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Determination of the composition of light thin films with artificial neural network analysis
of Rutherford backscattering experiments
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AIO,N, ultrathin films are used as insulating layers in advanced microelectronic devices. Structural charac-
terization of these films is often done by the Rutherford backscattéRBg) analysis. The RBS analysis of
these oxinitrides is a difficult task since the relevant signals of the spectrum are washed out by the large
substrate background and a considerable time is required for an analyst to characterize the sample. In this work
we developed specialized artificial neural networks that are able to perform a fast and efficient analysis of the
data. The results are in good agreement with traditional methods.
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[. INTRODUCTION from N and O are small and superimposed to a large back-
ground Si signal, and the Al signal is also partially superim-
Conventional methods involve the use of interactive orposed to the Si background. Due to these difficulties we have
batch-oriented computer codes, suchrasip [1] andNDF  recently organized a round robin experiment in collaboration
[2], that need the intervention of an analyst. The time neede¥ith the International Atomic Energy Agency to address this
to perform the analysis is in favorable cases of the sam@roblem with different analytical techniqués3]. ,
order of magnitude of the Rutherford backscatteriRBS) Here we describe the results of applying ANN to this

spectrum acquisition, but with interactive codes and complegYStem- The basis ANN structure was adapted in order to
eal with the different data manipulation necessary to tackle

spectra it can be very time consuming. On the other hangf . . >

artificial neural networkg§ANNs) are becoming a reliable IS pro.blem, namely., smoothing and dlﬁgrent|at|on neces-

alternative on the RBS data analysis, achieving the Samlgary to improve the signal-background ratio. To evaluate _the

accuracy of other methods while being faster and muc NN results, we assume as reference the valu_es obtained
with the usual formalism for RBS spectra analysis, namely,

easier to interpret by the analyst. ; ) ; ;
ANNs have been previously applied to the RBS dat the peak integration method and the step height analysis

analysis with considerable success. We studied systems :
increasing complexity, starting with Ge-implanted [Si], Il EXPERIMENTAL DETAILS
where we have a Ge signal well separated from the single-
element background. We then applied it to a more complex We prepared two sets of samples grown(@00) silicon
two-element background, namely, Er implanted on sapphirsingle crystals. The first set, composed of three samples
[4]. Finally, we used ANN to study thin films of NiTaC de- (1-3), had nominal composition AIN. Small amounts of oxy-
posited on Si and analyzed with protofd, where several gen present in the chamber were incorporated in the samples
signals are superimposed. Note that in this case the scatterinlyiring preparation. This set was prepared by reactive mag-
cross section of C and Si varies rapidly with energy, thusmetron sputtering of an Al target in a Nordiko 7000 system.
increasing the difficulty of spectra interpretation. In thisSamples 1 and 3 have a nominal thickness of 1000
work we push the applicability of ANN to the limit by con- x 10 at./cnf and sample 2 has 56010 at./cnf. The sec-
sidering a highly complex system of great technological in-ond set is composed of two samples, 4 and 5, with nominal
terest. composition A}O; and nominal thicknesses of 200
Thin films of AIN, O, are being used as insulating barriers x 10'° at./cn? and 1500« 10'° at./cnf. They were prepared
between the metallic layers of spin-tunnel junctions for ad-by ion beam sputtering of an Al target in a Nordiko3000
vanced read and recording devi¢és-9]. The RBS analysis system, using an Ar-O beam during the depositiassisted
of these films is not an easy tagfk0—12. Relevant signals deposition [15].
The RBS analysis was performed using a‘Haseam at
the ITN 3 MV Van de Graaff accelerator. We used beam
*Corresponding author. Faxt351-219941049. Email address: energies between 1.0 and 1.9 MeV, and angles of incidence
nunoni@itn.pt 0inc between 0° and 30°. We used an annular surface barrier
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The input layer receives the RBS spectrum data to be ana-
lyzed along with some experimental parameters related with
the spectrum, namely, the beam energy, angle of incidence,
and deposited charge. At the output layer, containing four
nodes, the three elements concentrations and the film thick-
ness are presented. Although the RBS spectra used for train-
ing have 512 channels, we only used 207 channels, where
the Al, O, and N signals are relevant. The input layer has,
therefore, 210 nodes considering the three experimental pa-
rameters. All ANNs have three hidden layers containing 80,
40, and 20 nodes.

We used four ANNSs, one dedicated to raw data analysis
ANN,..), another dedicated to the smoothed data
detector in the IBM geometry placed at about 180° to the ANN,,omel). ONe dedicated to the analysis of the smoothed
!ncident beam dirt_action. The energy resolution of the systemnq differentiated data (ANMerentiared, and finally one
is 26 keV at full width half maximuniFWHM). The product o5 10 the previous, but without information of the experi-
of the detector solid angle with the analyzing beam quencqnental conditions (ANN, expt. parar) ThE architecture of the

was between 2.6 and 3154 msr. networks is(N, 80, 40, 20, 4 with N=210 for ANN,,.
IIl. ARTIFICIAL NEURAL NETWORKS ANNgmoothea  @Nd ANNjifterentiaes  @nd  N=207  for

ANN expt. param.

FIG. 1. Schematic representation of an ANN with two nodes in
the input layer, one node in the output layer, and two hidden layers.

A. Basic principles

An artificial neural network is a simplistic electronic C. Training and test sets
model inspired by the intricate web of neurons that compose Analysis of AIQ\N, thin films is a rather complex prob-
the brain. In this organ, neural cells are highly connecteqem since the si nalé from N and O are small and verv close
through synapses exchanging excitatory or inhibitory signals,” 9 y

Feedforward ANNs try to capture the brain computationali%ﬁ%cg g::jesr. oiu;Lh:rsmzraeréSgr;caéheelt?mufser:fuor;dbgrrOZ? szlcs-
efficiency by considering several layers of artificial neurons P q » SI9
rom these elements are washed up by the stronger signals of

that are fully connected by the set of weights, see Fig. 1. Thfweavier elements contained in the films. Finally, a small sig-

ANN architecture is specified by the number of layers an . : ; : . .
the number of nodes in each layer. A signal is presented t8a| is received in the multiple scattering background region

the input ayer and the cortesponding result o the owpuf % R CI2 0 L3 L e ons
layer. Training is performed by adjusting the connection y

weights in order to minimize the difference between thethe beam sgffers, |n.add|t|on o the Rutherford packsca}ttenng
events, on its way in and out of the sample, increasing the

ANN result and the desired output. This procedure tries tonumber of counts for certain channels in the RBS spectrum
mimic the massive parallel capabilities of the brain. P '

These networks are versatile systems that are able to red0 Make the analysis task even more difficult, some of our

ognize recurring patterns in data, which make them suitablgPECla were channeled, due to the channeling effect in the

rystalline Si buffer.
tools to analyze the RBS spectra. Note, however, that aftet To teach the ANNs, we fed them with a large set of the

the network is trained the information that codifies the mapRBS examples. called the training set and another smaller
between input and output is delocalized all through the con: PIes, 9 ’

nections weights array. ANN is thus a black box almost im—![gﬁgpeggi Eﬁasreé;?etf:tbtgneg gig;ﬁanggrﬂﬁ] tgztege[t)' Vge
possible to decipher by the user. P 9 P y

The size of the network depends on the problem complex§umc'emly large and representative set of examples that ad-

ity and the amount and quality of the training data. Since Weequately represent all possible experimental situations. We

have a reliable numerical code to generate pseudoexperimeH§6d a computational ch{@,S] to obtain 2(.) 0.00 S|mulated .
tal spectra the amount of data is not a relevant problem Thigxperlmental_data, to which v_ve_added reah_stlc P0|sspn noise
allows us to work with relatively large networks Withbut in order to simulate the statistical fluctuation associated to

warring with the usual training problems like being trappedthe experimental data. The obtained spectra were initially
on a local minimum. supposed to cover all the experimental conditions we used to

In this work we used backpropagation supervised learnin nalyze our samples, namely, beam energy between 1 and 2

[16] where a large set of examples containing a set of inputs eV, angle of incidence between40" and 40°, charge-solid

. : gle product between 52.4 and 388 mst, film thickness
in our case the spectra and the experimental parameter, aggtween 150 and 85010 at./cn?, Al atomic concentration

the corresponding outputs, implanted elemental doses, a eetween 19% and 77%. O and N atomic concentrations be-
tween 0% and 68%. In fact, sample 5 is thicker than the
upper limit in these training data, and in a few cases the
analyzing beam fluence was lower than the lower limit used.
The network architecture is defined by the size of theThis provides us with the cases where the limitations of the

input layer, the number of hidden layers and the output layerANNs developed can be tested.

presented to the network.

B. Network architecture
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™ 30__ ] Since the O, N, and Al peaks change rapidly, while the Si
€ 55 background signal is nearly constant, the relevant signals
8 should be enhanced by smoothing and differentiating the raw
© 20 data spectra. Figure 3 shows two examples of differentiated
S Ty, spectra. We used smoothing and differentiating routines with
© 15'_ cubic fitting splines and adaptive smoothing weights pre-
> 101 scribing third end point derivativeld’ (xg) = " (x,) =0 [17].
] This procedure leads to differentiated data with minimized
5 fluctuations due to statistical uncertainties.
0 r T T r - ST FLP i .
50 75 100 125 150 175 200 E. Training and overfitting
Channel From the set of simulated experimental RBS spectra,

18000 examples were used to train the network, while the
FIG. 2. The RBS spectra of samples 3 anda}.Raw data. The

i ¢ ) other 2000 were used to test the network, not being used for
solid lines are results obtained with ANfreniates: (0) Smoothed  aining. For each example, the corresponding output is com-
data.

pared with the output evaluated by the ANN. The calculated

error, a mean-squared errdvISE), between the ANN result
To simulate the channeling in Si that leads to a reductiorfnd the expected result is used as a control tool to adjust the

in the yield due to the Si crystal, we used a zeroth-ordeMV€ights between the nodes during the feedforward back-
approximation, which consisted of multiplying the Si signal ptropagatlf?n 'e?m'f!g prtpcess. ”I::ﬁnng the tr.?r']nml%]/lsag(? test
with a constant between 0 and 1. This ignores the fact thaﬁjages’ ater a few iterations, afl th€ cases with a arger

. o=
the yield reduction due to channeling depends on the beary an 40% are excluded from both sets, as can be seen in Fig.

: ) around iteration 50. The MSE evolution with the iterations
energy, on the probed depth, and on the exact orientation @ snown in this figure for the training and test sets.

the crystal relative to the incident bedr4]. There is no The learning process should stop to avoid overfitting. This
simple and accurate way of calculating these effects, whiclpoint is achieved when the test set error starts to increase, as
is a problem in data analysis using conventional methodszan be seen in Fig. 4 after iteration 3000. The final weights
where the simple approximation used would lead to wrongaken are those for which the test set error is smallest. Table
results. However, ANNs are, in principle, able to abstracl shows the final MSE for the train and test sets for each
these features, and this zeroth-order approximation shouldNN. In all cases they are rather small, indicating that the
suffice, particularly when combined with the methods to re-networks could generalize well the patterns in the data. The

duce the influence of the background in the analysis. errors are smallest for AN}, comparable for ANNoothed
and ANNjiferentiatess @Nd largest for ANN, expt. param NOte
D. Data preprocessing that these errors are only an indication of the performance of

] ) ANNSs on the trained data. The real test is their performance
Since these spectra are composed of small signals on tQf, rea| experimental data

of a large background signal, we had to develop numerical
transformations to better expose the relevant S|g.ne}ls. First, IV. RESULTS AND DISCUSSION
we smoothed the raw data in order to reduce statistical fluc-

tuations. This proved to be ineffective as can be seen by We trained and tested the ANNs to analyze the RBS data
comparing the raw and smoothed data in Fig. 2. from our samples. In all cases the results were compared
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17777/ 7T T T T TABLE |. Mean-squared errors in the training and test sets for
) ] all the studied networks.
Network Train set MSH%) Test set MSH%)
ANN 2.2 2.8
ANNgmo0th 2.9 3.7
ANNdifferemiated 2.4 3.4
_: ANNp, expt. param. 3.1 4.3

- Testset

Mean square error
o
o

spectra measured from each given sample. The standard de-
viation of the ratio values is also shown in the table since it

Training set | reflects the stability of the ANN against the variation of the

experimental conditions. Even for an average ratio of 1, a

.01 +—r—/fm—m———r———7——— 11— high standard deviation would mean that the ANN performs
0 50 1000 2000 3000 4000 5000 6000 7000 poorly.

Training iteration We see that the results from all ANNs are in general good

and fairly similar. The most important exception is sample 5,
FIG. 4. Mean-square error evolution with the training iteration. where all ANNs performs poorly. This can be explained by

Overfitting starts around iteration 2000, where the error on thehe fact that the film thickness(nominally 1500
training set continues slowly to improve, but the error on the test se 10 at./cm’-) is significantly above the maximum value
settles around the same value and starts to worsen after some itefgsed to train the ANNs (85010'° at./cnt), which means
tions, as can be verified around iteration 5000. that this sample is outside the range where the generaliza-

tions capabilities of the ANNs are valid. This shows that the
with reference values obtained by applying the peak integrarepresentativeness of the training data is a determinant factor
tion method 14]. A comparison between the four networks is of the reliability of ANN predictions.
presented in Table Il. To evaluate the quality of each net- The similarity of results obtained with AN, and
work, the ratio between the ANN result and the referencéANNgootegindicates that the network analysis did not im-
value is calculated for each sample. The ANN result wagprove much by smoothing the raw data. Smoothing could
taken to be the average of the results obtained for all theeduce slightly some noise, but since the relevant signals

TABLE Il. Average and standard deviatian(between parenthese®r the ratio between the ANN values and the reference values for
the film thickness, Al, N, and O concentration for all the samples from different spectra, as obtained with the four different ANNs developed.
For samples 4 and 5 the values are based on two spectra only.

Sample ANN Thickness [Al] [N] [O]

1 raw 0.92(0.12 0.87(0.08 1.17(0.08 0.75(0.5)
smoothed 0.920.12 0.85(0.08 1.2(0.08 0.78(0.5

differentiated 0.940.16 0.94(0.1) 1.07(0.1) 1.1(0.3
no expt. param. 0.840.19 0.83(0.08 1.14(0.09 1.66(0.78

2 raw 1.14(0.18 0.76(0.17) 1.19(0.09 1.5(1.3)
smoothed 1.40.18 0.77(0.2 1.17(0.09 1.59(1.29
differentiated 1.060.08 1.01(0.08 1.02(0.08 0.79(0.39
no expt. param. 1.000.1H5 0.98(0.11) 1.04(0.1) 0.79(0.26
3 raw 0.91(0.17) 0.95(0.13 1.12(0.13 0.51(0.88
smoothed 0.90.15 0.93(0.11) 1.1(0.15 0.85(0.86)

differentiated 0.8580.15 0.99(0.12 1.04(0.1) 0.86(0.3
no expt. param. 0.860.12 0.93(0.19 1.09(0.11) 0.92(0.5)
4 raw 1.14(0.21) 0.83(0.09 7.16(0.69 0.75(0.1H
smoothed 1.10.2 0.89(0.1) 6.91(0.63 0.73(0.16
differentiated 0.820.17 1.13(0.1 1(0.27 0.98(0.07)
no expt. param. 0.810.16 0.95(0.09 1.3(0.3)) 1.09(0.08
5 raw 0.08(0.03 1.27(0.12 16.82(1.72 0.01(0.04
smoothed 0.110.07) 1.09(0.1) 19.1(1.83 0.01(0.05
differentiated 0.1(0.03 1.38(0.11) 15.21(1.64 0.04(0.01)
no expt. param. 0.10.01) 1.7(0.19 10.29(4.59 0.09(0.02
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TABLE Ill. Results from the ANNiferentiateq @nalysis of all the experimental spectra obtained from our sample sets, with different
experimental conditions and the calculated reference values for the same samples. The shaded parameters are outside the range used in tt
training.

Thickness (18 at./cnt) [Al] (at. % [N] (at. % [O] (at. %
QxQ Energy
Sample Spectrum (uCmsp ;. (keV) ANN Reference  ANN Reference ANN Reference ANN Reference
1 aaln0 314.4 0° 1900 708.46 790.1 47.18 51.3 49.1 44.8 3.71 3.9
aalnl 157.2 30° 1900 712.18 49.31 46.7 4
aaln2 157.2 0° 1900 768.58 48.21 48.08 3.71
aaln21 2.57 7° 1900 439.75 46.79 47.63 5.57
aaln22 15.72 7° 1900 867.45 57.36 38.29 4.35
aaln23 78.6 7° 1900 951.11 53.99 42.79 3.22
aaln24 62.88 30° 1900 683.69 49.41 46.51 4.08
aaln3 157.2 7° 1500 699.12 42.91 52.2 4.89
aaln4 157.2 0° 1500 802.14 44.56 50.81 4.62
aaln5 157.2 30° 1500 721.38 45.96 48.57 5.47
aaln6 157.2 7° 1100 808.72 44.49 52.06 3.45
aaln7 157.2 7° 1100 808.7 44.49 52.05 3.45
aaln8 62.88 30° 1100 702.43 49.35 45.49 5.16
2 aalnl17 157.2 7° 1900 436.06 413.65 47.56 47.6 49.49 47.5 2.95 4.9
aalnl8 78.6 30° 1900 394.82 41.66 54.34 3.99
aalnl3 157.2 7° 1500 487.23 49.04 46 4.96
aaln14 78.6 30° 1500 456.83 49.67 45.6 4.74
aaln9 157.2 7° 1100 426.34 51.18 45.4 3.42
aaln10 78.6 30° 1100 425.16 48.19 48.51 3.29
3 aaln19 157.2 7° 1900 856.07 792.5 49.8 48.2 44.19 45.1 6.01 6.7
aaln20 78.6 30° 1900 558.24 46.48 48.22 5.3
aaln15 157.2 7° 1500 752.57 46.7 474 59
aalnl6 78.6 30° 1500 696.52 40.45 53.73 5.82
aalnll 157.2 7° 1100 715.08 56.71 39.88 341
aalnl12 78.6 30° 1100 618.7 44.82 47.2 7.98
4 aaln25 91.7 7° 1000 175.41 209 42.3 38.1 3.48 3.9 54.22 53.9
aaln26 62.09 7° 1000 166.5 43.91 4.29 51.79
5 aaln27 151.96 7° 1000 200.37 1989 51.03 37 46.99 3.1 1.98 55.4
aaln28 90.65 7° 1000 195.77 50.74 47.29 1.97

remain small, the improvement should not be significant. aaln21 are almost a factor of 2 smaller than the reference
However, differentiation of the data proved to be veryvalues. This is due to the low charge in which this spectrum
effective in outlining the O and N peaks. This explains thewas acquired.
better results obtained with ANNcrentiateq I MOSt cases. The results obtained with ANN e¢xpt. param@re comparable
This is particularly true for the smallest signals, which arewith those obtained with ANNxereniaes OUt l€SS accurate.
the O concentration in samples 1-3 and the N concentratiomhis indicates that, even without the information on the ex-
in sample 4, where ANRNkerentiateaOUtperforms ANN,, and  perimental parameters, the network structure is versatile
ANNgmoothegPOth in the average result and in the standardenough to recognize the relevant patterns for the analysis.
deviation. This shows clearly that the differentiation wasThe experimental parameters that are introduced in the other
highly successful in enhancing small signals and reducinghree networks are the beam energy, the deposited charge,
the influence of the background. and the sample incidence angle. The beam energy is respon-
We show in Table Il the results obtained with sible for the peak positions, the deposited charge influences
ANN girerentiatedfOr @ll the individual spectra. This table con- the yield, and consequently the height of the peaks, and the
tains the information from several spectra acquired for eaclincidence angle plays a role in the thickness of the peaks due
sample, varying the incident beam energy, the incidencéo the larger path of the beam in the sample for a same range.
angle, and the deposited charge. In this table are also shown To understand why ANN, eyot paramWas successful in
the calculated reference values for the thickness and companalyzing the data, we consider the following factors. First,
sition of each sample. Again, some of the ANN results do nothe energy calibration was the same in all spectra. This
agree well with the reference values, for instance, the thickmeans that the position of Awhich is the signal that ap-
ness results obtained from the ANN analysis of spectrunpears most to the right in the daia an effective measure of
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the beam energy. Second, if one assumes that only N, O, arN, O, thin films deposited on Si substrates. We developed
Al are present, then the collected charge does not need @ convenient preprocessing method to increase the signal-to-
enter the calculations, which can be based on the ratio bewise background ratio: smoothing the raw data to eliminate
tween the three signals. As the neural network was only fegoise, and then differentiating. In order to test further the
with data that indeed only had N, O, and Al in the film, thengeneralization capabilities of the artificial neural networks,
it was implicitly supplied that information. Third, in first we trained a neural network without information about the
order, the effect of tilting the sample is simply to increase theexperimental conditions.
number of counts of each element by the same fatos After training the networks we applied them to the real
ignores possible cross section and stopping power effectexperimental RBS spectra obtained from four samples mea-
which are small for these filmsand, again, does not change sured in different experimental conditions. The results were
the ratio between them. In this case, the thickness cannot keery close to the reference values obtained with traditional
estimated from the total number of counts, but the tilt leadsime-consuming methods. The ANN for the differentiated
to a shift in the position of the Si edge that can be detectedata performed better than the other ones because the signal
and used by AN, expt. param from the slowly varying Si background is minimized. The

A comparison between the raw data and a simulation dongNN with no knowledge on the experimental conditions also
with the ANNyierentiatea€SUlts for samples 3 and 4 is shown performed well, although slightly worse, because it could
in Fig. 2@). For sample 4, the results from the ANN are very extract from the data itself the information required to do a
close to the raw data meaning that the analysis performed byalid analysis.
the network was successful. For sample 3, at first sight the Finally, in a few cases the samples analyzed had param-
analysis was less successful, because the simulated yield dsers not within the range in which the ANNs were trained.
higher than the experimental yield. However, this is due tan those cases, all the ANNs performed very poorly. This
channeling in the Si crystal, which occurred in the experi-shows that the way the network is trained is determinant for
ment, but was not taken into account in the simulation. Thisa successful analysis of real experimental data, and the train-
does not affect the signal of Al, N, and O, or the shape andhg and test sets must be as complete as possible, covering
height of those peaks. Results from ANN are very close taill the possible experimental situations.
the raw data, which indicates that the analysis is correct. This
is also confirmed by the excellent values of thickness and
concentration obtained with ANMerentiateq fOr this spec- ACKNOWLEDGMENTS
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