We have checked this

mately 2.8 times more probable than the path to the boun _— ) ) .
ary (x* +e¢). This difference arises from an asymmetry of prediction and_ found that thg oenmal force mduces.thg exit
from an e region of the pointx*: we selected an initial

the map in respect of the boundaries. © ' ) g
Because for each boundary there is the only one exit pattfondition at the poink™ and included the optimal fluctua-
the optimal path and the optimal fluctuational force can bet!onal fprce additively; as a result we Qbserved the stabiliza-
determined by simple averaging of escape trajectories andon failure. If we decrease the amplitude of the force by
noise realizations, respectively. In Fig. 2 the optimal exit>—10%, then the failure does not occur. It appears, therefore,
paths and the optimal fluctuational forces are shown for théhe deduced force allows us to induce the stabilization failure

boundaries X* — €) and (x* +¢€). The paths and the forces with minimal energy(see Ref[17] for details.

coincide with a solution of the boundary problépircles in Using the optimal path and the force we can solve the
the Fig. 2 of the extended linear maf4). The time depen- opposite task12,13—to decrease the probability of the sta-

dence of the dispersion” of PPDs for the exit trajectories bilization failures. Indeed, if during the motion along the

and noise realizations are shown in Fig. 3. As can be seeoptimal path we will apply a control force with the same

(Fig. 2) the optimal path is long, and the amplitude of the amplitude but with the opposite sign as the optimal fluctua-
fluctuational force increases slowly, in agreement with thetional force has, then, obviously, the failure will not occur.

ysis of the linearized mafl4). The dispersiomﬂ of
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FIG. 2. The optimal path&) and the optimal force#) for exit n
through the boundaryxt —€) (solid line) and the boundaryx®
+¢) (dashed ling for the ADP map. Circles indicate the optimal ~ FIG. 3. (8) The dispersion of the exit trajectories, afig) the
paths and forces obtained by solving the boundary problem for thdispersion of the corresponding noise realizations for exit through
linearized extended mafi4). The optimal paths and forces used in the boundary X* —¢) (solid ling) and the boundary x¢ + ¢)
the control procedure are marked by arrows. (dashed lingfor the ADP map.

Because we know the optimal force then, in accordance withng| path(x,) if it passes within a small vicinity of the co-
the algorithm[13] described above, it is necessary to deter'ordinate<x_3> and then within a small vicinity ofx_,) [see
mine the time moment when the system is moving along theéhe arrows in Fig. &)]. Then on the following iteration we
optimal path. For the ADP method the optimal path is longadd the control forcel,= —sign(¢,)(£,), n=—1 [see, Fig.
enough to identify that a trajectory is moving along the op-2(p)].
timal path, and then to apply a control force. In Fig. 4a) dependences of the mean tirie) between

In the presence of a control force the m@pis modified,  the failures on the noise intensiy are plotted in the ab-
sence, and in the presence, of the control procedure. It is
clear that the mean timgr) is substantially increased by the
addition of the control, i.e., stability in the face of fluctua-

Xn+1=IXn(1—X%X,) +AX,+ D&+ Uy,

AXy=(Xp—X*); (15 tions is significantly improved by the addition of the control
scheme. The efficiency of the control procedure depends ex-
hereu, is the deterministic control force. ponentially[13] on the amplitude of the control fordéig.

We use the following scheme to suppress the stabilizatiod(b)], and there is an optimal value of the control force,
failures. Initially, the control force is equal to zera,(=0) which is very close to the valugarrow in Fig. 4b)] of the
and the map is located in the poirt; we continuously optimal fluctuational force.
monitor a trajectory of the mapl5) and define the time Now consider noise-induced stabilization failures for the
moment when the system starts motion along the optimaDGY map(6). An analysis of the linearized map has shown
path(x,). We assume that the system moves along the optithat the failure occurs as the result of a single fluctuation. We
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. FIG. 5. For the OGY map, the optimal path and the optimal
n x 10 force (b) are shown for exit through the boundar(— €) (crosses
and the boundaryx®* + €) (circles.

FIG. 4. (a) The dependences of mean tife® between stabili-
zation failures on noise intensi® in the absencécircles and in
the presencécrossep of the control. The size of the stabilization
region ise=0.01. (b) The dependence of the mean tiw® on the To investigate fluctuational dynamics in the global stabi-
amplitude of the control forca,, is presented for the ADP method. |ization regime, we consider the dynamics of the méds
The value of( 7) corresponding to the optimal fluctuational force is and (7) with initial conditions at the fixed pointy=x*. We
marked by the arrow. will first consider them in the absence of noise. The maps are
shown on the plan&,—Xx, . in Fig. 6.

have checked the conclusion by an analysis of the fluctua- 1he Map(6) EF'g' 6@] has three fixed points of period
tional trajectories of may6), much as we did for the ADP ©N€: the point f0'7368 'S stable with the multiplies.
map. The optimal path and the optimal force are shown i 0; the pointsx; =0 and x7~0.5906 are unstable with
Fig. 5 for both boundariesxt +¢€) and (x* —e€). An exit multipliers u~—3.04 and ,u~1._8016, respectively. The
occurs during one iteration and there is no prehistory befor8@p has two attractors: the poirt and the attractor at
this iteration. It means that we cannot determine the momeriffinity [20]. Their basins of attractiofiFig. 6(a)] are self-
at which the large fluctuation starts and, consequently, thatimilar (fracta) [21,22). The pointx] and its preimages by
we cannot control the stabilization failures. The existence oPackward iteration lie on the basin boundaries of the attrac-
a long prehistory is thus a key requirement in the control oftors [23]. In the intervals x e (—0.183,0.5906) andx
the large fluctuations. € (0.862,1.027) the basins of the attractors alternate and are
We can of course decrease the probability of a failure byof different length. The intervak € (0.5906,0.862) corre-
increasing thee region of stabilization. The maximum pos- Sponds to the widest basin of the fixed poifit The bound-
sible increase would correspond to infinite boundaries — iraries of this basin are defined by the unstable pdjnand its
which case we would be dealing with global stabilization. preimage x;*. The semi-infinite intervals xe (—,

IV. NOISE-INDUCED FAILURES OF GLOBAL
STABILIZATION
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. i 220 -15 -10 -5 0
0 0.2 0.4 0.6 0.8 1 n
n FIG. 7. The optimal patlta) and the optimal forcéb) obtained

FIG. 6. The OGY mapa and the ADP marib) on the plane by experimgntal analysis of the PPD for the ADP n@pl(crosse}?
(Xn—Xp4+ 1) are shown by Fhe thick solid line. BaF‘sins of attre?ction of and by solving the boundary problem for the m@g) (circles.
the fixed pointx* (white regiong and the attractor at infinitgblack
regions are shown at the bottoms of the figures. The dashed line9efore, we examine the dynamics of the escape trajectories
indicate locations of the fixed points of the maps and the point©btained for extremely small noise intensity in order to de-
defining the basin boundaries. Escape trajectories are shown Hgrmine the optimal path and the optimal force. Fluctuational
dots. The thin line in(b) corresponds to the optimal path. escape trajectories of m&p) are shown by dots on the plane

(Xn—Xn+1) in Fig. &b). As can be seen, there is one escape

—0.183) andx e (1.027¢) correspond to basins of the at- path, and the escape trajectories pass through the unstable
tractor at Inflnlty The boundaries of the semi-infinite inter- point X’:’l‘ . In Fig. 7 the optimal path and the optimal force
vals are defined by the pointg™“=-0.183 andx”  optained by averaging the escape trajectories and noise real-
=1.027, which correspond to the cycle of period 2. izations, respectively, are shown by crosses. The stabilization

The map(7) [Fig. 6b)] has two fixed points: the point fajlure clearly possesses a long prehistory. From the point of
x*~0.7368 is stable with multiplier.~ —0.8; and the point  view of the control procedure, the presence of a large devia-
x7 ~0.2632 is unstable with multiplige~2.8. The map has tion of the system coordinatex,) at the time momenh=
two attractors: the fixed point® and the attractor at infinity. —1, and the smaller deviation of the fluctuational fo¢ég)
The basins of attraction are smodthig. 6(b)]. The first  at the next time momentn(=0), are important.This is be-
boundary of the basins is the poixit and the second bound- cause the first fluctuation of coordinatgcan easily be iden-

ary is a preimagex'l* of the pointxj . tified and distinguished from nonoptimal fluctuations in the
So, each of the maps has two attractors, but the structungcinity of the stable state™.
of their basins of attraction are qualitatively different. Next, we examine the process of escape for ritapFig-

We now consider these map®) and(7) in the presence ure 8a) shows escape trajectories superposed at the time
of noise. Noise can induce escape from the basin of the fixethoment when the trajectory crosses the basin boundary at
point x*, corresponding to failure of the stabilization. As the pointx™ ™. It is evident that there is no selected escape
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12— ; ; ; ; ; ; and this fact implies a variety of escape paths. Indeed, within

: : : : a small vicinity of the poink} there is a piece of basin of the
1+ § : : § 2 | attractor at infinity. For escape, therefore, it is enough to
: f ST I bring the trajectory only to this basin. However, the size of
0852 A g a iy AN ALAAM Al AL this basin is small and a weak fluctuation can of course move

the trajectory back to the basin of poitt and vice versa. As

a result, the trajectory can spend a long time in the vicinity of
the pointxj : it can return to the poiit*, as well as escape
from the basin of the point*.

Thus, the fractal structure in the basin of attraction leads
to complex behavior of the escape trajectories; they can
spend a long time in the fractal basin; motion in the direction
of the attractor at infinity has the largest probability.

Investigations of escape from the pokit to the vicinity
of the pointx} have showriFig. 8b)], that there is no spe-
cific path within this interval, so that we cannot determine
the optimal path or the optimal force using an analysis of the
escape trajectories. It is possible to select several different
favored pathgthick lines in the Fig. &)], but dispersion of
the trajectories for each of them is much larger than the noise
intensity used.

We now determine the escape optimal paths and the
forces by solving the boundary problertl) and (12) for
the extended maps:

Xp1= F(Xn) +Yn/9(Xn),
Yn+1=Yn/9(Xn),
f(Xp)=(r+Ar)Xa(1=Xp),

: : . : : It (xp)
: : : : é 9(Xn) = (16)
0.5 . i ! ) 1 n (}lxn
-10 -8 -6 -4 =2 0 2
n and
FIG. 8. 100 escape trajectories of the OGY map collected in a _
vicinity of (a) the pointx~* and (b) the pointx} . The size of the Xn+1= F(Xn) TYn/9(n),
vicinity is defined as the mean square of noise intenBityThe —y. 1g(xy)
dash-dotted lines indicate the location of the boundary pdirand Yn+1=Yn/9(Xn),
its preimage<'l* ; the dashed lines ifa) represent boundaries of the .
basins with fractal structure, i.e., of the poits”™ and x*. The f(Xp) =rxn(1=Xn) + AXq,
thick lines in(b) correspond to different escape paths; the gray dots
are coordinates of escape trajectories. The noise intensify is (X,)= 9t (xn) 17)
n [}

=0.018. X
path. The escape trajectories can be divided into severalhich correspond to map&) and (7). In such a way we
groups with different probabilities. With maximum probabil- have used the extended mép) to analyze the linearized
ity (almost 50% the escape trajectories follow the arrowed map (13).

path in Fig. &) corresponding to motion in the direction of  First, we consider the results of solving the boundary
the pointx™* without any jumps in the opposite direction. problem for the extended m#p6). To do so, we use a shoot-
The other paths include jumps in the opposite direction. Théng method, with boundary condition41) and (12), where
width of the distribution of fluctuational paths is comparablex’=x} . Since the derivativg(x,) = df(x,)/dx, of map(6)

with the noise amplitude and there is no specific fluctuationaht the pointx* is equal to zero, we cannot calculate eigen-
force. In Fig. &a) the escape trajectories are shown on thevectors of the pointX*,0) of map(16). Therefore, as a pa-
plane &,—xn+1). It can be seen that, after the pokit, the  rameter of the boundary problem we choose an initial pertur-
escape trajectories are located close to the trajectories of dbation y,, since it defines all the trajectories going away
terministic map, so we can suppose that after the pdirthe  from the point &*,0). Four solutions of the boundary prob-
motion has the character of directed diffusion. The intervalem, obtained numerically, are found to have practically the
between the pointg} andx™” lies within the fractal basin, same actiorS. Four escape paths and noise realizatians (
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FIG. 10. The stable manifold of the poirf of the OGY map.
The symbols indicate the different optimal paths, using the same
coding as in Fig. 9.

mal force are shown in Fig. 7 together with the path and the
force found by using the PPD. It can be s€Eiy. 7), that the
optimal paths and the forces obtained by the calculated PPD
and by using the extended map are practically the same.

Thus, we have defined the optimal path and the optimal
force corresponding to global stabilization failures, and we
have compared two methods for determination of the optimal
i : path and force: the first method being based on an experi-
0 5 10 15 mental analysis of the prehistory probability distribution, and

n the second one being based on solving the boundary problem

for an extended area-preserving map. The latter method al-
lows us to determine the optimal path and force for both the
maps(6) and(7), whereas the experimental analysis of pre-
history probability is only successful for ADP m4p).

—t,) of map(16) corresponding to these solutions are shown_ Because there is no unique escape path for the OGY map,
in Fig. 9. The trajectoryt, has the minimum activation en- 't 1S impossible to apply the algorithm described above for

ergy S~0.0115 and the energies of other trajectories ar,.;(:f)ntrolling stabilization fgilures. We note,_ howevgr, th_at,
practically the sameS~0.0123. All the optimal trajectories Since we know the dynamics of the fluctuational trajectories,
lie on a stable manifold of the poink},0), and the stable it is still possible to realize control of the fluctuations by
manifold goes to the pointx¢,0) (Fig. 10. If we take into using another approach. For example, a co_n'Frql force can_be
account the fact that the noise intensity is finite during the2dded whenever the system comes to the vicinity of the point
experimental analysis of escape trajectotkég. 8), then the X7 . In this case, however, the size of the vicinity and the
fluctuational trajectories of the map) form a wide bunch magnitude and form of the control force are ill defined.
around the optimal paths and trajectories can go along the For stabilization of the ADP map, the opposite situation
different optimal paths at different time intervals. Thus, for applies: there exist an unique optimal path and a correspond-
the OGY map(6), the only way to determine optimal paths ing optimal force. Consequently, we can realize a procedure
and forces is by the solution of the boundary problem for thefor the control of large fluctuations. It is similar to that de-
extended map, whereas an analysis of the PPD is not suseribed above for local control. We monitor trajectories of
cessful. map(7) to identify the large deviation{k,), n=—1 in Fig.
Now, let us consider the solution of the boundary problem7), and in the next iteration we add the control forge=
for map (17). We have defined an unstable direction of the—(¢&,), n=0. The dependences on noise inten&itpf the
point (x*,0) and used the length of a vectbralong this mean time{r) between stabilization failures in the absence
direction as a parameter of the boundary problem. There iand in the presence of control are shown in Figial1The
just one solution for which the value of acti@®~0.0449, dependence ofr) on the amplitude of the control force is
which is slightly smaller than the valug=0.0493 calculated shown in Fig. 11b). The suggested control procedure is evi-
by using the PPD. The corresponding optimal path and optidently effective.

FIG. 9. The optimal path&) and optimal forcesb) obtained by
solution of the boundary problem for the OGY map. The gatfs
marked withO; t,, OJ; t3, X; ts, +.
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10° TABLE I. The relationships between the dynamics of fluctua-
tional paths and the control procedures.

Types of stabilization

10 ADP OGY ADP OoGY
Local Local Global Global
- Unique optimal path X X X
©10 Long prehistory X X X
Successful control X X

tuational force, and we have compared their results. For local
stabilization, the two approaches give the same results. For
, : : : : , : global stabilization, however, the solution of the boundary
10°L ; i ; ; ; ; ; ; problem enabled the optimal path and optimal fluctuational

0.038 0.04 0.042 0.044 0.046 0.048 force to be determined for both the OGY and ADP maps,

D whereas investigation of fluctuations’ prehistory gave the op-
timal path and force for the ADP map only.

A procedure for the control of large fluctuations in one-
dimensional maps has been demonstrated. It is based on the
control concept developed in RgfL3] for continuous sys-
tems. We have introduced an additional control scheme
which significantly improves the stabilization of an unstable
orbit in the presence of noise. It was successful for the ADP
method of stabilization, and problematic for the OGY
method. We have shown that the control procedure has limi-
tations connected with the existence of unique optimal path
and the presence of long time prehistory of large fluctuation.
The relationships between the large fluctuation dynamics and
the control procedures are summarized in Table 1.

Our consideration of the control problem is relevant to a
_ continuous system which has a one-dimensional curve in its

0.'15 o2 Poincaresection, e.g., the Rossler system. For such systems
u we can formulate the control task as that of control at dis-
crete moments of tim¢the moments of intersection of the
Poincaresection by using impulsive forces. The intervals

0 0.05 0.1

FIG. 11. (a) Dependences of the mean tifi€) between stabi-

lization failures on noise intensity in the absencécircles and in

the presencécrossey of the control. The stabilization is global,

using the ADP methodb) Dependence of the mean tirge) on the
amplitude of the control forca, .

CONCLUSION

between these moments were used to calculate and to form
the necessary control force. Note that a similar approach is
widely used in control technology.

The main limitation of our present control approach lies
in the necessity of studying the fluctuational dynamics of a

given system prior to consideration of its control. Such a
We have considered noise-induced failures in the stabilistudy can be carried out by the use of an extended map of the
zation of an unstable orbit, and the problem of how to conssystem, if model equations are known, and/or experimentally
trol such failures. In our investigations, they correspond tdy the analysis of the fluctuational prehistory distribution.
large deviations from stable points. We have examined twd-or local stabilization, a system model can be easily written
types of stabilization, local and global, and therefore anadown by determination of the eigenvalue of a stabilized un-
lyzed fluctuational deviations of different size. We havestable point: there are many effective methods of doing so
shown that, for local stabilization, noise-induced failures carj24]. For global stabilization, however, there is no compa-
be analyzed effectively in terms of linearized noisy maps. rable method and we need to investigate the fluctuational
Large noise-induced deviations from the fixed point inprehistory. Our investigations have shown that, in this case,
one-dimensional maps have been analyzed within the frameve can meet problems in the determination of the control
work of the theory of large fluctuations. The key point of our force. Indeed, we have shown that, for global stabilization of
consideration is that the dynamics of the optimal path, andhe OGY map, there are several most-probable escape paths
the optimal fluctuational force, correspond directly to stabi-with practically the same energy. As the result, a real escape
lization failures. We have applied two approaches—path can be a combination of the different most-probable
experimental analysis of the prehistory probability distribu-paths, so that an escape trajectory does not necessarily follow
tion and the solution of the boundary problem for extendeda defined path as for the ADP map. Furthermore, we cannot
maps—to determine the optimal path and the optimal flucdetermine the fluctuational force or, correspondingly, the
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control force, in the way discussed above where we derive ihonactivation character. It was also established that there are
by averaging the noise histories corresponding to fluctuaseveral optimal escape paths from the fixed point of the OGY
tional trajectories that closely follow a unique path. So ourmap (6) whereas, for the ADP maf¥), the escape path is
control procedure is then inapplicable. It is obvious that, forunique. We infer that the existence of several paths in the
successful control of such systems, we must change the co®GY map(6) is connected with the fact that the stable mani-
trol strategy. For example, we can try to predict a fluctuafold of the boundary pointx},0) goes to the fixed point
tional force locally, in contrast to the scheme describedx*,0).
above where we try to know the full fluctuational dynamics.
The local prediction can be based on a combination of real
time prehistory analysis and reconstruction of the extended
system[25]. We thank D.G. Luchinsky for useful and stimulating dis-
Additionally, noise-induced escape through fractal bound-cussions and help. The research was supported by the Engi-
aries has been studied in a one-dimensional map. It waseering and Physical Sciences Research Couhk{) and
found that fluctuational motion across fractal basins has #NTAS (Grant No. 01-86Y.
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