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Determination of the composition of light thin films with artificial neural network analysis
of Rutherford backscattering experiments
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AlOxNy ultrathin films are used as insulating layers in advanced microelectronic devices. Structural charac-
terization of these films is often done by the Rutherford backscattering~RBS! analysis. The RBS analysis of
these oxinitrides is a difficult task since the relevant signals of the spectrum are washed out by the large
substrate background and a considerable time is required for an analyst to characterize the sample. In this work
we developed specialized artificial neural networks that are able to perform a fast and efficient analysis of the
data. The results are in good agreement with traditional methods.
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I. INTRODUCTION

Conventional methods involve the use of interactive
batch-oriented computer codes, such asRUMP @1# and NDF

@2#, that need the intervention of an analyst. The time nee
to perform the analysis is in favorable cases of the sa
order of magnitude of the Rutherford backscattering~RBS!
spectrum acquisition, but with interactive codes and comp
spectra it can be very time consuming. On the other h
artificial neural networks~ANNs! are becoming a reliable
alternative on the RBS data analysis, achieving the sa
accuracy of other methods while being faster and m
easier to interpret by the analyst.

ANNs have been previously applied to the RBS d
analysis with considerable success. We studied system
increasing complexity, starting with Ge-implanted Si@3#,
where we have a Ge signal well separated from the sin
element background. We then applied it to a more comp
two-element background, namely, Er implanted on sapp
@4#. Finally, we used ANN to study thin films of NiTaC de
posited on Si and analyzed with protons@5#, where several
signals are superimposed. Note that in this case the scatt
cross section of C and Si varies rapidly with energy, th
increasing the difficulty of spectra interpretation. In th
work we push the applicability of ANN to the limit by con
sidering a highly complex system of great technological
terest.

Thin films of AlNxOy are being used as insulating barrie
between the metallic layers of spin-tunnel junctions for a
vanced read and recording devices@6–9#. The RBS analysis
of these films is not an easy task@10–12#. Relevant signals
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from N and O are small and superimposed to a large ba
ground Si signal, and the Al signal is also partially superi
posed to the Si background. Due to these difficulties we h
recently organized a round robin experiment in collaborat
with the International Atomic Energy Agency to address t
problem with different analytical techniques@13#.

Here we describe the results of applying ANN to th
system. The basis ANN structure was adapted in orde
deal with the different data manipulation necessary to tac
this problem, namely, smoothing and differentiation nec
sary to improve the signal-background ratio. To evaluate
ANN results, we assume as reference the values obta
with the usual formalism for RBS spectra analysis, name
the peak integration method and the step height anal
@14#.

II. EXPERIMENTAL DETAILS

We prepared two sets of samples grown on~100! silicon
single crystals. The first set, composed of three sam
~1–3!, had nominal composition AlN. Small amounts of ox
gen present in the chamber were incorporated in the sam
during preparation. This set was prepared by reactive m
netron sputtering of an Al target in a Nordiko 7000 syste
Samples 1 and 3 have a nominal thickness of 10
31015 at./cm2 and sample 2 has 50031015 at./cm2. The sec-
ond set is composed of two samples, 4 and 5, with nom
composition Al2O3 and nominal thicknesses of 20
31015 at./cm2 and 150031015 at./cm2. They were prepared
by ion beam sputtering of an Al target in a Nordiko300
system, using an Ar-O beam during the deposition~assisted
deposition! @15#.

The RBS analysis was performed using a He1 beam at
the ITN 3 MV Van de Graaff accelerator. We used bea
energies between 1.0 and 1.9 MeV, and angles of incide
u inc between 0° and 30°. We used an annular surface ba
©2003 The American Physical Society05-1
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detector in the IBM geometry placed at about 180° to
incident beam direction. The energy resolution of the sys
is 26 keV at full width half maximum~FWHM!. The product
of the detector solid angle with the analyzing beam flue
was between 2.6 and 315.6mC msr.

III. ARTIFICIAL NEURAL NETWORKS

A. Basic principles

An artificial neural network is a simplistic electron
model inspired by the intricate web of neurons that comp
the brain. In this organ, neural cells are highly connec
through synapses exchanging excitatory or inhibitory sign
Feedforward ANNs try to capture the brain computatio
efficiency by considering several layers of artificial neuro
that are fully connected by the set of weights, see Fig. 1.
ANN architecture is specified by the number of layers a
the number of nodes in each layer. A signal is presente
the input layer and the corresponding result to the out
layer. Training is performed by adjusting the connecti
weights in order to minimize the difference between t
ANN result and the desired output. This procedure tries
mimic the massive parallel capabilities of the brain.

These networks are versatile systems that are able to
ognize recurring patterns in data, which make them suita
tools to analyze the RBS spectra. Note, however, that a
the network is trained the information that codifies the m
between input and output is delocalized all through the c
nections weights array. ANN is thus a black box almost i
possible to decipher by the user.

The size of the network depends on the problem comp
ity and the amount and quality of the training data. Since
have a reliable numerical code to generate pseudoexperim
tal spectra the amount of data is not a relevant problem. T
allows us to work with relatively large networks withou
warring with the usual training problems like being trapp
on a local minimum.

In this work we used backpropagation supervised learn
@16# where a large set of examples containing a set of inp
in our case the spectra and the experimental parameter
the corresponding outputs, implanted elemental doses,
presented to the network.

B. Network architecture

The network architecture is defined by the size of
input layer, the number of hidden layers and the output la

FIG. 1. Schematic representation of an ANN with two nodes
the input layer, one node in the output layer, and two hidden lay
04670
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The input layer receives the RBS spectrum data to be a
lyzed along with some experimental parameters related w
the spectrum, namely, the beam energy, angle of incide
and deposited charge. At the output layer, containing f
nodes, the three elements concentrations and the film th
ness are presented. Although the RBS spectra used for t
ing have 512 channels, we only used 207 channels, wh
the Al, O, and N signals are relevant. The input layer h
therefore, 210 nodes considering the three experimental
rameters. All ANNs have three hidden layers containing
40, and 20 nodes.

We used four ANNs, one dedicated to raw data analy
(ANNraw), another dedicated to the smoothed da
(ANNsmoothed), one dedicated to the analysis of the smooth
and differentiated data (ANNdifferentiated), and finally one
equal to the previous, but without information of the expe
mental conditions (ANNno expt. param.). The architecture of the
networks is~N, 80, 40, 20, 4! with N5210 for ANNraw,
ANNsmoothed, and ANNdifferentiated, and N5207 for
ANNno expt. param.

C. Training and test sets

Analysis of AlOxNy thin films is a rather complex prob
lem, since the signals from N and O are small and very cl
to each other. Furthermore, since the Rutherford cross
tion depends on the square of the atomic number, sig
from these elements are washed up by the stronger signa
heavier elements contained in the films. Finally, a small s
nal is received in the multiple scattering background reg
of the spectrum due to the Si buffer. Multiple scattering o
curs due to the considerable number of secondary deflect
the beam suffers, in addition to the Rutherford backscatte
events, on its way in and out of the sample, increasing
number of counts for certain channels in the RBS spectr
To make the analysis task even more difficult, some of
spectra were channeled, due to the channeling effect in
crystalline Si buffer.

To teach the ANNs, we fed them with a large set of t
RBS examples, called the training set, and another sma
independent set to test their performance—the test set.
take particular care to build a training set composed b
sufficiently large and representative set of examples that
equately represent all possible experimental situations.
used a computational model@2,3# to obtain 20 000 simulated
experimental data, to which we added realistic Poisson n
in order to simulate the statistical fluctuation associated
the experimental data. The obtained spectra were initi
supposed to cover all the experimental conditions we use
analyze our samples, namely, beam energy between 1 a
MeV, angle of incidence between240° and 40°, charge-solid
angle product between 52.4 and 393mC msr, film thickness
between 150 and 85031015 at./cm2, Al atomic concentration
between 19% and 77%, O and N atomic concentrations
tween 0% and 68%. In fact, sample 5 is thicker than
upper limit in these training data, and in a few cases
analyzing beam fluence was lower than the lower limit us
This provides us with the cases where the limitations of
ANNs developed can be tested.

s.
5-2
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To simulate the channeling in Si that leads to a reduct
in the yield due to the Si crystal, we used a zeroth-or
approximation, which consisted of multiplying the Si sign
with a constant between 0 and 1. This ignores the fact
the yield reduction due to channeling depends on the b
energy, on the probed depth, and on the exact orientatio
the crystal relative to the incident beam@14#. There is no
simple and accurate way of calculating these effects, wh
is a problem in data analysis using conventional metho
where the simple approximation used would lead to wro
results. However, ANNs are, in principle, able to abstr
these features, and this zeroth-order approximation sh
suffice, particularly when combined with the methods to
duce the influence of the background in the analysis.

D. Data preprocessing

Since these spectra are composed of small signals on
of a large background signal, we had to develop numer
transformations to better expose the relevant signals. F
we smoothed the raw data in order to reduce statistical fl
tuations. This proved to be ineffective as can be seen
comparing the raw and smoothed data in Fig. 2.

FIG. 2. The RBS spectra of samples 3 and 4.~a! Raw data. The
solid lines are results obtained with ANNdifferentiated. ~b! Smoothed
data.
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Since the O, N, and Al peaks change rapidly, while the
background signal is nearly constant, the relevant sign
should be enhanced by smoothing and differentiating the
data spectra. Figure 3 shows two examples of differentia
spectra. We used smoothing and differentiating routines w
cubic fitting splines and adaptive smoothing weights p
scribing third end point derivativesf-(x0)5 f-(xn)50 @17#.
This procedure leads to differentiated data with minimiz
fluctuations due to statistical uncertainties.

E. Training and overfitting

From the set of simulated experimental RBS spec
18 000 examples were used to train the network, while
other 2000 were used to test the network, not being used
training. For each example, the corresponding output is c
pared with the output evaluated by the ANN. The calcula
error, a mean-squared error~MSE!, between the ANN result
and the expected result is used as a control tool to adjus
weights between the nodes during the feedforward ba
propagation learning process. During the training and
stages, after a few iterations, all the cases with a MSE la
than 40% are excluded from both sets, as can be seen in
4 around iteration 50. The MSE evolution with the iteratio
is shown in this figure for the training and test sets.

The learning process should stop to avoid overfitting. T
point is achieved when the test set error starts to increas
can be seen in Fig. 4 after iteration 3000. The final weig
taken are those for which the test set error is smallest. Ta
I shows the final MSE for the train and test sets for ea
ANN. In all cases they are rather small, indicating that t
networks could generalize well the patterns in the data. T
errors are smallest for ANNraw, comparable for ANNsmoothed
and ANNdifferentiated, and largest for ANNno expt. param. Note
that these errors are only an indication of the performanc
ANNs on the trained data. The real test is their performa
on real experimental data

IV. RESULTS AND DISCUSSION

We trained and tested the ANNs to analyze the RBS d
from our samples. In all cases the results were compa

FIG. 3. Spectra from the differentiated raw data for sample
and 4.
5-3
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with reference values obtained by applying the peak integ
tion method@14#. A comparison between the four networks
presented in Table II. To evaluate the quality of each n
work, the ratio between the ANN result and the referen
value is calculated for each sample. The ANN result w
taken to be the average of the results obtained for all

FIG. 4. Mean-square error evolution with the training iteratio
Overfitting starts around iteration 2000, where the error on
training set continues slowly to improve, but the error on the test
settles around the same value and starts to worsen after some
tions, as can be verified around iteration 5000.
04670
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spectra measured from each given sample. The standard
viation of the ratio values is also shown in the table since
reflects the stability of the ANN against the variation of t
experimental conditions. Even for an average ratio of 1
high standard deviation would mean that the ANN perfor
poorly.

We see that the results from all ANNs are in general go
and fairly similar. The most important exception is sample
where all ANNs performs poorly. This can be explained
the fact that the film thickness~nominally 1500
31015 at./cm2) is significantly above the maximum valu
used to train the ANNs (85031015 at./cm2), which means
that this sample is outside the range where the genera
tions capabilities of the ANNs are valid. This shows that t
representativeness of the training data is a determinant fa
of the reliability of ANN predictions.

The similarity of results obtained with ANNraw and
ANNsmoothedindicates that the network analysis did not im
prove much by smoothing the raw data. Smoothing co
reduce slightly some noise, but since the relevant sign

.
e
et
ra-

TABLE I. Mean-squared errors in the training and test sets
all the studied networks.

Network Train set MSE~%! Test set MSE~%!

ANNraw 2.2 2.8
ANNsmooth 2.9 3.7
ANNdifferentiated 2.4 3.4
ANNno expt. param. 3.1 4.3
for
eloped.
TABLE II. Average and standard deviations ~between parentheses! for the ratio between the ANN values and the reference values
the film thickness, Al, N, and O concentration for all the samples from different spectra, as obtained with the four different ANNs dev
For samples 4 and 5 the values are based on two spectra only.

Sample ANN Thickness @Al # @N# @O#

1 raw 0.92~0.12! 0.87 ~0.08! 1.17 ~0.08! 0.75 ~0.5!
smoothed 0.92~0.12! 0.85 ~0.08! 1.2 ~0.08! 0.78 ~0.5!

differentiated 0.94~0.16! 0.94 ~0.1! 1.07 ~0.1! 1.1 ~0.3!
no expt. param. 0.84~0.19! 0.83 ~0.08! 1.14 ~0.09! 1.66 ~0.78!

2 raw 1.14~0.18! 0.76 ~0.17! 1.19 ~0.09! 1.5 ~1.31!
smoothed 1.4~0.18! 0.77 ~0.2! 1.17 ~0.07! 1.59 ~1.24!

differentiated 1.06~0.08! 1.01 ~0.08! 1.02 ~0.08! 0.79 ~0.34!
no expt. param. 1.09~0.15! 0.98 ~0.11! 1.04 ~0.11! 0.79 ~0.26!

3 raw 0.91~0.17! 0.95 ~0.13! 1.12 ~0.13! 0.51 ~0.88!
smoothed 0.9~0.15! 0.93 ~0.11! 1.1 ~0.15! 0.85 ~0.86!

differentiated 0.88~0.15! 0.99 ~0.12! 1.04 ~0.1! 0.86 ~0.3!
no expt. param. 0.86~0.12! 0.93 ~0.14! 1.09 ~0.11! 0.92 ~0.51!

4 raw 1.14~0.21! 0.83 ~0.09! 7.16 ~0.64! 0.75 ~0.15!
smoothed 1.1~0.2! 0.89 ~0.1! 6.91 ~0.63! 0.73 ~0.16!

differentiated 0.82~0.17! 1.13 ~0.1! 1 ~0.27! 0.98 ~0.07!
no expt. param. 0.82~0.16! 0.95 ~0.09! 1.3 ~0.31! 1.09 ~0.08!

5 raw 0.08~0.03! 1.27 ~0.12! 16.82~1.72! 0.01 ~0.04!
smoothed 0.11~0.07! 1.09 ~0.1! 19.1 ~1.83! 0.01 ~0.05!

differentiated 0.1~0.03! 1.38 ~0.11! 15.21~1.64! 0.04 ~0.01!
no expt. param. 0.1~0.01! 1.7 ~0.19! 10.29~4.59! 0.09 ~0.02!
5-4
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TABLE III. Results from the ANNdifferentiated analysis of all the experimental spectra obtained from our sample sets, with diff
experimental conditions and the calculated reference values for the same samples. The shaded parameters are outside the rang
training.

Sample Spectrum
Q3V

(mC msr! u inc

Energy
~keV!

Thickness (1015 at./cm2) @Al # ~at. %! @N# ~at. %! @O# ~at. %!

ANN Reference ANN Reference ANN Reference ANN Referen

1 aaln0 314.4 0° 1900 708.46 790.1 47.18 51.3 49.1 44.8 3.71 3.9
aaln1 157.2 30° 1900 712.18 49.31 46.7 4
aaln2 157.2 0° 1900 768.58 48.21 48.08 3.71
aaln21 2.57 7° 1900 439.75 46.79 47.63 5.57
aaln22 15.72 7° 1900 867.45 57.36 38.29 4.35
aaln23 78.6 7° 1900 951.11 53.99 42.79 3.22
aaln24 62.88 30° 1900 683.69 49.41 46.51 4.08
aaln3 157.2 7° 1500 699.12 42.91 52.2 4.89
aaln4 157.2 0° 1500 802.14 44.56 50.81 4.62
aaln5 157.2 30° 1500 721.38 45.96 48.57 5.47
aaln6 157.2 7° 1100 808.72 44.49 52.06 3.45
aaln7 157.2 7° 1100 808.7 44.49 52.05 3.45
aaln8 62.88 30° 1100 702.43 49.35 45.49 5.16

2 aaln17 157.2 7° 1900 436.06 413.65 47.56 47.6 49.49 47.5 2.95 4.9
aaln18 78.6 30° 1900 394.82 41.66 54.34 3.99
aaln13 157.2 7° 1500 487.23 49.04 46 4.96
aaln14 78.6 30° 1500 456.83 49.67 45.6 4.74
aaln9 157.2 7° 1100 426.34 51.18 45.4 3.42
aaln10 78.6 30° 1100 425.16 48.19 48.51 3.29

3 aaln19 157.2 7° 1900 856.07 792.5 49.8 48.2 44.19 45.1 6.01 6.7
aaln20 78.6 30° 1900 558.24 46.48 48.22 5.3
aaln15 157.2 7° 1500 752.57 46.7 47.4 5.9
aaln16 78.6 30° 1500 696.52 40.45 53.73 5.82
aaln11 157.2 7° 1100 715.08 56.71 39.88 3.41
aaln12 78.6 30° 1100 618.7 44.82 47.2 7.98

4 aaln25 91.7 7° 1000 175.41 209 42.3 38.1 3.48 3.9 54.22 53.9
aaln26 62.09 7° 1000 166.5 43.91 4.29 51.79

5 aaln27 151.96 7° 1000 200.37 1989 51.03 37 46.99 3.1 1.98 55.
aaln28 90.65 7° 1000 195.77 50.74 47.29 1.97
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remain small, the improvement should not be significant.
However, differentiation of the data proved to be ve

effective in outlining the O and N peaks. This explains t
better results obtained with ANNdifferentiated in most cases.
This is particularly true for the smallest signals, which a
the O concentration in samples 1–3 and the N concentra
in sample 4, where ANNdifferentiatedoutperforms ANNraw and
ANNsmoothedboth in the average result and in the stand
deviation. This shows clearly that the differentiation w
highly successful in enhancing small signals and reduc
the influence of the background.

We show in Table III the results obtained wit
ANNdifferentiatedfor all the individual spectra. This table con
tains the information from several spectra acquired for e
sample, varying the incident beam energy, the incide
angle, and the deposited charge. In this table are also sh
the calculated reference values for the thickness and com
sition of each sample. Again, some of the ANN results do
agree well with the reference values, for instance, the th
ness results obtained from the ANN analysis of spectr
04670
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aaln21 are almost a factor of 2 smaller than the refere
values. This is due to the low charge in which this spectr
was acquired.

The results obtained with ANNno expt. param.are comparable
with those obtained with ANNdifferentiated, but less accurate
This indicates that, even without the information on the e
perimental parameters, the network structure is versa
enough to recognize the relevant patterns for the analy
The experimental parameters that are introduced in the o
three networks are the beam energy, the deposited cha
and the sample incidence angle. The beam energy is res
sible for the peak positions, the deposited charge influen
the yield, and consequently the height of the peaks, and
incidence angle plays a role in the thickness of the peaks
to the larger path of the beam in the sample for a same ra

To understand why ANNno expt. param was successful in
analyzing the data, we consider the following factors. Fir
the energy calibration was the same in all spectra. T
means that the position of Al~which is the signal that ap
pears most to the right in the data! is an effective measure o
5-5
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the beam energy. Second, if one assumes that only N, O,
Al are present, then the collected charge does not nee
enter the calculations, which can be based on the ratio
tween the three signals. As the neural network was only
with data that indeed only had N, O, and Al in the film, th
it was implicitly supplied that information. Third, in firs
order, the effect of tilting the sample is simply to increase
number of counts of each element by the same factor~this
ignores possible cross section and stopping power effe
which are small for these films!, and, again, does not chang
the ratio between them. In this case, the thickness canno
estimated from the total number of counts, but the tilt lea
to a shift in the position of the Si edge that can be detec
and used by ANNno expt. param.

A comparison between the raw data and a simulation d
with the ANNdifferentiatedresults for samples 3 and 4 is show
in Fig. 2~a!. For sample 4, the results from the ANN are ve
close to the raw data meaning that the analysis performe
the network was successful. For sample 3, at first sight
analysis was less successful, because the simulated yie
higher than the experimental yield. However, this is due
channeling in the Si crystal, which occurred in the expe
ment, but was not taken into account in the simulation. T
does not affect the signal of Al, N, and O, or the shape a
height of those peaks. Results from ANN are very close
the raw data, which indicates that the analysis is correct. T
is also confirmed by the excellent values of thickness
concentration obtained with ANNdifferentiated for this spec-
trum.

V. CONCLUSIONS

We studied the performance of artificial neural netwo
on a difficult problem of the RBS analysis of spectra fro
.
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AlN xOy thin films deposited on Si substrates. We develop
a convenient preprocessing method to increase the signa
noise background ratio: smoothing the raw data to elimin
noise, and then differentiating. In order to test further t
generalization capabilities of the artificial neural network
we trained a neural network without information about t
experimental conditions.

After training the networks we applied them to the re
experimental RBS spectra obtained from four samples m
sured in different experimental conditions. The results w
very close to the reference values obtained with traditio
time-consuming methods. The ANN for the differentiat
data performed better than the other ones because the s
from the slowly varying Si background is minimized. Th
ANN with no knowledge on the experimental conditions al
performed well, although slightly worse, because it cou
extract from the data itself the information required to do
valid analysis.

Finally, in a few cases the samples analyzed had par
eters not within the range in which the ANNs were traine
In those cases, all the ANNs performed very poorly. T
shows that the way the network is trained is determinant
a successful analysis of real experimental data, and the tr
ing and test sets must be as complete as possible, cove
all the possible experimental situations.
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