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We consider parallel simulations for asynchronous systems emplayp@cessing elements that are ar-
ranged on a ring. Processors communicate only among the nearest neighbors and advance their local simulated
time only if it is guaranteed that this does not violate causality. In simulations with no constraints, in the infinite
L limit the utilization scale$Kornisset al, Phys. Rev. Lett84, 1351(2000]; but, the width of the virtual time
horizon divergedi.e., the measurement phase of the algorithm does not)séaléhis work, we introduce a
moving A-window global constraint, which modifies the algorithm so that the measurement phase scales as
well. We present results of systematic studies in which the system(isizeL and the volume load per
processor as well as the constraint are varied. Theconstraint eliminates the extreme fluctuations in the
virtual time horizon, provides a bound on its width, and controls the average progress rate. The width of the
window can serve as a tuning parameter that, for a given volume load per processor, could be adjusted to
optimize the utilization, so as to maximize the efficiency. This result may find numerous applications in
modeling the evolution of general spatially extended short-range interacting systems with asynchronous dy-
namics, including dynamic Monte Carlo studies.
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[. INTRODUCTION the size of future systems may be of the order of hundred
thousandg$8]. Such architectures pose new questions of al-
Parallel discrete event simulatiot®DES of asynchro-  gorithm efficiency and scalability in large scale massively
nous systems is a computer science term that stands for pgrarallel processing. We address these questions for conserva-
allel simulations of complex systems with asynchronous dyiive PDES, using the tools of modern statistical physics, in
namics. Such spatially extended complex interacting system@articular, those of nonequilibrium surface grovj.
appear across a wide range of fields in natural sciences, and The difficulties of parallelizing spatially extended asyn-
their examples include interacting spin systems in materigghronous cellular automata arise because in asynchronous
physics, activated processes in chemistry, contact processe¥stems the discrete events are not synchronized by a global
in stochastic epidemic models, stochastic market models ifloCk- For example, in the basic dynamic Ising model for
finance, scheduling call arrivals in communication networks,fe”omag_matS d|scre_te spins with two states each are pla_ced
and routing problems in internet traffic, to mentionjustafewOn a lattice. .The. dlscrete_gvents are a;tempted spin flips,
where the spin-flip probability at some site depends on the

applications of PDES. Despite active research in this are%nergy states of the neighboring sites. The lattice can be

[1,2] very few of the PDES techniques have filtered through artitioned into a number of sublattices, and each sublattice

to the physics community. Even the simplest random-sit ay be assigned to a different processor. Processing ele-
update Monte Carlo schemgS], where updates correspond os(PE) attempt a number of randomly chosen spin flips,

to Poisson-random discrete events, were long believed t0 Bg,q communicate with each other in some update attefapts
inherently seriaat least in the physics communitySimu-  giscrete event Each PE carries its own local virtual time
lation studies of parallel computations for asynchronous disgyhich is advanced by every update attempt. The local virtual
tributed systems date back more than two decade$488b  time on a PE is the simulated time at the spins on its sublat-
However, it was Lubachevsky’s wofl, 7] on parallel simu- tice. In the conservative PDES implementation it is ensured
lations of dynamic Ising spin systems which shed a new lighthat causality is not violated before each PE makes an update
on this old problem and showed how to efficiently performattempt. Alternatively, in an optimistic PDES implementa-
conservative simulations on a parallel computer. The desigtion, PEs make updates without communicating with the
of efficient algorithms that would allow modeling of asyn- neighbors, thus sometimes causing causality errors. The op-
chronous systems in a parallel processing environment igmistic scheme provides a recovery mechanism by undoing
even more important nowadays, when parallel architecturethe effects of all events that have been precessed prema-
have become generally available. The architectures of todayirely. Optimistic PDES have been an object of theoretical
may consist of several thousands of processing elements, bahd simulation studie§10—14. The development of spa-
tiotemporal correlations and self-organized criticality have
been recently studied in the optimistic simulations of the
*Electronic address: alicjak@bellsouth.net dynamics of Ising spin systen{d5,16. The conservative
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scheme has been used recently to model magnetizatissurface growth. In the PDES analysis the focus is placed on
switching [17], ballistic particle depositiof18], and a dy- two major issues: the scaling of the simulation phase and the
namic phase transition in highly anisotropic thin-film ferro- scaling of the measurement phase. In Sec. IV, we present and
magnetg19,20. These recent applications suggest that theanalyze numerical data that were obtained in large scale
conservative scheme should be particularly efficient whersimulations of an asynchronous conservative PDES scheme
applied to large systems with short-range interactions. with a moving window constraint. In our time evolution
Early efficiency studies of the conservative schemeStudies, we simultaneously varied the width of the moving

[21,29] do not identify the mechanism which would ensureWindow and the system sizge., the number of processing

the scalability of the PDES for an arbitrary system size. Re€/€ments in the system as well as the number of volume

cently, Kornisset al. [23] introduced an approach that ex- €/€ments per processing elemeint search for regularities
ploits an analogy between the virtual time horizon and dhat would allow general conclusions. In Sec. V, we discuss

fluctuating surface that grows in a deposition process. In thi§onnections between the scalability of a constrained conser-
picture, the fraction of nonidling PEghe utilization exactly vative scheme and the design of highly efficient algorithms

corresponds to the density of local minima in a virtual time O @synchronous systems.
surface. They showed that, in the case of one spin site per
PE, the steady-state virtual time surface is governed by the Il. CONSERVATIVE PDES FOR SPATIALLY
Edwards-Wilkinson Hamiltonian, implying that the utiliza- DECOMPOSABLE CELLULAR AUTOMATA
tion does not vanish for an infinitely large system of PEs.
Ignoring communication delays and assuming that the utili- We consider an ideal system consistind-aflentical PEs,
zation is equivalent to the efficiency, they concluded that thetrranged on a ring. Each PE Hg lattice sites(or operation
computation phase of short-ranged conservative PDES is a¥olumes and the algorithm randomly picks one of thk
ymptotically scalable. In general, the utilization should notsites. If the site that is picked is an end site communication
be taken as a sole measure of efficiency in the modeling otith a neighboring PE is required, while no communication
asynchronous systems. The same analysis of a virtual timeetween PEs is required if an interior site is picked. For this
surfacd 23—26 demonstrated that, in the case of one site pesystem a discrete event means an update attempt that takes
PE, the virtual time horizon infinitely roughens in the infinite place instantaneously. The state of the system does not
PE limit. The statistical spread of the virtual time surfacechange between update attempts. Processing elements per-
severely limits an averaging or measurement phase of PDE&rm operations concurrently, however, update attempts are
and divergence leads to severe difficulties with data managéiot synchronized by a global clock. Such a system can rep-
ment. Therefore, while the simulation phags determined resent, for example, concurrent operations of random spin
by the utilization studigsis asymptotically scalable, the flipping in a large spatially extended ensemble that can be
measurement phase is not. To ensure the efficiency of tharanged on a regular lattice. In this picture, the ensemble is
algorithm, solutions need to be sought in which both phasespatially decomposed into subsystems, each of which car-
of the computation are scalable. ries Ny sites. Each subsystem is carried by one PE and the
In studies of asynchronous updates in large parallel sysequired communication is the exchange of information
tems, Greenbergt al. [27], proposed &-random connec- about states of the border spins. In the simplest case there is
tion model, where at each time step each PE randomly corene site per PEN,=1, the system is a closed spin chain,
nects with K other PEs in the system. The virtual time and a spin-flip attempt at thkth PE depends on the two
horizon for this model is short-range correlated and has &earest-neighbor spins located on the-()th and the K
finite width in the infinite PE limit. Encouraged by this re- +1)th PEs. Thekth PE may not perform an update until it
sult, we considered the two alternative modifications to thereceives information from these neighboring PEs.
conservative scheme: a random connection m2g] and In this conservative PDES scheme, to simulate asynchro-
the moving window constrain24]. The purpose of these nous dynamics employiny processors, eadkth PE gener-
modifications is to ensure that the measurement phase of tl&es its own local simulated timg, for the next update at-
conservative PDES is scalable. tempt. Update attempts are simulated as independent
This paper presents the results of systematic simulatioRoisson-random processes, in which kifelocal time incre-
studies of conservative asynchronous PDES with the movingent(i.e., the random time interval between two successive
window constraint(i.e., simulation studies of the simula- attempt$ is exponentially distributed with unit mean. A pro-
tions). In Sec. Il, we define terminology and we outline both cessor is allowed to update its local time if it is guaranteed
the basic conservative update scheme and the constraint upet to violate causality. Otherwise, it remains idle. The time
date rule that we use in modeling of asynchronous PDESstept is the index of the simultaneously performed update
The scheme that we consider is such that the evolution of thattempt. It corresponds to an integer wall-clock time with
time horizon is decoupled from the underlying systems. Theeach processor attempting an update at each valtie of
only one assumption that we make about underlying com- The simplest choice for a communication rule between
plex systems is that they are characterized by short-rangarocessors, which is faithful to the original dynamics of the
interactions. Therefore, our analysis is generally valid for aunderlying system, is a short-range connection mdBa.
wide spectrum of physics applications. Section Ill containsl), where, at any time steg ¢ 1), thekth PE is allowed to
the analysis of scalability issues, which is based on analogiegpdate if its local simulated timg(t) is not greater than the
between PDES and kinetic roughening in nonequilibriumlocal simulated times of its two nearest neighbors,
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FIG. 1. Short-range connections in PDES for a linear chain.

the windowing condition3) alone will give rise to correla-
tions among processors. Note that the RD update rule does
not belong to a class of conservative update schemes, i.e., it
cannot faithfully simulate the underlying system dynamics.
For A-constrained RD simulations, the speed with which the
correlations spread among all PEs is determined by the width
of the A window.

For a set ofL processing elements, a simulated time ho-
rizon (STH) is defined as a set @f local simulated times at
time step. To study the roughening of the STH surface, we
onitor the surface widtkw(t)), which is defined in stan-
ard fashion{9] via the variance of the STH,

() =min{7n_1(t), 7 1(D}. (1)

The periodicity condition requires communication between
the first and the last PEs. In effect, this update rule introduce®
a nearest-neighbor interaction and corresponding correlatio

between PEs, which is analogous with nonequilibrium sur-

face growth. It was showf23] that in the case dfly=1 the 1L

evolution of the virtual time horizon on coarse-grain length <w2(t))=<— D [Tk(t)—7(t)]2>, ()
scales is governed by the Kardar-Parisi-Zhdkd§Z) equa- L =1

tion [29]:

where the angular bracket denotes an ensemble average and
3, 7= Oy T— N9y 7) 2+ P(X,1), (2  denotes the mean virtual time(t) =(1/L)2f_, 7 (t). Al-
ternatively, the surface width can also be defined as the ab-

wherex is a spatial variable in a continuum limit, the con- solute standard deviatidmv,(t)) from the mean virtual local
stant N\ is related to the coarse-graining procedure, andime,

n(x,t) accounts for random fluctuations.

In PDES with a moving window constraint, the commu- 1o —
nication pattern between processing elements remains the <Wa(t)>:<E k21 |Tk(t)_T(t)|>- ®
short-range connection type but the new update rule requires -
that additionally at eacht (- 1) step the local simulated time e yse both definition&4) and (5) in our analysis. To study
of the kth processor fits within a window of width thatis  the efficiency of an update process in the systenh gfo-
defined relative to the slowest PEe., the one with the cessors, we define the utilizaticiu (t)) as a fraction of
smallestr) at timet. Explicitly, the kth PE is allowed the processors that performed an update at parallel time tstep
update if7(t) simultaneously satisfies the short-range con-Throughout the paper, we consistently use the following no-
nection condition(1) and the following window condition:  tation: the surface widtiiw(t)) is an ensemble average of
w(t)=\W?(t) computed at, while (w) denotes the corre-
sponding steady-state valuetato. The subscript &” de-

. . - . n he width com in rdan whil
In the computer science community the minimum in E3). otes the width computed in accordance to E), ©

is called the global virtual timg10—13. From this definition subscripts L” or * Ny (e',g"<WL’Nv>) |nd.|cate the param-

it follows that the short-range connection model can peeter dependence of the width computed in accordance to Eq.
viewed as a particular case of the original update schem-

when the width of the window is set to infinity, in which case

condition(3) is trivially satisfied for all times. Thus, an infi- 1. SCALABILITY MODELING

nite window is equivalent to the absence of the constraint.

In typical simulations, when the number of volume ele- There are two important aspects of scalability, which
ments Ny, is larger than the minimunN,=1, a causality should be dealt with in studies of algorithm efficiency. Both
condition (1) is enforced only for the border volumes on of them regard the time in the system and connect with data
each PE. If, at anystep, a randomly chosen volume elementmanagement issues. The first is the question of whether or
happens to be from the interior, i.e., when all of its immedi-not the utilization reaches a constant nonzero value in the
ate neighbors reside on one PE, then the PE always executié@sit of large system sizéwhen L and Ny, may arbitrarily
the update and its local time is incremented for the consecurary). In particular, one needs to know if the “worst case
tive update attemptr (t+1)= 7 (t)+ n(t), where 5, is  scenario” of one volume element per PE can produce a non-
the kth random time increment that is exponentially distrib- zero utilization in the infiniteL limit. A zero value of utili-
uted, randomly chosen independently on each PE and at eazhtion in the infinite system size limit would suggest that an
parallel steg. In the constrained simulations, conditi@) is  algorithm would likely be useless for computationally inten-
enforced for any randomly chosen volume element. sive tasks on future generations of massively parallel com-

In the conservative update scheme a causality requiremeptters, i.e., on systems that contain hundreds of thousands of
is the main mechanism that generates correlations amorgrocessing elemeni8]. The second question is the behavior
processing elements. In the absence of a causality requiref the evolution of the STH, whether or not the statistical
ment local simulated times would be incremented indepenspread of the STH saturates in time or scales with the system
dently of each other in the fashion of random depositionsize. A negative answer to the latter question would suggest
(RD) [9]. However, even with this RD update rule, imposing that an algorithm would probably prove impractical in actual

n()<A+min{7(t):k=1,... L}. 3
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applications, because the divergence of the STH width im-
plies that, for most computationally intensive jobs, the data
collection and averaging would impose a memory require-
ment per PE in excess of hardware capacities.

In our scalability studies, we exploit existing analogies N
between the time evolution of the STH and kinetic roughen- 2
ing in nonequilibrium surface growth; and we use selected A [
results of nonequilibrium surface studi€s30,31 in analyz- = T N tjz«;:vjzz ]
ing the stochastic behavior of the system under consider- 34' 5ok R L;m,’va:_m i
ation. The conservative short-range communication scheme ] o L=10°N,=10
between the system components can be regarded as an effec- 40 » L=10,N,=1 7
tive short-range interaction among PEs and treated in a simi- 308 O L=10*N~1 |

lar manner to an interaction among sites of any nonequilib-
rium surface, growing on a regular lattice. For these surfaces, 20
the lateral correlation lengtly between sites follows the

power lawé~t'2 wherez is the dynamic exponent. For a

finite system£ cannot grow beyond the system slzand it FIG. 2. Unconstrained PDES: Time evolution of the mean utili-
is observed that for times much smaller than a crossover timgation{u(t)) (averaged oveN=1024 independent random trials
t., ty~LZ the surface width increases in accordancegto for various system sizes;=10 and 16 andN,=1, 10, and 100.
whereg is the growth exponent. For times much larger than

the crossover time, the surface width saturates and scales as

L*, wherea is the roughness exponent. The exponents sat- lim (u (1)) ~=(u,) +
isfy the scaling relationz8= «. The values of the exponents t—oo

are independent of the details of the system and of the nature

of the interactions between sites. Their values can be deter-

mined from the corresponding stochastic growth equationwhere (u.,) denotes the utilization in the infinite limit.
which defines the universality class. We observed that thgoroczkai et al. [33] showed that the basic conservative
simulated time horizon shows kinetic roughening and theppES with one site per PE satisfies relati@, and they
typical scaling behaviof24J: used it to extrapolate their utilization data to lardgeTheir
value for the utilization in the infinite PE limit igu..)
=24.64617)% [23,24. This finding demonstrates that the

N 1 1 L 1 N N
0 100 200 300 400 500
t

const

e ®)

200N\ __128 _

(Wit~ for t<t,, © simulation part of the algorithm is scalable in the case of the
one-dimensiona{1D) conservative PDES with the minimal

(Wf(t)>~L2“ for t>t,. 7) number of volume elements per PE. Explicitly, this means

that even in the worst case scenario, it is possible to run
simulations arbitrarily long with a nonzero average rate of

It was demonstrated in Ref23] that in the case of one site Progress. In the case of two-dimensioriaD) and three-
per PE(i.e., Ny=1) the time evolution of the STH in the dimensional(3D) PDES, the roughness exponents are
short-range connection modél) follows the KPZ equation =0.2—0.4 (in 2D) and «=0.08-0.3 (in 3D) [25], and the
(2) and direct simulations confirmed that the scaling expoNy=1 steady-state utilization can be estimated (as)
nents in Eqs(6) and(7) have values consistent with the KPZ =12% and(u..,)=7.5%, respectively25].

universality class ¢=1/2 andg=1/3).

B. The evolution of the simulated time horizon

A. Steady-state scaling for utilization The unconstrained PDES are characterized by an infinite

As the time index advances the utilization falls from its roughening of the STH surface in the limit of infinite system
initial maximal value att=0. Figure 2 presents the time size. Figure 3 presents a typical time evolution of a surface
evolution of the utilization for various system sizes in thegenerated by this basic update scheme Ngi=1 and L
basic PDES with short-range connections with the infinite =100. As the time index advances, the surface grows and
window. For each of the system size, the utilization attains dhe statistical spread of its interface increases in accordance
steady state, characterized by a nonzero value in the infiniteith Eqgs.(6) and (7). Figure 4 shows the time evolution of
t limit. This qualitative result is also true for the simulations the surface width for a few selected system sizes. For a fixed
in two and three dimensions, when an individual PE is al-system size the width follows relatiori6) and(7): after the
lowed to connect with four and six immediate neighbors,initial growth phase, the surface saturates and its width
respectively{ 25]. Such a nonzero steady-state value is charfeaches the plateau value. By comparing the widthd\fpr
acteristic for the KPZ universality class and can be expressed 1 [Fig. 4@)] to those forN,,=10 [Fig. 4(b)], one can see
by the Krug and Meakii32] relation for generic KPZ-like that for a fixedL number of PEs, increasing the number of
processes: sites per PE shifts the crossover tieto later values and
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40 PEs reach the simulated time instant at which statistics col-
- lection is performede.g., a simple averaging over the full
physical application The diverging spread of the time hori-
<30 zon implies a diverging storage need for this purpose on
) every PE. Thus, the diverging width of the STH means that
£ the memory requirement per processing element, for tempo-
E - rary data storage, diverges as the number of processing ele-
s ments gets arbitrarily large. Therefore, the measurement
g 15 phase of an algorithm that follows the basic conservative
= update scheme is asymptotically not scalable. In actual ap-
e 1 plications, the programmer must seek some means of con-

straining the infinite roughening of the STH or must impose
some global synchronization on the system of PEs.

P o | T Our and Lubachevsky’s earlier studies show that to make
0 20 40 60 80 100 the conservative scheme efficient, one must use a large num-
PE index k ber of volume elements, . It is expected that an increase in

Ny will modify the growth phase of the STH. In the case of
FIG. 3. Unconstrained PDES: Time evolution of the time hori- |arge N,,, the initial growth phaséfor 0<t<t;) should be
zon forL=100 PEs and\, =1 sites per PE. The lower surface is a characterized byB=1/2, typical for the RD universality
snapshot at=2, the upper surface is a snapshotatl00. ForL  ¢|ass, Then, after the first crossover time(for t;<t<t,,
=100 the crossover time is,~3700. wheret, is the saturation timethe growth should be char-
increase:_s the value of the width. at the plateau. This .is exﬁ]ciirilszwa;y'?n;é% ttzglg?rlnﬁgttigﬁ };Eazsg ng;tﬂ%;gﬁ' S
pected since a larger value W, yields a larger cumulative increasingN,,) will speed up the initial growth. Thus, the

value for the local .tlhme |_n(r:]r§m.ent between :}WO succefsswgtate savings, which are traditionally associated with opti-
communications with neighboring PEs. In the caseNf  nyigtic  schemes, are disadvantageous in  conservative
=1, the width of the STH approaches a finite constant for &chemes.

finite L number of PEs; however, this constant diverges in
the infinite L limit in the power law fashion:
IV. CONSERVATIVE PDES WITH THE MOVING
WINDOW CONSTRAINT
(w?)~L2e, ©)
A standard way of controlling the growth of the STH is to

impose a constraint on its width in the spirit of parallel simu-
which gives the linear divergence of the surface variance folations of asynchronous cellular automata that was proposed
the KPZ universality class. The same holds for the extremdy Lubachevsky[6,7]. A straightforward application of this
fluctuations above and below the mean simulated f{ia83. idea is theA-constrained update scheme which demands that
This finding is also valid in the case when each PE carries at each update attempt a PE can perform an update only if its
block of sites. The above scaling behavior creates difficultiesalue of 7 is within the window. The effect of conditio¢8)
when intermittent data on each PE have to be stored until als that fast PEs are forced to postpone their updates until

- )
10° 10° 10' 107 10° 10* 10°

t t

FIG. 4. Unconstrained PDES: Time evolution of the mean surface wiu(h) ) of the STH(averaged ove = 1024 independent random
trials) for various numbet of PEs, in simulations witlia) Ny, =1 site per PE(b) Ny, = 10 sites per PE. Since the plateau has been reached
for L=10 andL =100, the timeg larger than 1® are not shown. Fot =10%, the plateau is reached fotarger than 16
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slower PEs catch up. In the simplified version studied here, 70—
the assigned distance apart is measured in terms of the pro-
cessor local time that is compared to the global minimum ol |®®RD _
. . . . o N,=1000
virtual time. Since at eachthe global minimum of the STH L |o-o N, =100
changes its location, so does the window for the update. In 50k AAN 210 J
this sense a moving window constraint can be considered as 9 N 1
. .. - . . . . < V-V iy
an implicit rule that induces global synchronization, in which A
each PE connects with the slowest PE. From the implemen- z 40 ]
tation point of view, the most important questions are the 3 v
scalability issues for realistic systems, where each PE may 30 M
carry an arbitrary number of sites, because mainly these is- -~
sues will determine the efficiency of the algorithm in actual 20t - -
applications. v (a) |
10 " sl " aanal " sl M T
4 -3 -2 -1 0
A. Simulation phase 10 10 11(/)L 10 10

In the A-constrained PDES, simulations reach a steady
state for an arbitrary system size in a similar fashion as in the
basic short-range connection model, illustrated in Fig. 2. In
general, for anyA value, whenL is fixed the steady-state
value of the utilization gets larger a$,, gets larger; and,
when Ny is fixed it gets smaller ak is increased. This be-
havior reflects the strength of the correlations between PEs
which arise due to the update rui®). Namely, for fixedL,

Y .~ e A

<u > (%)

601 -
the frequency of an update per PE increaseNafcreases L HIF\}D-moo ;
because conditiorfl) does not need to be verified for the 501 ;-__:;Nv;mo ]
internal sites and the probability of randomly choosing a [ (A AN 210

. . . . 40+ v -
border site is M,,. Therefore, in this case, correlations that | [N ]
arise due to the short-range connections between PEs weaken 30k ¥ o
whenNy, is increasing. In the infinit&ly, limit these correla- L ———— O
tions become negligible and the process of incrementing lo- 210 e 1'3 1'2 1' T 1 0
cal simulated times resembles random deposition on the 1D 0 0 19,_ 0 0

lattice of sizeL. Thus, the RD limit is equivalent to the

mfmlr:e Ny limit of PDES. ilizati f . f FIG. 5. Mean steady-state utilizatiqo) in constrained PDES
The mean steady-state uti lzatléuLva> as a function o as a function of the system size for tRewindow size:(a) A

the system size is presented in Fig. 5. When the nurger =10; (b) A=100. L is the number of PEs. When the numib&y of

of sites per PE is increased the curves converge towards thstes per PE is increased the curves converge towards the RD limit.
RD limit. With a narrowA window [Fig. 5a)] the RD limit

is approached fairly quicklywith N,,=100 for A=10),
while with a wide A window [Fig. 5b)] the RD limit is
approached more slowly. For an infinite window the RD
limit is (u_ ..)=100%, which is the effect of no correlations
in the system in this limiting case. Obviousktl, )=1/L

of A andNy, in each case performing a standard rational
function interpolatior{ 34] of the simulation data:

X100% whenA=0, because in this case only one PE is a +§ a 1 “

allowed to make an update. The RD curves in Fig. 5 display 0h & kL a

the steady-state utilization for simulations that are governed ()= Kq K= Kq K
only by the update rul€3) alone, i.e., in the absence of other 1+ 2 bk( _) 1+ 2 bk(i>
communications between processing elements. The fall off in k=1 L k=1 L
the RD utilization values with an increase in the number of K1 ‘

PEs, indicates the strength of correlations between PEs, 14 Ak+1 l)

which exclusively results from imposing the-window con- a, k=1 ap \L

straint. When all three parameters, L, and Ny, are al- T Ky o (10
lowed to vary in conservative PDES, the value of the utili- 1+, bk(_)

zation is mostly determined by the width of the moving k=1 L

window. The choice of a very narro& window severely
suppresses the average progress rate.

To determine a scaling relation for the steady-state utili-where the polynomial degreds, and K4 were varied to
zation in the infinite PE limit, we analyzed the mean steady-determine the best set of the interpolation coefficients. Then,
state utilizatior{u, ) as a function of 1/ for several values knowing the leading coefficients, anda,, we extrapolated
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00— nite A limit, ugpz(Ny)=lim, _u(Ny,A). Justification and
90 the details of the fit12) are outlined in the Appendix. Here,
sok u(Ny,A) denotes an approximate value (@fy,, a)-

I A mean-field-type argument can also be used to derive an
B R approximate formula fouypz(Ny),
& eof
" sl 1 2
7 T / . ——1=(6——)pw, (13)
ol vvaio | A Ukpz(Ny) Ny
30 A=1 - .
> whereé depends oMy, and is the average number of steps a
20 . PE waits given that it has to inquire about the virtual time on
10 Lo ] its neighboring PEs, when the simulations reach the steady
10° 10" 10% 10° 10* 10® 10° 10" 10® state in the system of the infinite number of PEs. Equation
N, (13) is valid for Ny= 3, where the mean-field approximation

o . o . of replacing the average of a function with the function of
FIG. 6. Mean utilizatior(u..) in the limit of L— as a function  the averages has been used. In justification for(&8), we
of the number of volume elemenit§, and theA-window size. Data  agssume that a neighboring PE has a virtual time which lags
points for N, =10 present the constrained RD simulations. Sym- behind that of the checking PE, hence requiring the checking
bols represent the simulation data. The lines are guides for the eyese tg wait. Let the total number of times on average a PE
o o o advances be,,=ngktn,, wherengy is the number of
the utilization values td.=. In the infinite L limit the  {imes it does not have to wait amg, is the number of times
leading term in Eq(10) is (u..)=a, and we obtain the fol- it has to wait for its neighboring PE. Then, in a mean-field

lowing scaling relation: spirit: Ugpz(Ny) = Nioi/ (Nok + Ny) = L/(pok + py), Where
Pok=Nok /Nt and py,=n,/Nie. Probability pok is the

lim (u,)=(u..)+ const' (11)  Probability of not having to wait when either an interior site
Loo L or a border site is chosemgok=(Ny—2)/Ny+(1—py)

X(2/Ny), wherep,, is the probability of waiting when either
The mean utilization{u..) in the infinite L limit, as a  of the border sites is chosen. Combining>, andppk gives
function ofNy, and theA-window size, is presented in Fig. 6. Eq. (13).
Data points foiN, = 10° represent extrapolated values for the ~ Similar arguments can be used to derive an approximate
A-constrained RD simulations. It can be observed that in théormula in the limit of largeA:
infinite L limit, as well as at each update attempt and in the
saturation limit, the utilization is strongly affected by the 1 2
value ofA. A narrowA window can significantly slow down - 1= ( S5— _) Pw+
the system because a significant number of REat other- u(A,Ny) Ny
wise would perform an updatenay be constrained to wait
for the slowest ones to catch up. This effect is particularly
noticeable when the numbe\, of sites per PE becomes where « depends on botiNy, and A, and is the average
large. For example, foN,,=100, when theA window is  number of steps a PE waits given that it does not have to
narrowed toA =1, the utilization may drop by as much as wait for a neighboring PE but has to wait because of the
65% from its value atA=100. WhenA=0, (u,)=0 for  A-window constraint. The meaning éfandp,, is as in Eq.
any Ny=1. (13). Let n,, be the number of times the PE waits given that
The standard % error in our simulation data for the utili- a border site has been chosen, aRde the number of times
zation at each step does not exceed 1% when configura-a PE waits because thke condition has been not satisfied
tional averages are extracted frowve= 1024 independent ran- either at the border or at the interior site. The corresponding
dom trials, except for the data obtained with the infinite probability p, is the probability of waiting because the
window, which are within a 2% error bddue to a smaller condition is not satisfied. In justification for Eq14) we
N). We estimate that our values for the steady-state utilizaassume that in the limit of larga, the events of violating
tion in the infinite L limit are well within a 2% relative the window condition at the border are almost disjoint from
uncertainty. The utilization data that are presented in Fig. @he events of violating the nearest-neighbor update condition.

2
K_1+N_pr Pa,
(14

can be fitted to the approximate formula, With this assumption, no matter which is done, one cycle
(AN} will be used to update the configuration, so the total number
U(Ny,A) =Ugp(A)ugpz(Ny)P= "V, (12 of updates iSn.,;=ngx+Nny+n,, while the number of

) . e ._cycles taken on average g+ on,,+ kn, . Defining the
where the _flrst factor qpprommates the utilization curve 'nprobabilities as above, yields the approximate relafib4).
the RD limit, ugp(A) =lim ~_u(Ny,A). The base in the  aqggitional approximations can be made by assuming uni-
second factor approximates the utilization curve in the infi-formly distributed waiting times. Note that for fixed,, and

046703-7



KOLAKOWSKA, NOVOTNY, AND KORNISS PHYSICAL REVIEW E67, 046703 (2003

— 1 1 T 1 a detailed analysis of the time evolution of the surface width
suggests that, in general, they do not belong to the KPZ
universality class unlike surfaces generated withe. Fig-
ure 8 presents a typical behavior of the width for=10. In
general, the transition to the saturated state takes place over a
! time interval(a “bump” in Fig. 8), whose length and posi-
— 110° N.—10. Aol 1 tion depends mainly on th& value and cannot be character-

o0 ] ized by a single crossover time. In the initial growth phase
E for t<t, (t, marks the beginning of the plateau, Fig, Be
: surface width scales &%, i.e., for a fixedA andN,,, the
growth is characterized by one value of expongribr any
L. In general, surfaces generated with various values of pa-
rametersA and N, are characterized by various effective
20 40 60 30 100 values of the growth exponegt WhenA =0, 8 values are

PE index k between the KPZ value of 143or Ny=1) and the RD value

FIG. 7. The roughening of the STH. Fdr=c (the upper sur- of 1/2 (for Ny,=<0) for small an_d intermediatBly, andL. In
face, the crossover time is, ~4000, and forA=5 (the lower the Saturated phasg,<t, for a fixed value ofA, the surface
surfacg the width begins to saturate g~ 40. width (w, y (t)) decreases with the system size, as can be

observed from Fig. 8. The saturated surface width as a func-

A, both 6 and k can be measured independently of the uti-tion of the system size is plotted far=100, 10, 5, 1 in Fig.
lization, thereby testing the mean-field spirit of the calcula-9. It can be seen that increasing the number of PEs and the
tion. number of sites per PE does not result in infinite roughening
of the STH.

The STH produced in the RD simulations with the infinite
A window (in other words, in PDES with no communication

Direct simulations show that th&-constrained width of between PBsis characterized by a surface that is not self-
the STH is bounded: its absolute spread remains withirAthe affine [9]. Nonetheless, the presence of a finkewindow
value for an arbitrary system size. This result should be exeonstraint in the RD simulations forces the STH surface to
pected since the update ry® implies that independently of saturate(Fig. 8. Therefore, this type of PDES no longer
the system size, at each update attempt, the absolute devigelongs to the RD universality class, characterized by
tion from the minimum cannot take on values much larger=0.5 and a=%«. In the A-constrained PDES, the
thanA (if it does, the update does not happefhus,w, as  A-constrained RD surface is the limiting case when the num-
well asw may not exceed\. The surface of the STH is ber of sites per PE grows to infinity.
effectively smoothed at each update attempt. Figure 7 shows An interesting feature in the surface width evolution
the difference in roughening for two surfaces afterl000  graphs(Figs. 8 and 1Dis the presence of a maximum that
steps: the upper surface is obtained in simulations withoutnarks the end of the growth phase. Its double peak structure
the A constraint, while the lower surface is obtained with can be explained, both quantitatively and qualitatively, in
A=5. terms of simplex geometr35]. In the set ofL processing

The A-constrained time surfaces exhibit the initial growth elements, we distinguish between slow Rgup (S)] and
and the saturation at later times, similar to Fig. 4. Howeverfast PEJgroup (F)]. At the tth update attempt, thieth pro-
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FIG. 8. The time evolution of the mean STH surface wi@itf(t)) (averaged oveN= 1024 independent random tripist PDES with
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eyes.

cessor belongs to groyp) if its local time 7, (t) is less then

Wqs) » Wa(ry @ndw, [Fig. 10@)] and the corresponding frac-

or equal to the mean local time over all processors att the tional contributionsf g andf ) [Fig. 10b)] for the first 500
step. Otherwise, it belongs to group)( One can define the simulation steps. Quantitatively, the double peakvjft) (at

variancew? and the widthw, for each group as follows:

Lix(t)

w%X)a):W gl [Moo(D— (D13 (15
Lx(t) .
Wa(X)(t):m kzl | Ty (D) = ()], (16)

where “X” stands for either 'S” or “ F,” and L=Lg(t)
+L(t). The variancev? and widthw, of the STH can be
expressed as the convex linear combinations,

W2 (1) = f (5 (D) Wig) (1) + F iy (DWER (1), (17)

Wa(t) = f g (D) Wy(g (1) + f () (D) War (1), (18

where 1:f(s)(t)+f(|:)(t), ng(s), f(p)gl EXp“Cltly, W2
andw, form a 1D simplex with vertices a and F. The

aboutt=10) presents the weighted sumwfs) andw,g)

in accordance with Eq(18), which is evident by matching
the width contributiongFig. 10@@)] with the corresponding
fractional contributiongFig. 1Qb)] at eacht step. Qualita-
tively, the decrease in surface widths tor 10 is the effect

of the constraint conditiofB). In the particular case of simu-
lations with A=10 and N,,=1000, illustrated in Fig. 10,
initially the majority of PEs belongs to the slow grolabout
63% att=1, Fig. 1db)]; but ast advances the STH rough-
ens and the population of the slow group falls while the
population in the fast group grows. As the population of the
fast group gets larger, the fractienof PEs that are allowed

to update falls because some of the fast PEs violate condition
(3). While the fast PEs are waitin@e., no local time incre-
ments at the fast sitgsthe slow PEs are incrementing their
local times, hence, the mean simulated time increases and
therefore the deviation from the mean in E¢6) [and Eq.
(15)] decreases for the fast PEs. This is the main mechanism

coefficientsf g and fg are the fractions of slow and fast in the formation of the maximum in the,) curve. Simi-
processors, respectively, in the system at each update atteniatly, the first maximum in thev,s curve is formed mainly
t. Figure 10 shows the time evolution of the surface widthsdue to the depopulation of the slow group. As the slow PEs
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% T ] time evolution will be repeated aftég until the steady state
(@ | is attained.

)i AAW, o> The above arguments can be restated in terms of the STH

E ‘ 00 <Wr>|] variancew? [ta}kmg Eq.(17) as the key to the ar)alyélﬁor .
- A ooOW,> | any system size. In the conservative PDES with a moving

o A '3 A 1 window constraint the system evolution towards a steady
- oA state follows essentially one path, along the above outline,
for any value of the simulation parametexs N,,, andL. In
our example, we choose tentatively a very nargdowindow
and a largeN,, so the effect of the update scher® is
clearly pronounced in the evolution curves. In such a system,
the correlations that arise due to the short-range connection
update schemél) are small relative to the correlations that
arise due to the window constraif®). Accordingly, in this
10 10 10 case one can clearly deduce that a sharp fall in the utilization
curve is the effect of a sharp population rise in the group of
fast PEs. For example, one can read from Figbjlthat at

YN
iy

LU

18- t=10 about 25% of the PEs that did not make an update

! were mostly in the group of fast PEs, so approximately about
90 one half of the fast PEs updated at this update attempt. A
85r similar conclusion is certainly false when each PE in the
sg. system carries a small number of sitesg., N,,=10) since

in this case the correlations that originate due to the short-
range connections between PEs may not be neglected and the
utilization curve begins the fall a=0 because the fast PEs
and the slow PEs fail to satisfy conditidqf) with approxi-
mately equal frequency. Opening thewindow wide (e.g.,
A=100) effects the evolution curves in two ways. First, it

%-fraction of PEs

451 . slows down the buildup of the correlations that arise due to

40 .0 y constraint(3). This makes the growth phase longer, so that a

351110 e - B transition to the steady state takes place at later times and
10 10 t 10 over extended time intervals. Second, it softens the correla-

tions that arise due to constraif®, which smooths a tran-

FIG. 10. PDES withA=10, Ny,=10% andL=10% (a) time  sition to the steady state and the ripplelike features in the
evolution of the surface widths(b) time evolution of percent- utilization and the width curve@&hat are clear in Fig. JCare
fractional contributions to the surface widths. Subscrifisand(F) ~ only weakly present or vanish into statistical uncertainties.
denote a fraction of processors in the slow and in the fast groupor example, in the worst case scenarioNyf=1 and A
respectively, andi is the utilization. Configurational averages were =100, the time evolution towards the steady state follows
taken oveN= 1024 independent random trials. The lines are guideghe pattern typical for the KPZ universality clasa =),
for the eyes. which suggests that the main correlation mechanism results

from the update schem@) in this case. Nonetheless, unlike
are “catching up” with the fast PEs within th& window for ~ the KPZ surfaces, the presence of thewindow prohibits
the update, the utilizationincrease$20<t<50, Fig. 1@b)]  the steady-state surface width to grow infinitely as the sys-
and so do the widths. This secondary maximum is less proiem gets larger.
nounced because the populations of the two groups are close
apart. Eventually, after several cycles, the widths as well as V. DISCUSSION
the utilization reach steady values.

In other words, the way in which the system undergoes Our statistical analysis of the growing virtual time inter-
the transition from the initial state to the steady state, obface in conservative asynchronous PDES with a moving win-
served in the above example, is a direct consequence of thiow constraint, shows that in the steady state the average
window constrained update schert® and the particular utilization remains finites(and nonzerpand scales with the
initial condition, in which all PEs enter simulation with their system size. Similarly, the statistical spread of the STH re-
local times equal. If this initial condition of the full synchro- mains finite and scales with the system size. This was dem-
nization is changed, for example, by assuming that=ad onstrated for a range of volume elements friip=1 to the
the local times are randomly distributed about some meaRD limit at Ny =. The convergence of the utilization to a
local time, the transition to the steady state will change itfinite value and the convergence of the time interface width
character. On the other hand, if at some later update attemps a finite value as the number of processing elements infi-
ts the system is synchronizédhich is equivalent to setting nitely increases, reflects positively on the ability to effi-
all local simulated times to one valuetg) then the recurrent ciently implement this type of PDES in applications. In other
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words, with this globalA-window constraint the simulation because it ensures that causality is not violated in any update.
part as well as the measurement part of the algorithm aréhe second source of correlations is the constraint in the
simultaneously scalable. form of the moving window condition. The moving window
The practical questions that should be addressed involveondition, if acted alone, would lead to the steady state,
suitable implementations of the algorithm, possible modifi-where the entire system is not only correlated but, also, is
cations and generalizations that would facilitate application$ynchronized to some extent. The extent to which the system
by optimizing performance and thus maximizing efficiency. M@y become synchronized depends on the width of the mov-

Such questions would likely be nonuniversal, and hence déld Window—the roughening of the virtual time horizon is
pend on the explicit problem being simulated. constrained to th&-window width. Notice, the moving win-

It follows from our analysis that the utilization as defined dow condition is not necessary for the conservative scheme.

by a fraction of working processors, is not a sole measure ollt§ role is to ensure that infinitely large .desynchr_onization
the efficiency. However, it is an important component of theWill not happen. In this sense, the constraint condition can be
efficiency. The case of PDES with the basic conservativé€e€n as an implicit synchronization protocol. In the con-
scheme, when the measurement phase is not scalable, Sgsétamed_ conservative PDES, the above_ two correlatlo_n
gests other important factors that should be considered if€chanisms act together: the nearest-neighbor connection
efficiency studies. The second important component is théule explicitly guarantees causality and the constraint rule
statistical spread of the virtual time surface as it is measuretnPlicitly guarantees a near synchronization in an arbitrarily
by its variance or by its mean absolute deviation. The thirdonNd sequence of update attempts.
important element is the frequency and the effect of extreme
fluctuations in the virtual time interface. The fourth impor-
tant factor is the average progress rate, which could be mea-
sured by the growth rate of the global minimum of the virtual We considered the conservative parallel discrete event
time interface. An efficient algorithm should be characterizedsimulations with the moving window constraint and studied
by the highest values of the utilization and the progress ratehe time evolution of the utilization as well as the time evo-
while having small statistical spread in waiting times andlution of the stochastic time horizon by varying the system
should lack severe effects of the extreme time fluctuations.size(i.e., the numbetL of processing elements and the num-
Applying the above recipe to conservative asynchronouger Ny, of sites per processing elemgmind by varying the
PDES with aA-window constraint, the results of our studies width of the moving window. The results of our simulations
indicate that this kind of simulation presents a promise ofindicate that this particular class of algorithms with the con-
becoming a good departure point towards the design of aservative update scheme generally scales with the system
efficient class of algorithms for asynchronous systems. Theize. The utilization reaches a steady-state value after a finite
A-window constraint not only eliminates the extreme fluc-number of simultaneously performed parallel steps and ap-
tuations in the virtual time horizon but also controls the sta-proaches a finite nonzero value in the limit of infinite system
tistical spread of the STH and controls the average progressize. This demonstrates that the simulation part of the algo-
rate. The width of the\ window can serve as a tuning pa- rithm is scalable. The statistical spread of the stochastic time
rameter that, for a given volume load per processor, could bhorizon is bounded by the size of the moving window con-
adjusted to optimize the utilization so as to maximize thestraint in the limit of the infinite system size, which shows
efficiency. that the measurement part of the algorithm is scalable. In
In the conservative asynchronous PDES studied in thiparticular, in the limit of a large number of sites per process-
work, there is no condition imposed that would explicitly ing element the results of the simulations approach the con-
synchronize a system in the course of the simulations. Thetrained random deposition model, which is characterized by
system is fully synchronized only initially and undergoes de-a high value of utilization while permitting effective data
synchronization over timéi.e., over many parallel steps management. The simultaneous scalability of both phases of
The degree of this desynchronization is strictly related to thehe algorithm is an important finding because it establishes a
roughening of the STH. As the simulations evolve, correla-solid ground for the design of new class of efficient algo-
tions between system components build up, which is rerithms for parallel processing to model the evolution of spa-
flected by changes in the morphology of the STH. There ard¢ially extended interacting systems with asynchronous dy-
two sources of correlations in the STH. The first is thenamics. Further studies are required in the search for possible
nearest-neighbor communication rule that, if acted alonegptimal implementations. For example, explicitly taking into
would eventually lead to the steady state, where the entiraccount the time required to find the global minimum of the
system is correlated. In the case of one volume element p&8TH at each step.
PE, the time to the global correlation is of the order.6f. Aside from practical aspects of the constrained parallel
However, the presence of this global correlation does notonservative discrete event simulations that are oriented to
cause an implicit synchronization nor does it lead to a statelirect applications such as the scalability issues, there are
of near synchronization. On the contrary, despite this correseveral interesting physics questions that arise in connection
lation there are no global bounds on the roughening of thavith the stochastic time surface growth. These include the
virtual time horizon: the larger the system, the more desyndevelopment of the lateral correlations and transient relax-
chronized it becomes over time. The nearest-neighbor comation processes. We leave these questions open to possible
munication rule is the essence of the conservative schenfature investigations.

VI. SUMMARY AND OUTLOOK
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L e E e S — responds toy(x)=x becausel =« meansy=ukp,. Con-
sidering the limit behavior of ,(x), whenx(Ny=%=)=1 the
coefficienta(A) must be interpreted aszp(A). This is also

08 ] consistent with the alternative parametrization, where
=ugrp(A). Therefore, we directly identifa(A) with the ap-
0.6F A proximate expression fougp(A). A four-point fit can be
= found as
A
>
0.4F -1 URD(A)%a(A)E (Al)
C3 C4
] e Aes
0,2- /’*——._‘: A 3 A 4
: Whenc;=15.8,e;=1.07,¢c,=12.3, ande,=1.18, fit(Al)
ob— 1 . is good within==2% relative error in the rangesOA <. A
0 02 04 ?\]6 0.8 1 simple two-point fit withc;=3.47, e3=0.84, andc,=e,
X=Uypz(Ny) =0 approximates our simulated data withir2.5% relative

difference(Fig. 6, utilization values foN, = 10°).
Considering the limitsugpz(Ny=1)~1/4 andugpz(Ny
=w)=1, a four-point fit tox(Ny/) is

FIG. 11. Family of utilization curvey,(x) vs x=ugpz(Ny),
illustrating the underlying idea of the fit. Fak;<A,<---<A
=%, Y5, <Ya, < <Yo=X. For A=0, ys(x)=0 (not shown.
Symbols mark the simulation data. The cubic spline curves are

guides for the eyes. (A2)

Ukpz(Ny) =X(Ny)=

€1 Cp

I+ =t

1 2
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APPENDIX: THE UTILIZATION DATA

In the infinite L limit the utilization is a two parameter
family of curves(Fig. 6). The two limiting curvesugp(A)
and ugpz(Ny) approachu=1 in the infinite limit of their
arguments. One can consider eitlh@r, or uxpz as an inde-
pendent variable« and express the utilization gs=y(x).
We choose parametrization bW,, where x=x(Ny)
=Ukpz(Ny) and y,(x) =ya(x(Ny)). Figure 11 illustrates
the idea by plotting the utilization, (x) for several values of

A. The curves in Fig. 11 are a family of roots that, in first

approximation, could be expressed by(x)=a(A)xP®),
wherea(A) andp(A) have fractional values. To find(A)
and p(A) each curve is fitted to “the best” two-point for-
mula. Then, sequencegA) andp(A) are expressed by fit
functions.

A fit to a(A) is chosen in such a way tha{0)=0 and
a()=1. In Fig. 11,a(0)=0 corresponds ty(x)=0 be-
causeA =0 yieldsu=0 for L=«. Conditiona(«)=1 cor-

=X. Conditionp(0)=0 expresses the fact that for small
the utilization depends mainly ok (not Ny, and, therefore,
the exponentp(A) should be almost zero for smaN. A
simple two-point formula givep(A)=1/(1+2/A%%. With
this p(A), a simple fit tou(Ny,A)~a(A)x(Ny)P®) has a
+10% relative error whera(A) and x(Ny) are given by
simple two-point fits. The actual power depends weakly
also onNy, p=p(A,Ny). A four-point formula that accom-
modates thé\,, dependence can be expressed as

1

cs(Ny)  ce(Ny)
Ass(Ny) A es(Ny)

P(A,Ny)~ (A3)

The fit (12) is good to within+5% relative uncertainty for
all A andN,, values whenugp andugp, are expressed by
four-point fits (A1) and (A2), respectively, and whep is
given by Eq.(A3) with the following fit parameters: foN,,
=100, c5=528.4, e5=1.487, c4=515.1, e5=1.609; for
Ny<10, c5=17.43,e5=1.406,cs=15.3, e=1.687; other-
wise, c5=5.345,e5;=0.627,c=0.095, e5=0.045.
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