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Iterative approach to Maxwell equations for dielectric media of spatially varying refractive index
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We propose an iterative method to solve the Maxwell equations for a one-dimensional model system with
spatially varying permittivity. We construct solutions that are iterative in the scattering order, equivalent to the
number of scattering events along the forward and backward directions. A numerical implementation of this
approach is also presented.
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. INTRODUCTION V.e(r)E=0, 213
The large variety of problems in fiber optics communica- V.B=0, (2.1

tion, waveguide technology, photonic and semiconductor de-
vices, and thin-film technology involves the study of the op-

tical response of a one-dimensionélD) medium with VXE=—dB/dt, (2.19
specifically designed refractive indgk—5]. These problems . R .
generally require the calculation of the transmission and re- VXB=¢e()udE/dt. (2.10

flection amplitudes of an incident electromagnetic field. o o )

However, there exists no general solution to the Maxwellf the field is normally incident on a medium whose refrac-
equations for media with an arbitrary refractive index. Tra-Uve index varies only along the direction, these equations
ditionally, the transfer matrix approag8] is used if the me- (@ke the form

dium consists of a finite number of plane parallel dielectric IB,(x,1) JE (X,1)

slabs arranged either periodically or in a disordered fashion. , (2.2a
In this approach the optical properties of each slab or scat- at X

terer are described by ax2 matrix and the net reflection or

transmission amplitudes are obtained through matrix multi- £(X) IEy(x,1) __ i _aBZ(X’t), (2.2
plication. This numerical approach can also be extended to a dt mo OX

medium with a continuous refractive index by discretizing

the medium into a finite number of slabs of infinitesimal dBy(x,t)  JE,(x,1) (2.20
length. Other well known approaches suggested in literature o ax '
are the Green function techniqyié], the invariant embed-

ding theory[8,9], and the wave splitting theoifyL0]. Alter- JE,(X,1) 1 dBy(X,1)

natively, differential equations in terms of a suitable combi- e(X) g w o oax (2.20

nation of scattering amplitudes can also be construct&f
In this paper we suggest an alternative approach to theshereE, , andB, , are the transverse field components. Any

problem of scattering from a 1D medium. We show that thearbitrary transverse polarization can be expressed as a linear

field propagating through a medium with an arbitrary refrac-combination ofs polarization €,,B,) and p polarization

tive index can be expressed as a sum of fields correspondin(®, ,E,), which are the two linearly independent polarization

to various scattering events. Such a solution can be generatetbdes. Consider auxiliary fields of the type

directly from the Maxwell equations when rewritten in terms .

of two auxiliary fields. The auxiliary fields give rise to a pair _ Y

of coupled differential equations with a familiar form RxD= 5{ sCOB,/ D+ BLOGU/Viah,

[8—12], and when solved in an iterative fashion, the various

orders of iteration correspond to the number of times the 1

field undergoes forward or backward scattering in the me- Ls(x’t)z5{VS(X)Ey(X’t)_Bz(X’t)/\/ﬁ}; (2.33

dium. Thus, apart from being physically intuitive, in regimes

where higher-order scattering events are not important, the 1

solution simplifies both analytically and numerically. Par- Rp(X.t)EE{VS(X)EZ(XJ)—By(X.t)/\/ﬁ},

ticularly for wavelengths much larger than the size of the

scatterers, few scattering events are sufficient.

Lo(x,0)=5{Ve(X)E,(x,1) +By(x,t)/Vu}. (2.3D

N| =

II. ANALYTICAL SOLUTIONS OF THE

ONE-DIMENSIONAL MAXWELL EQUATIONS . .
Q The wave equation@.29 and(2.2b are equivalent to a set

The Maxwell equations for a nonmagnetic medium withof coupled equations for the auxiliary fieldBg(x,t) and
position-dependent permittivity are given by Ly(x,t)
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(X) whereZ(x,w)=exp[—iw [ dx'/v(x")]]. We can construct
Rs(xt) == 5 —5 IR D+ Ls(x, 1)}, unique iterative solutions to this system in increasing orders
(2.43 of a(x) for a given boundary condition. The zeroth-order
solutions are governed by

1% N J
U(X)& 5

( J &)L t)= 1dU(X)R t)+Lg(xt J
v(X) 7= o[l == 5 = —{R(X D+ L(x, D}, — RO(x,0)=0, (343
(2.4 x

wherev (x)=(ue(x)) Y2 is the position-dependent velocity. J = )
A similar set of equations can be obtained Ry(x,t) and > (x0)=0. (3.4b
Lp(x,t). The form of the generator in Eg.4) suggests that
Rs(x,t) and L¢(x,t) represent fields propagating along the Consider a medium present in the regioa¥<b. If there is
positive and negativa directions, respectivelyR%(x,t) and ~ a source ax=0 which generates a right-going wave, we
L2(x,t) correspond to the right- and left-going photon fluxes,have R(x=0,0)=f(w) and L(b,»)=0, ie., there is
respectively. This can be obtained from the definitith8g.  NO source generating a left-going wavexatb. With this
One can show thatR3(x,t)+L3(x,t)=1[e(X)E3(x,t) set of boundary con(ytions, the solutions of E(®.4) are
+(1/u)B3(x,t)] is the energy density and(x)(Ré(x,t) RO(x,w)=f(w) and L©(x,w)=0. By using the zeroth-
—L§(x,t))=(1/,u)Ey(x,t)Bz(x,t) is the Poynting vector of order solutions, higher-order solutions can be constructed
the s-polarized field. ThusR2(x,t) — L2(x,t) corresponds to from Egs.(3.3). ]n general, we can recursively generate the
the net photon flux at positionand at timet. In the follow- ~ Mth-order solutions from thenf—1)th-order solutions by
ing sections, we show that for boundary value problemsS0Ving
Egs.(2.4) can be solved iteratively in the frequency domain J
and for initial value problems in the time domain. The same —RM(x,0)=a(X)Z4(x,0)LM™ V(x,0), (3.53
procedure can be followed for thepolarized field. Thus, we X
omit the subscripts andp. J
—LM(x,0)=a(x)Z%* (x,0)R™ Y(x,0) (3.5

Ill. THE ITERATIVE SOLUTIONS IN THE FREQUENCY Jx
DOMAIN _

subject to the boundary condition®™(0,w)=0 and

. . . . (X,t) _
Transforming the fields into Fourier spacf{y )} L(M(b,w)=0 for m#0. This yields the recursive solutions

=(1/2m)[* .dwe YR} the system(2.4) becomes of the type
iR(x w)= i—era(x) R(X,w)+a(Xx)L(X,w) RM — T dxarx'y72(x" @)™ Vix’
X ; v (%) ) @), R™(x,w)= de a(x")Z7(x",w)L (X", w),
(3.139
d iw Lm(x w)=—dex'a(x’)Zz*(x’ o)RM V(X" w)
5L(x,w)= —m+a(x) L(X,0)+a(X)R(X, ), ’ X ’ T

(3.1 (3.6

Transforming back to our original fields using E¢R.2), we

where a(x)=—1/(2v(x))dv(x)/dx. We can eliminate the get the iterative solutions faR andL:;

diagonal couplings by introducing the fields

- X ) RM(x, w)= Zxw) dex’,B(x’)a(x’)Z(x’ w)
R(x,w)zexp{—fodx’(v(x,) +a(x’) | |R(X,w), ' B(X) Jo '
(3.29 X LMD (x", w), (3.79
- x i
L(x,w>zexr{ fodx'(v(f,)—am L(x,0), L<m>(x,w):—Z(BX(—’X‘;’)ijdxrmxr)a(xf)z*(xf,w)
(3.2
XRMD(x" w), (3.7b

which satisfy the following set of equations:
where B(x)=exd — [za(x')dx']= v (x)/v(0) is the ratio of
(3.39 the velocities atx and x=0. For 0ur~boundary conditions
R(0,0) =R(0,0)=f(w) andL(b,w)=L(b,w)=0, we have
5 R(O)(X,w)=Z(;)(X,w)f(w)/ﬂ(x) andL©(x,w)=0. In physi-
-~ _ 2% = cal terms,R"™(x,w) represents the right-going wave that
gx F@) =027 (X 0)R(X, @), B339 joes not scatter inside the medium, and thi8(x,w) is

J - ~
o R(X,0)=a(x)Z%(x,w)L(X, ),
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zero. Since LO(x,0)=0, using Eq. (3.7a8 we obtain

RM(x,w) =0, in agreement with the fact that there cannot be
any transmitted light with an odd number of scattering events

for any finite medium. Using these expression RSP’ and
L©® and solving for various orders in Eq$3.7) yield
LM(x,w)=0 and

X
R(m)(x,w)=(—1)’“’2R(°)(X,w)f dXm@(Xm) Z% (X , @)
0
b
Xf de,la(Xm,l)Zz*(Xm,l,w)X'"
Xm
X3 2
X dXoa(X5)Z4(Xs,w)
0

X jbdxla(xl)zz*(xl,w) (3.89
X2

for evenm integers. Similarly, for odan integers, we obtain
RM(x,w)=0 and

LM (%, 0)=(—1)M P2RO(X,0)Z%(x,w)

b
xf dXma(Xm) Z2* (X, @)
X
Xm
Xf de—la(Xm—l)Zz(Xm—lyw)X'"
0
X3
Xf dX,a(X) Z%(Xp, o)
0

X fbdxla(xl)zz*(xl,w). (38b)

X2
It follows that the full solution to the syste(8.1) is given by
R(X,®)=RUx,0)+ > RM™(Xw),
evenm=2

©

L(X,0)= >

oddm=1

LM(x,w). (3.9

IV. ILLUSTRATION OF THE FREQUENCY DOMAIN
TECHNIQUE FOR A SERIES OF DIELECTRIC SLABS

Let us first consider the simple case of-golarized field
f(w) incident on a single dielectric slab of thickneésand
dielectric constankon?. The index of refractiom can be

considered complex if the medium is absorbing or amplify-
ing [13,14). The slab has sharp vacuum-medium interfaces at

x=0 andb. Then the velocityv(x)=c[1—(1—1/n)6(x)
+(1-1/n)6(x—b)], wherec=(useo) Y2 is the velocity of

the incident light in vacuum and the usual unit step function

is defined as#(x)=0 for x<0, #(x)=1/2 for x=0, and
0(x)=1 for x>0. Using the above expression fo(x) we
get

PHYSICAL REVIEW E 67, 046619 (2003

Z(x,w)=exr{ —iFw{xwLx(n—l)a(x)

~(x-b)(n-1)(x—b)}|,  (4.1a
1] (2180 - 8(x—b)}
ax)= 5[1—(1—1/n){6(x)—0(x—b)}} (4.19

It can be noted from the definitiof2.3) that, unlike the tan-
gential and normal components of electric and magnetic
fields, L(x,») andR(X,w) are not continuous at the bound-
ary, if e(x) is discontinuous. Integrating E¢3.8b from x

=0 tox=Db, the resulting expression for the left going wave
is

LY0,w)=— dex ax)Z%* (x,w)f(w)
0

2iw
1—ex;{—nb>
c

where y=[(1—n)/(1+n)]. A careful examination shows
that expressioi4.2) is the sum of two waves reflected at the
interface atx=0 andx=b, respectively. Similarly integrat-
ing Eq. (3.83 with the limitsx=0 andx=b, we obtain

=y f(w), (4.2

i
R®)(b,w)= — yL<1>(o,w)exp<?wnb)

=—y2exp(i—wnb> f(w)
S ,

2iw
1- exp( Tnb)
4.3

where we have used the boundary conditid®(b,w)=0.

The usual transmission and reflection amplitudes used in the
transfer matrix theory{1,6] are related to our scattered
fields viar(w)=L(0,0)/f(w) andt(w)=R(b,w)exd —(iw/
c)b]/f(w). This phase factor is necessary to reflect the fact
that in the transfer matrix theofw)=1, whereaR(b, )
=ex{ (iw/c)b]f(w) for vacuum fi=1). Summing up all the
iterative terms foilR(b,w) andL(0,w) we obtain the series

2iw 2iw
r(w)=y|1-exp ——nb 1+y?ex —nb
4iw
+y4exr<—nb 4o
c
2iw
yl—ex;{Tnb
- 2iw ' (4.43
1—y%ex —nb
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y and
= | = :
- m 2 (1-2n){o(x=a) ~ o(x~by)}
By ! a(x)= 3 :
)/T - G 21— (1—1/nj){a(x—a,-)—e(x—bj)}}
—k — — L~ —X i
B, z’/ (4.6
Using Egs.(3.7), the mth-order solution for the right- and

L L1 || / left-moving wave can be obtained,
a, b ab, 3 bj a; b 1

(m) Z* (x,0) (m-1)
FIG. 1. Sketch of a layered medium with slabs arranged in aR" (X,@)= WZl Yi{B(b)Z(bj,®)L (bj,w)
disordered fashion. =

. _ —B(a))Z(a;,w)L™ Y(a;,w)}, (4.7a
t(w)=[1—9%*{1-e 2I—wnb> —y*ex 2I—wnb)
(w)_ 7 § ¢ 7 ¢ L(m=1) _ Z(X,w) é Z*
[ p<2i‘" ) p(iw ) (@)= & niA@Z (@)
Xi1l—exp —nb||—---|exg —(n—1)b
c c XRM™ 2 (a;,w)— B(b;)Z* (b}, )
(1-9%) XRM 2 (b;,w)}, (4.79

iw
= ) 5w ex;( c (n l)b). (4.4b
1-y"ex Tnb where k=1,...,J and b,_;<x=<a, denotes the region be-
tween the k—1)th andkth slab. The integrals in Eq$3.7)
The factors (1 y?)exd(iw/c)nb] in the expressior(4.4h  were reduced to a summation over the scatterers. The phase
are the product of the fraction of the wave transmitted afactors reduce to
botf; interfacesx=0 and x=b. The factor (1 v?) 1
X v~ exd (iw/c)nblexd (2iw/c)nb] represents a wave trans- lw
miz/ted gf(ter t?/vo]refFI[e(ctiong, filrst Ft))ackwards b, then Z(ag,w)= exr{ T [ act 121 (= 1)dj} }
forward atx=0. Continuing similarly, the higher order con-
tribution can be explained. and
We next generalize this approach to a medium containing
J slabs, arranged randomly along tkeaxis, with widthd; iw
=b;—a;, and dielectric constanton?. This sequence of Z(bk,w)=exl{—?
dielectric slabs is shown in Fig. 1. The index of refraction
n;, the width of each layed;, and the spacing between the
centers of. thg sIaprj were chosen randomly with a uni- —n)/(1+n). If we define the mth-order reflec-
form distribution in the range 1§m$1.5, 0.2<d;/Ax and  transmission amplitudes  asr(™(x,w)
<0.4, and 0.&ij'/Axs 1.5, respectlvgly. HerAx denotes _ L(m)(x,w),B(X)/f(w) and t(m)(X,w)E R(M
the_average spacing between two adjacent slabs. In the leZ(x,w),B(x)/f(w), the following recurrence relations can
lowing, all lengths become unitless and are expressed ifg gpiained:
terms of the scale lengthx. If the incoming light is perpen-
dicular to f[he surface of the slabs, the corresponpling Max- r(m=Dq,  »)/Z(ay,»)=ndt™ 2 (ay,w)Z* (ay, )
well equations can be reduced to the set of one-dimensional
equations introduced in Eq&.2). This illustrates nicely that —tM2(by,w)Z* (by, @)}
the one-dimensionality is not merely a mathematical simpli-
fication but shows that the propergy=¢(x) can be easily
realized experimentally. Similar systems have been used in (4.89
previous studies in connection with random laddi3-15.
We can evaluate the relevant integrals leading to r(M= Dby, w)/Z(by,0) =y 1{tM (a1, 0)

k
bk+j21 (nj_l)dj]:|

In deriving Eq. (4.7) we have used the notatiog;=(1

+ I’<m71)(ak+l,w)/Z(ak+1,w),

XZ*(ak+l!w)
—t™ (b, 1, 0)Z* (bys 1, )}

’ +rM (b1, 0)/ Z(bys,0),

i J
Z(x,w)=ex;{ — F[X+Z (x—a;)(n;—1)0(x—a;)
j
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t™(ay,w)/Z* (ax, ) = Y1 {r'™ V(b 1,0)Z(by_1, @)

—r™ D@, 0)Z(ay_1,0)}

+t™ (@ g, 0)/Z* (a1, ),
(4.80
tM™(by, ®)/1Z* (by, @)=y {r ™ (b, @) Z(by @)
—r™ (e, w)Z(ay, )}
+tM(by_1,0)/Z* (by_1,®).
(4.80

The boundary conditions can be rewritten @8 (b;,w)
=0 for all mtM(0w)=0 for m=2 and tO(x,0)

=Z*(x,w). The systen{4.8) can be solved for evem. The 101
reflection and transmission coefficients are defined again§ 4
through r (w)=L(0,0)/f(w) and t(w)=R(b,»)exd —(iw/ — 4
c)b)/f(w), which take the form ‘g i
» o 3 4
fw)= > ™ Y0w), 49a 210 ]
evenm=2 g r
. . k) p
t(w)=exp< —I—wb) Z5(bo)t D t™(bw)|. a
c , evenm=2 ' 10'7 F
(4.99 10 20 30 40
We show now numerically, for the medium with randomly A

arranged dielectric layers, a comparison between the exact FIG. 2. (Top) The net transmission coefficiefitas a function of
Splution TE|t(w)|2 and the iterative squFior_1. In the .tc.)p of wavelength\ from a medium containing= 100 slabs. The refrac-
Fig. 2, W_e have graphed the total transmls_5|on coefficient fOfive index, the location, and the width of the slabs were randomly
the medium with]J=100 layers as a function of the wave- jgsigned from a uniform distribution in the range 41§<1.5,
lengthA =2mc/w. The exact transmission coefficient is ob- 0.5<x;/AX=<15, and 0.2d,/Ax<0.4, respectively. The inset
tained using the transfer matrix thedi6,17. shows the exact transmission coefficient compared to the transmis-

In the range from 8\ <8 the transmission is character- sjon coefficients when evaluated up to various orders of iteration.
ized by rapid oscillations, a very small change in wavelengthbottom The relative error as a function of wavelengttfor the
can change the medium from nearly transparéiit Q) to  same medium as in the top figure. In all graphs, the wavelength is
almost opaqueT~1). For larger wavelengths the transmis- measured in units ox, the average distance between two slabs.
sion profile is less oscillatory and approachies1 in the
limit of large wavelengths. We should note that this curve istransmission coefficient gets larger for longer wavelength,
for wavelength independent indices of refraction and is enthe error of the iterative solutions decreases. This is expected
tirely due to the scattering at the interfaces. For a mediunbecause a3 approaches unity, less and less higher-ordering
whose index of refraction varies directly with the wavelengthscattering events become important.
of the incident light, the transmission curve would be modi-
fied. In the inset we have amplified the small wavelength
window 10<A<12. We will use this range later in the dis-
cussion of the time-dependent pulses. The exact transmission |n order to study our system in its time dependence, let us
is compared with the prediction of our iterative solutions make the following change of variables to eliminate the self-
derived above fom=6, 10, and 20. While the terms up to coupling terms in the systef2.4):
the sixth order give only a qualitative agreement, and for the
range 10.3X\<10.5, T exceeds even the physical limit of = _ ~ _

T=1, the 20th-order iteration is practically indistinguishable R(x,t)=B(X)R(x,t), L(x,t)=B(X)L(x1). (5.1
from the exact curve and we have full convergence.

To show the behavior of the iterated transmission coeffi
cients for the entire wavelength region we have displayed i
the bottom figure the relative errdf ™ (\)—T(\)|/T(N),
where TM(\)=|t(\)|? is the transmission coefficient ob-
tained for an iteration up to ordem in Eq. (4.9b. As the

V. THE ITERATIVE SOLUTIONS IN THE TIME DOMAIN

Upon substitution of Egs(5.1) into the system(2.4), we
;pbtain the following equations:

R(x,t)=w(x)L(x,t), (5.2a

.
v) 5t G
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~ ~ further simplified toc(T(x) —t)=x—ct+xq4, where the de-

LG =w)R(x,1), (5.2 |ay is defined axg=cT(b)—b. Similarly, we obtaing(x)
=1 for x=b and B[ T *(T(x)—t)]=1 such that the trans-

where the coupling strength is proportional to the gradient omitted zeroth-order pulse B((x,t)=f(x—ct+Xxy), iden-

the velocity w(x)=—3dv(x)/dx. We can construct solu- tical to a shifted initial pulse. Fom>0, we obtain

tions that involve increasing orders of th&x). The zeroth-

order iterative solutions are defined by

1% J
U(X)& E

RM(x,t)= % fotdt’w[T‘l(t’ —t+T(x)]B[T Xt —t

J 0\~
(”(X)a_xﬁ RO(D=0, (5.39 FTODILM VT3 — 4+ To0) T, (5.69
(X)i—i LOx,t)=0 (5.3p  LM(x t)=—LJtdt’W[T_l(t—t’+T(X))],6’[T_1(t—t’
VX ot T ' ' B(X) Jo
subject to the initial condition®(x,t=0)=f(x) andL(x,t +T))IRM V[T H(t—t' +T(x),t'].  (5.6b

=0)=0, i.e., initially there is no left going wave. We obtain
RO =f[THT() - HIBLT HT(x)~1)] andLO(x1)
=0, whereT(x)= [3dx'/v(x") is the time a pulse of veloc-
ity v(x) will take to t[al\;el f_romxz,Q tOXW't,hOUt scatterln.g. simpler if the initial right-going intensity is a short pulse, i.e.,
A§lv(x) [=(re(x)) 2]_'15 positive the inverse function g +— )= 5(x). This case will also help us to interpret
T~*(y) exists such thal “(T(x))=x. We can generate re- time-dependent solution. In this casB(©)(x,t)
cursively themth-order solutions from then¢— 1)th-order = O[T LT() - )]B[T - HT)-1H]/B(x) and LO(xt)
solutions by solving the equations =0. By direct computation using Eg&.6), we can simplify
the first-order reflected light to

Note thatR(™(x,t)=0 for odd integem and LM (x,t)=0
for even integem becausd. ((x,t)=0.
We now show how these complicated expressions become

(v(x) i+ £)~R(m)(x t)=w(x) LM Y(x,t), (5.4a
X dt ’ Y ’

LO(x,t)=— L ftdt'w[rl(t—t' +TOx))]BLT HT(x)
9 d\_ ~ B(X) 0
(v(x)———)Um)(x,t):w(x)R(m1>(x,t) (5.4b

ax at +t—2t)][ T HT(x)+t—2t")]
subject to the initial conditionsR(M(x,t=0)=0 and 1 fT‘l(T(xH) dy WT L (t/2+ T2
LM (x,t=0)=0 for m=1. This yields the recursive expres- B(X) J1-11x0-1) 2v(Y)
sions +T(Y)I2)1B(y) 3(Y)
t
"F'z<m>(x,t)=J dt/'w[T 1t —t+T(x))] 1 1
0 =~ 2680 W[ T Ht/2+T(x)/2)], t>T(x),
xLm-1 (5.7
X[Tt —t+T(x)),t'], (5.5  where we writev(0)=c, the velocity of light in vacuum.

Fort<T(x) the pulse does not have enough time to reach
and we getLM(x,t)=0. Similarly, solving Egs.(5.6) for

- t
L<m>(x,t)=—fodt’w[T‘l(t—t’wLT(X))] R@)(x,t) yields

~ t

xR RA(x,t)= — —ZC;(X) f AW T 3t —t+T(x))]

X[THt—t' +T(x)),t']. (5.5b °

XW[T (' —t/2+ T(x)/2)]. (5.9

Using Egs. (5.1, we obtain RO(x,t)=f[T X(T(x)
—t)]B[T XT(x)—t)]/B(x) and LO(x,t)=0. We should At this point we can give an interpretation of these formulas.
note that this complicated expression simplifies significantlyR(?)(x,t) is the total field atx andt of all the right-going
when evaluated at positionsthat are outside the medium fields that have scattered exactly two times. We introdyce
(x=b). In this case the minimum arrival timemust be and x, as the positions of the first and second scattering
larger thanT(x) which is the earliest time the pulse could events, respectively, with associated tintesandt,. Thus,
arrive at locationx without scattering. For a negative argu- an initial right-going pulse travels from 0 to, in time t;
ment, T(x) —t, the inverse function is simpl¥ ~1(y)=cy, =T(x,), scatters ak,, travels left fromx; to x, in time
associated with the propagation through vacuum before th&(x;)—T(x,), scatters atx,, and then travels rightward
pulse enters the mediuma+ 0. In other words, the function from x, to x in time T(x) —T(x,). It should be borne in
T~ }(T(x)—t) reduces to the forng[ T(x)—t]. This can be mind that T(x,) is not the same as, because the latter
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Thus, the systeni2.4) with the initial conditionsR(x,t=0)
Space =4(x) andL(x,t=0)=0 has the full solution

R(x,1)=8[ T HT(x—t) B[ T HT(x)— )1/ B(X)

+ > RM™(x),

evenm=2

L(x,t)= > LM™(xt). (5.12
oddm=1

time

These expressions are closely related to the iterative solu-
FIG. 3. Sketch of a typical scattering path on which the iterativetions obtained in the frequency domain.
approach is based.

VI. NUMERICAL ILLUSTRATION OF THE ITERATIVE

represents the time the pulse will reagh after multiple TECHNIQUE

scattering, whileT (x,) denotes time traveled along a straight
line to reach fromx=0 to x=x,. In order for this pulse to In this section, we show the implementation of the above
arrive at x at time t, we have T(xq)+[T(X1)—T(xs)] time domain iterative technique to demonstrate the dynamics
+[T(x)—T(x,)]=t. Similarly, in order for this pulse to ar- of a pulse with Gaussian profile. We consider aghstabs of

rive at x, at time t,, we must haveT(xq)+[T(xq) thicknessd; and refractive indices; (j=1,...,J). The ve-
—T(xz)]=t,. This labeling scheme is depicted in Fig. 3. locity functlon for this medium isv(x)= c[l E _,(1
Solving forx; andx, in terms ofx, t, andt,, we obtainx;  —1/n;)(6(x—a;) — 6(x—b;))] and

=T YT(x)/12—t/2+1,) and x,=T X(T(x)—t+t,). If we
replace the integration variabté by t, in the formula for

J
R®)(x,t) in Eq. (5.8, we obtain T(x)— 2 n—1){(x—a;) 0(x—2;)

(2 = ! td 9
(X't)__mfo tW(X2)W(Xy). (5.9

Thus, we can now interpret(x) as the strength of direction

reversal at positiox and the integral corresponds to the sumFor this medium,T(x) is not a continuous function. The
of all the amplitudes of those fields that have scattered exdirection reversal strength is obtained as

actly twice before arriving at positiorn and timet.

We now apply this insight to the general solutions in Egs.
(5.6). For a fixedm, x; is the position of theth scattering
event along the path of a pulse that scatters exawtlynes
before arriving at positiow at timet. t; denotes the time that
the pulse arrives at;. Then as above we can change vari-
ables that yields, fom even m=2), L(M(x,t)=0, and

(&

w(x)= )= 8(x—b)}. (6.2

I\)I (9]
H

Using Eq.(5.5) for andm=2,4,6,..., we get

1 tm e X T (m—
RM(x,t)=(— 1>m’220,8(x) f iy | "ty RM(x,t)= lemX)_t)dy a(y)L™ D(y,t+T(y)—T(x)),
(6.39
t3
Xfo dLW(Xm)W(Xm-1) - W(Xq). (5.10 )
~ T (T ~
L““*”(x,t):—f Ty aty)R™ D (y,t+T(x)
X
Similarly, we have, for odd integem, R(™(x,t)=0 and

—T(y)). (6.3b

L(m)(X,t) — ( _ 1)(m+1)/2

2¢B(X) fodtmfo Aty As noted previously, if the region between the<(1)th and
kth slab is denoted by, then it is straightforward to show

xft3dt2w(x WX 1)--w(xy). (511 that fort>0, R™M(x, ,t)=LM Y(x,,,,t)=0 and the recur-
0 e sion relation of the following type can be obtained:
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L4 : : would take its peak time att= 125, whereas our pulse takes
R(b.0) =0 m=2 its largest value at timet=138.5.
n The fact that in our iteration scheme the zeroth-order so-
it v“ lution agrees with a delayed pulse that has propagated
through vacuum, and therefore has the same energy as the
incoming pulse, has interesting consequences. For a highly
'1"{00 200 300 , 400 100 200 300 , 400 scatteri.ng medium, the transmitted pulse. is attenuated and
quite different from the zeroth-order solution. Due to large
1.4 ' ' amount of scatterings, the maximum of the exact pulse ar-
R(b.1) m=6 o om20; and rives at the right edge of the medium much later than the
OW/W\A 4\]\1 | pulseR(©. In other words, the zeroth-order pulse predicts a
"V too large amount of intensity at early arrival times and the
higher-order iterates must correct this via destructive inter-
1.4 . . _ . ference. This scenario is quite different from a similar itera-
100 200 300 400 100 200 300 400 tive approach to the one-dimensional Boltzmann equation

[18], in which all iterated solutions are probabilities and

FIG. 4. The fieldR(b,t) as a function of time, transmitted from therefore positive and the higher-order terms cannot erase
a medium containing=100 slabs. The disorder in the refractive Contributions from lower-order terms. In the Boltzmann case,
index, location, and width of the slabs are the same as in Fig. 2. Thie zeroth-order contribution corresponds to exactly that
figures show the transmitted pulse computed up to various orders dfaction of the transmitted light pulse that did not scatter,
iteration and the exact solution. For all the plots-100Ax and ~ Whereas in the present case of the Maxwell equations the
time is measured in units &x/c. total energy of the zeroth-order pulse is always larger than
the total energy of the transmitted pulse.

The second-order iteratidR(®)(x,t) can contain informa-
tion about the trailing edge of the pulse. It should be noted
that its tail for 156<ct<350 is quite similar to that of the
exact pulse. At the same time, the maximum amplitude
(=1.4) is much larger than that of the exact pulse. The sixth-
order solutionR(®)(x,t) can reduce this amplitude by de-
structive interference, but the associated long time trail is too
large. Finally, the 20th-order pulse is graphically indistin-
guishable from the exact pulse and the iterative scheme is
converged. This convergence is expected from the inset in
Fig. 2 for the individual wavelength components.

R™(xy11,8) = Y L™ (b, t+ T(y) — T(Xyes1))
—LM Y@y, t+T(a) — T(X 1)}

+RM(x, 1), t>T(Xer1)—T(a7)

(6.43a

E(mfl)(xk ,t) — ,yk{ﬁ(mfz)(ak ,t+T(Xk) _T(ak))
—RM 2 (b, t+T(x) — T(by)}

+TMD(xq,1),  t>T(by)—T(X)). VIl. SUMMARY AND OUTLOOK

(6.4b In summary, we have derived an iterative method to solve
the Maxwell equations for a one-dimensional model system
with an arbitrary position-dependent dielectric constant. We
Let us now give a numerical illustration of the iteration have constructed solutions that are iterative in the scattering
scheme for a finite pulse propagating through the same 100rder, equivalent to the number of scattering events along the
random slabs as discussed in Fig. 2. In Fig. 4 we present tHerward and backward directions.
m=0th, 2nd, 6th, and 20th order solutioRéx=100¢) gen- A very difficult question concerns the generalization of
erated from the se(5.6) for an incoming Gaussian pulse this approach to two- or even three-dimensional systems.
R(x,t=0)=f(x) =[exp(— (X— Xo))*/20?]cog (w/C)(X—Xg)] The feasibility of the method is based on the fact that the
of width o and centered at,=— 25. The central frequency electric and magnetic field vectors can be rewritten in terms
w was chosen to bes=0.5712/Ax, corresponding to a ©f a new left- and right-going.field, respeptively, which are
wavelength\ = 11. The spatial widthr=10 corresponds to a coupled by the Maxwell equations. Following this procedure
width in wavelength ofAX = 2. This range is precisely what for a two-dimensional system would require thg definition of
has been displayed in the inset on the top of Fig. 2. The new vector fieldM (f,v) as a function oE andB which is
transmission coefficient varies between 85% and 99% in thian explicit function of the propagation direction The spa-
wavelength regime. tial and temporal evolutions of this field should be given by
The first figure shows the zeroth-order solutiBf)(x  a Boltzmann-like generator of the form+3-V to permit
=100t). This corresponds to the output pulse in the absencehe appropriate interpretation. However, we have not been
of scattering. In contrast to a pulse that has traveled throughble to construct such a field.
vacuum a=1), however,R© arrives a little bit delayed, This work has been devoted to the derivation of this itera-
RO)(x,t)=f(x—ct+xq). This delayxq=13.5 can be calcu- tive scheme. Even though the main emphasis was on its nu-
lated from the medium as discussed above. For comparisomerical implementation, the lowest-order solutions provide
a pulse that had propagated through vacudifx—ct), fully analytical expressions that can be used for further in-
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vestigations. One area of recent interest is to compare thehip between the Maxwell and Boltzmann description. We
solutions of the Boltzmann equation for one-dimensionalwill report on these investigations elsewhere.

medium with the exact ones from the Maxwell equations

[16]. As a derivation of the Boltzmann equation from the

Maxwell equation is still a challendd 9,20 and only small ACKNOWLEDGMENTS
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