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Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap
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We study the numerical resolution of the time-dependent Gross-Pitaevskii equation, a nonlinedin§ehro
equation used to simulate the dynamics of Bose-Einstein condensates. Considering condensates trapped in
harmonic potentials, we present an efficient algorithm by making use of a spectral-Galerkin method, using a
basis set of harmonic-oscillator functions, and the Gauss-Hermite quadrature. We apply this algorithm to the
simulation of condensate breathing and scissor modes.
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I. INTRODUCTION which is the case for most experimental set{{p3,20. The
method we propose is based on the spectral decomposition of
The experimental realization of Bose-Einstein condensa¥ on a basis of harmonic-oscillator wave functions. In such
tion [1-3] has prompted much work on the study of the a representation, the kinetie trapping potential part of the
dynamics of these condensates. From the theoretical sidelamiltonian is diagonal. The nonlinear part is computed by
many interesting results have been obtained using the Groskrward and backward transformations from the spectral to a

Pitaevskii equatiofGPE) [4-6], grid representation. By judicious use of the Gauss-Hermite
quadrature, this can lead to an algorithm that is more effi-
EAG h2 Art2aN cient than those based on grid methods. Although this is akin

ih—= —ﬁV2+Vext+ T|‘I’|2 ¥, (1) to discrete variable representati@VR) methods based on

Hermite polynomials, which have been successfully used for
the time-independent and time-dependent GPE22), our
method is distinct, since our Hamiltonian is expressed in the
spectral representation for both the kinetic and potential op-
erators.

with the normalization condition| ¥ (t)||,2=1V t, to de-
scribe the order parameté¥ (also called thecondensate
wave functionof N condensed bosons of massinteracting
via a contact potential described by the scattering lemgth  \we expose in Sec. Il our spectral method and the resulting
and eventually confined by an external potentigl.. Even  gigorithm. We then present different time-evolution schemes
though the Gross-Pitaevskii equation is based on the appat can be used in combination with the spectral method. We
proximation that all bosons are in the condensed phase (finally give in Sec. IV some results that can be obtained from
=0 K), direct comparison between theoretical and experithe numerical simulation of the time-dependent GPE,

mental results have shown that, in many cases, solutions ¢famely, the study of condensate breathing and scissor modes.
the GPE contain the essential physics of the underlying phe-

nomena [7-10. This nonlinear Schidtinger equation
(NLSE) has been used, in its time-dependent form, to inves-
tigate many aspects of the dynamics of Bose-condensed gas, To simplify the calculation, we will first rescale E(L) in
such as the formation of vorticd41], the interference be- the three spatial dimensionX(Y,Z) and in time,

tween condensatd4d 2], of the possibility of creating atom

Il. SPACE DISCRETIZATION

lasers[13,14], to mention only a few. [ vz

Most of these and other numerical studies of the time- | Moy X (33
dependent GPE are based on grid methods, i.e., discretize the
spatial coordinates on a grid of points, the resulting differen- ho\12
tial equation being usually solved by Crank-Nicholson or Y=(m> Y, (3b)
split-operator Fourier methodsee, e.g., Ref$15-18). We y
must point out that, while much care must be taken in solv- 7 o\12
ing Eq. (1) because of the nonlinearity, we find, to our dis- =( ) Z, (30
may, that many authors give results calculated with the time- Mo,
dependent GPE without even specifying what method they
have used for their numerical simulation. t= iT_ (3d)

In this paper, we wish to focus our attention on the case Wy
where the Bose-Einstein condensate is ifpassibly aniso- ) ) i
tropic) harmonic trap, i.e., We also introduce a new wave functigndefined as

1 V(t,X,Y,Z2)=Ay(1,X,Y,2),
_ 292 2y2 252
Ved X,Y,2)= §m(wxx ToyYTeZ%), @ and, considering the normalization condition
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) Extensions to the three-dimensional case will be detailed in
fR3|‘1’(t.X,Y,Z)| dXdydz=1vt, the following section.
‘ Denoting by ¢(t) the function x— ¢(t,x), it can be
we choose proven[25] that if
m\ 34 - 5 Ix|?
A:(z) (wxwywz)1/4, l/IOEX'_{XEL (R)v R& <+oc’
such that f x| y(x)|2dx< + o |,
R

2
‘H3|'/'(T’X'y’z)| dxdydz=1. Eq. (6) with initial condition , has a unique solution in

CO([0,+[,X)NCL([0,+[,L?(R)) and that both thd 2

The Gross-Pitaevskii equation therefore becomes norm
1/2
Y | wy 1_, x2 wy 1_, y? J’ 2
T X S i A L t = t,x)|cdx| ,
e e e o= [ Juex
1 ra and the ener
+(—§V§+§ +)\|'rlf|2}l/f1 (4) %
N
E=(Hoy(t), (1) + = t,x)|*d
it (How(t), (1)) szW( x)| “dx
wywy| 1 are conserved by the dynamics. A variational formulation of
\=4maN| -+ o | ()  Eq. (6), supplemented by the initial conditiog(t=0)

=iy, Whereyye X reads

Coordinatez should be chosen such tha} is the greatest of

the three frequencidshis is related to the arbitrary choice of

the scaling factor in Eq3d)]. d
As all the physical parameters have been absorbed in theyy ¢ x, i ((1),x)=(Hots(t), x)+ N (| (1) |2(1), x),

nonlinear parametex, calculations with the same can cor- dt

respond to results for different species, but in diverse experi- (7

mental conditions. We can define acceptable lower and upper W(0)= i)

bounds forA by considering the effective range of the dif- 0

ferent physical parameters. Considering only cases where thgymerical solutions can then be obtained by approximating

interparticle interaction is repulsive, i.@>0 and therefore proplem (7) with a Galerkin method: dinite-dimensional

\>0, at the lower end we can consider a snfdlie* Con- subspacety of theinfinite-dimensional vector spac&being
densate ifi=4.0 amu,a=302 a.u[23]) of N=10° atoms in given, we consider

a highly anisotropicoyw, /w,=2mX 10~ ! Hz trap, giving

Search e C%[0,T],Y)NC([0,T],L?(R)) such that

A~1.3, while for a biggeN~10° condensate of heavy at- Search ¢y e C}([0,T],&y) such that
oms such a$’Rb (m=86.9 amu,a=106 a.u.[24]), A can
reach 10 for isotropic traps. In the following, we will re- Vxne A,

strict our study to\ in the range 1—19 considering that the

'(I)'Pirr[]gi]-.Ferm approximation can be used for greater values ; &(‘ﬂN(t)’XN):(HO¢N(t)’XN)+)\(| (D200, x0),

(tS)
A. Th tral-Galerki thod in 1D
c-especra alerkin m-e od in ! | n(0)= .
For pedagogical purposes, we first explain our numerical ) _
method on the simple case of the one-dimensio{id) Denoting by by, . ...¢n) an orthonormal basis oKy
NLSE for the L? scalar product and b (t)=[c,(t)]o=n=n the

vector of CN*1 collecting the coefficients offy(t) in the

Y basis g, ...,on), i.€.,
S0 =Hop(t 0 A Bt Puttx), @ Goremten
with In(LX)= 2 C(D) bn(X),
10 1 problem(8) can be reformulated as
Ho=—>—+=x2
2 9x% 2 SearchC e CY([0,T],CN*1) such that
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dc
i (D=NCH+AF(C(D),

9
C(0)=C,, ©

whereC, are the coefficients af, andh the matrix ofHg in
the basis ¢q, - .. ,oN)

[Coln=(¥0,dn)2,  Num=(Hodm,dn),

and where the functiofr is defined by

N

F<C>n=k|2

Lm=

I klmncic CiCm» (10)
with
limn= fpd): ol ¢m¢: .

The efficiency of a direct implementatiof26,27] of the
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where{x,} are the roots of the Hermite polynomiad,y . 1
and wherglw,} are convenient weigh{80]. By a change of
variable in integral11), it follows that

2N+1 X2
FCh= 3, (%)|¢<xk/ﬁ)lzka/ﬁwn(xk/ﬁ).

Spectral-Galerkin methods are usually not very efficient
[31]; but they can be in the specific case of the NLSE, we are
interested in because of the special form of the nonlinearity.

Let us now denote by e M(N+1,2N+1) the matrix
collecting the values of the basis functiong,jo< <y at the
Gauss points)y) 1<k<an+1:

Pu= d’n(xk/\/z)a

and byWw,=w,e%/\2. An efficient algorithm for the com-
putation of F(C) for a givenC e CN*? reads the following.
(1) Compute the vectow e C2N*1 defined by

v=P'.C.

Galerkin method described above is very poor: the calcula-

tion of the integrald \n, (Which can be precomputed if the

(2) Compute the vectoE e (2N*1 coefficient by coeffi-

basis is small enough that the integrals can be stored inient along formula

memory scales ai)(N“Np), whereN,, is the number of

grid points of the quadrature method, and the computation

cost for one evaluation of the functidh scales as\* [for
each of theN coefficients,0(N®) operations are needgd

Our aim is to show that the Galerkin method becomes

very efficient if (¢q, . ..,p\) are theN+1 lowest eigen-

Ek:VVk|‘I'k|2‘I’k-
(3) Compute
F(C)=P-E.

modes of the harmonic oscillatet,. In this case, indeed, the The vectorsC and ¥ are the representation of the wave

vector F(C) can be computeéxactly (up to round-off er-

function ¢ in the spectral basisp, }o<n<n @nd in real space

rors) in O(N?) operations. Let us recall that the eigenmodes(at the N+ 1 Gauss pointéx, /+2}), respectively. Stepd)

(d’n)nel\f of Ho read
Ba(X)=Hp(x)e X7,

where H,(x) is the nth Hermite polynomial[28], and that
they satisfy

. 1
with E,=n+ .

Hodn=Enén 2

In such a basis, the matrikx is therefore diagonalh
=diag(Ey, . . . ,Ep). In addition, for anyC e CN*1, one has

F(C)y= fR|¢(x)|2¢(x>¢n(x)dx, (11)

where y(x) ==N_c,#n(x). The key point is now that for
any n<N the integrand in Eq.(11) is of the form

Q(x)e‘zxz, whereQ(x) is a polynomial of degree lower or

and(3) of the above algorithm scale quadraticallyNr(these
are matrix-vector producksand stef2) scales linearly irN.
We therefore end up with an algorithmic complexity in
O(N?).

In practice, the functio®€— F(C) is called one or several
times at each time step; of course, the mafias well as the
weightsw, can be precomputed once and for all and stored
in memory.

B. The spectral-Galerkin method in 3D

Let us now turn to the 3D setting and consider the res-
caled equation

. | ®x Wy
Iﬁ(tixvyiz)_ w_ZHO(X)+w_ZHO(y)+HO(Z) 'p(taXvYaZ)
+M gt x,y,2) [Pyl x.y,2), (12)

with

equal to N; each of theN+1 integrals can therefore be

computedexactlywith a Gauss-Hermite quadrature formula 1 182 1
involving 2N Gauss point§29]. More precisely, we have, Ho(x)=— ——2+—x2, Ho(y)=— 5 =y
for any polynomialQ of degree lower or equal toNj, 2 gx 29y* 2
o 2N+1 1 (92 1
f Q(X)e_xzdxz > Wi Q(xy), Ho(2)=—5 —+52°
— k=1 2 9722 2
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ForA=0, a global-in-time existence and uniqueness resultis  [p,] \ =&, (X, /v2), [Pylnk =dn (Vi /V2),
available for Eq(12) with initial condition ¢(t=0)= ¢, and XN T yinyly Tyt Iy

Joe X={yeL2(R?), Vye[LAR})J, [Paln,= bn,(2,/\2),

(+y2+72)Y2 e L2(R3)). and the weights

X X2 y ay? 7 7
On the other hand, it is well known that finite-time blow up ax_ Wi & Ty Wi, € G- Wi, e
may be observed fox<0 and for some initial conditions 2 N )
[25]. As stated above, we focus here on the case where
=0. The following algorithm for the computation &f(C) scales

Following the same lines as in the Sec. Il A, the approxi-in O(NN,NyN,) whereN=maxN,,N,,N,).
mated wave functionsy(t) is expended on the spectral ten-

sor basis set (1) Set WSS=C.
NZ
(&0, (X) &0, (Y) b0 (2))o<n,<N, 0=n =N, 0=n,=N, (2) Compute\lfﬁsnsk =S [P \I’ﬁsnin 7
x'lyRz n,=0 2"z X! z

One therefore has
O(N,N,N2) operations.

N

'r/fN(t:X,y,Z) N
y
y Compute SRR = > [Py]nyky‘PSSR
ny:O

& < (3) -
= Z 20 Cnxnynz(t) d’nx(x) d’ny(y) ¢nz( 2). Mikykz Menyky !

ny=0 ny=0 n,=

(13 O(NxNZN,) operations.

The equation satisfied by the three index tendor RRR Ny SRR
=[Cn,nn,] in the Galerkin approximation formally has the (4) CompUte‘I’kxkykZ:nE:O [Pdng Yk,
same expression as in 1D, )

Je O(NZN,N_)operations.
i ——(t)=hC(t) +\F(C(1)), ~ o~y o~
gt (D=CFAFCM) (5) Compute ZEK5 =wy Wy wi |WERS [PWRET .
the linear operatoh now being defined by O(NxN,N,) operations.
[hC] nxnynZ: Enxnynzcnxnynzv RRS 2Nz +1 RRR
(6) Compute ZF%5 = 2 [PlnERck,.
. Xy''z K=1 xty'z
with
2 .
oy 1 o 1 1 O(NyNyN3) operations.
Enxnynz— CU_Z ny,+ 5 + C!)_Z ny+ E +| n,+ E , N+
—=RSS _ =RRS
(7) Compute Z¢, " k2:1 [Pylnx Zickn,:

and the nonlinear functioR(C) by

O(N,NJN,) operations.
F(C)]nxnynzz JH3|‘ﬁ(xryiz)lz‘ﬁ(xryiz)¢nx(x)¢ny(y)

2Ny +1
X ¢y (2)dxdydz (8) Compute 2555, = X [PulngEkan,
wherey(x,y,z) is given by Eq.(13). O(N3N,N,) operations.

Let us denote by{xk}1£k<2Nx+1a {yk}lék£2Ny+1r
{zi}1=k=2n,+1 the roots of the Hermite polynomials (9) SetF(C)=E°%%

X
Honenr Mangrss  Honyea  and Widi<k=ane1 1 the above formulation, the superscri@sindR stand for

{Wihi=k=an,+10 {Wit1=k=2n,+1 the associated summation spectralandreal spacerepresentations, respectively. In other
weights. Let us also introduce the matricge M(N,  words, steps2)—(4) constitute the successive transformation
+1,N,+1), Pye M(Ny+1,2N,+1), P,e M(N,+1,2N,  of the wave function from the spectral basis to a spatial rep-
+1) defined by resentation on the series of points of the Gauss-Hermite
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guadrature. The nonlinear term of the Hamiltonian is then N

calculated in this spatial representat[step(5)], while steps

XN(ET)= 2 Ca(t) hansa(r),

(6)—(8) correspond to the inverse transform back to the spec- n=0

tral basis. It is this procedure of forward and backward trans-
formation that allows us to obtain a much better scaling tha

the implementation of Eq10).
The scaling of the above algorithfO(N*) if N,=N,

=N,] has to be compared with the scaling of fast Fourier

transform based algorithms which scale@(NgIogz(Np)),

where N, is the number of grid points per direction. The
main interest of the spectral method is that for a similar
accuracy, the number of spectral basis functions per direction
(here denoted bW) can usually be chosen much smaller

than the numbeN,, of grid points per direction. This is es-

pbeys once again a dynamics of the form

dcC
i E(t): hC(t) + NF(C(t)).
Here

3
with E2n+1:2n+—

h=diag Ezn+ 1) 5

pecially true when the problem considered displays a symand
metry in one or more of the directions, in which case the

basis set used in the Galerkin approximation @@) can be
restricted to even harmonic-oscillator functiditsthe corre-
sponding direction We will come back on this important
feature of the spectral method in Sec. IV.

C. Exploiting spherical or cylindrical symmetry

When o,=w,=w, the one-particle Hamiltonian pos-
sesses spherical symmetry. If the initial conditigp= ¢(t
=0) has the same symmetry, then the wave funcift) is
spherical symmetric for anyt>0: (t,X,y,z)=(t,r),
wherer = (x?+y?+z%)2 is the radial coordinate. Equation
(4) leads to the effective 1D dynamics

2
i‘;—lf= —%%(M%)JF%HWF . (14
Let us now define the function
V2 y(t,r) if r>0
X(t’r):[ — 2mryt,—r) if r<o.
It is easy to check thay actually satisfies the 1D NLSE
2
iZ—T=H0X+)\2|:|r2X.

Besides, for anyt>0 the functiony(t): r—x(t,r) is odd
and belongs td.?(IR) since

+ oo + o
J |X(t,r)|2dr=j Amr?|y(t,r)|?>dr=1.
> 0

It can thus be expanded on thdd modes of the harmonic
oscillator:

+ oo

X(t,1)= 2 cn(t) dhansa(r).

n=0

A spectral-Galerkin approximation can now be used. Th

vector C(t) e CN*1 collecting the coefficient§cy(t))o=k<n
of the approximated wave function

r 2
[F(O)]n= fl{%xumzm(r)dr,

where x(r)=3=N_ochdoni1(r). As for any O<n<N,

ngZnH(r)=rP2n(r)e‘r2’2 whereP,, is a polynomial of de-
gree equal to @, it follows that the above integrals can be
computed exactly with M Gauss points.

Let us now turn to the cylindrical symmetry whéfor
instancg w,= wy, and when the initial data readg(x,y,z)
= o(r,z) with r=(x>+y?)¥2 In this case, the cylindrical
symmetry is preserved by the dynamics so that for any
>0, y(t,x,y,z2)=u¢(t,r,z) and the time evolution of
Y(t,r,z) is then governed by the 2D equation

Oy ey 1 9| a\ r? 19 2z
i—=|—{ —0——|r—=|+=(+
ot W, 2r ar |\ or 2

252 2
+ N[yl

b, (15

set on the spatial domaiR* X R. Defining a new function
x(1,r,2) on the space domaiR? by

Y(t,r,z) if r>0
t,r,z)= .
X( ) Y(t,—r,z) if r<o,
it occurs thaty satisfies
] 1% r? 10 272 10
i_X: & _ Yt — |+ - = —+ _&__
N | w, 2 912 2 2 972 2 w, 21 9r
+NIxI? | x (16)

on the space domaiR?, and that, by construction, the func-
tion r— x(t,r,z) is even. A spectral-Galerkin approximation
is obtained by expanding the wave function on the spectral

densor basis set

(¢2nr(r)¢nz(z))0<nrsNr ,0=n, <N,
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The coefficients (lﬁnrnz)ognrgNr 0=n,<N, of the expansion are _ AT _ )
solution of an equation of the same form as above, exf —iH(r)Ar]=exg —iT—|ex —i(V+A[y[9)Ar]
.dC At
= (=hC(L+\F(C(V). xex;{—iTT ro(ar), 20

The main difference is that in this case, the linear nmap

k with T the kinetic operator an®f the trapping potential. The
takes into account the operater(1/2r)(d/dr):

middle term is diagonal in position space, while the kinetic

Wy 1 1 part is diagonal in momentum space. A fast Fourier trans-
[hC]n,nf w—( n, + > +{n,+ 5) Cnrnz form is thus used before application of the kinetic operator,
z followed by the inverse transform. Note that if the interme-
1 w, Ne (1 d¢2mr ) diate wave function at time+ A7 is not needed, the two
- — ————don| Cmn. successive kinetic operators half steps can be combined.
2wzm=0 |l dr Tz T From a previous stud35], it appears that the split-operator

method is the fastest algorithm for solving a NLSE on a grid.
Let us remark that the scalar product

((1/r)(dpom, /dr), ¢y ) 2 is well defined since the first de-

) IV. RESULTS
ref2

rivative of ¢, is of the formrP, (r)e™" “whereP,, is a
polynomial of degree &, ; in addition, it can be computed
exactly by numerical integration withr Gauss points. It is
worth pointing out that the “Hamiltonian” in Eq(16) is not
self-adjoint because of the term(1/2r)(d/dr) and that the
L2 norm of x(t) is not a conserved quantity; on the other
hand, theL? norm of y(t) for the measure r dr dis con-
served.

The first test we perform is the propagation of the ground
stationary state (obtained from the time-independent
GPE solved by a method based on the optimal damping al-
gorithm[36-38), while monitoring the value of the coeffi-
cientsc(7) of the expansior(13). For the spherically sym-
metric case, we require that the relative error on the
coefficient(which has the largest absolute vallee inferior
to 1078, i.e.,||co(7)|?—|co(7=0)|3|/|co(7=0)|?’<10 8V 1
€[0,10Q. This criterion also results in an absolute error of
all coefficients|c,(7)|2—|c,(7=0)|?<10"8. We have also

When a spectral-Galerkin method is used to discretize thehecked that the phase of the coefficients is correct, by cal-
space variables, one ends up with a finite-dimensional dyculating [c,(7) —c,(7=0)e™"#"|?/|c,(7)|?, whereu is the

IIl. TIME DISCRETIZATION

namical system of the form chemical potential of the ground stationary state of the GPE
dc [6], and this value indeed is less than 18
: In this 1D case, we neebl=20 basis functions foi
——(t)=hC(t) +NF(C(1)), 1 Y i
'dt( ) (® Cw) (17 =100, and the resulting time step for the Runge-Kutta

o - ~ propagator isA7=0.005. If A=1000, the basis set used
with initial condition C(t=0)=C,. We then use a basic ghould be slightly largerN=26, with a smaller time step
fourth-order Runge-Kutta methd@2] to solve Eq(17). Let A 7—0.0025 to insure that the above error criteria are met.
us mention that, as the Hamiltonian character of the NLSE igpe resulting propagation time up te=100 is 8.9 s forx
preserved by the spectral-Galerkin discretization, it would be— g (calculated on an Athlon 1.2 GHz processor running

possible to resort to symplectic methof3]; such algo-  nder Linux, using the NAG Fortran 95 compiler at th©2
rithms, which are particularly advised for long time evolu- |oyg| of optimization and 28.3 s foi = 1000. If we double
tion, are, however, not tested in the present work. the size of the basis set, we get a CPU time of 32.9 s\for

We will also use a grid method, based on the split-_ 109 showing the expectd@(N?) scaling of the algorithm
operator method, to serve as a benchmark for the spectrg| 1

algorithm we have just detailed. We recall below the main
features of this approach.

The wave function at time~+ A 7 can be obtained from
the wave function at according to

Comparing now with the grid method described in Sec.
I, we useN,=64 grid points in the range-8<r=<8. The
time step used if 7=0.000 25, resulting in a propagation
time of 10.3 s, which is slightly longer than what we obtain

_ using the Runge-Kutta method.

WrtAn=Ulr 7+ An)(7), (18 We now apply our algorithm to study the dynamics of
trapped condensates. Referring again to the spherically sym-
metric case, we start with the stationary ground state for an
isotropic trap frequencys. We then let this initial statey,

U(T,T+AT)=exp[—iH(r)Ar], (19 evolve in a trap of frequencw/2, as illustrated in Fig. 1,

corresponding to an experiment where the frequency of the

whereH(7) is the Hamiltonian of Eq(4). As the potential potential trapping the condensate would be instantaneously
and nonlinear components of the Gross-Pitaevskii Hamilteduced by a factor of 2. The corresponding time-evolving
tonian do not commute with the kinetic operator, we applywave function|(t,r)|? is shown in Fig. 2, foix=10. We
the split-operator metholB4] to obtain must note that the values of we give correspond to the

with the propagatoﬂ(r, 7+ A7) being expressed, for suffi-
ciently small intervalsA r, as
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hy(r=0,n)I°

FIG. 3. “Breathing” of the condensate after expansion from a

FIG. 1. Trapping potential® (solid line) andw/2 (dashed ling  trap of frequencyw to w/2. The value of the wave function in the
used to simulate the breathing modes of a condensate. The way@nter of the trap|y(r=0)|2, is given as a function of time-

function |¢(r)|2. of the stationary state for potentia with A (scaled with respect to the final trap frequena2) for X equal to
=100 is also giver(dotted ling. 0 (solid line), 10 (dotted ling, 100 (dashed ling and 1000(dot-
dashed ling
condensate in the initiab-frequency trap, the effective value ) ) ) .
being used for the time evolution is thus scaled by2lfsee part_|cle repulsion. Startl_ng from an unperturbed_ harmomc
Eq. (5)], while 7 is rescaled with respect to the final trap gscnlat(_)r (=0), for which the complete cycle time is
frequencyw/2. We can see the “breathing” of the conden- =47 With recurrences every=m, we observe that the os-
sate as it expands and recontracts in the trap. cillation frequency of the condensate in the trap increases
Itis also interesting to look at the effect of the value of theWith & greater value ok. - _
nonlinear parameter on the breathing frequency of the con- FOr the 3D case, we will study the scissor m¢a,40 of
densate, as seen in Fig. 3. First, we note that the initial der {fapped condensate. We consider a pancake-shaped con-
sity at the center of the trap is lower for bigger values\of ~ densate, formed in an anisotropic trap with= v, <w,, see
which is expected because of the corresponding higher intef-19- 4- They andz axes of the trap are instantaneously ro-
tated, att=0, by an angled around thex axis. The conden-
sate then starts to oscillate in the trap, leading to the so-
called scissor mode.
29
18
1.6
1.4
12
5 19 \
% 00 ‘ :
1‘@ 3

z

Yo

FIG. 2. “Breathing” of the condensate after expansion from a ¥

trap of frequencyw to w/2. The density profilgéy(r)|? is given as FIG. 4. Representation of the study a condensate’s scissor mode.
a function of timer (scaled with respect to the final trap frequency The condensate is initially tilted with respect to the trap’andz
/2) for an initial A = 10 ground stationary state. axes by an angl®.
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Using the parameters of the experiment of Maragal.
[40], we first determine the stationary state for a condensatse
of N=10* 8Rb atoms in a trap withv,=255 Hz, w,/w, 3
=o0ylw,= 1/\/8, resulting in a valua = 147.1. The conden-
sate is then tilted by an angle 6f=3.6°, with the trapping 2 X \
frequencyw, reduced by 2%, resulting in a new value of ! >‘<\ %
=148.6. We then calculate the free evolution of this tilted : / 1
condensate. We report, in Fig. 5, the angle between the cong
densatelas determined by the main inertia axend they
axis, as a function of time for the free evolution of the con-
densate in a trap. The oscillation frequency, in these condi-
tions, is found to be 1.106n rescaled units corresponding ol \
to 276 Hz. This simulation was done using a basis sel of A / <y
=29 functions in each dimension, using a time step 3t 3
=0.005. The calculation time for a propagation of duratton ,(J X
4 . .
2 4 12

is then~1735 s. The main advantage of using a spectral-
Galerkin method, as noted in Sec. Il B, is that in this case we
FIG. 5. Time evolution of the anglé for the scissor mode. The

can restrict the basis set in tixedimension by using only
even ha.rmonlc-oscnlator functlons,l since the reflection Symf:rosses correspond to the angle resulting from the time-dependent
metry with rt_aspe(_:t to thgOz plane is conserved. The_num- calculation, along with the corresponding fit=3.6 co$1.105r)
ber of functions is thus reduced té,=15, resulting in a
decrease of CPU time te-1030 s for k. This compares
favorably with the grid method, for which an equivalent cal-
culation with 64x 64X 64 grid points takes=1700 s(using
the same time step and grid spacing as for the 1D grighyr method by a suitable choice of weighted polynomials.
The main distinction between the usual DVR approach and
our method is that we treat the kinetic and potential terms of

V. CONCLUSION 00 € e >lic a
the Hamiltonian conjointly, as detailed in Sec. Il.

We have presented the application of a spectral-Galerkin We have successfully applied our algorithm to simulate
method to the numerical solution of the Gross-Pitaevskitwo different dynamical aspects of trapped BECs. Making
use of the spherical symmetry of an isotropic trapping poten-

6 (deg)

% |
e

%7

T Xl

(dashed ling

approximations in the computation of these integrals. Let us,
however, remark that the same property can hold within the

method.

equation, describing a Bose-Einstein condens@&C)
trapped in a harmonic potential well. This method is basedial, we used an effective 1D equation to study the breathing
on the decomposition of the condensate wave function on thef a condensate that is allowed to expand from more confin-
a basis set of eigenmodes of the harmonic oscillator, whilgng trap to a looser one. In the 3D case, we have looked at
the nonlinear term in the GPE is calculated using the Gausshe scissor modes of a pancake-shaped condensate, for which
Hermite quadrature. The resulting algorithm scale®{N*)  the trapping potential is suddenly rotated along one axis.
for a full 3D problem(whereN is the number of basis func-  Future work will focus on the implementation of better
tions used per directionwhich is slightly worse than the time-evolution algorithms on our spectral method and on its
O(Nglog2 N,) scaling obtained for grid-based Fourier meth- possible parallelization. Extensions will also be made to con-
ods. Nevertheless, the required number of basis functionsider other terms in the Gross-Pitaevskii Hamiltonian, such
needed for a given problem can be much smaller than thas the potential created by the interaction with a laser field,
or coupled Gross-Pitaevskii equations used in the simulation

number of grid pointsN,,

allowing for fast and efficient
calculations using the spectral method. We have shown howf two-species condensatggl| or of the formation of mol-
the propagation in time can be carried out using a Rungeecules in atomic condensatet?,43.

Kutta method on a set of coupled ordinary differential equa-
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